Reaksi Kopling Merupakan Reaksi Penggabungan Rantai Karbon
Short Description
reaksi...
Description
Reaksi kopling merupakan reaksi penggabungan rantai karbon-karbon atau bukan karbon dengan menggunakan katalis (Negishi, 2002 dalam Aldes Lesbani, 2013). Katalis-katalis yang biasa digunakan dalam reaksi kopling merupakan katalis logam blok d pada umumnya termasuk senyawaan dan kompleks logam blok d. Akan tetapi ada juga beberapa unsur-unsur di blok s dan p yang dapat digunakan sebagai katalis dalam reaksi kopling (Hegedus, 2002 dalam Aldes Lesbani 2013). Pengembangan reaksi kopling sangat pesat seiring dengan perkembangan sintesis dalam industri farmasi, industri pertanian, maupun industri makanan guna mencari senyawa-senyawa baru yang potensial dengan sifat yang unik (Hegedus, 2002 dalam Aldes Lebani). Disamping itu reaksi kopling juga ditujukan bagi pengembangan sintesis senyawa dengan rute sintesis yang pendek dan waktu yang relatif singkat karena penggunaan katalis dalam reaksinya (Negishi, 2002).
Coupling reaction From Wikipedia, the free encyclopedia A coupling reaction in organic chemistry is a general term for a variety of reactions where two hydrocarbon fragments are coupled with the aid of a metal catalyst. In one important reaction type a main group organometallic compound of the type RM (R = organic fragment, M = main group centre) reacts with an organic halide of the type R'X with formation of a new carbon-carbon bond in the product R-R' [1][2] Contributions to coupling reactions by Ei-ichi Negishi and Akira Suzuki were recognized with the 2010 Nobel Prize in Chemistry, which was shared with Richard F. Heck.[3][4] Broadly speaking, two types of coupling reactions are recognized:
cross couplings involve reactions between two different partners, for example bromobenzene (PhBr) and vinyl chloride to give styrene (PhCH=CH2).
homocouplings couple two identical partners, for example, the conversion of iodobenzene (PhI) to biphenyl (Ph-Ph).
Contents [hide]
1 Mechanism o
1.1 Catalysts
o
1.2 Leaving groups
o
1.3 Operating conditions 2 Coupling types
3 Miscellaneous reactions
4 Applications
5 References
Mechanism[edit] The reaction mechanism usually begins with oxidative addition of one organic halide to the catalyst. Subsequently, the second partner undergoes transmetallation, which places both coupling partners on the same metal centre. The final step is reductive elimination of the two coupling fragments to regenerate the catalyst and give the organic product. Unsaturated organic groups couple more easily in part because they add readily. The intermediates are also less prone to beta-hydride elimination.[5] In one computational study, unsaturated organic groups were shown to undergo much easier coupling reaction on the metal center.[6] The rates for reductive elimination followed the following order: vinyl-vinyl > phenyl-phenyl > alkynyl-alkynyl > alkyl-alkyl. The activation barriers and the reaction energies for unsymmetrical R-R′ couplings were found to be close to the averages of the corresponding values of the symmetrical R-R and R′-R′ coupling reactions; for example: vinyl-vinyl > vinyl-alkyl > alkyl-alkyl. Another mechanistic approach proposes that specifically in aqueous solutions, coupling actually occurs via a radical mechanism rather than a metal-assisted one. [7]
Catalysts[edit] Further information: Palladium-catalyzed coupling reactions The most popular metal catalyst is palladium, but some processes often use nickel and copper. A common catalyst is tetrakis(triphenylphosphine)palladium(0). Palladium catalysed reactions have several advantages including functional group tolerance, low sensitivity of organopalladium compounds towards water and air. Reviews have been written for example on cobalt, [8] palladium [9][10][11][12][13] and nickel [14] mediated reactions and on applications [15][16]
Leaving groups[edit] The leaving group X in the organic partner is usually bromide, iodide or triflate. Ideal leaving groups are chloride, since organic chlorides are cheaper than related compounds. The main group metal in the organometallic partner usually is tin, zinc, or boron.
Operating conditions[edit] While many coupling reactions involve reagents that are extremely susceptible to presence of water or oxygen, it is unreasonable to assume that all coupling reactions need to be performed with strict exclusion of water. It is possible to perform palladium-based coupling reactions in aqueous solutions using the water-soluble sulfonated phosphines made by the reaction of triphenyl phosphine with sulfuric acid. Another example of coupling in aqueous media, with the main reacting agent being trimolybdenum-alkylidyne clusters, is that of Bogoslavsky et al. [7] In general, the oxygen in the air is more able to disrupt coupling reactions, because many of these reactions occur via unsaturated metal complexes that do not have 18 valence electrons. For example, in nickel and palladium cross couplings, a zerovalent complex with two vacant sites (or labile ligands) reacts with the carbon halogen bond to form a metal halogen and a metal carbon bond. Such a zerovalent complex with labile ligands or empty coordination sites is normally very reactive toward oxygen.
Some catalysts might be easily poisoned by heterocycles under prolonged reaction at elevated temperature. To avoid this, chemists often use pressure reactors to accelerate reactions at high temperature and pressure. Q-Tube and microwave synthesizer are available safe pressure reactors.
Coupling types[edit] Coupling reactions include (not exhaustive):
Reaction
Yea r
Reactant A
Wurtz reaction
185 5
R-X
sp ³
R-X
sp homo ³
Glaser coupling
186 9
RC≡C H
sp
RC≡CH
sp homo
Cu
O2 as Hacceptor
Ullmann reaction
190 1
Ar-X
sp ²
Ar-X
sp homo ²
Cu
high temperatures
GombergBachmann reaction
192 4
Ar-H
sp ²
Ar-N2X
sp homo ²
CadiotChodkiewicz coupling
195 7
RC≡C H
sp
RC≡CX
sp cross
Cu
196 3
RC≡C H
sp
Ar-X
sp cross ²
Cu
Gilman 196 reagent coupli 7 ng
R2CuL i
Cassar reaction
197 0
Alken e
sp ²
Kumada coupling
197 2
ArMgBr
Heck reaction
197 2
alkene
Reactant B
Homo/Cr oss
Cataly Remark st Na as reducing agent
requires base
requires base
Pinacol coupling reaction| CastroStephens coupling
Sonogashira coupling
197 5
RC≡C H
R-X
cross
R-X
sp cross ³
Pd
sp ², sp ³
Ar-X
sp cross ²
Pd or Ni or Fe
sp ²
R-X
sp cross ²
Pd or Ni
requires base
R-X
sp ³ cross sp ²
Pd and Cu
requires base
sp
requires base
Negishi coupling
197 7
R-ZnX
sp ³, sp ², sp sp ³, sp ², sp
Stille cross coupling
197 8
RSnR3
Suzuki reaction
197 9
Rsp B(OR) ²
Hiyama coupling
198 8
sp ²
R-X
sp ³ cross sp ²
Pd or Ni
R-X
sp ³ cross sp ²
Pd
R-X
sp ³ cross sp ²
Pd or Ni
requires base
R-X
sp ³ cross sp ²
Pd
requires base N-C coupling, second generation free amine
2
R-SiR3
BuchwaldHartwig reaction
199 4
R2N-H sp
R-X
sp cross ²
Pd
Fukuyama coupling
199 8
R-ZnI
RCO(S Et)
sp cross 2
Pd
Liebeskind– Srogl coupling
200 0
sp3 RCO(S REt) ArB(OR) , 2 2 sp SMe
sp cross 2
Pd
sp3
requires Cu TC
Coupling reaction overview. For references consult satellite pages
Miscellaneous reactions[edit] In one study, an unusual coupling reaction was described in which an organomolybdenum compound, [Mo3(CCH3)2(OAc)6(H2O)3](CF3SO3)2 not only sat on a shelf for 30 years without any sign of degradation but also decomposed in water to generate 2-butyne, which is the coupling adduct of its two ethylidyne ligands. This, according to the researchers, opens another way for aqueous organometallic chemistry.[17] One method for palladium-catalyzed cross-coupling reactions of aryl halides with fluorinated arenes was reported by Keith Fagnou and co-workers. It is unusual in that it involvesC-H functionalisation at an electron deficient arene.[18]
Applications[edit] Many coupling reactions have found their way into pharmaceutical industry organic materials [20]
[19]
and into conjugated
References[edit] 1.
Jump up^ Organic Synthesis using Transition Metals Rod Bates ISBN 978-1-84127-1071
2.
Jump up^ New Trends in Cross-Coupling: Theory and Applications Thomas Colacot (Editor) 2014ISBN 978-1-84973-896-5
3.
Jump up^ "The Nobel Prize in Chemistry 2010 - Richard F. Heck, Ei-ichi Negishi, Akira Suzuki". NobelPrize.org. 2010-10-06. Retrieved 2010-10-06.
4.
Jump up^ Palladium-Catalyzed Cross-Coupling: A Historical Contextual Perspective to the 2010 Nobel Prize Dr. Carin C. C. Johansson Seechurn, Dr. Matthew O. Kitching, Dr. Thomas J. Colacot, Prof. Victor Snieckus Angew. Chem. Int. Ed. 2012, 51, 50625085.doi:10.1002/anie.201107017
5.
Jump up^ Hartwig, J. F. Organotransition Metal Chemistry, from Bonding to Catalysis; University Science Books: New York, 2010. ISBN 1-891389-53-X
6.
Jump up^ V. P. Ananikov, D. G. Musaev, K. Morokuma, “Theoretical Insight into the C-C Coupling Reactions of the Vinyl, Phenyl, Ethynyl, and Methyl Complexes of Palladium and Platinum” Organometallics 2005, 24, 715. doi:10.1021/om0490841
7.
^ Jump up to:a b Benny Bogoslavsky, Ophir Levy, Anna Kotlyar, Miri Salem, Faina Gelman and Avi Bino (2012). "Do Carbyne Radicals Really Exist in Aqueous Solution?". Angewandte Chemie International Edition 51 (1): 90–94. doi:10.1002/anie.201103652.PMID 22031005.
8.
Jump up^ Cobalt-Catalyzed Cross-Coupling Reactions Grard Cahiez and Alban Moyeux Chem. Rev., 2010, 110 (3), pp 1435–1462 Publication Date (Web): February 11, 2010 (Review)doi:10.1021/cr9000786
9.
Jump up^ Carbon−Carbon Coupling Reactions Catalyzed by Heterogeneous Palladium CatalystsLunxiang Yin and Jürgen Liebscher Chem. Rev., 2007, 107 (1), pp 133–173 Publication Date (Web): December 21, 2006 (Article) doi:10.1021/cr0505674
10.
Jump up^ Advances in Transition Metal (Pd,Ni,Fe)-Catalyzed Cross-Coupling Reactions Using Alkyl-organometallics as Reaction Partners Ranjan Jana, Tejas P. Pathak, and Matthew S. Sigman Chem. Rev., 2011, 111 (3), pp 1417–1492 doi: 10.1021/cr100327p
11.
Jump up^ Efficient, Selective, and Recyclable Palladium Catalysts in Carbon−Carbon Coupling Reactions rpd Molnr Chem. Rev., 2011, 111 (3), pp 2251–2320 doi:10.1021/cr100355b
12.
Jump up^ Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds Norio. Miyaura, Akira. Suzuki Chem. Rev., 1995, 95 (7), pp 2457– 2483 doi:10.1021/cr00039a007
13.
Jump up^ Diazonium Salts as Substrates in Palladium-Catalyzed Cross-Coupling Reactions Anna Roglans, Anna Pla-Quintana, and Marcial Moreno-Mañas Chem. Rev., 2006, 106 (11), pp 4622–4643 doi:10.1021/cr0509861
14.
Jump up^ Nickel-Catalyzed Cross-Couplings Involving Carbon−Oxygen Bonds Brad M. Rosen, Kyle W. Quasdorf, Daniella A. Wilson, Na Zhang, Ana-Maria Resmerita, Neil K. Garg, and Virgil Percec Chem. Rev., 2011, 111 (3), pp 1346–1416 doi:10.1021/cr100259t
15.
Jump up^ Selected Patented Cross-Coupling Reaction Technologies Jean-Pierre Corbet and Gérard Mignani Chem. Rev., 2006, 106 (7), pp 2651–2710 2006 (Article)doi:10.1021/cr0505268
16.
Jump up^ Copper-Mediated Coupling Reactions and Their Applications in Natural Products and Designed Biomolecules Synthesis Gwilherm Evano, Nicolas Blanchard and Mathieu Toumi Chem. Rev., 2008, 108 (8), pp 3054–3131 doi:10.1021/cr8002505
17.
Jump up^ A. Bino, M. Ardon and E. Shirman (2005). "Formation of a Carbon-Carbon Triple Bond by Coupling Reactions In Aqueous Solution". Science 308 (5719): 234– 235.Bibcode:2005Sci...308..234B. doi:10.1126/science.1109965. PMID 15821086.
18.
Jump up^ M. Lafrance, C. N. Rowley, T. K. Woo and K. Fagnou (2006). "Catalytic Intermolecular Direct Arylation of Perfluorobenzenes". J. Am. Chem. Soc. 128 (27): 8754– 8756.doi:10.1021/ja062509l. PMID 16819868.
19.
Jump up^ R.H. Crabtree, The Organometallic Chemistry of the Transition Metals 4th Ed.
20.
Jump up^ Organotransition Metal Chemistry: From Bonding to Catalysis John Hartwig
Reaksi kopling Dari Wikipedia, ensiklopedia gratis Reaksi kopling dalam kimia organik adalah istilah umum untuk berbagai reaksi di mana dua fragmen hidrokarbon yang digabungkan dengan bantuan katalis logam. Dalam satu reaksi penting ketik senyawa organologam kelompok utama dari jenis RM (R = fragmen organik, M = pusat kelompok utama) bereaksi dengan halida organik dari jenis R'X dengan pembentukan ikatan karbon-karbon baru di RR produk '[1] [2] Kontribusi reaksi kopling dengan Ei-ichi Negishi dan Akira Suzuki diakui dengan 2010 Nobel Kimia, yang bersama dengan Richard F. Heck. [3] [4] Secara garis besar, dua jenis reaksi kopling diakui:
• lintas kopling melibatkan reaksi antara dua mitra yang berbeda, misalnya bromobenzene (PhBr) dan vinil klorida untuk memberikan styrene (PhCH = CH2). • beberapa dua mitra homocouplings identik, misalnya, konversi iodobenzene (PHI) ke bifenil (Ph-Ph). Isi [hide] • 1 Mekanisme o 1.1 Katalis o 1.2 kelompok Meninggalkan o 1,3 kondisi operasi • 2 jenis Coupling • 3 reaksi Miscellaneous • 4 Aplikasi • 5 Referensi Mekanisme [sunting] Mekanisme reaksi biasanya dimulai dengan penambahan oksidatif satu halida organik untuk katalis. Selanjutnya, pasangan kedua mengalami transmetallation, yang menempatkan kedua pasangan kopling pada pusat logam yang sama. Langkah terakhir adalah eliminasi reduktif dari dua fragmen kopling untuk regenerasi katalis dan memberikan produk organik. Tak jenuh beberapa kelompok organik lebih mudah sebagian karena mereka menambahkan mudah. Intermediet juga kurang rentan terhadap beta-hidrida eliminasi. [5] Dalam satu studi komputasi, kelompok organik tak jenuh ditunjukkan untuk menjalani kopling reaksi lebih mudah pada pusat logam [6] Harga untuk eliminasi reduktif mengikuti urutan berikut:. Vinyl-vinyl> fenil-fenil> alkunil-alkunil> alkil-alkil. Hambatan aktivasi dan energi reaksi untuk simetris RR 'kopling ditemukan untuk menjadi dekat dengan rata-rata dari nilai-nilai yang sesuai dari RR simetris dan R'-R' reaksi kopling; misalnya: vinyl-vinyl> vinil-alkil> alkil-alkil. Pendekatan mekanistik lain mengusulkan bahwa khusus dalam larutan air, kopling benar-benar terjadi melalui mekanisme radikal daripada satu logam-dibantu. [7] Katalis [sunting] Informasi lebih lanjut: reaksi kopling Palladium-dikatalisasi
Katalis logam yang paling populer adalah paladium, namun beberapa proses sering menggunakan nikel dan tembaga. Katalis yang umum adalah tetrakis (trifenilfosfina) paladium (0). Palladium katalis reaksi memiliki beberapa keunggulan termasuk toleransi kelompok fungsional, sensitivitas rendah dari senyawa organopalladium terhadap air dan udara. Ulasan ini telah ditulis misalnya pada kobalt, [8] paladium [9] [10] [11] [12] [13] dan nikel [14] reaksi dimediasi dan pada aplikasi [15] [16] Kelompok meninggalkan [sunting] Kelompok meninggalkan X di mitra organik biasanya bromida, iodida atau triflat. Kelompok meninggalkan yang ideal adalah klorida, karena klorida organik lebih murah daripada senyawa terkait. Logam Kelompok utama di mitra organologam biasanya timah, seng, atau boron. Kondisi operasi [sunting] Sementara banyak reaksi kopling melibatkan reagen yang sangat rentan terhadap adanya air atau oksigen, itu tidak masuk akal untuk mengasumsikan bahwa semua reaksi kopling perlu dilakukan dengan pengecualian yang ketat air. Hal ini dimungkinkan untuk melakukan reaksi kopling berbasis paladium dalam larutan air menggunakan phosphines tersulfonasi yang larut dalam air yang dibuat oleh reaksi dari trifenil fosfin dengan asam sulfat. Contoh lain dari kopling di media air, dengan agen bereaksi utama menjadi cluster trimolybdenum-alkylidyne, adalah bahwa dari Bogoslavsky et al. [7] Secara umum, oksigen di udara lebih mampu mengganggu reaksi kopling, karena banyak reaksi ini terjadi melalui kompleks logam tak jenuh yang tidak memiliki 18 elektron valensi. Misalnya, dalam nikel dan paladium lintas kopling, sebuah kompleks bervalensi-nol dengan dua situs kosong (atau ligan labil) bereaksi dengan ikatan halogen karbon untuk membentuk halogen logam dan ikatan karbon logam. Seperti kompleks bervalensi-nol dengan ligan labil atau situs koordinasi kosong biasanya sangat reaktif terhadap oksigen. Beberapa katalis mungkin mudah diracuni oleh heterocycles bawah reaksi berkepanjangan pada suhu tinggi. Untuk menghindari hal ini, ahli kimia sering menggunakan reaktor tekanan untuk mempercepat reaksi pada suhu tinggi dan tekanan. Q-Tube dan microwave synthesizer yang reaktor tekanan aman tersedia.
Reaksi lain-lain [sunting] Dalam sebuah penelitian, reaksi kopling biasa digambarkan dimana senyawa organomolybdenum, [Mo3 (CCH3) 2 (OAc) 6 (H2O) 3] (CF3SO3) 2 tidak hanya duduk di rak selama 30 tahun tanpa tanda-tanda degradasi tetapi juga terurai dalam air untuk menghasilkan 2-butyne, yang merupakan adduct kopling dua ligan ethylidyne
nya. Ini, menurut para peneliti, membuka jalan lain untuk kimia organologam berair. [17] Salah satu metode untuk reaksi cross-coupling paladium-katalis dari halida aril dengan arena fluorinated dilaporkan oleh Keith Fagnou dan rekan kerja. Hal ini tidak biasa dalam fungsionalisasi itu involvesC-H di sebuah elektron arena kekurangan. [18]
View more...
Comments