Download Reliability & Maintainability Engineering Ebeling Chapter 2 Book Solutions - Failure Distribut PDF...
▼▼
▼▼
Disclaimer
Ple ase note none of the content or study material in this Please thi s document or content in this fi file le iiss prepared or owned by AceTechie .com. .com. This content is shared by our student partners a and nd we do not hol d any copyright on this content. Please le t us know if the content in this file fil e infrin inf ringes ges any of your copyright copyright by writing to us at:
[email protected] and
[email protected] and we will take appropriate action.
For Additional Additi onal info, please visit: visit: ▪
Privac Privacy y Policy Policy
Terms & Conditions Condi tions ▪
Disclaimer Disclaimer
CHAPTER 2
2.1
1
a) R(100) =
= λ ( t ) is
R(1000) =
(.001)(100) + 1
− dR( t ) b) λ ( t ) =
=.91 and
− d ((.001t + 1)−1 )
1
⋅ R( t ) =
dt
.001
(.001t + 1)
.001t + 1
=
2
−2
⋅ (.001t + 1) =.001(.00001t + 1) ⋅ (.001t + 1) −1
λ ( t ) goes
decreasing because
=.5
(.001)(1000) + 1
1
dt
.001( .001t + 1)
1
to zero as t goes to infinity.
2.2 2.2
− z 0t λ ( t ')dt '
a) R( t ) = e
−.4 z 0t t 'dt '
=e
0
F (1 / 12) = 1 − R(1 / 12) = 1 − e
b) R( t ) = e −
.2 t 2
2 2 = e − .2t ' |t = e − .2t
=.95 →
−.2(1/ 12 )2
=.00139
−.2t 2 = ln(.95)
t = − ln(.95) =.506 yrs .2
→
2.3 2.3 a) R( t ) = b)
z
z
100
100
f ( t ′ )dt ′ = .0 1dt ′ = .0 1t ′ =.01(100 − t ) = 1−.01t 0 ≤ t ≤ 100
t
t
− dR( t )
λ ( t ) =
dt
c) MTTF = d) σ
2
100 t
z
⋅
1 R( t )
100
0
R( t ) dt =
=
z
f ( t ) R( t )
100
0
=
m
o
c
.01 1−.01t
.
0 ≤ t ≤ 100 e
(1−.01t )dt = t 1000 −.005t 2 1000 = 10 i0 −.005(100)2 = 50 days 100
= z 0 t 2 f ( t )dt − ( MT MTTF )2 =.0 1z 0 t 2 dt − 50 h2 =.033 t 3 − 502 = 833.3 (days)2 0 100
100
= σ 2 = 28.9 days e) R( tmedian ) = 1−.01tmedian =.5 σ
2.4 2.4 a) R( t ) =
=
z
f ( t ′ )dt ′ =
1000
t
1
3
e
.01tmedian =.5
T
3
L 1 t ' O z t ′ dt ′ = M N10 PQ
2
3
t
− t 3 h = 1 −
→
100
1000
e10 9
c100 c0
c
→
9
t
3
t
0 ≤ t ≤ 1000 hrs
t median = 50 days
109
109
A
3
106
9
1
F (100) = 1 − R(100) = 1 − (1 − 100 / 10 ) = 109 = 103 1000 1000 3 1000 3 3 3 b) MTTF = t ⋅ f ( t ) dt = 9 t dt = 9 t 4 = 9 10 004 − 0 = 750 hrs 0 0 10 0 10 ⋅ 4 10 ⋅ 4
z
z
t3 c) R( t ) = 1 − 9 =.99 10
t 3
→
9
10
=.01
→
t = 3 107 = 215.443 hrs
2.5 2-1
a) R(50) = e
- .0 01 01 (5 (5 0) 0)
− d (e
− (.001t )1/2
b) λ ( t ) =
dt
λ ( t ) is
=.8 )
1
⋅
e
1
1/2
− (.001t )
decreasing because
== (.001t )−1 / 2 (.001)e−(.001t ) ⋅ 2
λ ( t ) goes
R(50 + 10)
R(50 / 10) =
→
e
1/2
− (.001t )
=
.0005 .001t
to zero as t goes to infinity.
R(T0 + t ) c) R( t / T 0 ) = R(T ) 0
1
1/2
R( 60)
e
− .00 1( 6 0)
= R(10) = e−
R(10)
.001(10 )
=.865
− .001( t +10)
R (t + 10) e = − d) R ( t / 10) = R(10) e
=.95
001(10) .001
2
e
− .001( t +10 )
= .95e−
.001(10 )
= .859596
→
t =
[ ln.859596] .001
− 10 = 12.9 hrs
2.6 2.6 a) R( t ) =
z
z
10
t
10
10
10
f ( t ′ )dt ′ = (.2−.0 2t ′ ) dt ′ =.2 t ′ t −.01 t ′ 2 t
t
= ( 2−.2t ) − (1−.01t ) = 1−.2t +.01t 0 ≤ t ≤ 1 0 yrs .2 −.02t f (t ) .2 (1−.1t ) .2 2 = 2 = = λ ( t ) = 1−.1t R(t ) 1−.2t +.01t (1−.1t ) 0) = ∞ so the hazard rate is, in fact, increasing. λ ( 0) =.2 and λ ( t → 1 2
b) MTTF
z
10
= R(t ) = 0
z
10
0
(1−.2t +.01t 2 )dt = t
c) R( t median ) = 1−.2tmed + .01t t ( median ) =
2
2 m ed
=.5
→
. 2 ± ( −.2)2 − 4(.01)(.5) 2(.01)
=
10 0
−.1 t 2
.01t
2 med
. 2±.1414 2(.01)
10 0
+.00333 t 3
−.2t med + .5 = 0 .
m 10 0
o
= 10 − 10 + 3.33 = 3.33 yrs
c
= 17.07,293 . e i
t ( median ) is 2.93 years. (17.07 is outside outside range of values for t.) h
d) f ( t mod e ) = MAX [ f ( t )] 0≤t ≤10
(0) = .2 and f (10)=0. ( c10)=0. Therefore, the mode mode occurs at t=0 yr. f (t ) is linearly decreasing: f (0) e) σ
2
=
z
10
0
t f (t )dt − MT MTTF = 2
2
z t (.2−.02t )dt − 3.33 10
0
2
e
2
L .2t =M N 3
3
−
.02t 4 O 4
10
P − 3.33 Q
2
0
T
= (66.67 − 50) − 0 − 11.09 = 5.58
→
σ
=
σ
2
= 5.58 = 2.36 yrs
e
2.7 2.7 100
a) R(1) =
+
c 100
2 =
(1 A 10)
121
=.826
−2 ∞ L O I = F −100 100 2 0 0 1 0 ′ + ( ) t −3 = = 0−G R( t ) = f ( t ′ )dt ′ = 200 ( t ′ + 10) dt ′ = M P 2 J 2 2 K H − + 10 10 + ( ) ( ) t t N Q ∞ −1 ∞ ∞ ∞ L O 10 ( ) −100 + t O L −2 b) MTTF = R( t )dt = 100 ( t + 10) dt = 100M P = MN t + 10 PQ = 0 − ( −10) = 10 yrs 0 0 1 − 0 N Q0
z
∞
t
z z ∞
t
z
t
2-2
Click to access Free Study
Material for your Course »
c) R( t ) =
100
2 =.95
( t + 10)
→
100
t + 10 =
d) The failure rate is DFR because
λ ( 0)
.95
=.2 and
→
λ ( t →
t =
100 .95
− 10 =.26 yrs
∞) = 0 .
200 2
3
λ ( t ) =
f ( t ) = ( t + 10) = 20 0( t + 10 )3 = 2 100 100( t + 10 ) t + 10 R( t ) 2 ( t + 10)
e) A one year burn-in period will improve improve the reliability reliability because the failure rate is decreasing decreasing.. 100 2 R (1 + 1) R( 2) ( 2 + 10)2 11 = 2 =.84 = = R(1 / 1) = 100 12 R(1) R(1) (1 + 10) 2.8 2.8
2
L 1 O t F ( t ) = z f ( t ′ )dt ′ = z dt ′ = M t ′ P = , b Nb Q b t
t
0
0
1
t
0≤ t ≤ b
0
t b t R( t ) = 1 − F ( t ) = 1 − = − b b
1
m
f ( t )
1 b = b = = , λ ( t ) = R( t ) b − t b( b − t ) b − t b
L O M P N Q
IFR o b
2 1 1 t b b − t = dt = bt − MTTF = R( t )dt = 0 0 2 0 b b b
z
b
z
b − t med 1 R( t median ) = = b 2 b
LF 2 b2 I O 2b 2 c − b2 b − 0P = . = MGH b − 2 J K − 2b 2 MN PQ e i
There is no mode because all failure times are equally likely.
σ
2
h b
F I L t O b dt − MTTF = z dt − G J = M P − = z t f ( t ) dt H 2 K c N 3b Q 4 b b 2 0
2
b
t 2
2
b
3
2
0
=
0
b2
3
−
b2
4
=
b2
12
b
→ σ =
12
e
2.9 2.9
20 1 t t − T t ; R( t ) = ; F ( t ) = = λ ( t ) = 20 20 − t b 20 e 20 20 20 = 10 yrs; tmedian = = 10 yrs; σ = = 5.77 yrs MTTF = c 2 2 12 A 2.10 2.10 a) Wear-out is indicated indicated by an increasing increasing failure rate.
− dR( t )
λ ( t ) =
dt
2
=
1
⋅
=
R( t )
t 0 (1 − t / t 0 )
− d (1 − t / t 0 )2
Since λ ( 0) =
t0 − t
= [−2(1 − t / t0 )( −1 / t 0 )] ⋅
2 (1 − t / t 0 )
dt
2
=
1
⋅
2 t0
and λ ( t → t0 ) = ∞,
λ ( t )
1 (1 − t / t 0 )2
is IFR.
2-3
b) MTTF =
z
t0
LF t I 3 F − t 0 I O F 1 − t I 2 dt G t J K = MMGH 1 − t J K GH 3 J K PP 0 H 0 N 0 Q0
z
R( t )dt =
0
t 0
t 0
3
= − t0 MLF G1 − t 0 J I − (1 − 0)3 PO = t 0 3
MNH
t 0
K
c) R( t ) = (1 − t / 2000)
PQ
2
=.90
3
→
t = 2000(1 − .9 ) = 102.63 hrs
2.11 R( T0 + t )
R( t / T 0 ) =
R(T 0 )
=
( t + T 0 + 1)−3 / 2 (T 0 + 1)−3 / 2
wher wh eree t = 2, T0 =.5
−3 / 2
R( 2.5) (3.5) = =.28 R( 2/.5) = R(.5) (15 . )−3 / 2
An improvement of .28-.19 = 47% is obtained obtained with with a 6 month burn - in. .19 2.12
z R( t ) = e −
t
0
f ( t ) = − R( t
λ ( t ′ ) dt ′
dR( t ) dt
)=e
= e z
=−
t
− at ′dt ′ − a t ′ 2 / 2
=e
0
d (e
2 − ( at med )/ 2
− at 2 / 2
dt
=.5
)
t 0
2
m
= e − at / 2 a > 0 and t ≥ 0 2
− e − at / 2 ( −at ) = ate − at
2
/ 2
o
c
.
median
2
−
at med
= ln(.5)
2
e
−2 ln(.5)
t median =
1.18
=
i
a a h The mode is found by setting the first derivative of f (t) (t) equal to 0 and solving for t. df ( t )
d (e
=
2 − ( at med )/ 2
)
dt dt 2 [− at + 1] = 0 t mod e = 1 / a
2
2
c
2
= a[te − at / 2 ( − at ) + e − at / 2 ] = e − at / 2 [− at 2 + 1] = 0 e T e
2.13
c
AFR =
=
ln R ( t1 ) − ln R( t2 ) A t
− t 1
2
=
ln (1 − t13 / 109 ) − ln(1 − t 23 / 109 )
ln (1) − ln(1 − 5003 / 109 )
500 − 0
w wh here t1 = 0 and t 2 = 500
t2 − t 1
=
0 − ln(.875) 500
failu lure ress / hr =.000267 fai
2.14
z
R( t ) =.1
∞
(1+.0 5t ′ )
t
−3
L ( 1+.05 t ′ )−2 O ∞ = 0 − d −(1+.05t )−2 i = (1+.05t )−2 dt ′ =.1M P N −2(.05) Q
t
2-4
11))−2 R( 10 + 1) ( 1+.05(11 =.459 = R(10 / 1) = (1+.05(1))−2 R(1) −1 ∞
∞R( t ) dt
∞ (1+.05t )
−2
z z 1 1 = z R (t / T )dt = = ( ) (1+.05t ) dt R t dt R (T ) z (1+.05(1)) z t ) O = 0 − L− (1. 05) O = 21 L (1+.05 = (1.05) z (1+.05t ) dt = (1.05) M M .05(1+.05(1)) P P Q N N −(.05) Q
MTTFbefore =
0
=
0
∞
MTTFafter
+.05t ) dt = (1 −.05
ML N
1 J PO = 0 − GF H − . 05 K I = 20 Q0
∞
0
T0
0
2
∞
−2
T 0
−1 ∞
∞
−2
1
−2
2
2
1
1
2.15 λ ( t ) is decreasing. R( R(t) t) is de decr crea easi sing ng as R( R(0) 0) = 1 aand nd R(∞ ) = 0. f(t) = λ (t)R(t).
Since Sin ce λ ( t ) and R(t ) are decrea decreasin sing, g, f(t ) is de decre creasi asing ng and the mode mode must must occur occur at t = 0. 2.16 −
t
λ ( t ′ ) dt ′
−a
t
t e ′ dt ′
a et ′
t
t
t
R( t ) = e
z
z
=e
0
f ( t ) = λ ( t ) R( t ) = ( ae )( e t
2.17 Using
(a) R (t ) = (b) R (t ) =
∫ ∫
a − ae t
( x + c ) dx =
t
( t '+ a )
10 t + 10
2
t
a
10 .95
=e
− aet
−1 ∞
= t
a1 e
) = ae(
t + a − aet )
∫ x+c a
t+a
m
dx
, n ≠1;
−1
= .95; t =
1
+1
a ( t '+ a )
dt ' =
a e
) = ( ae )( e )( e
n +1
a
=e
0
n ( x + c)
n
∞
=e
0
= ln ( x + c ) .
; R (t )
= i
e 10
t + 10
h
− 10 = .526 yr = 6.3 mo. c
(c) R(5|5) = .75 R(10) / R(5) = (10/20) (10/20) e / (10/15) = 15/20 = .75 T (d) F(90 days) = 1 - 10 / (10 + .2465) = .024
a (e) λ (t ) =
(t + a )
e
2
a
c =
1 t+a
(t + a )
A
(f) R(t) = .5 = a / (t + a) or tmed = (a / .5) – a = 2a –a = a ∞
(g) MTTF
=∫ 0
a t+a
∞
dt = a ln(t + a ) 0 → ∞ ; does not exist
2-5
o c
; R(8) = .55
Click to access Free Study Material for your Course »
2.18 ka k
( a) f (t ) =
; (b )
λ (t )
( t + a ) k +1 (c ) MTTF =
∫
(t + a )
0
k
→ DFR
t+a
ak
∞
=
k
dt =
a k ( t + a )
− k +1 ∞
−k + 1
= 0
⎛ 1 ⎞ ⎜ .5 − 1⎟⎟ ⎝ ⎠
(d )tmed = a ⎜ k
2.19
(a ) f (t ) =
dR(t ) dt 2
(b )
λ (t )
=
3t 2 3
k
3
, 0≤t ≤k 2
= 3t3 / ⎛⎜ 1 − t 3 ⎟⎞ = 33t
3
a −a k a − k +1 = k − 1 −k + 1
⎝
k
∫
(c) MTTF =
k
0
k ⎠
3t k
k
3
3
4
dt =
3t
t k
3
= k
3
4k
0
4
3
(d ) 1 −
t
3
k
= .5 or tmed = k 3 . 5 = .7937k
m o
2
2.20 rewrite f(t) = .003(10-t) 3 (a) R(t) = .001(10 – t) ; R(1) = .729 3
c
1/3
(b) λ .001(10-t) = .90; solving for t = 10 – (.9/.001) = .345 yr. (c) (t) = f(t) /R(t) = 3/(10-t); IFR 10
(d) MTTF
.
e
= ∫ R (t ) dt = ∫ .001(10 − t ) dt = 2.5 yr. ; R (2. i5 ) = .422 3
0
(e) F(1/12) = .02479; R(11/12 | 1/12) = .729/.9752 h = .7475 a
2 3 ⎛ 2t t 2 ⎞ t c t + 2 ⎟ dt = t − + 2 = a / 3 2.21 (a) MTTF = ∫ ⎜1 − a a ⎠ e a 3a 0 ⎝ 0 ⎛ 2t t 2 ⎞ 2 2 ⎜1 − + 2 ⎟ = .5; t − 2at T+ .5a = 0 a a ⎠ (b) ⎝ e 2 2 a 2 2a ± 4 a − 2 a = = a (1 ± .7071) = .293a t= a± c a
2
2
Why not the positive root? A
(c) R(a/3) = 4/9 = .444 (d) λ (t ) =
2 / a − 2t / a 2 1 − 2t / a − 2t 2 / a 2
=
2 ( a − t )
=
2
( a − t ) ( a − t ) 2
; I FR
(e) R(1) = .81; R(1|1) = R(2) /R(1) = .64 / .81 = .79 2.22
3
(a) R(t) = 1 - .000064t ; R(15) = .784; (b) F(10) – F(2) = .000064(1000 .000064(1000 - 8) = .063488 2-6
3
(c)
=
.0000634t .5 000064 = 19.84 25 yr . tmed = .5 / ..0
(d) λ(t) = .000192t2 / (1 - .000064t 3) ; IFR 25
(e) MTTF
= ∫ (1 − .000064t 3 )dt = [t − .000016t 4 ]025 = 25 − .000016(25) 4 = 18.75 yr . 0
(f) R(15) / R(10) = .784 / .936 = .8376
1
25
R (10)
10
MTTF (10) = (g (g))
=
∫
1
(1 − .000064t 3 )dt =
(
t − .000016t
4
.936
)
25
10
1
⎡15 − .000016 ( 254 − 104 ) ⎤ = 9.52 yr ⎦ .936 ⎣
2.23 2.23 MTTF (10) = ∞
2.24 2.24 MTTF
=∫
1
20
∫
R(10) 10
(1 − .000125t 3 )dt =
1 .875
(5.3125) = 6.07 yr.
∞
225
0 ( t + 15 )
2
225
dt =
−1( t + 15 ) 0
=
225
(15 )
= 15 yr .
m o
∞
M TTF (10) =
∞
1 225 1 ⎛ 225 1 dt = [ 0 + 9 . ] = c 25 yr ⎜⎜ ⎟⎟⎞ = 2 .36 R (10) 10 ( t + 15) . 36 ⎝ −1( t + 15) ) ⎠ 10
∫
e
λ(t) = 2 / (t+15) ; DFR
i
2.25 2.25
h ⎡ t ⎤ 2 R (t ) = exp ⎢− ∫ (1 + .5t '+ 10 / t ') dt '⎥ = exp[−(t + .25t + 10 ln t − 1.25)] c ⎣ 1 ⎦
f (t ) = −
dR (t ) dt
= (1 + .5t + 10 / t ) exp[ e− ( t + .25t 2 + 10 ln t − 1.25)] T e c
A
2-7