Regra de Cramer para resolução de sistemas
Short Description
Download Regra de Cramer para resolução de sistemas...
Description
Introdução No presente trabalho serão retratados temas relacionados com a cadeira de Algebra, envolvendo Matrizes, com maior enfoque para a resolução de Sistemas usando o Método de Cramer, regra esta criada pelo Gabriel Cramer. Nisto, foram desenvolvidos alguns exemplos e exerciocios resolvidos para maior copreensão desta regra.
1.0. 1.1.
Objectivos Objectivos gerais
A relaização deste trabalho tem como objectivos o alargamento dos conhecimentos acerca da cadeira em curso com principal destaque para o tema em causa (Regra de Cramer).
1.2.
Obectivos Específicos
São objectivos específicos deste trabalho, o ganho profundo da regra de Cramer sobre tudo na resolução de Sistemas Lineares.
2.0.
Regra de Cramer
A regra de Cramer diz que os valores das incógnitas de um sistema linear são dados por frações cujo denominador é o determinante da matriz dos coeficientes das incógnitas e o numerador é o determinante da matriz dos coeficientes das incógnitas após a substituição de cada coluna pela coluna que representa os termos independentes do sistema.
2.1.
Regra de Cramer para resolução de sistemas
Sabemos que sistema linear é um conjunto de n equações lineares com n incógnitas relacionadas entre si. A solução de um sistema linear pode ser obtida de várias maneiras. Veremos uma das formas de resolução de um sistema utilizando a regra de Cramer. A regra de Cramer é uma das maneiras de resolver um sistema linear, mas só poderá ser utilizada na resolução de sistemas que o número de equações e o número de incógnitas forem iguais. Portanto, ao resolvermos um sistema linear de n equações e n incógnitas para a sua resolução devemos calcular o determinante (D) da equação incompleta do sistema e depois substituirmos os termos independentes em cada coluna e calcular os seus respectivos determinantes e assim aplicar a regra de Cramer. Os valores das incógnitas são calculados da seguinte forma: X1 = X2 = X3 =
.... Xn=
Exemplo 1:
Dado o sistema linear para resolvê-lo podemos utilizar da regra de Cramer, pois ele possui 3 equações e 3 incógnitas, ou seja, o número de incógnitas é igual ao número de equações. Devemos encontrar a matriz incompleta desse sistema linear que será chamada de A.
Agora calculamos o seu determinante que será representado por D.
D=1+6+2+3–1+4 D = 15. Agora devemos substituir os temos independentes na primeira coluna da matriz A, formando assim uma segunda matriz que será representada por Ax.
Agora calcularmos o seu determinante representado por Dx.
Dx = 8 + 4 + 3 + 2 – 8 + 6 Dx = 15 Substituímos os termos independentes na segunda coluna da matriz incompleta formando a matriz Ay.
Agora calcularmos o seu determinante Dy.
Dy = -3 + 24 +4 – 9 – 2 + 16 Dy = 30 Substituindo os termos independentes do sistema na terceira coluna da matriz incompleta formaremos a matriz Az.
Agora calculamos o seu determinante representado por Dz.
Depois de ter substituído todas as colunas da matriz incompleta pelos termos independentes, iremos colocar em prática a regra de Cramer. A incógnita x =
=
=1
A incógnita y =
=
=2
A incógnita z =
=
=3
Portanto, o conjunto verdade desse sistema será V = {(1,2,3)}. Todo sistema linear pode ser associado a uma matriz envolvendo os coeficientes numéricos e a parte literal. Por exemplo, considere o seguinte sistema linear:
Sua representação matricial dos coeficientes das incógnitas é (matriz incompleta):
Já a representação matricial completa do sistema, levando em consideração somente os coeficientes numéricos, é:
Todo o sistema pode ser representado matricialmente da seguinte forma:
Diante da relação existente entre um sistema linear e uma matriz, Cramer desenvolveu um método de resolução de sistemas envolvendo as propriedades das matrizes e dos determinantes.
Exemplo 2: Encontre a solução do sistema abaixo utilizando a regra de Cramer.
Solução: Primeiro, devemos escrever a matriz que representa os coeficientes das incógnitas e obter seu determinante.
Em seguida, devemos excluir a primeira coluna da matriz dos coeficientes das incógnitas e substituí-la pelos termos independentes do sistema 12, 12 e – 16, e calcular o determinante.
Agora, fazemos o mesmo com a segunda coluna da matriz dos coeficientes das incógnitas.
Calculando o determinante dessa matriz, obtemos:
Repetindo o mesmo procedimento para a terceira coluna da matriz dos coeficientes das incógnitas, obtemos:
Fazendo o cálculo do determinante, teremos:
Segundo a regra de Cramer, temos que:
Assim, o conjunto solução do sistema é S = {(3, 4, 5)}.
Teoremas da Regra de Cramer 1º Caso: Quando D = 0 e Dx = 0; Dy = 0 e Dz = 0, então o sistema é possível e indeterminado, ou seja, o sistema é SPI (sistema possível e indeterminado). 2º Caso: Quando D 0 e todos os Dn 0 (Dx, Dy e Dz) , então o sistema é possível e determinado SPD(Sistema Possivel e Determinado). 3º Caso: Quando D = 0 e um qualquer Dn, ou dois dos Dn, ou todos os Dn for/forem diferente(s) de zero, então o sistema é IMPOSSÍVEL (SI) .
Exemplo 3: Observe o seguinte sistema: x-y=2 2x + ay =b Resolvendo o determinante do sistema acima, concluímos que a= -2, e resolvendo o sistema, teremos que: b - 4 (diferente de zero) ------> Sistema impossível. b - 4 = 0 ------------------------->Sistema possível indeterminado. Resumindo temos: a (diferente de -2) --------> sistema possível determinado (Det. diferente de zero) a = -2 b = 4 ----------------> sistema possível indeterminado (Det.é igual a zero, e existe mais de um valor que satisfaz a equação) a = -2 e "b" é diferente de 4 ----------> sistema impossível.
Regra de Cramer para a solução de um sistema de equações lineares com n equações e n incógnitas. Consideremos um sistema de equações lineares com n equações e n incógnitas, na sua forma genérica: a11x1 + a12x2 + a13x3 + ... + a1nxn = b1 a21x1 + a22x2 + a23x3 + ... + a2nxn = b2 a31x1 + a32x2 + a33x3 + ... + a3nxn = b3 ...................................................= ... ...................................................= ... an1x1 + an2x2 + an3x3 + ... + annxn = bn Onde os coeficientes a11, a12, ..., ann são números reais ou complexos, os termos independentes b1, b2, ... , bn , são números reais ou complexos e x1, x2, ... , xn são as incógnitas do sistema nxn.
Seja D o determinante da matriz formada pelos coeficientes das incógnitas.
Seja Dxi o determinante da matriz que se obtém do sistema dado, substituindo a coluna dos coeficientes da incógnita xi ( i = 1, 2, 3, ... , n), pelos termos independentes b1, b2, ... , bn.
A regra de Cramer diz que: Os valores das incógnitas de um sistema linear de n equações e n incógnitas são dados por frações cujo denominador é o determinante D dos coeficientes das incógnitas e o numerador é o determinante D xi, ou seja: xi = D xi / D
Exemplo 4: Resolva o seguinte sistema usando a regra de Cramer: x + 3y - 2z = 3 2x - y + z = 12 4x + 3y - 5z = 6
Portanto, pela regra de Cramer, teremos: x1 = D x1 / D = 120 / 24 = 5 x2 = D x2 / D = 48 / 24 = 2 x3 = D x3 / D = 96 / 24 = 4 Logo, o conjunto solução do sistema dado é S = { (5, 2, 4) }.
Conclusão Com a realização deste trabalho foi possivel ter conhecimentos sobre a regra de Cramer na resolução de sistemas com n equações e n incógnitas. Ficou claro também que a regra de Cramer é uma das maneiras de resolver um sistema linear, mas que só pode ser utilizada na resolução de sistemas em que o número de equações e o número de incógnitas são iguais.
Bibliografia
View more...
Comments