Reservior Rock Properties Essentials

January 17, 2023 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Reservior Rock Properties Essentials...

Description

 

 

RESERVOIR ROCK

PROPERTIES

Essentials Edited by Dr. Nayef Alyafei

Special thanks:  Abdulsaboor Khan  Afsha Shaikh Maryam Al-Suwaidi  Mariam Obidan Mashaal Al-Salem Mohammed Al-Mohannadi  Mohamed Idris Rand Alagha Sara Al-Marzouqi  Tarek Saad  Wajd Wa jdii Al ou oush sh

1

 

 

Contents

2

Conversion of units Porosity Rock compressibility Liquid permeability Gas permeability Flow in layered systems

4 5 6 7 8 9

Fluid saturation Electrical properties Wettability Capillary pressure Relative permeability Volumetric estimation of hydrocarbons

11 12 13 14 17 18

 

What is this booklet? This booklet summarizes the dierent topics covered in the Fundamentals of Reservoir Rock Properties book in a simple and easy-to-follow format with a one-page article covering each concept. The booklet highlights each property with a basic knowledge that intends to convey a general understanding of the covered topics. The purpose of this booklet is to give a quick overview of the reservoir rock properties. The Fundamentals of Reservoir Rock Properties book can be downloaded from the following link: https://www.qscience.com/content/books/9789927137273 Why studying Reservoir Rock Properties is important? Reservoir rock properties are part of petrophysics, which is the study of rock properties and rock-uid properties. Reservoir rock properties are essential aspects of understanding hydrocarbon reservoirs. Those properties should help in estimating the amount of hydrocarbons in reservoirs as well as understanding the production behavior of hydrocarbons. DOI: https://doi.org https://doi.org/10.5339/Reservoir_Ro /10.5339/Reservoir_Rock_Properties_ ck_Properties_Essentials Essentials

3

 

CONVERSION OF UNITS Length

Area

1 ft = 0.3048 m = 12 in

1 ft2 = 0.092903 m2 = 144 in2

1 m = 3.281 ft = 39.37 in = 100 cm

1 m2 = 10.7649 ft2 = 10000 cm2

Mass

Force

1

1 lbf = 4.44822 N = 32.2 lbm.ft/s2

= 0.45359 kg

2

1 kg = 2.2046 lbm = 1000 g

1 N = 0.2248 lbf = 1 kg.m/s

Interfacial Tension

Permeability

1 N/m = 1000 mN/m = 1000 dyne/cm

1 D = 1000 mD = 9.869233 x 10-13 m2 

Volume 1 ft3 = 0.02831 m3 = 28.3168 L = 0.178 bbl = 0.178 RB 1 m3 = 35.29 ft3 = 1000 L

Pressure 1 atm = 101.3 kPa = 1.013 bar = 14.696 lbf/in2 (psia) 1 psia = 6.89 kPa = atm/14.696 1 Pa = 1 N/m2 = 1 kg/m.s2 = 10-5 bar = 1.450 x 10 -4 lbf/in2 = 10 dyne/cm2 psia = psig +14.7

Density 1 g/cc = 1000 kg/m3 = 62.427 lb/ft 3 = 8.345 lb/gal = 0.03361 lb/in3

Viscosity 1 cP = 0.01 poise = 0.01 g/cm.s = 0.001 kg/m.s = 0.001 n.s/m2 = 0.001 Pa.s  = 0.01 dyne.s/cm2 = 6.72 x 10-4 lbm/ft.s = 2.09 x 10 -5 lbf.s/ft2

Metric Prexes Prex

Symbol

Multiplication Factor

giga

G

109

mega

M

106

kilo

k

103

centi

c

10-2

milli

m

10-3

micro

µ

10-6

nano

n

10-9

Oileld Prexes

4

Prex

Symbol

Multiplication Fa Factor

Thousand

M

103

Million

MM

106

Billion

MMM or B

109

Trillion

T

1012

 

POROSITY What is Porosity? Porosity (ф) is the fraction or percentage of empty volume that exists in a rock over the total volume. This is where water, oil and gas reside in a rock. Think of the reservoir like a sponge, the way a sponge absorbs water in the empty spaces is the same way that the uids occupy the pore spaces in a rock. The general formula for porosity is:

φ

=

V    p V  b

=

Factors Aecting Porosity 1. Primary porosity – developed during the burial of the rock:   Sorting 

V  b − V  m V  b

where: ф = porosity [fraction or %] V  p = pore volume [cm3 or ml] V b = bulk volume [cm3 or ml] V m = matrix volume [cm3 or ml]

2. Secondary porosity (induced) – developed after deposition due to external factors:

Types of Porosity There are two types of porosity:

a. Compaction due to stress (decreases porosity):

• •

Well sorted

Poorly sorted

Total porosity (фt ) Eective porosity (фe)

The total porosity takes all the pore space in a rock into consideration. Whereas, eective porosity, is the fraction of the volume of interconnected space in a rock over the bulk volume. As petroleum engineers, we mostly care about the eective porosity. Imagine a school with an area of 100 m2, 25 m2 of those 100 m 2  are occupied by ve hallways, and for simplicity let us say all the hallways have the same area. Now imagine that two of those hallways are closed. Students then can only walk through three of the hallways, or 15 m2. In the same sense, uids in the rock can only ow through pores that are not closed but are connected.

Unpacked

packed

b. Fractures (increase porosity):

c. Dissolutions (Vugs) (increase porosity):  

5

 

 

ROCK COMPRESSIBILITY Porosity is the fraction of a rock that consists of void space. A key aspect in studying porosity is studying rock compressibility.

Types of Compressibility Compressibility plays a major role on reservoir performance. It is divided into three types:

Rock Compaction Porosity is reduced by compaction, and the reduction is a function of the burial depth of the rock. Isothermal compressibility is dened as the change of volume per unit pressure change at constant temperature.

• • •

Matrix Compressibility, c m  Pore or formation Compressibility, c  p/f  Bulk Compressibility, c  b

 

F ov 

Eects of Compaction • Changes in packing • Deformation of rock fragments

Simplifying Assumptions • Reservoirs are isothermal • As pressure increases, material volume decreases • As pressure decreases, material volume increases These assumptions are used to derive the compressibility equation shown below

c =



F m

 

F  f 

For static conditions; The summation of forces should equal zero

1 dV  

 F ov ov = F m + F   f 

V   dP 

Where F ov  ov  is the overburden force, F m is the matrix force resisting deformation, and F  f is the uid force.

where:

 = coecient of isothermal compressibility c  = [1/psia] V = volume [ft3] P = pressure [psia]

Similarly for pressures,  Pov = Pm + P f 

As uids are produced from a reservoir, the uid pressure in the pores decreases; however, the overburden pressure remains constant causing the following eect: 1. Force on matrix increases 2. Bulk volume decreases 3. Pore volume decreases

This eect pushes some uids out of the reservoir, as the pore volume is decreasing with compaction. Also, this might cause subsidence, where formation thickness decreases to compensate for the produced uids.

6

 

 

LIQUID PERMEABILITY What is Liquid Permeability? Pores usually contain water in them referred to as brine. Brine is water that contains more dissolved salt than typical seawater. In other words, brine is a solution of salt in water.

Permeability is a measure of the uid conductivity of the rock, which means that permeability is the term used for uid transport.

Permeability can be calculated using Darcy’s law for 1-D, single phase liquid (in Darcy’s units):



  =

kA dP  µ dx

Where k  =  = permeability [D]

Understanding Permeability It is important to understand permeability, as it inuences the production of hydrocarbons. As previously discussed hydrocarbons are stored in the pores of the reservoir rocks. Now you might be wondering what the relationship between porosity and permeability is. Permeability is the ability of uids to be transported through porous rocks. If the pore spaces in rocks are not connected, then the rock is not permeable. The uid then, will be trapped

and unable to move. If the pore spaces in rocks are connected, then uid can be transported so it is permeable. The gure below provides an illustration of how low and high permeability look like.

dP  dx

= pressure gradient [atm/cm]

 A  A =  = cross sectional area [cm 2]  µ  µ =  = viscosity of liquid [cP] q = volumetric ow [cm 3/s]   When nding the permeability using Darcy’s law, there are certain conditions that must be assumed for Darcy’s law to be valid: •

The pore spaces should be fully saturated with a single phase; water, oil, or gas.

• •

The ow must be laminar. The ow must be at steady-state condition.

 

Low permeability reigon

High permeability reigon

7

 

GAS PERMEABILITY Introduction Often dry gas (He, N2, air) is used in the laboratory for permeability determination since it is readily available and is relatively less reactive with the rock. Gas Permeability Since gases are compressible, the average pressure Pm needs to be used, where: P m   =

P 1 + P 2

2

Considering an ideal gas behavior of gas, we can assume:

Klinkenberg Eect Klinkenberg (1941) noticed that permeability measurements using liquids and gases gave dierent results. Permeability with air gave a higher value than permeability measurement with water. This phenomenon was attributed to gas slippage at the pore walls. Liquids have zero velocity at the sand grain surface; however, gases have some nite velocity at the sand grain surface. The slippage results in a higher owrate for a given pressure dierential for the gases. Klinkenberg related the liquid permeability k L to gas permeability k  g  by the following equation: kg   = c

P 1 q 1

  =

P 2 q 2

  =

P  q  m

 1 P m

+ kL

m

Thus, Darcy’s law equation becomes:

P  q  sc sc

sc sc   =

P  q  m

  kA(P 12  − P 22 ) q sc sc   = 2µg LP sc sc where, qsc  = gas owrate at standard conditions [cm3/s] Psc  = pressure at atmospheric conditions [≈ 1atm] k  =  = absolute permeability [D]  A =  A = cross sectional area [cm 2] P1 = inlet pressure [atm] P2 = outlet pressure [atm]  µ g  = gas viscosity [cP] L = length of core [cm]

8

Slippage

m

k g

  Absloute or Liquid Permeability

1 Pm

If we observe from the graph, the higher the value of Pm, the lower the value of 1/P 1/Pm. At extremely high pressures (innite pressure), gases are believed to behave like liquids. Thus if we extrapolate our 1/P 1/Pm to zero, it would mean the permeability would be approximately equal to the liquid permeability. The slope c  of  of the line is a function of absolute permeability, type of gas, and average radius of the rock capillaries.

 

FLOW IN LAYERED SYSTEMS The objective of understanding the ow in a layered system is to nd the average permeability of the system and its various beddings. The average permeability calculation will be centered around Darcy’s law but will vary based on the conguration of the layers as described in the following cases: Case 1: Linear Flow in Parallel Consider the three-layer system below where the layers are in parallel and each layer has a dierent permeability. In this case, the pressure drop in each layer is the same. The ow rate and thickness, however, are unique and sum up to the total ow rate and thickness of the system. Combining these relationships with Darcy’s law results in the average permeability formula for this system.

¯ k  =

L

n

Li i=1 ki

Case 3: Radial Flow in Parallel The ow in parallel systems for liner and radial cases is similar. Consider the system below, the overall ow rate and total thickness is the summation of the ow rate and thickness value of each layer. The pressure drop, however, is common. Combining these conditions with Darcy’s law for radial ow results in a calculation of average permeability for this case.

r e r W 

q1

P1

P2

k 1

h1

q1

k 2

h2

q2

k 3

h3

q 2

k 1 q

 

h

h1

k 2

q3

q

h2

q3

h k 3

h3

¯ k  =

L

¯ k  =

kh i

i

i

h

i=1

n

i

h

i=1

Case 2: Linear Flow in Series In this case, each bedding still has a dierent permeability but they are in series to each other. As a result, the ow rate that passes through each rock is the same but the pressure drop across each rock is dierent. Furthermore, the total length of the system is composed of the length of each rock. These conditions can be combined to calculate the average permeability of the system.

Case 4: Radial Flow in Series Finally, consider the radial system below. In this case, the ow rate across each layer is the same, however the pressure dierence in each layer varies. Combining these conditions allows for the average permeability for this system.

r e r 1

r W 

h

P1

 2 k 

k 1

P2

k 1

q

kh n



P1 L1

k 2

k 3

P2

q

ln

P3

L2

L3

W  L

h

¯ = k

re rw

  r



n i=1

ln

(i+1) ri



ki

9

   

   y    g    o    l    o    h    t    i    L

   y    t    i    s    o    r    o    P

   g    o    L    )    c    i    n    o    s    (    c    i    t    s    u    o    c    A

   L     f      T      T

   d    n    u    o    S

   l    n    o    a   i    c   t    i    g   a    c    o    l    fi    o   i    s    e   s    G   a    l    C

    ∆    ∆   −   −

  m   m      T      T

    ∆    ∆    =

     φ

   g    o    L    n    o    r    t    u    e    N

   s    n    o    r    t    u    e    N

   g    o    L    y    t    i    s    n    e    D

   y    a    R    a    m    m    a    G

   y    r    a    d    n    o    c    e    S

   r    a    l    u    n    a    r    g    a    r    t    n    I

   y    r    a    m    i    r    P

   m

     V     b    −     V     b

     V

   r    a    l    u    n    a    r    g    r    e    t    n    I

   y    l    t    c    e    r    i    D    d    a    e    R

   =

     φ

    p

      b

     V     V    =

     φ

   n    o    i    t    a    r    u    t    a    S    d    i    u    l    F

   s    a    G

   c    i    n    a    g    r    O

   c    i    n    a    g    r    o    n    I

   n    i    g    i    r    O

10

   )    C    H    (    n    o    b    r    a    c    o    r    d    y    h    g    n    i    r    :    u    c    c    M    U   o    E   y    l    L   l    O   a    r    R   u    T   t    E   a    P   N

   y    t    i    y    s    t    i    o    s    r    o    r    o    o    P    P

   =       φ

   S    A    G

   l    i    O

   s    l    a    m    i    n    a    &    s    t    n    a    l    p

   m    m

    ρ     ρ

   D    I    U    Q    I    L

   l    i    O    &    s    a    G

   y    r    a    d    n    o    c    e    S

   −    −

   E    R    U    S    S    E    R    P

   d    e    m    r    s    i    o    s   f    r    y    l    e    a   p   h    :    n   a   t    p    G   a   t    a   e    N    I    &   d   d    f    G   n   l    a   o    G   o    c    i    i    O   t    h   n    o    L   i    s    p   i    i    t    E   u   a    c    r    N   q   g   n    I    c    u    L   a   o   f    E    e    R   e   g   a    I    h   o    T    f    a    s    W

   s    n    o    i    t    c    a    e    r    l    a    c    i    m    e    h    c

    b     ρ     f     ρ

     F   A    =

     P

   S    E    T    I    R    E    P    O    R    P    S    D    I    U    L    F

   y    t    i    s    o    c    s    i    V

   y    t    i    s    n    e    D

   a    P    r    o    ²    m    /    N

 

     μ

   m   V    =

   ρ

   S    E    I    T    R    E    P    O    R    P    R    I    O    V    R    E    S    E    R

   P    c

   g    s    r   i    n    o    t    t    c   c    a   e    F   ff

   e    d    i    m    l    o   u    v   o    f    v    o   l    k    o    u    i    t    b    a   r    R   e    v    o

   %    0    4      5    :    e    g    n    a    R

   g   n    n   o    i    i    r   t    e   a    e   c    fi    n    i    i    g   s    s    n   a    E   l    C

   g    l    n    i    i    a    t    n   r    e   e    t    a    m    e   M    C

   n    e    e    d    r   r    u   u    s    b    r   s    e   e    r    v   P    O

   &   e    r    s   u    g   t    u   c    V   a    r

   s    t    y    r   n    e    o    t    m    a    r   e    o   r    b   u    a   s    L   a    e    M

   y    r    a    m    i    r    P

   g    n    i    k    c    a    P

   t    n    e    d    i    m    e    u    l    c    a    F   l    p    s    i    D

   n    o    i    s   d    n   o    a    p   h    x   t    E   e    s   M    a    G

   s    e    i    k   t    c   r    o   e    R   p    o    r    P

         

      2      2

    P

  −

      2      1

    P

         

    A    L    µ     k     2    =     a

   q

   ?    S    C    I    S    Y    H    P    O    R    T    E    P    Y    H    W

   o    t    s    e   r    c   e    n   e    n    e    i    i    c   g    s   n    l    e      a    t    m    n   u    e   e    l    m    a   o    r    t    d   e    n    u   p    F

   t    n    u    o    m    a    g    n    i    t    C    a   H    m    f    i    t    o    s    e    n    i    s    p    l    e    H

   g    n    i    d    n    a    t    s    r   w    e   o    d   fl    n   d    i    u   u    n    i    fl    s    p    l    e    H

   y    t    i    l    i    b    a    e    m    r    e    P

   ff    E

   s

    T

             

   F

   p

    V     P     d     d

   p      1     V

   A

   :    w    a   s    L   e    s   s    ’    a    y   g    c    r   r    a   o    f    D  

   e    v    i    t    c    e

             

   c    c    /    g

   s    e    d    i    s    e    r    C    H    :    e    R    I    r    e    O   h    V   w    R   e    E   c    S   a    E   l    R   P

   l    a    t    o    T

   k    c    h   o    c   r    i    h   s    w   u    o    e   r    s   o    a   p    e   h    e   g    h    t   u    f   o    r    o   h    t    e    r   w    u   o    s   fl    a    e   s    d    M    i    u    fl

   D  ,    D    m  ,    ²    m

   :    k

  −

   g    n    i    t    r    o    S

   )    N    O    E   I    R   T  ,    A    f    p    O   M    c    P   R    O    F    (

   y    t    i    l    i    b    i    s    s    e    r    p    m    o    C    k    c    o    R

     T

              

     V     P      d      d               

     1   V    −

   e    g    k    a   n    p   i    h    p   r    i    l    a   i    g    S   g   h    :    s    s    g    r   o    e   r    b   c    n   a   e    e   s   c    k   a   a    g   f    n    r    i    l    f    u    K   o   s

   d    e    d    e    n    s    i    n    o    i    t    c    e    r    r    o    C

       2

     P    −        1

     P

      (

     A     L      k    µ    =

   q

   e    l    b    i    s    r    e    v    e    r    r    I

   K    L    b    U    c    B

   c

   X    I      m    R   c    T    A    M

   :      i    l    e       h    l    l      i       h    a    r       k     1    a    P     n     = i    r    a    =    e       k    n    i     ¯    L

   :    l    e    l    l    a    r    a    P    l    e    i    d    a    R

     i

      h

     i       h

      k

    1

    =

    n

  i

   =     ¯       k

           

    1     i

   d    n   e   m    i    r   e    t    w   e    s    o   y    l    a   y    F   L   s

   e    c    a    f    r   d    u   e    s   t    k   a    c   r    u    o    r   t    a    S    h    t    i    %    w   0    t    0    c   1    w    a    e    e    o    r   b    l    F    t    o  .    o   t    d    e    t    w   n   s   i    a    d   u    t    o    l    s    e   e   fl    S   -    F    o   e   e    r    y   a   d   n   n    d   i    d   k   o    a   m    i    c   h    e    u   o   i    t    t    a   l    S    L   •   •   F   •   R   •    w

      )

   w   :    a   s    d    L   i    s   u    ’    q    y   i    l    c    r   r    a   o    D   f 

     f      /    p

   c

   =

   :    s      k    e      L    1    i    r      L    =    e     n i    s    r     a    e    =    n    i     ¯    L       k         i         i

   =

   s    e

   n   r    i    u    t    w   c    a    o   r    l    F   F

       2

     2

      h     1

   =       k

    +     i    r      k     i    r    :    s    e    w    e             i     r    r                n    r               l    e     1    s    n      l    l    =     n i    e    i     d    a    R    =

    ¯        k

   s    l    e    n    i    n    n    w   a    o    l    h    F   C

       2

     r

     8

   =        k

 

FLUID SATURATION What is Saturation? Pores usually contain more than one uid in them. The fraction of pore space occupied by a specic uid is called saturation. Saturation is the ratio of uid volume to the pore volume. V   S w

  =

w

V    p

V  o

S o

  =

S g

  =

V    p V  g V    p

Important Denitions ): it  it is the minimum • Connate water (S w wc  c ): water saturation which would remain adhered to the pores and not become mobile. During deposition, water saturation is 100% which declines by the migration of oil/ gas to (20-30%) and that is the connate water saturation. • Irreducible water saturation (S wir  ): it  it wir ): is the minimum water saturation in a rock forming a layer of water stuck to the rock surface and that does not move. Therefore, S w wc  c  = S wir  wir  ): it  it is the oil left behind • Residual oil (S or  or ): (could not be produced) after immscible displacement. This oil is trapped in the pore spaces and cannot move.

where: S w w  = water saturation [fraction or %] S o = oil saturation [fraction or %] S  g  = gas saturation [fraction or %] w  = water volume [cm3 or ml] V w V o = oil volume [cm3 or ml] V  g  = gas volume [cm3 or ml] 3 V  p  p  = pore volume [cm  or ml]

Types of Measurements There are two methods to determine or measure uid saturation • •

We could then notice that saturations are fractions, and collectively in pores the summation of all saturations should equal 1:

Look at the gure below for an idea on how uids look like in a pore

Direct: using Direct:  using core samples through: - Retort distillation - Solvent extraction (Dean-Sta (Dean-Stark rk method) Indirect: capillary pressure and well log Indirect: capillary analysis (resistivity logs)

Factors Aecting Saturation There are many factors that aect saturation. For example, core samples from reservoir get aected by ltrate from drilling mud. The mud can usually be water or oil based and depending on the wettability of the rock could aect saturation dierently.

Another factor that aects uid saturation would be the dierences in pressure and temperature that are caused by bringing the core sample from the reservoir to the surface. Those dierences in pressure and temperature cause uids such as gas trapped in oil to be released. This is especially important to know when conducting direct measurements to nd the uid saturation using core samples. The reason uid saturation is very important is that it helps in estimating the amount of hydrocarbons stored in the reservoir.  

 

Rock

water

Oil or gas

11

 

 

ELECTRICAL ELECTRICAL PROPERTIES The formation  water (brine) contains dissolved salts which make up the electrolytes and help it conduct current within. These salts dissolve and break up into cations (Na +, Ca2+), and anions (Cl-  and SO42-). The higher the salt concentration, the better it is at conducting electricity. Resistivity Resistivity is a measure of the material’s ability to resist the ow of electricity. The unit of resistivity is ohm.m [Ω.m]. The range for a poorly consolidated sand is 0.2 ohm.m to several ohm.m. For well consolidated sands the resistivity ranges from 1 ohm.m to 1000 ohm.m. Notations for resistivity Rw  = formation water resistivity [Ω.m] Ro = resistivity of rock with 100% water saturation [Ω.m] Rt  = true formation resistivity [Ω.m]   Factors that aect resistivity • Water Resistivity • Formation Porosity • Formation Lithology • Type and Amount of Clay Formation Factor Formation factor relates Rw  to Ro based on an empirical formula/relation developed by Archie (1942). He found out that this correlation is related to three parameters: a, ф, and m as shown in the following equation:

Saturation Equation Archie also found out the saturation equation (resistivity index) which relates Rt  to Ro. He found out that this correlation is related to water saturation (S  (S w ) and n is the saturation exponent. I r

Rt   =

Ro

=

−n S w

  Archie’s Equation Archie’s equation is the combination of the formation factor and the saturation equation since Ro is common in both equations. It is used to calculate the water saturation of un-invaded zones near the bore hole using wireline resistivity logs. Archie’s equation:

S w

n

aRw

  =

m

 

φ Rt

Resistivity of Earth Materials

Rock   y    t    i   v    i    t   s    i   s   e    R

Gas Oil Fresh Water



  =

R R

o

m

=

aφ−

w

where: a = constant ≈ 1.0 for most formations ф = porosity [fraction] m = cementation factor ≈ 2 for most formations

12

Salt Water  

 C   o n  d   u  c   t   i   v  i    t    y 

 

 

WETTABILITY What is Wettability? Wettability is a uid’s tendency to adhere on a solid surface, while co-existing with another immiscible uid.

Wetting phase fluid Oc Occu cupy py sm smal alle lest st por pores es

Non-wetting phase fluid Oc Occu cupy py larg larges estt po pore ress

Has low mobility

Usually of higher mobility

Immiscibility

Immiscible uids are uids that do not mix with one another. This is due to an imbalance in the molecular forces between two uids in contact with one another. These molecular forces present at the interface of two uids are known as the interfacial tension. Interface between Immiscible Fluids

How to determine the wettability of a rock? If a water droplet is surrounded by oil then; Water-Wet os >   ws

Oil-Wet os  <   ws

 

AT > 0 (positive) 0  <    < 90

AT < 0 (negative)  

90  <    < 180

What aects wettability? • Composition of pore-lining minerals • Composition of the uids • Saturation history  

What are the types of wettability? • Oil- or water-wet • Neutral- or intermediate-w intermediate-wet et • Fractional- or mixed-wet

Adhesion Tension A key factor in determining the wettability of a rock is adhesion, also known as the dierence between two solid-uid interfacial tensions, is expressed with the following equation:

Wettability Aects • Capillary Pressure • Residual oil saturation • Relative permeability

AT    =   σsw

− σso   =   σwo cos θ

If the Adhesion tension is positive the denser uid will wet the rock becoming the wetting phase uid. For instance, water is the wetting phase in the gure below.  

σ wo 

θ

-x

σ so

σ sw

σ 

+xso

13

 

CAPILLARY PRESSURE: PART 1 What is Capillary Pressure? Most of hydrocarbon reservoirs contain a minimum of two immiscible uids. For water and oil, the interface at which the separation happens is called the oil-water contact. Capillary pressure is dened as the pressure dierence between the two immiscible uids at the interface.

To further dene the capillary pressure, wettability needs to be recalled. In a heterogeneous system where one uid wets the surface (wetting phase) in preference to the other uid (non-wetting phase), the capillary pressure can be calculated as:

P c

  =

P nw

− P 

w

where: Pc  = capillary pressure [Pa] Pnw  = pressure of the non-wetting phase [Pa] Pw  = pressure of the wetting phase [Pa] Understanding Capillary Pressure from Capillary Tubes To simplify the study of capillary pressure, porous media in a reservoir can be modeled as a collection of capillary tubes as shown below.

The height of the water in the capillary tube can be calculated using the following formula: ∆h   =

  2σwa cos θ ∆ρwa gr

where: σ wa wa = surface tension between air and water [N/m]  g  =  = gravitational acceleration [9.8 m/s 2]  Δρwa  wa = density dierence between air and water [kg/m3] θ = contact angle between the surface and water [˚] Combining the two previous equations, capillary pressure can also be computed using: P c   =

2σwa cos θ

r

Capillary Curves pressure is very As can be Pressure inferred, capillary dependent on the wetting phase saturation. To graphically represent the capillary pressure, the capillary pressure curves can be drawn as a function of this saturation. To do that, two uid ow processes need to be dened over which the capillary pressure varies. These are drainage and Imbibition. Drainage: The process through which the saturation of the non-wetting phase increases. +

For a water-gas system in a collection of capillary tubes, like in a reservoir, water (wetting phase) rises lling smaller pores and leaves the larger pores to be lled by air (non-wetting phase). The height of the water (shown below) in a capillary tube is a function of the adhesion tension between the air and water, the radius of the tube (shown below), and the density dierence between air and water (the two immiscible uids present).   r  θ

 Δh Air

Drainage Pc 

0 -

Imbibition

0

S wir 

S    w  

Pct 

S m 1

Imbibition: The process through which the saturation of the wetting phase increases. Parameters used in the gure above are the following: • S wir  wir  = irreducible wetting phase saturation [fraction or %] • S m = 1 – residual non-wetting phase saturation [fraction or %] • Pct  = threshold capillary pressure, the

h = 0 Water

14

minimum pressure to force wetting uid into therequired largest pore [Pa]nonThe shapes of these curves are aected by reservoir quality. This includes the pore size distribution, grain sorting, and permeability.

 

CAPILLARY PRESSURE: PART 2 Measurement Capillary pressure laboratory measurements are a part of special core analysis (SCAL) and can be measured through three main methods: • Porous Plate Technique: Technique: Uses a low permeability water wet ceramic disc toboth retain inwater) a water wet core sample (containing oil oil and while allowing water to pass through. In this setup, the inlet pressure will be the oil pressure and the outlet pressure will be the water pressure. The dierence between the inlet and outlet pressure is the capillary pressure. • Mercury Injection Capillary Pressure (MICP): (MICP): The core sample is placed in a pressure chamber and mercury is injected through it. Mercury acts as the non-wetting phase while air acts as the wetting phase. The volume of mercury injected is calculated and can be converted to a non-wetting phase saturation. The wetting phase saturation will be one minus the non-wetting phase

Hydrostatic Pressure and Repeat Formation Tester (RFT) As can be inferred, capillary pressure is very dependent on the wetting phase saturation. To graphically represent the capillary pressure, the capillary pressure curves can be drawn as a

function of this need saturation. To do that, uidthe ow processes to be dened overtwo which capillary pressure varies. These are drainage and Imbibition. Drainage: The process through which the saturation of the non-wetting phase increases.

Pressure

( P g , Z  g )

Gas Free oil level (FOL)

( Po  , Z o )

      h       t      p      e       D

Oil Free water level (FWL)

( Pw  , Z w  )

Water

saturation. • Centrifuge: Centrifuge: This  This method can measure the drainage and waterood capillary pressure curves. For drainage, a core sample lled with the wetting phase is placed in a cell surrounded by the non-wetting phase. The cell is centrifuged at various speeds and the uid displaced is recorded at each speed. At each increment, the rotation speed is converted to pressure using specic equations.

Porous Plate Technique • The most accurate method • Very time consuming and can take a few hours to a few weeks • Non-destructive

MICP • The fasted method • Requires an extra conversion step and does not use reservoir fluids • Damaging to the core

Z F OL   =

  P o − P g  +  ρg gZ g − ρo gZ o (ρg − ρo )g

Z F W L   =

  P w − P o  +  ρo gZ o − ρw gZ w (ρo − ρw )g

Centrifuge • An intermediate method in terms of time and accuracy • Can use reservoir fluids

15

 

   e

   o    y    l    h    r   t    d    a    t    l    d   i    n    i    :    a    l    e   e    i    t    l    u    e   i    e    i    v   v    e    c   p   s   fl   n   n    l    o    i    n   a   u   e   o    (    b   r    i    a    t    c    e    s   n    a    r    t    i    i    t    r   e    i    u   o   )    a    e   m    b   v   n    o   g   r    r   i    r    o   w    p   a   u   e    t    r    e   i    t    e    n    s   t    i    s   s    i    m    e    I    a   s   e   d   e   i    r    e   d    r   d    r   r    n   f    D   p    o

   :    y    t    i    v    t    s    i    s    e    r    l    a    y    c    a    i    l    n    r    t    n   c    f    o    c    i    o    t    e   s    i    l    t    o    a    e   d    a   t    i    n    g    u   m   u   m    n   fl   r    o   r    o    i    f    t    f    o    c    o   f    m   f    e    r    f    a    o   u    e    y    o   d   y    t    ff   t    a    a   i    y    v    t    n   g    r    i    s    t    i    l    e    r    s    s    a    o    i    o   e    o   p    o    t    s    h   m    p   t    c    e   r    y    i    e    a   R   o   ·   ·    T   ·    L   ·    T    F   ·    P

   e    v    i    t    c    u    r    i    t    d    s    i    u    fl    d      n   1    o   t    c    n   a  ,    r    t    e    t    x    e    a    r  ,    u   w    c   o    c   l    a   s

 .    r    i    g   o    o    l    v    r    e    y    t    s    i    e    v    i    r    t    s    i    h    s   e    t    e    r   n    e   i    n    h    t    o    i    e   t    t    a    r    a    r   u    t    b    i    l    a    a   s    c   d    o   i    T   u    fl    :    e    e   h    c    n   t    a   d    t    r   n    o   fi    p   d    n    m    I    a

      S       E       I       T       R       E       P       O       R       P       L       A       C       I       R       T       C       E       L       E  

 .    )

   y    t    r    e

   o    p    r    P    e    v    i    s    n    e    e    r    t    u   n    (    s    I    a    s    e    k    m   c    o    e    r    f    h    t    o    f    y    t    o    i    e    c    a    s    r    p    e    a    v    c    n    i    w    e    o    h   fl    T    l    :    a    y    c    t    i    i    r    t    v    i    t    c    s    l    i    e    s    e    e    f    R   o

   a    m      φ

   w     1    n

   =

   =

    S

   m

   n   −    w

   −

     φ    a

   =    o    w

     R

    S

   =

    t

   e    c    n    a    l    a    B    l    a    i    r    t    e    a    M

   t    c    e    r    i    d    n    I

   t    c    e    r    i    D

   s    d    o    h    t    e    M

   o

    R    R

   =

     F

   t

   w     R      R   m    a      φ

   n             

   =    w

     S

   =    r

    I

   g    n    i    t    t    e    w    n  .    f    o    o   i    t    a    e   r    :    s    u    n   a    t    e    a    o    r    i    s    t    i    c    e    n    b    i    i    s    b   e   a    h   h    m    T   p    I

   s    d   e    i    u   r    fl   o    c    2   e    t    h    c   t    a    r    t    s    e    x   g    e   a  ,    t    s   m    a    a    f    d

   n   n    n    o    o    i    i    o    t    t    i    t    c    c    a    a    a    l    r    r    i    t    t    k   l    x   x   r    t    s    i    e   e   a    t    t    t    S   d    e   -    t    n   l    e   h   n   r    v    x   a   o    n   l    t    o    o   o   e   e    i    t    S   S   D   R    a    c    r    t    x    e

   s    e    i    t    r    e    p    o    r    p    l    a    c    i    r    t    c    e    l    e

   e    r    u    s    s    e    r    p    y    r    a    l    l    i    p    a    c

      A       R       U       T       A       S       D       I       U       L       F

      E       R       U       S       S       E       R       P       Y       R       A       L       L       I       P       A       C  

 .    e    c    a    f    r    e    t    n    i    s    s    o    r    g    n    c    a    i    t    t    s    e   e    r    w   -    u    s    n   s    o   e    r    n   p    e   e    h    t    s    a    n   h    e   p    e    g    w    t    n    i    e   t    b   t    e    e   w    c    n   e    e    r   h    t    e    &    ff    i    e    d   s    e   a    h   h    T   p

 .

   i    e   d    u    m    fl    u    l    r    o   a    v   l    u    e    i    r   c    r    o   t    p   a    f    p    o   a    n   y    o    b    i    t    c   d    e    a    r   i    F   p    e   u    c    h   c    T   o

   g    n   n    i    l    :    o    s    i    t    a    c   e   k    c  .    d    a    r    o    s    e    i  .    t    x    t    n   r    i    s    r    e   e    h   o   d    u   e    v    h    w    p    t    i    s   r    e   m   o    w   d   s    g    r    p    s   o   e    r    n    i    l    i    d    e   h    l    i    h    u   t    u    t    r    l    s   e   i    s   ·   ·    F    w   D    I    m

   t    ⁰    e    0    9   w      >   l    0   i    o

   l    a    r    t    u    e    n    ⁰    e    0   t    9   a   =   i    d    0   e    m    r    e    t    n    i

   t    ⁰    e    0   w      9   r    
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF