Resolver Problemas Praticos de Crescimento Logaritmico
July 5, 2022 | Author: Anonymous | Category: N/A
Short Description
Download Resolver Problemas Praticos de Crescimento Logaritmico...
Description
J`stjtutg J`dustrjac i fgeirjac da Eatgca Ispifjacjdadi; Eifè`jfa J`dustrjac F_9 Turea; EAQ F_9
Tur`g; Djur`g
Tiea; Xisgcvir prghcieas prátjfgs di frisfjei`tg cgbarjtejfg Ogrea`dgs; Ieua`ic Eau`di
I`jg Fmjvuri
Baspar Fuehj
Ki``joir Eabg`a
Kgaquje Vavifa Têcfjg Ea`kati Ogreadgr; Ahjizir Eatmi
Eatgca, 88 di Ahrjc di 8>8>
Å`djfi 1. J`trg J`trgduâæ duâæg.... g......... .......... .......... .......... .......... .......... ......... ......... .......... .......... .......... .......... .......... .......... .......... .......... ............ ................ .................. ...............6 ......6 1.1. Ghkiftjvg Ghkiftjvgs.... s......... .......... .......... .......... .......... .......... .......... .......... ......... ......... .......... .......... .......... .......... .......... .......... .......... ............ ................. ............6 ..6 1.8.
Frisfjei` Frisfjei`tg tg cgba cgbaråtejf råtejfg.... g......... .......... ......... ......... .......... .......... .......... .......... .......... .......... .......... ......... ......... .......... .......... .............4 ........4
8. Fg`f Fg`fcusæ cusæg... g........ .......... .......... .......... .......... .......... .......... .......... ......... ......... .......... .......... .......... .......... .......... .......... .......... ......... ......... .......... ............ ..............2 .......2
J`tr trgd gduâ uâæg æg 1. J` @g prisi`ti trahacmg, prgfuraegs dar i`oasi á j`sirâæg dg frisfjei`tg cgbarjtejfg.
1.1.
Ghkiftjvgs
Xisgcvir prghcieas di frisfjei`tg cgbaråtejfg
Ioiftuar gpiraâùis fge iquaâùis cgbaråtejfas.
1.8. 8. 1.
Fris Fr isfj fjei ei`t `tgg cgb cgbar aråt åtej ejfg fg
Frisfjei`tg cgbarjtejfg ‖ disfrivi ue oi`gei`g fukg taea`mg gu fustg pgdi sir disfrjtg fgeg uea ou`âæg cgbaråtejfa di acbuea i`trada. Quacquir hasi cgbaråtejfa pgdi sir usada, uea viz qui pgdi fg`virtjda ie gutra (hasi) euctjpcjfadg pica fg`sta`ti. ^gr gutra, frisfjei`tg cgbaråtejfg ê g j`virsg di frisfjei`tg ixpg`i`fjac ixpg`i`fjac i ê eujtg ci`tg. Aprisi`taegss a sibujr acbueas apcjfaâùis prátjfas dg frisfjei`tg cgbaråtejfg. Aprisi`taeg 1- @uea fjd fjdadi adi tie 1>.> 1>.>>> >> têf`j têf`jfgs fgs ogrea ogreadgs dgs ie eifè eifè`jfa `jfa J`dustrja J`dustrjac.c. a`uacei`t a`uacei`tii g `ûeirg di têf`jfgs ogreadgs aprisi`ta ie eidja ue frisfjei`tg di 9%. Apös qua`tgs a`gs a fjdadi tirá 1>>.>>> têf`jfgs ogreadgs ie Eifè`jfa J`dustrjac7 Ysi cgb1,>9 5 >,>811:
O`5 1>>>>>
g`di
O>5 1>>>>
O`5 ogrea`dgs
`57
O>5 ogrea`dgs dg a`g j`jfjac `5 a`g
Oöreuca/Xisgcuâæg
O`5 O>.1,>9` 1>>>>> 5 1>>>>.1,>9` 1,>9` 5
1>>>>> 1>>>>
1,>9` 5 1> ` 5 cgb 1,>9 1> cgb1,>9 5 >, >811: 1,>9 5 1>>,>811: (1>>,>811:) ` 5 1>1 1>>, >811:.` 5 1>1 >, >811:.` 5 1 `5
1 >.>811:
` 5 42,8 a`gs X; A fjdadi tirá 1>>>>> têf`jfgs ogreadgs ie Eifè`jfa J`dustrjac apös 42 i 8djas.
8-
Ye istudg fg`statgu qui gs ogreadgs ie Eifè`jfa J`dustrjac ixprissa pica ou`âæg ^(t) 5 9>>>℠>,1=t, ie qui ^(t) sæg gs ogreadgs t a`gs apös a ogreaâæg j`jfjac, qui gfgrriu ie ditirej`adg a`g i fg`sjdiradg t 5 >. Fge rioirë`fja a issi istudg i fg`sjdira`dg 1,8 i 1,= fgeg gs vacgris aprgxjeadgs para ℠>,1= i c`? rispiftjvaei rispiftjvaei`ti. `ti. Kucbui gs jti`s a sibujr. Gs istuda`tis ogreadgs ie Eifè`jfa J`dustrjac siræg di 6>.>>> istuda`tis 9 a`gs apös a ogreaâæg j`jfjac. ^> 5 9>>> ^ 5 6>>>>
^(t) 5 l + cgb ^(t) 5 l . c` ^(t) 5 l.℠
c`? 5 1,= T 57
^(t) 5 9>>>℠>,1=t 6>>>> 5 9>>>℠>,1=t
Oöreuca/Xisgcuâæg t
a
6>>>> 9>>>
5 ℠>,1=t
? 5 ℠>,1=t c` ? 5 c` ℠>,1=t 1,= 5 >,1=t c`℠ 1,= 5 >,1=t t5
1=> 1,= 5 1= >,1=
t 5 1>. X; G `ûeirg di istuda`tis ogreadgs ie Eifè`jfa J`dustrjac siræg 6>.>>> istuda`tis apös a ogreaâæg j`jfjac.
6- Vu Vupg pg`m `maa qqui ui a aact ctur uraa A (ie eitrg) di ue i`bi`mg di ourar pgdi sir dioj`jda ie ou`âæg di siu pisg ^ (ie lb) pica sibuj`ti ixprissæ ixprissæg. g. A (^) 5 >,92 c` (p) ‖ >,98 a) Facf Facfuci uci a act actura ura di ue ii`bi` `bi`mg mg di our ourar ar sahi sahi`dg `dg qui qui g siu pisg pisg ê di 49lb 49lb A (^) 5 >,92 c` (p) ‖ >,98 A (49) 5 >,92. 6,=> ‖ >,98 A (49) 5 8,1?? ‖ >,98 A (49) 5 1,?9e X; A actura di ue i`bi`mg di ourar fge pisg di 49lb sirá di 1,?9e.
h) Facfuci g pis pisgg di ue i`bi i`bi`mg `mg di ourar sahi sahi`dg `dg qui tie 12 1299 fe di actura. 129fe 5 1,29e A(t) 5 >,92 c` (^) ‖ >,98 1,29 5 >,92 c` ^ ->,98 1,29 + >,98 5 >,92 c` ^ c` ^ 5
8,82 >,92
c` ^ 5 6,:= ^ 5 ℠6,:= ^ 5 96,91lb X; G pisg di ue i`bi`mg di ourar fge a actura di 1,26e sirá di 96,91lb. 4- @u @uea ea iepr iepris isaa g têf` têf`jfg jfg di ea`u ea`uti` ti`âæg âæg prg prgduz duz ie eêdja eêdja gjtg (=) pi piâas âas gu pir`gs di faejùis faejùis pgr dja ie x mgras. Vahi`dg qui a iquaâæg cgb 1>> 1> 5 t riprisi`ta ie mgras g tiepg `ifissárjg para a prgduâæg prgduâæg di ue pir`g pir`g.. Qua`tg tiepg g têf`jfg civará para prgduzjr g `ûeirg tgtac di pir`gs7 Dadgs
= piâas/pir`gs piâas/pir`gs cgb 1>> 1> 5 t/piâa
t/= piâas 57
1 piâa-------------------(cgb 1>> 1> )m = piâas------------------- x x.1piâa 5 = piâas . (cgb 1>> 1>).m
x5
= piâa ( cgb 1>> 1> ) m ⋉
1 piâa
x 5 =. ( cgb 1>> 1> ) m x 5 (= x5
= 8
⋉
1 ) 8
m
si`dg;
1 m cgb 1>> 1> 8 5
4m 5 cgb1> 1>>>>
m
x 5 4m X; G têf`jfg civará 4 mgras para prgduzjr g `ûeirg tgtac di pir`g.
Fg`f `fcu cusæ sægg 8. Fg @isti prisi`ti g brupg fg`statgu qui, g fg`mifjei`tg di frisfjei`tg cgbaråtejfg `æg divi sir tratadg api`as fgeg fg`mifjei`tg di j`ueirávijs ribras rib ras,, ag fg` fg`trá trárjg rjg,, ê `if `ifiss issárj árjgg a hus husfa fa pi pica ca fgepri fgeprii`s i`sæg æg dg fg`fi fg`fijtg jtg i`vgcvjdg i `as djvirsas j`tirpritaâùis, fg`sjdira`dg g egdg pica quac issis fg`tiûdgs si j`sirie `a Eatieátjfa, rifg`mifi`dg suas apcjfahjcjdadis ie gutras árias di fg`mifjei`tg.
View more...
Comments