Resolucion de Tuberias SOTELO AVILA
Short Description
Descripción: UNSCH...
Description
UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA FACULTA FA CULTAD D DE CIENCIAS CI ENCIAS AGRARIAS ESCUELA DE FORMACIÓN PROFESIONA PROFESIONAL L DE INGENIERÍA AGRÍCOLA
RESOLUCION RESOLUCIO N DE PROBLEMAS PA PARES SOBRE FLUJO EN CANALES CANALES ABIERTOS ABIERTOS Y MEDIDAS EN FLUJO DE FLUIDOS
CURSO
: HIDRAULICA
ALUMNOS
:PALOMINO HUAMANI EDISON
PROFESO R : ING. MSc. JORGE EDMUNDO PASTOR PASTOR WAT WATANABE
SOLUCION: H =
∑ h + ∑ H f
= f i
h f i
ε
loc
Li * V i
+
V s
2
= 0.075mm.
ε
= 0.00005 D numero de reynolds
2 g
2
Di * 2 g
Convirtiendo la ecuación de darcy En función de diámetro y caudal
4*Q π * v * D
Re
=
Re
= 3.13 *10 7
del
→ v = 1.142 *10 −6 m 2 / seg (T = 15º C )
diagrama
de
f = 0.0108 EFECTIVAE NTE D
40 = H = h f
= 0.0827 *
Q
2
f * L * ( D D 4
= 1.60m.↵
+ (∑ K ) + 1)
= 45m 3 / seg Krejilla Krejilla = 0.336 sea. f = 0.02 Q
40 = H = 0.0827 *
45 2 D 4
*(
0.02 * 35 D
+ (0.336 + 0.001 + 0.008) + 1)
= 1.65m. ε = 0.075mm.
D ε
= 0.00005 D numero de reynolds 4*Q
Re
=
Re
= 3.04 *10 7
del
π * v * D
→ v = 1.142 *10 −6 m 2 / seg (T = 15º C )
diagrama
de
moody :
f = 0.0108
CALCULO DE D CON EL NUEVO f 2
40
= H = 0.0827 * 454
D
= 1.60m.
D
*(
0.0108 * 35 D
+ (0.336 + 0.001 + 0.008) + 1)
moody :
SOLUCION: H =
∑ h + ∑ H f
= f i
h f i
ε
loc
Li * V i
+
V s
2
= 0.075mm.
ε
= 0.00005 D numero de reynolds
2 g
2
Di * 2 g
Convirtiendo la ecuación de darcy En función de diámetro y caudal
4*Q π * v * D
Re
=
Re
= 3.13 *10 7
del
→ v = 1.142 *10 −6 m 2 / seg (T = 15º C )
diagrama
de
f = 0.0108 EFECTIVAE NTE D
40 = H = h f
= 0.0827 *
Q
2
f * L * ( D D 4
= 1.60m.↵
+ (∑ K ) + 1)
= 45m 3 / seg Krejilla Krejilla = 0.336 sea. f = 0.02 Q
40 = H = 0.0827 *
45 2 D 4
*(
0.02 * 35 D
+ (0.336 + 0.001 + 0.008) + 1)
= 1.65m. ε = 0.075mm.
D ε
= 0.00005 D numero de reynolds 4*Q
Re
=
Re
= 3.04 *10 7
del
π * v * D
→ v = 1.142 *10 −6 m 2 / seg (T = 15º C )
diagrama
de
moody :
f = 0.0108
CALCULO DE D CON EL NUEVO f 2
40
= H = 0.0827 * 454
D
= 1.60m.
D
*(
0.0108 * 35 D
+ (0.336 + 0.001 + 0.008) + 1)
moody :
SOLUCION: tomando como referencia la plantilla del canal canal de meno denivel! denivel! Ecuación de "ernoulli:
∆ % = ∑ h f + ∑ H loc se
omi#en
iguales
en
ecuacion h f i
= f i
las
c arg as
am$os
de
Li * V i
de
!resion
y
velocidad
!un#os.
darcy : 2
calculo
Di * 2 g
hloc I
= 4m 3 / seg Q = Ai * V i Q
V 1
=
0.7854 * D1
2
en
= 2.26m / seg
la
#u$eria
L#o#al = 104.21m ε ε
= 0.00005 D numero de reynolds V * D
del
diagrama
→ v = 1.142 * 10 − 6 m 2 / seg (T = 15º C )
v Re = 2.97 * 10 6
de
moody :
f = 0.0116 Lfriccion
= 94m.
reem!la"an do h f 1 h f 1 h f 1
= f 1
L1 * V 1
!erdidas !erdida s
locales
2
2 g
*ALIDA → K ¨= 0.5 →
cam$io
de
direccion
= 0.49 K 2 = 0.55 K 1
2
&'()*IDAD − &ELATIVA = 0.075mm. →
Re =
de
= K V i
en#rada
Q
velocidad
!or ser
2
D1 * 2 g
94 * 2.26 2 = 0.0116 1.5 * 2 * 9.8 = 0.1894 m.
hloc I
= (0.5 + 0.55 + 0.49 + 0.5) 2.26 = 0.5316 m.
reem!la"an do
valores
ecuacion
la
de
en
19 .6 la
energia
∆ % = 0.1894 + 0.5316 = 0.721m.↵↵ &TA
Solucion: la ecuación de ener#$a y ecuación de darcy on: H =
∑ h + ∑ H f
= f i
h f i
loc
Li * V i
+
V s
2
2 g
2
Di * 2 g
calculo
= 0.03m 3 / seg Q = Ai * V i
V 2
Q
=
0.7854 * D1
=
2
Q 0.7854 * D 2
2
hloc I
= 1.53m / seg = 0.78m / seg
reem!la"an do h f 1 h f 1 h f 1
= f 1
L1 * V 1
de
!erdidas
locales
2
Q
V 1
Determinación e !"# c"e$iciente# %. !a &e!"cia en !a $"rm'!a e !a eria# !"ca!e# e# ag'a# aa" (c'an" n" #e ini+'e !" c"ntrari")
2
15 * 1.53 2 = 0.048 0.05 * 2 * 9.8 = 0.206 m. igual manera
h f 2
= 0.643m.
en#rada hloc I
→ K ¨= 0.5
= 0.0072 m.
am!liacion
en
c
2
D = 0.16 K = 2 − 1 D1 hloc = 0.005 m. I
D1 * 2 g
de
= K V i 2 g
reem!la"ando
valores
ecuacion
la
de
en
la
energia
H = ( 0 .206 + 0.643 ) + ( 0.007 + 0.005) + 0.031 = 0 .9 m.↵↵ &TA
#enemos
%&' do depóito ! cuya diferencia de nivele permanece contante e i#ual a %(m! etán comunicado por un conducto recto y )ori*ontal ! contituido por do tramo: el primero de &(m de lon#itud y %((mde diámetro+ y el e#undo de ,(m de lon#itud y ,(mm de diámetro ' a la mitad del e#undo tramo e intercala un diafra#ma de -(mm de a"ertura ' lo conducto on de acero oldado ! nuevo' Determinar el #ato .ue paa de un recipiente a otro ! a$ como la l$nea pie*ometrica ! teniendo en cuenta toda la perdida
SOLUSION: E/('0(mm D/%(cm
1%/('(%23
14/('(%23
56C7 8A9A EL DIA19A;A A-( /('((( BS
V%/
>
V%/4',&3m ?1/ M M 5%> 7 ?1/ M
M
5%>
7
?1/ ?1/ ?
"7 V%/
?/&-'--m
> BS
V%/
>
V%/,'(24m ?1/ M M 5%> 7 ?1/ M
M
5%>
7
?1/,3'&& ?1/ ? c7 V%/
?/%32'-4m > BS
V%/
>
V%/4'(%m ?1/ M M 5%> 7 ?1/ M
M
5%>
7
?1/0' B4 > B- > B& > B, / %', e# B / 4B% > 4B4 > B- / %',
e#QQQQQQQQQQQQQQQ'' 547
8or etar en paralelo la prdida de car#a on i#uale' )f% / )f4 / )f-/ )f& / )f, / ?t'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 5-7 Aumimo:
/ ('(4,! f4 / ('(44! f- / ('(-( eto dato e o"tienen de la
@a"la por tanteo' )f% /
/
/ 4B4 > B- / %', e#
B/4
>4
>
/ %',
e#
)f / -'-,-m' Calculando la velocidade:
)f / B- / %',
e#
45('43(7 > 45('%2&7 > B- / %', B- / (',24
e#'
e#
e#
4//%$%, $#,#c$&: &,# '01/%$& $# %,& $& /+,&4 >, %, /#,:
→ f
l V2
2
f
= h f 8 /$+/& L4 D. = f1 = f 2 = f 3 h f2
3
2
=
f
l V2
→ V2 = V3........II
D 2 g D 2 g Q1 = Q2 + Q3 → V1 A = V 2 A + V3 A A$+@& Q2 >, %, /#, V2 = V 3
V1 = V2 + V3 → V1 R$$+>%//#,
= Q3
= 2V2........................ ( α )
( α ) $#
*II)
l V12 V2 2 5 = f + ÷ → 5 = D 2 g 2 g
l V12 V12 + ÷ f D 2 g 8g
l 5V 12 2 5 = f → 5 = f * 63.71( V1 ) ..............IV ÷ D 8 g e 0.2 C,+,: = ÷ = 0.002 D
100
♣ S1>,#'$#, 21$: V 1
& E =
E#,#c$&8
V *D
= 1.5 m seg 150 *10
= = 1.5*105 0.01 f = 0.0243
ν D$% DIAGRAMA A - 6 : R$$+>%//#, $# %/ $c1/c'# *IV)4 &$ '$#$8
♣ S1>,#'$#, 21$: V 1
& E =
= 2.0 m seg
200*10
= 2.0*10 5 0.01 A 6: f = 0.024
E#,#c$&8
< !.
D$% DIAGRAMA R$$+>%//#, $# %/ $c1/c',# *IV)4 &$ '$#$8
5 > 6.116
In#er!olando &$ '$#$8 V 1 = 1.79 m seg P, %, /#, $$+>%//#,
f1 = 0.0242 = f 2
T/+b'#:
Q1 = V1 * A = Q2
V 1 $# ( α ) &$ '$#$: V2
= Q3 =
Q1 2
=
( 1.79 ) * π ( 0.1)
f 3 2 3 m = 0.014
4
=7
seg .
l . seg
b). c/%c1%, $ =. B$#,1%%' $#$ A 3 C
!A γ
2
+
VA
2 g
+ %A =
!C γ
2
+
VC
2 g
+ %C + h f −
l V 12 0 = −6 + + h + f ÷ 2 g D 2 g V12
= V 3 = 0.895
A C
= 14
l . seg
l V 12 6 = h + ( f + 1) ÷ D 2 g l 100 P$,8 f = 0.0242 = 24.2 D
01
V 12 E#,#c$&8 6 = h + (24.2 + 1) ÷ 2 g V 12 6 = h + (24.2 + 1) ÷ 2 g 1.72 6 = h + (25.2) ÷ 2*9.81 h = 3.40m.
!. E# $% &'&$+/ $ 1b,&4 +,&/, $# %/ ('01/4 c/%c1%/ H4 $ +/#$/ 21$ 6 5 69 %&$0. P// %,& &'01'$#$& /,&: L6 5 L! 5 D1 = l3 > D3 3 >, %, /#,: f1 = f 3 8E#,#c$&8 K1 = K 3
V 21 V 23 → h f = K1 * + K 3 * H = h f + 2 g 2g 2 g V 21 V 23 H = K1 * + ( K 3 + 1) * 2 g 2 g V32
R$$+>%//#,8 ?6 5 ?!4
V 23 V 21 E#,#c$&8 H = K1 * + ( K 1 + 1) * 2 g 2 g
V 21 V 23 + ÷ H = ( 2 K1 + 1) 2 g 2 g
!, γ
P, %, /#,8
.................I
B$#,1%%' $#$ B 3 C.
+
V,
2
2 g
+ %, =
!C γ
2
+
VC
2 g
+ %C + h f,−C
V 23 V 2 2 → h f = K 2 * + K 3 * P, %, /#,8 H = h f + 2 g 2g 2 g V 23 V 2 2 H = K 2 * + ( K 3 + 1) * ................II 2 g 2 g A$+@&: Q3 = Q1 + Q2 → Q3 − Q2 = Q1 V1 A = V3 A − V2 A → V1 = V3 − V 2 V32
C,+,4
Q1 = 12
l
3 m . = 0.012
seg Q1 = E#,#c$&: V3 − V 2 A V3 − V 2
=
seg . 0.012*4 = 1.5279m / seg . 2 π ( 0.1 )
= 1.5279m / seg . ..*III)
I01/%/#, %/& $c1/c',#$& I 3 II4 &$ '$#$:
V 21 V 23 V 23 V 2 2 2 ( K 1 + 1) 2 g + 2 g ÷ = K 2 * 2 g + ( K 3 + 1) * 2 g V32 V 23 V12 V 2 2 + ( K 3 + 1) * ( K 3 + 1) * + K1 * = K 2 * 2 g 2g 2g 2 g
2
K1 *
V1
2 g
K1 = f1 R E = D
%$2
V
= K2 * l 1
2 g
= K 3
D1 V1 * D1
=
2
→ K1V12 = K 2V 2 2 ..*IV)
P, %, /#,4
152.7 *10
ν 0.01 DIAGRAMA A - 6 : f1
K1 = K 3
= 0.0242
100 0.1
=
f1 = f 3
= 1.53*105 f 3 = 0.0242
= 24.2
K 1 4 $# %/ $c1/c'# *IV) (24.2)*(1.5279) = K 2V 2 → 56.4943 = K 2V 2 l 56.4943 = f 2 2 V 2 2 → 0.028 = f 2V 2 2.......................(V ) D
R$$+>%//#,
♣ S1>,#'$#, 21$: V 1
R E =
V2 * D2
ν D$% DIAGRAMA
=
= 1.5 m seg
150 *10
= 1.5*105 0.01 A 6: f 2 = 0.0243
R$$+>%//#, $# %/ $c1/c',# *V)4 &$ '$#$8
♣ S1>,#'$#, 21$: V2
R E =
V2 * D2
=
100 *10
ν 0.01 D$% DIAGRAMA A 6: f 2
= 1.5m / seg.
0.0282 < 0.054675
= 1.0 *105
= 0.0247
0.0282 > 0.247 In#er!olando. &$ '$#$ 21$: V2 = 1.055m / seg. 3 f 2 = 0.0246 C/%c1%, $ %/ V 3 R$$+>%//#, $# %/ $c1/c',# *V)4 &$ '$#$8
= Q1 + Q2 = 0.012 + 0.008286 Q3 = 0.020m3 / seg. Q3
V3
=
Q3 A
= 2.58m / seg.
REEMPLAANDO4
K1 >V1 >V 3 EN LA ECUACIÓN *I).
1.52792 2.582 + H = ( 2 * 24.2 + 1) ÷ 2*9.81 2*9.81 H = 22.64m.
6. E# $% >,b%$+/ .67 $$+'#/ %/ '&'b1c'# $ 0/&, $# %,& 1b,& 4 c1/#, $% c,$('c'$#$ $ >$'/ $# %/ K@%K1%/ &$/ V57. .67. E# $% &'&$+/ +,&/, $# %/ ('01/ '$#$ %/ &'01'$#$ 0$,+$/ 8H59+ 8L65L95L!5L5677+ 8/$+@& 4 ( 65( 95( 57.79< 3 ( !57.798 $% c,$('c'$#$ $ >$'/ $# %/ K/%K1%/ V5!7. C/%c1%/ %,& 0/&,& $# c// 1b,4 $&>$c'/#, %/& >$'/& %,c/%$&. S,%1c'#:
L/ >$'/ $ $#$0/ $#$ B 3 C $& : f L 0.025 × 100 K 2 = K 1 = 2 2 = = 25 D2
K 4
0 .1
= K 1 = 25
En.el .#u$o.#res .>.#enemos K 3
=
f 3 L3 D3
+ K V =
0.02 × 100 0 .2
+ 0 = 10
!or .la.ecuacion.de. !erdida . se.#iene
∆ H =
n
∑ ( Di i =0
8× Q2 2 n π ∑ ( Di / i =0 2
/ Ki )
=
Ki )
0.01 25
..............(α )
+ 0.04 = 0.0126 10
2 n π ∑ ( Di i = 0
= (3.14 × 2.0126) 2 = 39.937....
/ Ki )
Re em!la"ando.en.(α ) 8 × Q4
∆ H =
2
= 0.0204Q 4 2
39.937 × 9.81 Adem/s. D1 = D 4 !or .la.ecuacion.de.con#inuida d . se.o$#iene V 1
2
2
D V = ( 4 )2 4 2 g D1 2 g
=
V 4
2
2 g
>→
V 4
2
2 g
=
Q4
2 2
2 g (π D 4 / 4)
2
=
Q4
2
19.6(0.7854 × 0.01)
= 828Q 4 2
La.ecuacion.de.energia.en#re. A. y. D.nos.da : 24 = + 1
V 4
2
+ 0.0204Q 4 + + 4 2
2 g
V 4
2
2 g
+
V 4
2
2 g
> reem!la"an do.los.valores
24 = ( 2 × 25 × 828 + 0.0204 + 828)Q 4 >. → Q 4 2
= 0.0238m 3 / seg .
La. !erdida.de.c arg a.en#re. ,. y.C
∆ H = 0.0204(0.0238) 2 = 0.0000115 m...(es#a?. !.rdida. sera.igual . !ara.las.dos.ramas> !or .lo. tan #o. se.#iene.
∆ H = K 2 .Q 2
= π ×
V 2
2
2 g
> de.donde.la.Q 2 .es :
(0.1) 2
2 × g × ∆ H
4
K 2
= π ×
(0.1) 2
2 × 9.81× 0.0000115
4
25
= 0.00324m 3 / seg .
De.la.misma.manera. !ara.el .caudal ..Q 3 Q2
= π ×
(0.2) 2
2 × 9.81× 0.0000115
4
10
= 0.0205m 3 / seg .
9. C/%c1%/ %/ >,$#c'/ %/ b,+b/ 21$ '$#$ 1#/ $('c'$#c'/ #5 // 21$ $% 1b, 9 %%$K$ 1# 0/&, $ < %&$0. L/ 0$,+$'/ $&: L 65< +8 D65 $('c'$ %'b$ $% $c'>'$#$ A &$/ $% +'&+, 21$ $% $% $c'>'$#$ B8 /&'+'&+,4 95$>$#'c1%/ /% >'+$, c,# $% c1/% &$
1#$ $# (,+/ $ T. E% &$01#, c,#1c, $&$+b,c/4 $# c// $Q$+,4 / 1# /#21$ c13, #'K$% &$+/#'$#$ / %/ $%$K/c'# $ ,#0/+,& 1# '/+$, $ 697 ++. E#,#c$&:
V 1 =
Q1
0.05*4
→ V1 =
2
= 4.42m / seg.
A1 π *(0.12 ) V1 * D1 4.42 * 0.12 6 R E = 10 = 4.64 *10 5 = 1.142 ν 0.0238 P// ('$, (1#', D$% DIAGRAMA A 6: f 1 = ♣ B$#,1%%' $#$ A 3 D
!A1 γ
2
+
VA
20 = ( f
2 g
l1 D1
+ %A+ =
+ 1)
V12 2 g
+
!D γ
+
!D γ
VD
2
2 g
+ %D + h fA− D
.....................I
P$,8
f
l 1 D1
= 0.0238
100
= 19.83..........II
0.12 R$$+>%//#, II $# I &$ '$#$. 2 (4.42) !D + 20 = (19.83 + 1) γ 2 g !D = 19.75m..............III
γ CORRIGIENDO: EN LA ECUACION I
l1 V 12 l1 V 12 20 = 19.756 + ( f ) → 0.25 = ( f ) D1 2 g D1 2 g V 1 5 7."< m / seg V * D1 0.465* 0.12 6 R E = 1 10 = 5.09 *10 5 = 1.142 ν P// ('$, (1#', D$% DIAGRAMA A 6: → f 2 = 0.0255 Q1 0.05*4 → D 12 = 0.465* → D1 = 0.37m = 370mm. A1 = π V 1
P, c,#'#1'/.
Q1 = Q2 + Q3 >$, Q2 = Q3 → Q1 = 2Q2 V *A Q2 = Q3 = 1 1 → V2 A2 = 0.025m3 / seg. 2 ♣ B$#,1%%' $#$ D 3 B.
!D γ
+
VD 2
+ %D + =
2 g (0.465)2
19.75 +
14.76 = K 2
2 g
V 22 2 g
!, γ
+
= 5 + K 2
V, 2
2 g V 2 2
+ %, + h fD− ,
2 g
→ 14.76 = f
l V 2 2 D
2 g
2
5.7854 = f
V
2
D 2 g
............................IV
P// %/ 1b$'/ 9. S1>,#0/+,& 1# '/+$, $ 697 ++.
V2
=
Q2 * 4 π *(0.12
& E = P//
V *D
=
2
= 2.21m / seg.
) 2.21* 0.12
= 2.23*105 1.142 ν ('$, (1#', D$% DIAGRAMA A 6: → f 2 = 0.0245 106
f 2 EN LA ECUACIÓN IV4 SE TIENE. V2 = 5.32m / seg. R$$+>%//#,
Y CON ESTA NUEVA VELOCIDAD SE CALCULA EL
& E =
V *D ν
=
5.32 * 0.12 1.142
106
= 5.59 *10 5
P// ('$, (1#', D$% DIAGRAMA A 6: E% c1/% $&
%$ & E
→ f 2 = 0.0238
f 2 />,Q'+/, >, $'//c'#.
Y c,# $&$ K/%,4 c/%c1%/+,& $% K/%, +/& />,Q'+/, $ V 2 4 $$+>%/#,
f 2 $# %/ $c1/c'# IV. Q2 * 4 2 → D2 = 0.0767 m. D2 = π * V 2 $% K/%, $
L1$0, %,& '/+$,& c,$&>,#'$#$& $#$+,&: >// c// /+,
D2 = D3 = 80mm. D1 = 370mm.
,4' en la red5 motrada en la fi#ura7 e pide calcular lo diametro teorico de la tu"eria ! de manera .ue :B,/ 4, l! B3/-(l! N/-0 5 Poeny7 y la car#a de preion minima en la decar#a ean de por lo meno %, m de columna de a#ua! lo tu"o on de fierro #alvani*ada'
&('((m -,'((m
%
L/0(( D/ ,
L/,(( D/ -
L/3(( D/ B/4, lt
L/4((( D/ &
L/&(( D/ B/-( lt %-'((m
%('((m 3
&,%1c'#:
,
?/%, m Se pide calcular:
6. C/%c1%/#, Caudal aumido:
9. C/%c1%/#, Caudal aumido: Con eto dato "ucamo en la ta"la el
!. C/%c1%/#, Aumimo
Caudal ucamo en la ta"la el
. C/%c1%/#, Aumimo
Caudal ucamo en la ta"la el
/
ucamo en la ta"la el
/ ".) L/ ('01/ +1$&/ $% >,3$c, $% &'&$+/ $ 1b,& >// c,+b/' '#c$#',& $# 1#/ '#&/%/c'# '#1&'/%. E# %,& >1#,& 64 94! 3 &$ $21'$$# '#&/%/ ='/#$& >// /b/&$c$ 0/&,& $ 6
View more...
Comments