Resolução Exercícios - Plinio Cap 2
Short Description
Este arquivo contém a resolução dos exercícios do capítulo 2 do livro Introdução à Teoria dos Números cujo autor é José ...
Description
Teoria dos Números 1.
Mostrar que 47 | 2
23
Capítulo 2 (Exercícios)
1.
Para mostrar que 47 | 2 23 1, devemos mostrar que 2 23 ≡ 1 (mod 47). Notemos que 2 10 = 1024 = 37 + 47 21. Ou seja, 210 ≡ 37 (mod 47) 10 2
Então, [2 ]
≡ (10)
2
(mod 47)
⇒
20
2
≡ 100 (mod 47)
⇒
2
20
⇒
210 ≡ 10 (mod 47).
≡ 6 (mod 47) (I)
Vejamos, agora, que 23 = 8 = 47 39, ou seja, 23 ≡ 39 (mod 47) (II). De (I) e (II), (220 23) ≡ 6 (39) (mod 47) Mas, 234 = 1 47 5, então 2
2.
23
⇒
223 ≡ 234 (mod 47).
≡ 1 (mod 47).
∎
34
63
Encontrar o resto da divisão de 7 por 51 e o resto da divisão de 5 por 29. 2
2 17
i) Vejamos que 7 ≡ 2 (mod 51). Então, (7 )
Porém,
≡
} ⇒
≡
≡ (2)
17
(mod 51)
⇒2
210 27 ≡ 4 26 (mod 51)
Dessa forma, 217 ≡ 2 (mod 51)
⇒
17
2
17
⇒
734 ≡ 217 (mod 51). (I)
≡ 104 (mod 51)
≡ 49 (mod 51). (II)
⇒
217 ≡ 2 (mod 51).
De (I) e (II), temos que 734 ≡ 49 (mod 51), o que indica que o resto da divisão de 7 34 por 51 é 49. ii) Notemos que 5 ≡ 9 (mod 29), o que nos dá: 5
3
63
Mas, 33 ≡ 2 (mod 29)
342 ≡ 216 (mod 29) (II)
⇒ ⇒
342 ≡ (2)16 (mod 29)
No entanto, 2 8 ≡ 13 (mod 29)
≡9
21
⇒⇒
(28)2 ≡ 132 (mod 29)
(mod 29). Como 9 = 3 2, 563 ≡ 342 (mod 29) (I)
216 ≡ 169 (mod 29)
⇒
216 ≡ 24 (mod 29) (III).
De (I), (II) e (III), temos que 563 ≡ 24 (mod 29), ou seja, o resto da divisão de 5 63 por 29 é 24.
3.
2
2
Mostrar que se p é um ímpar e a + 2b = 2p, então “a” é par e “b” é ímpar. Teremos 4 casos: 1º Caso: “a” par e “b” par
Dessa forma, teremos: a = 2x e b = 2y (x e y inteiros). Então, a2 + 2b2 = 4x2 + 8y2 = 4(x2 + 2y2). Já que a2 + 2b2 = 2p, temos que 4(x 2 + 2y2) = 2p 2º Caso: “a” ímpar e “b” par
⇒
p = 2(x2 + 2y 2), o que é um absurdo, pois p é ímpar.
Dessa forma, teremos: a = 2x + 1 e b = 2y (x e y inteiros). 2
2
2
2
2
2
2
2
Então, a + 2b = (2x + 1) + 2(2y) = 4(x + 4x + y ) + 1, o que é absurdo, pois a + 2b = 2p. 3º Caso: “a” ímpar e “b” ímpar
Dessa forma, teremos a = 2x + 1 e b = 2y + 1 (x e y inteiros) Então, a2 + 2b2 = (2x + 1) 2 + 2(2y + 1)2 = 2(2x2 + 2x + 4y2 + 4y + 1) + 1, o que é absurdo, analogamente ao caso 2. 4º Caso: “a” par e “b” ímpar
Dessa forma, teremos a = 2x e b = 2y + 1 (x e y inteiros). Então, a2 + 2b2 = (2x)2 + 2(2y + 1)2 = 2(2x2 + 4y2 + 4y + 1). Dessa forma, teríamos que p = 2x2 + 4y2 + 4y + 1, verificando o fato de p ser ímpar. 2
2
Ds cass , , 3 e , teres que, para “p” ípar, a + 2b = 2p somente para “a” par e “b” ípar.
∎
4.
Provar que para p primo (p
1)! ≡ p
1 (mod 1 + 2 + ... + (p
1)).
Notemos que: (p 1) ≡ 1 (mod p) e (p 1)! ≡ 1 (mod p) (Teorema de Wilson). Pela transitividade, teremos que: (p 1)! ≡ p 1 (mod p). Isso nos mostra que p | (p 1)! (p 1). Temos, também, que (p 1)! (p 1) = (p 1) [(p 2)! 1], ou seja, p 1 | (p 1)! (p 1). Disso, segue que
p | (p 1)! (p 1).
Notando, porém, que 1 + 2 + ... + (p 1) = p
5.
(
)
p p p são primos entre si, temos que p | (p 1)! (p 1), ou seja, (p 1)! ≡ p 1 p .
Como p e
p , tem-se provado o resultado.
Encontrar o máximo divisor comum de (p
1)!
∎
1 e p! (primo).
Se p = 2, teremos que (p 1)! 1 = 0 e p! = 2, ou seja, mdc((p 1)! 1, p!) = mdc(0, 2) = 2. Se p = 3, teremos que (p 1)! 1 = 1, ou seja, mdc((p 1)! 1) = 1. Suponhamos, então, p 2. Seja d um divisor comum de (p 1)! 1 e de p!. Notemos que, se d = p, então d (p 1)! 1. Consideremos, portanto, d p. Como d | p! = p (p 1)! e d p, então d | (p 1)!. Mas d | (p 1)! 1, por hipótese. Se d | (p 1)! e d | (p 1)! 1, então d | 1, logo d = 1. Então, mdc((p 1)! 1, p!) = 1, se |p| 2 e mdc((p 1)! 1, p!) = 2, se |p| = 2. Nota: Do Teorema de Wilson, p | (p 1)! + 1. Dessa forma, se p | (p 1)! 1 = (p 1)! + 1 2, então p divide a 2, ou seja,
p = 2.
6.
Mostrar que para n 4 o resto da divisão por 12 de 1! + 2! + ... + n! é 9. Queremos provar que, para n
4,
o resto da divisão de 1! + 2! + ... + n! por 12 é 9. Ou seja, se N = 1! + 2! + ... + n!,
queremos mostrar que N ≡ 9 (mod 12). Notemos que 1! + 2! + 3! = 9, e que 4! = 24. Então, 1! + 2! + 3! + 4! + ... + n! = 9 + (4! + 5! + ... + n!) = 9 + 4!(1 + 5 + 6 5 + ... + n (n 1) ... 6 5). Então, para n 4, teremos que 1! + 2! + 3! + ... + n! = 9 + 4! . k. Porém, 4! = 24 = 12 2. Então, 12 | 4! k (k inteiro). Sendo assim, podemos escrever: 1! + 2! + 3! + ... + n! = 9 + 12 m (m
∈ℤ
), para n 4.
Logo, se N = 1! + 2! + 3! + ... + n! = 9 + 12 m, então N ≡ 9 (mod 12), tendo provado o resultado.
7.
Mostrar que para n inteiro 3n
2
∎
1 nunca é um quadrado.
Notemos que 3n2 1 = 3n2 3 + 2 = 3(n 1)(n + 1) + 2 = 3k + 2. Basta mostrarmos que nenhum quadrado é da forma 3k + 2. Um número t, qualquer, pode ser das formas: t = 3k, t = 3k + 1 ou t = 3k + 2. Então, (I) t = 3k
⇒⇒
t2 = 9k2 = 3 (3k2) = 3k1 2
2
2
(II) t = 3k + 1 t = (3k + 1) = 9k + 6k + 1 = 3k2 + 1 (III) t = 3k + 2
⇒
t2 = (3k + 2)2 = 9k2 + 12k + 4 = 3k2 + 1.
Dessa forma, temos provado que um quadrado nunca é da forma 3k + 2 e, consequentemente, que 3n 2 1 nunca é um quadrado.
8.
Resolver as seguintes congruências. (a) 5x ≡ 3 (mod 24)
Vejamos que, existe y inteiro tal que: 5x = 3 + 24y, ou seja, 5x 24y = 3. Procuramos, portanto, soluções para essa Equação Diofantina. Vejamos que: 5 5 24 = 1
⇒
(3 5) 5 3 24 = 3
Dessa forma, 5 (x 15) 24 (y 3) = 0
⇒
⇒
x = 15 e y = 3 é uma solução particular.
x = 15 +
3
⇒
y = 3 + 5 k
⇒
x = 15 + 24 k
⇒
x ≡ 15 (mod 24)
Vejamos, porém, que, dada a equação ax + by = c, com d = mdc(a, b), se d | c, então para uma solução particular x = x 0, teremos que: x = x 0 +
( ) ∈ℤ b
k
(k
).
Para a nossa equação 5x 24y = 3, teremos que d = mdc(5, 24) = 1. Para x0 = 15, teremos: x = 15 + Isso nos dá a solução x ≡ 15 (mod 24).
( )
k
= 15 24 k.
(b) 3x ≡ 1 (mod 10)
Queremos encontrar a solução da equação 3x 10y = 1. Notemos que mdc(3, 10) = 1 | 1. Vejamos que x = 3 e y = 1 é uma solução particular. Dessa forma, 3 (x + 3) 10 (y + 1) = 1
⇒
x = 3 +
3
⇒
x = 3 + 10 k (k inteiro)
⇒
x ≡ 3 (mod 10)
⇒
x ≡ 7 (mod 10).
(c) 23x ≡ 7 (mod 19)
Queremos encontrar a solução da equação 23x 19y = 7. Vejamos que mdc(23, 19) = 1 | 7. Isso garante a existência da solução. Notemos que, 23 = 19 + 4, que 19 = 3 4 + 7, então, multiplicando a primeira igualdade por 3, teremos: 3 23 = 3 19 + 3 4 = 3 19 + (19 7)
⇒
3 23
+ 4 19 = 7, dessa forma x = 3 e y = 4 é uma solução particular.
Teremos, então, que 23(x + 3) 19(y + 4) = 0, o que nos dá: x = 3 + O que nos dá, como solução, a classe de congruências: x
3
⇒
x = 3 + 19 k (k inteiro).
≡ 3 (mod 19), ou seja, x ≡ 16 (mod
19).
(d) 7x ≡ 5 (mod 18)
Vejamos que mdc(7, 18) = 1 | 5, então existe solução. Dessa forma, queremos a solução da equação 7x 18y = 5. Temos que: 18 2 7 = 4, ou seja, 3 18 6 7 = 3 4 = 12 = (7 + 5). Então, 3 18 7 7 = 5. Assim, uma solução particular para a equação é x = 7 e y = 3. Então, 7 (x + 7) 18 (y + 3) = 0, ou seja, x = 7 + 18 k (k inteiro). As soluções são tais que x
≡ 7 (mod 18) ≡ 11 (mod
18)
⇒
x ≡ 11 (mod 18).
(e) 25x ≡ 15 (mod 120)
Vejamos que mdc(25, 18) = 5 | 15. Dessa forma, existem 5 soluções. Notemos que 25x 120y = 15 é tal que 5x 24y = 3 e, do item (a), temos que x = 15 (e y = 3) é uma solução particular. k, para k inteiro. Serão, então, mais 4 soluções. Ou seja, 1 = 39, x2 = 15 + 2 = 63, x3 = 15 + 3 = 87 e x4 = 15 + 4 = 111. x1 = 15 +
Dessa forma, x = 15 +
Dessa forma, teremos as soluções: x ≡ 15 (mod 120), x ≡ 39 (mod 120), x ≡ 63 (mod 120), x ≡ 87 (mod 120) e x ≡ 111 (mod 120).
9.
3
5
Mostrar que 5n + 7n ≡ 0 (mod 12) para todo inteiro n . Notemos, inicialmente, que: 5 ≡ 7 (mod 12) e 7 ≡ 5 (mod 12). Teremos, então:
(I) Se n ≡ 0 (mod 12)
(II) Se n ≡ 1 (mod 12)
⇒ ⇒ ⇒ ⇒ ⇒ ⇒
3 ≡ ≡ 3 ≡
≡
(III) Se n ≡ 2 (mod 12)
(IV) Se n ≡ 3 (mod 12)
(V)
Se n ≡ 4 (mod 12)
(VI) Se n ≡ 5 (mod 12)
⇒ ⇒
⇒ ⇒
3 ≡
5n3 + 7n5 ≡ 0 (mod 12)
≡
3 ≡
5n3 + 7n5 ≡ 12 (mod 12)
≡
3 ≡
≡ 3 ≡ 3 ≡ ≡ 3
⇒ ⇒ ⇒ ⇒
⇒
5n3 + 7n5 ≡ 0 (mod 12)
3 ≡ ≡
≡ ≡
⇒ ⇒ ⇒
5n3 + 7n5 ≡ 0 (mod 12)
3 ≡ ≡ 3
≡ 3 ≡ 3
≡ ≡ 3
3 ≡ ≡
3 ≡ ≡
≡ ≡
≡ ≡
3 ≡ ≡
3 ≡ 3 ≡
≡ 3 ≡
≡ ≡
3
5n + 7n
5
≡ 0 (mod
12)
5n3 + 7n5 ≡ 0 (mod 12)
(Basta continuar a verificação para n ≡ 6 (mod 12), n ≡ 7 (mod 12), n ≡ 8 (mod 12), n ≡ 9 (mod 12), n ≡ 10 (mod 12) e n ≡ 11 (mod 12)) 3
5
3
5
3
Uma outra forma de pensar, é notar que 5 = 12 7. Ou seja, 5n + 7n = (12 7)n + 7n = 12n + 7 (n
5
n
∎
3
).
Dessa forma, como 7 é primo, devemos mostrar que n5 n3 é divisível por 12. Para tanto, basta mostrarmos que n 5 n3 é divisível por 3 e por 4. Se 3 | n, nada temos a provar. Suponhamos, então, que 3 n. Então n ≡ 1 (mod 3) ou n ≡ 2 (mod 3). Se n ≡ 1 (mod 3), então n5 ≡ 1 (mod 3) e n3 ≡ 1 (mod 3). Dessa forma, n5 n3 ≡ 0 (mod 3), ou seja, 3 | n 5 n3. Se n ≡ 2 (mod 3), então n5 ≡ 2 (mod 3) e n3 ≡ 2 (mod 3). Dessa forma, n5 n3 ≡ 0 (mod 3). Provemos agora que 4 | n5 n3. Ora, n5 n3 = n2 (n3 n). Ou seja, se n é par, 4 | n2 e, portanto, 4 | n 5 n3. Suponhamos, então, n ímpar. Então, n ≡ 1 (mod 4) ou n ≡ 3 (mod 4). Se n ≡ 1 (mod 4), então n5 n3 ≡ 0 (mod 4). Se n ≡ 3 (mod 4), então n5 ≡ 243 (mod 4) ≡ 3 (mod 4) e n3 ≡ 27 (mod 4) ≡ 3 (mod 4). Então n 5 n3 ≡ 0 (mod 4). Dessa forma, n
5
n
3
é divisível por 4.
Se 3 | n 5 n3 e 4 | n5 n3, então 12 | n5 n3, logo 12 | 5n3 + 7n5 e, portanto, 5n 3 + 7n5 ≡ 0 (mod 12).
n
10. Seja f(x) = a0 + a 1x + ... + a nx um polinômio com coeficientes inteiros onde a n > 0 e n
∎ 1.
Mostrar
que f(x) é composto para infinitos valores da variável x. 11. Mostrar que se p 1 e p2 são primos tais que p2 = p1 + 2 e p1 > 3, então p 1 + p2 ≡ 0 (mod 12). Vejamos que, dividindo um número por, obtemos números da forma 6k, 6k + 1, 6k + 2, 6k + 3, 6k + 4 e 6k + 5. Notemos, também, que 6k, 6k + 2, 6k + 3 e 6k + 4 não são primos. Dessa forma, os números primos são da forma 6k + 1 ou 6k + 5. Como p1 > 3, então p 1 5, ou seja, p 2 7. Então: Se p1 = 6k + 5, então p2 = 6k + 7, ou seja, p1 + p2 = 12k + 12 = 12(k + 1). Então, p 1 + p2 ≡ 0 (mod 12). Se p2 = 6k + 1, então p1 = 6k 1, ou seja, p1 + p2 = 12k. Então, p1 + p2 ≡ 0 (mod 12).
Observação: Notemos que: Se p1 = 6k + 1, então p2 = 6k + 3 (Absurdo, pois p2 é primo). Se p2 = 6k + 5, então p1 = 6k + 3 (Absurdo, pois p1 é primo).
∎
2
2
12. Mostrar que para a e b inteiros temos que 3 | (a + b )
3 | a e 3 | b.
Suponhamos que 3 não divida a pelo menos um entre a e b (suponhamos que 3 a, sem perda de generalidade). Teremos, assim, 6 casos para analisar: (I)
a ≡ 1 (mod 3) e b ≡ 0 (mod 3). Dessa forma,
(II)
a ≡ 3
b ≡ 3
a ≡ 1 (mod 3) e b ≡ 1 (mod 3). Dessa forma,
a ≡ 3
b ≡ 3
(III) a ≡ 1 (mod 3) e b ≡ 2 (mod 3).
Dessa forma,
⇒ ⇒
a2 + b2 ≡ 0 (mod 3)
a2 + b2 ≡ 2 (mod 3)
a ≡ 3
b ≡ 3 ≡ 3
(IV) a ≡ 2 (mod 3) e b ≡ 0 (mod 3).
Dessa forma, (V)
a ≡ 3 ≡ 3
b ≡ 3
a ≡ 2 (mod 3) e b ≡ 1 (mod 3). Dessa forma,
a ≡ 3 ≡ 3
b ≡ 3
(VI) a ≡ 2 (mod 3) e b ≡ 2 (mod 3).
Dessa forma,
a ≡ 3 ≡ 3
b ≡ 3 ≡ 3
⇒ ⇒ ⇒
⇒ ⇒
3 a2 + b2 (Absurdo!).
3 a2 + b2 (Absurdo!).
⇒ ⇒ ⇒
a2 + b2 ≡ 2 (mod 3)
3 a2 + b2 (Absurdo!).
a2 + b2 ≡ 1 (mod 3)
3 a2 + b2 (Absurdo!).
a2 + b2 ≡ 2 (mod 3)
⇒
3 a2 + b2 (Absurdo!).
a2 + b2 ≡ 2 (mod 3)
⇒
3 a2 + b2 (Absurdo!).
É, então, absurdo supor que 3 a ou 3 b, então 3 | a e 3 | b.
2
∎
2
2
13. Sejam p1, p2 e p 3 primos tais que p = (p 1) + (p 2) + (p3) é primo. Mostrar que algum dos p i’s é igual a 3. Suponhamos que nenhum dos p i’s seja igual a 3. Ist é, pi ≡ 1 (mod 3) ou pi ≡ 2 (mod 3). Notemos que, se x ≡ 1 (mod 3), então x 2 ≡ 1 (mod 3). Se x ≡ 2 (mod 3), então x2 ≡ 4 (mod 3) ≡ 1 (mod 3). Dessa forma, (pi)2 ≡ 1 (mod 3). Então, (p1)2 + (p2)2 + (p3)2 = 1 + 1 + 1 (mod 3)
⇒
p ≡ 3 (mod 3)
⇒
p ≡ 0 (mod 3).
Vejamos que p i 2, então p 6. Sendo p primo, temos que p ≡ 0 (mod 3) implica em p = 3, o que é absurdo, pois p 6. Dessa forma, ao menos um dos p i’s eve ser congruente a 0 módulo 3. Sendo que os p i’s sã pris, etã a es u deles deve ser igual a 3.
2
∎ 2
14. Mostrar que 3x + 4x ≡ 3 (mod 5) é equivalente a 3x Vejamos que:
2
2
x + 2 ≡ 0 (mod 5).
≡ 3 ≡
Dessa forma, 3x2 + 4x2 ≡ 3 (mod 5) é equivalente a 3x 2 x2 ≡ 2 (mod 5), ou melhor, 3x2 x2 + 2 ≡ 0 (mod 5).
15. Mostrar que p | Notemos que,
p
p
, onde 0 < k < p .
=
p p p p p p 3 p = = p = p m (m p p
Então, claramente p | p m = p p 1 m, dessa forma, p |
p
∈ℤ
).
.
∎
18. Mostrar que 3
10
2
≡ 1 (mod 11 ).
Vejamos que 3 5 ≡ 1 (mod 242), isto é, 35 ≡ 1 (mod 112). Dessa forma, tem-se imediatamente, que 3 10 ≡ 1 (mod 112).
∎
19. Resolver os seguintes sistemas. ≡ 1 mo 2
a)
{
≡ 2 mo 3 ≡ 5 mo
Inicialmente, notemos que m = 2 3 7 = 42 (I)
Temos que: y1 =
̅ ̅ ̅
= 21
̅ ̅ ̅
Além disso, é solução particular de y1 x ≡ 1 (mod 2), ou seja, 21x ≡ 1 (mod 2), ou seja, = 1. (II)
Temos que: y2 =
= 14 3
Além disso, é solução particular de y2 x ≡ 1 (mod 3), ou seja, 14x ≡ 1 (mod 3), ou seja, = 2. (III) Temos que: y3 =
= 6
Além disso, 3 é solução particular de y3 x ≡ 1 (mod 7), ou seja, 6x ≡ 1 (mod 7), ou seja, 3 = 6.
∑̅ 3
ssa sluã é, prtat, ≡
bi ii
i
Então, x ≡ 257 (mod 42), ou seja, x ≡ 5 (mod 42). Os outros sistemas são análogos. Lembrar que, por exemplo, a congruência 2x ≡ 1 (mod 5) equivale a x ≡ 3 (mod 5). 7
21. Mostrar que a ≡ a (mod 21) para todo inteiro a. Basta mostrarmos que a7 a é divisível por 7 e por 3. Mostremos, inicialmente, que 7 | a
7
a.
Notemos que a 7 a = a (a 6 1). Se 7 | a, nada temos a provar. Suponhamos, então, que 7 a. Dessa forma, do Pequeno Teorema de Fermat, temos que a7 1 ≡ 1 (mod 7), ou seja, 7 | a6 1, o que prova que 7 | a 7 a. Vejamos, também, que a
7
a
= a (a
6
1)
3
= a (a
3
1) (a
2
+ 1) = (a 1) a (a + 1) (a
a
2
+ 1) (a + a + 1). É claro que um
dos fatores (a 1), a ou (a + 1) é divisível por 3, dessa forma, a 7 a é divisível por 3. Conclui-se, então, que 7 | a7 a e 3 | a7 a, ou seja, 21 | a7 a, e, portanto, a7 ≡ a (mod 21).
∎
22. Mostrar que para a e b inteiros, com mdc(a, b) = 1 temos: a
(b)
+ b
(a)
≡ 1 (mod ab).
Vejamos que, como mdc(a, b) = 1, temos, do Teorema de Euler, que a (b) ≡ 1 (mod b) e b(a) ≡ 1 (mod a). Ou seja, temos que b | a (b) 1 e a | b(a) 1. Assim, ab | (a(b) 1) (b(a) 1) = a(b) b(a) a(b) b(a) + 1. Porém, ab | a(b) b(a). Dessa forma, deveremos que ter que ab | a(b) b(a) + 1 ou melhor, ab | a(b) + b(a) 1. (b)
Isso implica que a + b
(a)
≡ 1 (mod
ab).
∎
23. Provar ou dar um contra exemplo: “Se a e m são inteiros, mdc(a, m) = 1, então 2
(m) 1
m | (1 + a + a + ... + a
)“
Como mdc(a, m) = 1, o Teorema de Euler nos garante que a
(m)
≡ 1 (mod m). Ou seja, m | a
(m)
1.
Mas, a(m) 1 = (a 1) (a(m) 1 + ... + a2 + a + 1). Ou seja, mdc(a, m) = 1
⇒
m | (a 1) (1 + a + a 2 + ... + a (m) 1).
Assim, se m | a 1, não podemos afirmar que m | (1 + a2 + ... + a(m) 1). Para um contra exemplo, é necessário tomarmos a e m tais que a ≡ 1 (mod m). Tomemos, por exemplo, a = 3 e m = 2. Dessa forma, (2) = 1, ou seja, teremos que 2 3(2) 1) = 1, contrariando a afirmação inicial.
24. Mostrar que se p e q são primos, p q 5, então p
2
2
q ≡ 0 (mod 24).
Devemos verificar que 3 | p2 q2 e 8 | p 2 q2. 2
2
Como p e q são maiores que ou iguais a 5, então ambos são ímpares. Vejamos que, se p = 2k + 1, então p = 4k + 4k + 1, ou melhor, p2 = 4k (k + 1) + 1. Porém, k (k + 1) = 2k1, ou seja, p2 = 8k1 + 1. O que nos leva a atribuir q 2 = 8k2 + 1. Então, p2 q2 = 8 (k1 k2), ou seja, 8 | p 2 q2. Basta verificarmos, agora, que 3 | p2 q2. Ora, nas condições dadas, temos que p e q não são múltiplos de 3. Então, temos, por exemplo, p ≡ 1 (mod 3) ou p ≡ 2 (mod 3). Já verificamos anteriormente, que se x ≡ 1 (mod 3), então x
2
2
≡ 1 (mod 3) e que se x ≡ 2 (mod 3), então x ≡ 1 (mod 3).
Dessa forma, teremos que p 2 ≡ 1 (mod 3) e, consequentemente, q 2 ≡ 1 (mod 3). Assim, p2 q2 ≡ 0 (mod 3), ou seja, 3 | p 2 q2. Isso implica, portanto, que 24 | p 2 q2, ou melhor, p2 q2 ≡ 0 (mod 24).
∎
n
Capitulo 1: Mostrar que 2 + 1 nunca é um cubo. Para tanto, suponhamos 2n + 1 = k3. Dessa forma, 2n = k3 1 = (k 1)(k2 + k + 1). Vejamos que k 2 + k + 1 = k (k + 1) + 1 Necessariamente, k (k + 1) é par, o que faz com que k (k + 1) + 1 seja ímpar. n
2
2
n
n
Isso é um absurdo, pois 2 = (k 1) (k + k + 1), ou seja, k + k + 1 é um dos fatores de 2 e 2 (por ser uma potência de 2) apresenta apenas fatores iguais a 2. Então, 2n + 1 k3, para todo inteiro k, isto é, 2n + 1 não pode ser um cubo.
∎
View more...
Comments