Reinforced Concrete Design Project of a 5 Story Residential Building-FINALI Rev(2)-02.03.2017
Short Description
Reinforced Concrete Design Project of a 5 Story Residential Building...
Description
EPOKA UNIVERSITY
FACULTY OF ARCHITECTURE AND ENGINEERING
CE 490 - SPECIAL TOPICS IN CIVIL ENGINEERING -ASSIGNMENT #1DESIG OF A 5 SPAN CONTINUOUS BEAM THROUGH EC-2
Submitted to: Enea MUSTAFARAJ, PhD
Prepared by: Izet MEHMETAJ ID: 42031603
Spring semester 2017
CE 401 - SUPERVISED GROUP STUDY AND RESEARCH
CONTENTS INTRODUCTION .................................................................................................................................. 2 MODELLING USING ETABS ............................................................................................................. 3 BEAM DESIGN .................................................................................................................................... 13 COLUMN DESIGN .............................................................................................................................. 14 SOLID SLAB DESIGN ........................................................................................................................ 14 STRUCTURE MODELLING USING SAP2000 ................................................................................. 15 DESIGN ANALYSIS............................................................................................................................ 16
BILL OF QUANTITY .......................................................................................................................... 26 APPENDIXES........................................................................................................................................ 27
Page 1 of 49
CE 401 - SUPERVISED GROUP STUDY AND RESEARCH
Reinforced concrete design project of a 5 story residential building INTRODUCTION This report outlines the structural design of a real 5-storey reinforced concrete building through EN-2. The modeling and analysis of the structure is made using ETABS. The framing arrangement as well as column locations of the building were taken with the reference to the provided architectural drawings (Appendix I-VIII). The structure system of this residential building is a reinforced concrete frame where a shear wall encase the elevator shaft. The details of the design include: -
-
Beam sizes: 500x400 mm C25/30 Column sizes: 500x500 mm C25/30
-
Slab thickness: 200 mm C20/25 Story height: Ground floor: 3,3 m Other floors: 3 m
Characteristics of the values of actions include:
Dead load Live load: q= 2 kN/m2 (EN 1, table 6.2, category A of loaded areas). Shtresat: weight of slab layers taken as 1,94 kN/m2 with ref. to “Material per Workshop, Endri Zhuleku”; type: dead load. Muret 12 cm: weigh of internal partition walls of 12 cm thickness taken as 1,2 kN/m2 with ref. to “Material per Workshop, Endri Zhuleku”. type: super dead. Muret 30 cm: weight of the external surrounding walls taken as 3,0 kN/m with ref. to “Material per Workshop, Endri Zhuleku”; type: super dead. EQX earthquake load in X direction; type seismic. EQY earthquake load in Y direction; type seismic.
Earthquake parameters considered are:
ag/g = 0,25 ground type C behavior factor 4, 68
Page 2 of 49
CE 401 - SUPERVISED GROUP STUDY AND RESEARCH
MODELLING USING ETABS A step by step procedure for ETABS modeling is provided as below: 1. Open the ETABS program. 2. Click on the file menu →New model. A new table Model Idealization will appear and click on Use Saved User Default Settings
3. Then New Model Quick Templates will be displayed where the grid line and spacing between lines as well as story height are set.
4. After that the grid needs to be modified as per structural plan of the building. To do that click on Edit → Edit stores and grid systems. Than click on Modify/Show Story data→Refresh View to edit stores. Also click Modify/Show Grid data→OK to edit grid line spacings.
Page 3 of 49
CE 401 - SUPERVISED GROUP STUDY AND RESEARCH
5. Click the Define Menu → Material properties. Add new material C20/25 and C30/37 to define the concrete properties.
6. Using Define → Section properties to determine the section columns, beams wall/slab.
Page 4 of 49
CE 401 - SUPERVISED GROUP STUDY AND RESEARCH
7. Then the model is generated. The beam is drawn using Draw Beam//Brace Command by defining the Properties of Object. The column is drawn using Draw Beam//Brace Command by defining the Properties of Object.
a. Draw the Slabs on the plan view: Draw → Draw Floor/Wall objects → Quick Draw Floor/Wall, then select the previously defined slab from the (Properties of Object).
b. Draw the Shear walls/base walls on the plan view: Draw → Draw Floor/Wall objects → Quick Draw Floor/Wall, then select the previously defined wall from the (Properties of Object).
8. Click on Define → Diaphragms a. Diaphragms D0 → Modify/show diaphragm b. Rigidity → Rigid → OK
9. Define Loads: Go into (Define → Load patterns) a. The dead and live load are defined first. b. The loads as shown are added as new kind of load by writing into the empty box (load name) and choose (load type) from the drop list → set weight multiplier to 0 or 1 as automatically set by the program → press Add/new Load. Press OK in order to close the window.
Page 5 of 49
CE 401 - SUPERVISED GROUP STUDY AND RESEARCH
10. To assign Live load it is checked the Eurocode 1 and depending on the category of building it is defined to be qk= 2kN/m2 (EN 1, table 6.2, category A of loaded areas). Then: a. Select → Select → by Properties → Slab sections →Select SLAB→ close b. Assign → Shell Loads → Uniform i. Load case: Live → Load = 2kN/m2 → Direction: Gravity → OK
11. To assign Muret 30 load 3,0 kN/m: a. Select → Select → by Properties → Frame sections →Select B4.25→ close b. Assign → Frame Loads → Distributed i. Load pattern name: Muret 30 → Load = 3,0 kN/m → Direction: Gravity → Add to existing loads → OK
12. To assign Muret 12 load 1,2 kN/m2: a. Select → Select → by Properties → Slab sections →Select SLAB→ close b. Assign → Shell Loads → Uniform i. Load pattern name: Muret 12 → Load = 1,2 kN/m2 → Direction: Gravity → Add to existing loads → OK
13. To assign Shtresat load 1,94 kN/m2: a. Select → Select → by Properties → Slab sections →Select SLAB→ close b. Assign → Shell Loads → Uniform i. Load pattern name: Shtresat → Load = 1,94 kN/m2 → Direction: Gravity → Add to existing loads → OK
Page 6 of 49
CE 401 - SUPERVISED GROUP STUDY AND RESEARCH
14. To assign EQX load a. Turn back into Define → Load Patterns b. Press on the EQX that was added into the list before→ Modify Lateral Load c. Choose X Dir + Eccen Y d. We do the same for EQY but choose Y Dir + Eccen X e. 15. We go to Define →Load cases and select EQX→ Load Case Type →Response Spectrum → Modify/ show case a. Loads applied → Add → Load type: Acceleration → Load name U1 → Scale factor 9806, 65 → OK b. We do the same for EQY but choose Load name U2 c. We do the same for EQY but choose Y Dir + Eccen X
16. Click on Define → Mass source a. Mass Source Data → Mass Multipliers for Load Patterns → Load → Multiplier
17. Click on Define → Functions → Response Spectrum a. Choose Function Type to Add → Eurocode 8 2004 → Add New Function i. Function name: Durres ii. Function Damping Ratio = 0.05 iii. Country: CEN Default iv. Horizontal Ground Acceleration ag/g: 0.25 v. Ground Type: C vi. Behavior Factor q: 4.68
Page 7 of 49
CE 401 - SUPERVISED GROUP STUDY AND RESEARCH
18. To add load combinations, preform the following steps:a. Define → Load Combinations i. Add a new combo. ii. Name the combo, and select Add. iii. Choose a case, and input the scale factor, and press add. iv. Another case, and input its scale factor, and press add. v. OK.
b. In our case four main combination are considered 1. 1, 35gk + 1, 50qk (base combination) 2. Gk (Muret 30, Muret 12, Shtresat load combination) 3. COMBOX = 1, 35gk + 1, 50qk + 0,75EX 4. COMBOY = 1, 35gk + 1, 50qk + 0,75EY
19. Analysis: start running the analysis. a. Analyze → Run Analysis b. Design → Concrete Frame Design → Start Design/Check c. Detailing → Display detailed beam/column/shear wall/ slab reinforcement and rebar spacing.
Page 8 of 49
Table 1 ‐ Base Reactions
Combo
FX (kN)
FY (kN)
FZ (kN)
MX (kN*m)
MY (kN*m)
MZ (kN*m)
Dead Live EQX Max EQY Max Muret30 Muret12 Shtresat
0 0 62362.3019 597.7481 0 0 0
0 0 597.7542 69934.62 0 0 0
32890.1099 6565.61 0 0 1790.7 7878.732 39258.7516
177468.1237 35993.1328 7124.5611 938904.6065 8292.7275 43191.7593 212381.4625
-716955 -143573 866093.9125 7313.3169 -37861.68 -172287 -856221
0 0 514197.1925 1528145 0 0 0
X 0 0 0 0 0 0 0
Y Z 0 0 0 0 0 0 0
0 0 0 0 0 0 0
Table 2 ‐ Joint Reactions
Stor y Base Base Base Base Base Base Base
Joint Label 1 1 1 1 1 1 1
Combo
FX (kN)
FY (kN)
FZ (kN)
MX (kN*m)
Dead Live EQX Max EQY Max Muret30 Muret12 Shtresat
10.8497 2.9464 1700.104 3491.608 0.5409 3.5356 13.7077
-53.4382 -9.9575 345.983 1848.298 -7.0294 -11.949 -63.0969
246.7726 36.8151 2248.522 10691.47 24.6014 44.1781 282.4832
9.819 2.083 86.3083 519.9154 1.2904 2.4996 11.8395
MY (kN*m) 12.6398 3.7343 259.5427 978.3087 1.7091 4.4812 16.2621
MZ (kN*m) 0.0168 0.0098 5.5338 3.3383 0.0016 0.0118 0.0263
Table 3 ‐ Beam Forces
Story Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story6
Beam Combo B5 B5 B5 B5 B5 B5 B5 B5 B5 B5 B5 B5 B5 B5 B5
EQX Max EQX Max EQX Max EQY Max EQY Max EQY Max Muret30 Muret30 Muret30 Muret12 Muret12 Muret12 Shtresat Shtresat Shtresat
Statio P (kN) n
V2 (kN)
V3 (kN)
T (kN*m)
M2 M3 (kN*m) (kN*m)
0.3 0.612 0.925 0.3 0.612 0.925 0.3 0.612 0.925 0.3 0.612 0.925 0.3 0.612 0.925
220.8934 220.8934 220.8934 28.2066 28.2066 28.2066 -6.0506 -5.1131 -4.1756 -7.9209 -7.9209 -7.9209 -33.6743 -32.1122 -30.5502
9.3848 9.3848 9.3848 15.7717 15.7717 15.7717 0.1194 0.1194 0.1194 0.3091 0.3091 0.3091 1.1701 1.1701 1.1701
73.4729 73.4729 73.4729 133.0357 133.0357 133.0357 0.4815 0.4815 0.4815 -3.2816 -3.2816 -3.2816 -9.6269 -9.6269 -9.6269
9.1058 6.5811 4.5726 5.642 2.2448 5.1797 0.0363 -0.001 -0.0384 0.0979 0.0013 -0.0953 0.3703 0.0046 -0.361
97.8631 97.8631 97.8631 23.7288 23.7288 23.7288 -1.7657 -1.7657 -1.7657 -3.9197 -3.9197 -3.9197 -14.971 -14.971 -14.971
Page 9 of 49
508.0253 439.0013 369.9793 40.498 32.248 24.396 -3.3676 -1.6232 -0.1718 -5.8342 -3.3589 -0.8836 -23.5908 -13.3117 -3.5207
Table 4 ‐ Column Forces
Story
Colu mn
Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story6
C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1
Combo
Stat ion
P (kN)
V2 (kN)
V3 (kN)
EQX Max EQX Max EQX Max EQY Max EQY Max EQY Max Muret30 Muret30 Muret30 Muret12 Muret12 Muret12 Shtresat Shtresat Shtresat
0 1.25 2.5 0 1.25 2.5 0 1.25 2.5 0 1.25 2.5 0 1.25 2.5
216.322 216.322 216.322 412.138 412.138 412.138 -14.7088 -14.7088 -14.7088 -24.9894 -24.9894 -24.9894 -132.225 -120.978 -109.731
438.2562 438.2562 438.2562 79.8164 79.8164 79.8164 -3.194 -3.194 -3.194 -11.1093 -11.1093 -11.1093 -39.3148 -39.3148 -39.3148
205.476 205.476 205.476 409.572 409.572 409.572 2.0462 2.0462 2.0462 3.9404 3.9404 3.9404 14.6255 14.6255 14.6255
T (kN*m) 37.1105 37.1105 37.1105 16.0435 16.0435 16.0435 0.0211 0.0211 0.0211 0.0094 0.0094 0.0094 0.0365 0.0365 0.0365
M2 M3 (kN*m) (kN*m) 198.89 116.418 345.671 296.112 305.830 789.683 2.537 -0.0207 -2.5784 5.0264 0.1009 -4.8247 18.6273 0.3454 -17.9365
414.0628 138.6292 683.5219 122.4189 22.9904 77.3242 -3.8808 0.1118 4.1043 -13.2774 0.6092 14.4959 -47.0365 2.107 51.2506
Table 5 ‐ Joint Displacement
Story
Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story6
Label
1 1 1 1 1 1 1 2 2 2 2 2 2 2
Combo
Dead Live EQX Max EQY Max Muret30 Muret12 Shtresat Dead Live EQX Max EQY Max Muret30 Muret12 Shtresat
UX (mm)
0.02341 0.006324 128.5 1.7 -0.001784 0.007589 0.02954 0.02557 0.007153 126.3 1 -0.00124 0.008583 0.0325
UY
UZ
(mm)
(mm)
0.3 0.1 76 200.6 0.01825 0.1 0.3 0.3 0.1 76 200.6 0.01825 0.1 0.3
-0.5 -0.1 3.4 10.6 -0.1 -0.1 -0.6 -0.5 -0.1 1.7 3.5 -0.1 -0.1 -0.6
Page 10 of 49
RX (rad)
RY (rad)
RZ (rad)
-1.4E-05 -3E-06 0.002417 0.005449 4E-06 -3E-06 -1.7E-05 1E-05 3E-06 0.002482 0.005671 6E-06 3E-06 1.3E-05
0.000163 5.1E-05 0.004101 0.000311 1.8E-05 6.1E-05 0.000212 0.000119 3.6E-05 0.004996 0.000185 1.2E-05 4.4E-05 0.000154
1E-06 4.252E-07 0.003469 0.000552 3.521E-07 1E-06 1E-06 -3.685E-07 1.873E-08 0.003415 0.000544 1.861E-07 2.247E-08 -3.503E-07
Table 6 ‐ Modal Periods and Frequencies
Case Modal Modal Modal Modal Modal
Mode 1 2 3 4 5
Period (sec)
Frequency (cyc / sec)
Circular Frequency
Eigen Value (rad2 / sec2)
1.254 1.289 1.65 4.06 4.255
7.8815 8.1004 10.3681 25.5115 26.7346
62.1173 65.6162 107.4984 650.8347 714.7366
0.797 0.776 0.606 0.246 0.235
Modal Shape E-W Lateral N-S Lateral Squeezing Torsional Breathing
Table 7 ‐ Story Forces
Story
Combo
Location
P (kN)
VX (kN)
VY (kN)
T (kN*m)
MX (kN*m)
MY (kN*m)
Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story6 Story5 Story5 Story5 Story5 Story5 Story5 Story5 Story5 Story5 Story5 Story5 Story5 Story5 Story5
Dead Dead Live Live EQX Max EQX Max EQY Max EQY Max Muret30 Muret30 Muret12 Muret12 Shtresat Shtresat Dead Dead Live Live EQX Max EQX Max EQY Max EQY Max Muret30 Muret30 Muret12 Muret12 Shtresat Shtresat
Top Bottom Top Bottom Top Bottom Top Bottom Top Bottom Top Bottom Top Bottom Top Bottom Top Bottom Top Bottom Top Bottom Top Bottom Top Bottom Top Bottom
3552.52 4513.74 940.23 1000.83 0 0 0 0 279.15 279.15 1128.27 1200.99 4464.54 5484.54 8046.273 9007.489 1941.06 2001.66 0 0 0 0 587.25 587.25 2329.272 2401.992 9929.101 10949.09
0 0 0 0 20027.30 20027.30 263.27 263.27 0 0 0 0 0 0 0 0 0 0 36665.33 36665.33 342.956 342.956 0 0 0 0 0 0
0 0 0 0 207.46 207.46 20773.6 20773.6 0 0 0 0 0 0 0 0 0 0 333.1913 333.1913 38599.87 38599.87 0 0 0 0 0 0
0 0 0 0 165776.612 165776.612 452004.612 452004.612 0 0 0 0 0 0 0 0 0 0 301486.76 301486.76 840796.33 840796.33 0 0 0 0 0 0
18920.22 24163.57 5095.25 5616.41 0 622.40 0 62320.95 1288.99 1288.99 6114.31 6739.70 23862.62 29611.49 42890.85 48134.20 10711.67 11232.83 622.40 1512.433 62320.95 177093.1 2717.68 2717.68 12854.01 13479.40 53281.18 59030.05
‐77622.68 ‐98625.25 ‐20544.02 ‐21868.13 0 60081.91 0 789.8285 ‐5466.87 ‐5466.87 ‐24652.83 ‐26241.76 ‐97550.39 ‐119837 -175811 -196814 -42412.161 -43736.271 60081.919 169383.01 789.8285 1704.7713 -12198.855 -12198.855 -50894.593 -52483.525 -216951 -239238
Page 11 of 49
Table 8 ‐ Story Drifts
Story
Combo
Label
Item
Drift
X (m)
Y (m)
Z (m)
Story6 Story6 Story6 Story6 Story5 Story5 Story5 Story5 Story4 Story4 Story4 Story4 Story3 Story3 Story3 Story3 Story2 Story2 Story2 Story2
EQX Max EQX Max EQY Max EQY Max EQX Max EQX Max EQY Max EQY Max EQX Max EQX Max EQY Max EQY Max EQX Max EQX Max EQY Max EQY Max EQX Max EQX Max EQY Max EQY Max
66 81 143 31 32 4 22 66 1 81 5 5 1 2 5 2 18 146 6 22
Max Drift X Max Drift Y Max Drift X Max Drift Y Max Drift X Max Drift Y Max Drift X Max Drift Y Max Drift X Max Drift Y Max Drift X Max Drift Y Max Drift X Max Drift Y Max Drift X Max Drift Y Max Drift X Max Drift Y Max Drift X Max Drift Y
0.00829 0.00357 0.000488 0.011167 0.009129 0.004983 0.000349 0.013422 0.009577 0.006008 0.000557 0.015494 0.009431 0.006418 0.00091 0.017272 0.007585 0.004624 0.000356 0.013565
19.85 0 40.925 21.85 21.85 0 43.7 19.85 0 0 0 0 0 0 0 0 43.7 43.7 5.55 43.7
9.65 2.475 0 7.55 9.65 4.95 0 9.65 10.95 2.475 0 0 10.95 9.65 0 9.65 10.95 2.475 0 0
16.8 18.3 18.3 16.8 13.8 15.3 15.3 13.8 12.3 12.3 12.3 12.3 9.3 9.3 9.3 9.3 6.3 6.3 6.3 6.3
Table 9 ‐ Story Stiffness
Story
Case
Shear X
Drift X
Stiffness X
Shear Y
Drift Y
Stiffness Y
(kN)
(mm)
(kN/m)
(kN)
(mm)
(kN/m)
Story6
EQX
20027.3065
21.6
929087.769
207.4668
5.5
0
Story5
EQX
36665.3316
25.5
1440661.265
333.1913
7.6
0
Story4
EQX
48883.7795
27.3
1792748.425
408.8922
9.2
0
Story3
EQX
57332.4297
25.6
2236920.899
502.344
9.8
0
Story2
EQX
61904.7614
20.7
2991601.088
525.3456
7.1
0
Story1
EQX
62362.2998
2.4
26016013
597.7529
0.8
0
Story6
EQY
263.2762
0.8
0
20773.6527
28.7
722899.659
Story5
EQY
342.9562
0.6
0
38599.8732
38.2
1010085.453
Story4
EQY
452.5438
0.9
0
52323.5254
44.2
1183206.334
Story3
EQY
502.7734
1.4
0
62181.9088
45.2
1375045.435
Story2
EQY
576.6668
0.6
0
67867.4714
37.1
1827973.089
Story1
EQY
597.7456
1
0
69934.625
9.7
7243636.126
Page 12 of 49
CE 401 - SUPERVISED GROUP STUDY AND RESEARCH
BEAM DESIGN The beam was designed for the max bending moment as well as max shear in X direction, Moment 3-3 (COMBy) for plane YZ (X=A) as well as Shear Force 2-2 (COMBy) for plane XZ (Y=1).. In this section to illustrate the beam reinforcing a beam along B axes was considered. The beam design was made with reference to Eurocode 2 (fig.1, fig.2) and all the necessary calculations were made using an excel spreadsheet. The beam design calculation and RC detailing are shown in Appendix IX, X.
Fig.1 – Procedure for determining vertical shear reinforcement
Fig. 2‐ Procedure for defining flexural reinforcement
Page 13 of 49
CE 401 - SUPERVISED GROUP STUDY AND RESEARCH
COLUMN DESIGN For the column design the maximum axial and moment load was generated using SAP2000 analysis for the combination (COMBy) for plane XZ (Y=1) and the reinforcement was found with reference to Eurocode 2. All the necessary calculations were made using an excel spreadsheet. The column design calculation as well as RC detailing are shown in Appendix XII.
SOLID SLAB DESIGN For the slab design the moment M22 generated using SAP2000 analysis for the combination COMBOY (1, 35gk + 1, 50qk + 0,75EY) and the reinforcement was found with reference to Eurocode 2. All the necessary calculations were made using an excel spreadsheet. The column design calculation and RC detailing are shown in Appendix XIII.
Page 14 of 49
CE 401 - SUPERVISED GROUP STUDY AND RESEARCH
STRUCTURE MODELLING USING SAP2000 The step-by-step process of structure modelling using SAP2000 is very similar to the one using ETABS, which is described in the section above. Also the physical parameters of the structure and its elements, as well as the materials used, loads and their respective combinations are applied in the design analysis process.
3D Modelling
Page 15 of 49
CE 401 - SUPERVISED GROUP STUDY AND RESEARCH
DESIGN ANALYSIS Once the modelling has finished, we run design analysis. We can do that by clicking: Main Menu → Run Analysis → Display → Show Deformed Shape → Case/Combo Name → COMBy → OK.
Deformed Shape (COMBy) Main Menu → Run Analysis → Display → Show Deformed Shape → Case/Combo Name → MODAL → OK.
Modal
1
Modal 2
Page 16 of 49
Modal 3
CE 401 - SUPERVISED GROUP STUDY AND RESEARCH
Modal 4
Modal 5
Display → Show Forces/Stresses → Joints → COMBy → Display Types → Tabulated → OK.
Joint Reactions (COMBy) in plan YZ
Main Menu → Run Analysis →Display → Show Forces/Stresses → Shells
Page 17 of 49
CE 401 - SUPERVISED GROUP STUDY AND RESEARCH
S11: Direct stress (force per unit area) acting on the positive and negative 1 faces in the 1-axis direction.
S22: Direct stress (force per unit area) acting on the positive and negative 2 faces in the 2-axis direction.
S12: Shearing stress (force per unit area) acting on the positive and negative 1 faces in the 2axis direction and acting on the positive and negative 2 faces in the 1-axis direction.
Smax: Maximum principal stress (force per unit area). Note that by definition principal stresses are oriented such that the associated shearing stress is zero.
Smin: Minimum principal stress (force per unit area). Note that by definition principal stresses are oriented such that the associated shearing stress is zero.
SVM: Von Moses principal stress (force per unit area).
S13: Out-of-plane shearing stress (force per unit area) acting on the positive and negative 1 faces in the 3-axis direction.
S23: Out-of-plane shearing stress (force per unit area) acting on the positive and negative 2 faces in the 3-axis direction.
SmaxV: Maximum principal shearing stress (force per unit area). Note that by definition principal shearing stresses are oriented on faces of the element such that the associated shears per unit length on perpendicular faces are zero
Page 18 of 49
CE 401 - SUPERVISED GROUP STUDY AND RESEARCH
S11 of Foundation slab (COMBy).
S11 of 6th floor slab (COMBy).
S22 of Foundation slab (COMBy).
Page 19 of 49
CE 401 - SUPERVISED GROUP STUDY AND RESEARCH
S22 of 6th floor slab (COMBy).
S12 foundation (COMBy).
S12 6th floor (COMBy).
Page 20 of 49
CE 401 - SUPERVISED GROUP STUDY AND RESEARCH
Smax foundation (1.35GK + 1.5QK).
Smax 6th floor (1.35GK + 1.5QK).
Smin foundation (1.35GK + 1.5QK).
Page 21 of 49
CE 401 - SUPERVISED GROUP STUDY AND RESEARCH
Smin 6th floor (1.35GK + 1.5QK).
SVM foundation (1.35GK + 1.5QK).
SVM 6th floor (1.35GK + 1.5QK).
Page 22 of 49
CE 401 - SUPERVISED GROUP STUDY AND RESEARCH
S13 foundation (COMBy).
S13 6th floor (COMBy).
S23 foundation (COMBx).
Page 23 of 49
CE 401 - SUPERVISED GROUP STUDY AND RESEARCH
S23 6th floor (COMBx).
SMaxV foundation (1.35GK + 1.5QK).
SMaxV 6th floor (1.35GK + 1.5QK).
Page 24 of 49
CE 401 - SUPERVISED GROUP STUDY AND RESEARCH
Stresses: Axial stress S11 is available for all frame and cable sections. The shear stresses S12 and S13 are available for certain types of frame sections. When shear stresses are available, principal stresses Smax and Smin and von Moses stress SVM are also available for algebraic (non-envelope) load cases and combinations.
Main Menu → Run Analysis →Display → Show Forces/Stresses → Frames/Cables/Tendons → Display Type → Force
Axial Force (COMBy) for plane XZ (Y=1).
Shear Force 2-2 (COMBx) for plane XZ (Y=1).
Page 25 of 49
CE 401 - SUPERVISED GROUP STUDY AND RESEARCH
Shear Force 3-3 (COMBx) for plane YZ (X=A).
Torsion (COMBx) for plane XZ (Y=1).
Moment 2-2 (COMBy) for plane YZ (X=A).
Page 26 of 49
CE 401 - SUPERVISED GROUP STUDY AND RESEARCH
Moment 3-3 (COMBy) for plane YZ (X=A). Main Menu → Run Analysis →Display → Show Forces/Stresses → Frames/Cables/Tendons → Display Type → Stress
S11 (1.35GK + 1.5QK) for plane XZ (Y=1).
S12 (1.35GK + 1.5QK) for plane XZ (Y=1).
Page 27 of 49
CE 401 - SUPERVISED GROUP STUDY AND RESEARCH
S13 (1.35GK + 1.5QK) for plane XZ (Y=1).
SMax (1.35GK + 1.5QK) for plane XZ (Y=1).
SMin (1.35GK + 1.5QK) for plane XZ (Y=1).
Page 28 of 49
CE 401 - SUPERVISED GROUP STUDY AND RESEARCH
SVM (1.35GK + 1.5QK) for plane XZ (Y=1).
Page 29 of 49
CE 401 - SUPERVISED GROUP STUDY AND RESEARCH
BILL OF QUANTITY The bill of quantity (BOQ) reflects the full value of the building or construction to be implemented. It is the main document for the implementation of works which provides the necessary funds for the execution of works. BOQ is giving some cost orientation of the building to be constructed and it is calculated using given building cost data (Manuali teknik i cmimeve te punimeve te ndertimit dhe analizat teknike te tyre 2010). BOQ is a schedule which categories, details and quantifies the materials and other cost items to be used in construction project. Also, direct costs and indirect costs are to be considered for complete cost of the project which are covered in different parts of the BOQ. Generally BOQ is in tabular form which contents description, unit, quantity, rate & amount in different columns.
BILL OF QUANTITY OBJ ECT: 5 s to ry res idential building + 1 undergro und s to ry
No .: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Des c riptio n o f the wo rk ing ac tivity Earthworks with excavator Earthworks with labor force Electro-pump Soil fills Mat foundation RC M250 RC concrete slab layer underground M250 RC shear wall underground M200 Wall hydroisolation using bitumen Columns RC M250 Beams RC M250 Shear wall RC M250 Ribbed slab h=25 cm with polysterol fill RC stairs M250 RC lintel for window/door Concrete M200 for sublayer Steel 500 >ø10 Steel 500
View more...
Comments