RCC Design

March 13, 2017 | Author: BasħaŔ Řę- Loaďed | Category: N/A
Share Embed Donate


Short Description

Download RCC Design...

Description

Beam Design Beam Data width depth clear cover to main

200 mm 600 mm 15 mm

Material Grades Concrete Steel

20 MPa 415 MPa

Moment

123 KN-m

d' eff depth

36 mm 565 mm

Mu/bd2 xumax Mulim Mulim/bd2

1.93 270 176 2.76

.= cc+ sdia + mdia/2 .= d - d'

.= (700/(1100 * (0.87 * fy)) * d .= 0.36*fck*b*xumax*(d-(0.42*xumax))

Beam is designed as Singly Reinforced Beam

Area of Steel Percentage Area of Steel

Tension (Ast)

Compr (Asc)

0.613 %

-------

Refer Table 2 SP 16 pg 48

692 sqmm

Tension Reinforcement Type Bar dia Layer 1 25 mm Layer 2 16 mm Layer 3 -

Compression Reinforcement Type Bar dia Layer 1 12 mm Layer 2 Layer 3

Nos Area of Steel 2 982 sqmm 2 402 sqmm 2 Total Steel Provided 1384 sqmm Provided Steel OK

Nos 2

Area of Steel

Total Steel Provided

Shear Force (Vu) ζv ζc ζcmax

Type Layer 1 Layer 2 Layer 3

200 KN 1.771 0.562 2.8

Bar Dia 16 mm 12 mm -

Total Steel Provided Sectional Dimensions OK Shear Reinforcements required

Type of stirrup Stirrup diameter Spacing

2 legged 8 mm 150 c/c

#VALUE!

.=Vu / (b * d) Refer Table 61 SP 16 pg 179 Refer Table J SP 16 pg 175

Nos 2 4

1.226 %

or =(0.85 * √(0.8*fck)*√(1+5 β) -1)) / (6 β )

Area of Steel 402 sqmm 452 sqmm 855 sqmm

0.757 %

Steel Calculation

Grade Check 7.1 SRB a b c -p Ast

0.75 -3.611 1.930 0.613 692

.=(0.87435/100) * (fy/fck) 2 .=(0.87/100) * (fy) .=Mu/bd 2 .=-(b ±√(b2-4ac))/2a .=(p*b*d)/100

DRB a b c -p Astlim

0.75 -3.611 2.762 0.955 1079

Mu2 Ast2 Ast

-53 -278 801

.=Mu - Mulim .=Mu2/((0.87*fy)*(d-d')) .=Astlim+Ast2

d'/d fsc fcc Asc

0.10 353 8.92 -291

Refer Table F SP 16 pg 13 .=0.466*fck .=Mu2/((fsc-fcc)*(d-d'))

0.0629 0.1

Min steel % Ast Asc

0.205 692 -291

.=0.85% / fy

Min Steel Max Steel

231 4516

.=(0.85*b*d) / fy .=0.04*b*d)

Ast Asc

692

Pt provided Pc provided

0.757

Shear Calculations

3.068

Shear Capacity of Concrete (Vs) Shear Stg to be caried by Stirrup (Vus) Spacing actual req min max max

150 454 423 300

63 137

.=(Asv*0.87fy*d)/Vus .=(Asv*0.87fy)/(b*0.4) .=0.75d .=300mm

.=ζc*b*d .=Vu-Vs provide the least of the 4

β

.=(Ast*100)/(b*d) .=(Asc*100)/(b*d) .=(0.8*fck)/(6.89*Pt)

.=(0.87435/100) * (fy/fck) 2 .=(0.87/100) * (fy) .=Mulim/bd 2 .=-(b ±√(b2-4ac))/2a .=(p*b*d)/100

Column Design Design Loads Load Moment

Pu Mu

Column Data width depth length

b d l

Grade Concrete Steel

fck fy

Pu/(fckbd) Mu/(fckbd2) d'/d

2000 KN 20 KN-m

200 mm 200 mm 3.00 meters

20 MPa 415 MPa

2.50 0.01 0.05

Minimum eccentricity 1.27 mm ex 1.27 mm ey

OK OK

Refer Chart 31 of SP 16, Page no: 116 pt/fck pt Ast

0.18 3.60% 1440 sqmm

Number of bars dia

nos

25 mm

4

1963 sqmm

20 mm

4

1257 sqmm

20 mm

4

1257 sqmm

Total

12

4477 sqmm

ast

Steel provided OK

● ● ●

● ● ●

4- 25# 4- 20#

● ● ●

● ● ●

4- 20#

Column Design Sl Grid Col No. No

Nos.

Col Col type Shape

Design

Design Constants Load

Moment

Column Data

Grade

Final Ast Req

2

Pu/(fckbdl) Mu/(fckbdl ) d'/d

Ast

Area of Steel

Remark

Check Type 1

Required

Paramenters

Type 2

Total Reinf Provided

Ast less than 1

-

-

C1

R

1500 KN

30 KN-m

30 KN-m

200 mm 750 mm

750 mm 50 mm 3.60 m 20 MPa 415 MPa

0.50

0.01

0.1

0.02

0.40%

600 sqmm

1200 sqmm min Ast req.

4/29/2012

Page 4 of 43

4

12 mm

452 sqmm

2

12 mm 226 sqmm

6

679 sqmm

Steel provided NOT OK

Fig

Slab Design

Slab thickness t Concrete Steel Loading Slab Load Dead Load Live Load Finishes Load Total Load Factored Load

150 mm 20 MPa 415 MPa

fck fy

DL LL WL Ws Wsu

3.750 KN/m 2.000 KN/m 1.000 KN/m 6.750 KN/m 10 KN/m

Slab Data Slab Type Load Longer Span (ly) Shorter Span (lx)

Regular 10 KN/m 9.50 m 4.70 m

Loading on edges W longer

24 KN/m

325 mm

Sunken Slab Load DL Dead Load Filler Load FL LL Live Load Finishes Load WL Wsk Total Load Factored Load Wsku

3.750 KN/m 5 KN/m 3.0 KN/m 1.0 KN/m 12.37 KN/m 19 KN/m

ly/lx ratio Slab type

one way

2.02

-

two way .=(w*lx/2) + (1-(1/3)*(lx/ly) 2 )

.=w*lx/2

W shorter

.=w*lx/3

Moments

Mx

Sunken Depth

one way two way .=w*lx 2 / 8 .= αx * w*lx 2

28 KN-m

.= αy * w*lx 2

Thickness Check Deflection

Area of Steel

OK 10 mm

.=Mulim > Mux or Muy .= 5*W*l 4 /(384EI)

Astx

Refer Chart 4 SP 16 pg 21

667 sqmm

Spacing required in mm 8# x y 75 c/c

10# x 118 c/c

12# y

x 170 c/c

.=ast of bar*1000/ast req

Final Ast provided

or

Refer Table 5-44 SP 16 pg 51-80

x

y

16# y

x 301 c/c

x

Design Calculations

a b cx -px Ast

Min Ast

ly/lx lower value FALSE

TWO WAY 0.75 -3.611 1.654 0.513 667

.=(0.87435/100) * (fy/fck) 2 .=(0.87/100) * (fy) .=Mu/bd 2 .=-(b ±√(b2-4ac))/2a .=(p*b*d)/100

%

mm2

0.12

180

upper value FALSE

.=(0.87435/100) * (fy/fck) 2 a 0.75 b -3.611 .=(0.87/100) * (fy) 2 cy #VALUE! .=Mu/bd -py #VALUE! .=-(b ±√(b2-4ac))/2a Ast #VALUE! .=(p*b*d)/100

Interpolation αx exact lower value value 2.02 #N/A

αy upper value #N/A

interptn. value #N/A

xumax 62 .= (700/(1100 * (0.87 * fy)) * d Mulim 47 KN-m .= 0.36*fck*b*xumax*(d-(0.42*xumax)) Mulim/bd2 2.76 Mux/bd2 1.65 Muy/bd2 #VALUE!

E 2.24E+07 I 2.81E-04 .= bd 3 /12 4 Defln 10.23 .= 5*W*l /(384EI)

0.056

Table 26 IS 456 pg 91

ONE WAY

1 1.1

0.056 0.064

1.2 1.3 1.4

0.072 0.079 0.085

1.5

0.089

2

0.107

Slab thickness Concrete Steel Loading Slab Load Dead Load Live Load Floor Finish Other Load Total Load Factored Load

t fck fy

150 mm 20 MPa 415 MPa

Sunken Depth

450 mm

DL LL FF OL Ws Wsu

3.75 KN/m 3.00 KN/m 1.00 KN/m 0.00 KN/m 7.75 KN/m 12 KN/m

Sunken Slab Load Dead Load Filler Load Live Load Floor Finish Load Total Load Factored Load

DL FL LL WL Wsk Wsku

3.75 KN/m 6.39 KN/m 3.00 KN/m 1.00 KN/m 14.14 KN/m 21 KN/m

Sl. Id

Thickness

Wsu / Wsku

Shorter Span lx

ly/lx

1

Regular

150 mm

12 KN

7.20 m

3.00 m

2.40

1a

Regular

150 mm

12 KN

7.20 m

3.50 m

2.06

2

Regular

150 mm

12 KN

9.20 m

1.50 m

6.13

3

Regular

150 mm

12 KN

5.70 m

2.00 m

2.85

4

Regular

150 mm

12 KN

3.60 m

2.00 m

1.80

5

Regular

150 mm

12 KN

15.00 m

2.60 m

5.77

6

Regular

150 mm

12 KN

6.50 m

5.50 m

1.18

7

Regular

150 mm

12 KN

7.40 m

6.00 m

1.23

8

Regular

150 mm

12 KN

8.30 m

2.40 m

3.46

9

Regular

150 mm

12 KN

6.70 m

3.70 m

1.81

10

Sunken

150 mm

21 KN

6.50 m

5.00 m

1.30

11

Sunken

150 mm

21 KN

5.80 m

4.80 m

1.21

+ + + + + +

W longer

W shorter

Moments

Thickness Check

Mx

Area of Steel

8#

Astx

x

10# y

x

y

x

18 KN/m

14 KN-m

OK

302 sqmm

166 c/c

260 c/c

374 c/c

21 KN/m

18 KN-m

OK

420 sqmm

120 c/c

187 c/c

269 c/c

9 KN/m

3 KN-m

OK

180 sqmm

279 c/c

436 c/c

628 c/c

12 KN/m

6 KN-m

OK

180 sqmm

279 c/c

436 c/c

628 c/c

OK

180 sqmm

OK

224 sqmm

11 KN/m

8 KN/m

5 KN-m

3 KN-m

10 KN-m

16 KN/m

180 sqmm

Spacing provided in mm c/c

12# y

279 c/c 279 c/c 436 c/c 436 c/c 628 c/c 628 c/c 224 c/c

350 c/c

505 c/c

25 KN/m

22 KN/m

26 KN-m

20 KN-m

OK

604 sqmm

468 sqmm

83 c/c 107 c/c 130 c/c 168 c/c 187 c/c 242 c/c

28 KN/m

24 KN/m

32 KN-m

24 KN-m

OK

782 sqmm

567 sqmm

64 c/c

OK

190 sqmm

9 KN-m

14 KN/m

89 c/c

265 c/c

100 c/c 139 c/c 145 c/c 199 c/c 414 c/c

596 c/c

20 KN/m

15 KN/m

17 KN-m

9 KN-m

OK

379 sqmm

203 sqmm

133 c/c 248 c/c 207 c/c 388 c/c 298 c/c 558 c/c

42 KN/m

35 KN/m

41 KN-m

29 KN-m

OK

1066 sqmm

706 sqmm

47 c/c

71 c/c

74 c/c 111 c/c 106 c/c 160 c/c

39 KN/m

34 KN/m

35 KN-m

27 KN-m

OK

869 sqmm

644 sqmm

58 c/c

78 c/c

90 c/c 122 c/c 130 c/c 176 c/c

x

y

+ + + + + +

Slab Name

Sl.No

Longer Span ly

Load

Spacing required in mm Loading on edges

Slab type

Slab Data

Slab type

Design & Reinforcement Details of Slabs

Mark

Location (meters) x y 0 0 1.5 0 3 0 4.5 0 6 0 7.5 0 9 0 10.5 0 12 0 0 1.5 1.5 1.5 3 1.5 4.5 1.5 6 1.5 7.5 1.5 9 1.5 10.5 1.5 12 1.5 0 3 1.5 3 3 3 4.5 3 6 3 7.5 3 9 3 10.5 3 12 3 0 4.5 1.5 4.5 3 4.5 4.5 4.5 6 4.5 7.5 4.5 9 4.5 10.5 4.5 12 4.5 0 6 1.5 6 3 6 4.5 6 6 6 7.5 6 9 6 10.5 6 12 6 0 7.5 1.5 7.5 3 7.5 4.5 7.5 6 7.5 7.5 7.5 9 7.5 10.5 7.5 12 7.5 0 9 1.5 9 3 9 4.5 9 6 9 7.5 9 9 9 10.5 9 12 9 0 10.5 1.5 10.5 3 10.5 4.5 10.5 6 10.5 7.5 10.5 9 10.5 10.5 10.5 12 10.5 0 12 1.5 12 3 12 4.5 12 6 12 7.5 12 9 12 10.5 12 12 12

Values of Moments and Shear force at different locations Moments (KNm) Mx My Mxy 0 0 9 0 0 9 0 0 7 0 0 4 0 0 0 0 0 -4 0 0 -7 0 0 -9 0 0 -9 0 0 9 20 20 8 38 38 6 49 49 3 53 53 0 49 49 -3 38 38 -6 20 20 -8 0 0 -9 0 0 7 38 38 6 69 69 5 91 91 3 98 98 0 91 91 -3 69 69 -5 38 38 -6 0 0 -7 0 0 4 49 49 3 91 91 3 118 118 1 128 128 0 118 118 -1 91 91 -3 49 49 -3 0 0 -4 0 0 0 53 53 0 98 98 0 128 128 0 139 139 0 128 128 0 98 98 0 53 53 0 0 0 0 0 0 -4 49 49 -3 91 91 -3 118 118 -1 128 128 0 118 118 1 91 91 3 49 49 3 0 0 4 0 0 -7 38 38 -6 69 69 -5 91 91 -3 98 98 0 91 91 3 69 69 5 38 38 6 0 0 7 0 0 -9 20 20 -8 38 38 -6 49 49 -3 53 53 0 49 49 3 38 38 6 20 20 8 0 0 9 0 0 -9 0 0 -9 0 0 -7 0 0 -4 0 0 0 0 0 4 0 0 7 0 0 9 0 0 9

Shear (KN) Qx 0 0 0 0 0 0 0 0 0 15 14 10 6 0 -6 -10 -14 -15 27 25 19 10 0 -10 -19 -25 -27 36 33 25 14 0 -14 -25 -33 -36 39 36 27 15 0 -15 -27 -36 -39 36 33 25 14 0 -14 -25 -33 -36 27 25 19 10 0 -10 -19 -25 -27 15 14 10 6 0 -6 -10 -14 -15 0 0 0 0 0 0 0 0 0

Qy 0 15 27 36 39 36 27 15 0 0 14 25 33 36 33 25 14 0 0 10 19 25 27 25 19 10 0 0 6 10 14 15 14 10 6 0 0 0 0 0 0 0 0 0 0 0 -6 -10 -14 -15 -14 -10 -6 0 0 -10 -19 -25 -27 -25 -19 -10 0 0 -14 -25 -33 -36 -33 -25 -14 0 0 -15 -27 -36 -39 -36 -27 -15 0

Staircase Design

Data Effective Span (l) Riser (R) Thread (T) Waist Slab thickness (t) Clear Cover Effective Depth of Waist Slab (d)

3.00 mm 150 mm 300 mm 150 mm 15 mm 135 mm

Grade of Concrete (fck) Grade of Steel (fy)

20 MPa 415 MPa

Loading Loads on going Self weight of waist slab Self weight of steps Live Load Floor Finish Load Total Load Factored Load

Loads on waist slab Self weight of landing slab Live Load Floor Finish Load Total Load Factored Load

4.19 KN/m 1.88 KN/m 3.00 KN/m 1.00 KN/m 10.07 KN/m 15.10 KN/m

Bending Moment Calculate Bending Moment using the equation (W*L*L )/8

Bending Moment = 17 KN-m Reaction to be used as UDL = 23 KN 60 KN-m Area of Main Steel Ast

370 sqmm

Spacing Diameter of bar Spacing across x

12ø 306 c/c

16ø 544 c/c

Provded Main Steel:

Area of Distribution Steel Ast

180 sqmm

Spacing Diameter of bar Spacing across y Provided Distridution Steel:

8ø 279 c/c

10ø 436 c/c

3.75 KN/m 2.00 KN/m 1.00 KN/m 6.75 KN/m 10.13 KN/m

Seismic Zone Seismic Intensity

II 0.1

Table 2 IS 1893 2002 pg 16

z

Importance factor

I

1.5

Table 6 IS 1893 2002 pg 18

Response Reduction Factor

R

3

Table 7 IS 1893 2002 pg 23

Lateral Dimension of Building Height of the of Building

d h

65.6 50.4

meters meters

Fundamental Natural Period

with brick infill Ta 0.560

Type of Soil

Medium Soil

Spectral Acceleration Coefficient

Sa/g

2.428

Design Horizontal Seismic Coefficient

Ah

0.06071

Seismic Weight of Building

W

680034

Design Seismic Base Shear

VB

41284.63 KN

KN

Combined Footing 1

Footing Size Design

Load 1 Load 2 Combine load Design Load

Pu1 Pu2 Pcu Pc

2000 KN 1850 KN 3850 KN 2823 KN

Moment in x dir Moment in y dir

Mux Muy

40 KN-m 40 KN-m

c/c dist b/w col in x dir c/c dist b/w col in y dir Col Dim

SBC Footing Size required Footing Size Provided Area Provided

2.725 meters 0.000 meters x dir y dir

0.20 meters 0.20 meters

q

150 KNm2

A req

18.82 sqmm

L B A prvd

6.00 meters 3.20 meters 19.20 meters

x bar y bar

1.309 0.000

Zx Zx

10.24 19.20

Nup

151 KNm2

Increase the Footing Size

2

Beam Design Total Load Factored Load

W Wu

1.691 meters

151 KNm2 725 KNm2 2.725 meters

1.584 meters

3.20 meters

6.00 meters

725 KNm2

1.69 meters

2.73 meters

Beam Size

width depth

Moment

Mb

1.58 meters

600 mm 900 mm 898 KN-m

Design the beam from the BEAM DESIGN SHEET Bottom Reinforcement Type Layer 1 Layer 2 Layer 3

Bar dia 25 mm 25 mm -

Nos 6 6

Area of Steel 2945 sqmm 2945 sqmm

Total Steel Provided 5890 sqmm Percentage of Steel 1.148 % Top Reinforcement Type Layer 1 Layer 2 Layer 3

Bar dia 25 mm 20 mm -

Nos 6 6

Area of Steel 2945 sqmm 1885 sqmm

Total Steel Provided 4830 sqmm

3

Slab Design

Net upward pressure

Bending Moment Factored Moment Concrete Steel Minimum Depth Required Depth Provided Clear Cover Effective Cover Effective Depth Area of Steel across x dir 1014 sqmm

Ast across x direction Dist Ast across y direction

4

Nup l

151 KNm2 1.30 meters

Ms Mus

128 KN-m 191 KN-m

fck fy

20 MPa 415 MPa

dmin

264

D c d' d'

600 mm 50 mm 56 mm 544 mm

12# 112 c/c

Spacing c/c in mm 16# 198 c/c

12 mm dia @ 100 mm c/c 8 mm dia @ 175 mm c/c

Shear Check for Slab Vu1 δv

171 KN 0.315 MPa

δc

0.316 MPa

Shear Check OK

/=width of footing from col face M=Nup*l 2 /2 1.5*Ms

d=sqrt(Ms/Rumax*1000*b)

20# 310 c/c

1131 sqmm 287 sqmm

5 6.00 meters

3.20 meters

600 mm

1.7 meters

2.73 meters

1.6 meters

600 mm

6 - 25 mm dia 6 - 25 mm dia

600 mm

900 mm

6 - 25 mm dia 6 - 20 mm dia

250 mm

8 mm dia @ 175 mm c/c

6 - 25 mm dia 6 - 20 mm dia

6 - 25 mm dia 6 - 25 mm dia

12 mm dia @ 100 mm c/c

Design Of Isolated Footing 1

16 of 43

Footing Size Design Load Design Load

Pu P

1500 KN 1100 KN

Mux Muy

30 KN-m 30 KN-m

Column size

cx cy

450 mm 450 mm

SBC

q

150 KN/sqm

A req

7.33 sqmm

L B A prvd

3.30 meters 2.40 meters 7.92 meters

Zx Zx

3.17 4.36

Nup

150 KNm2

Moment in x dir Moment in y dir

Footing Size required Footing Size Provided Area Provided

Net upward pressure

Footing Size OK

2

Slab Design lx ly

1.425 0.975

Bending Moment in x dir Bending Moment in y dir

Mx My

228 KN-m 107 KN-m

Concrete Steel

fck fy

20 MPa 415 MPa

dmin

288

D c d' d'

650 mm 50 mm 58 mm 592 mm

Minimum Depth Required Depth Provided Clear Cover Effective Cover Effective Depth Area of Steel 1111 sqmm 710 sqmm

12# 102 c/c 159 c/c

Spacing c/c in mm 16# 181 c/c 283 c/c

20# 283 c/c 442 c/c

Minimum Ast required across y direcion Ast across x direction Ast across y direction

16 mm dia @ 125 mm c/c 16 mm dia @ 125 mm c/c

1608 sqmm 1608 sqmm

Design Of Isolated Footing 3

One Way Shear along x direction Vu1 δv

449 KN 0.316 MPa

δc

0.317 MPa 451 KN

Vc1

One Way Shear Check OK 4

One Way Shear along y direction Vu1 δv

284 KN 0.145 MPa

δc Vc1

0.260 MPa 508 KN

One Way Shear Check OK

5

Two Way Shear Vu2 δv

1536 KN 0.622 MPa

ks*δc Vc1

1.118 MPa 2759 KN

Two Way Shear Check OK

17 of 43

Design Of Isolated Footing

18 of 43

L= 3.30 meters

650 mm

B= 2.40 meters

450

450

250 mm

16 mm dia @ 125 mm c/c

16 mm dia @ 125 mm c/c

Dome Design Dimensions of Dome Diameter d= Height h= Thickness t=

12600 mm 3000 mm 150 mm

Loading Dead Load Live Load Wind Load Total Load Factored Load

8115 mm 50.93 0 to 50.93

########

Radius of Sphere r = Φ= Ѳ=

d = 12.60 m DL = LL = WL = W= Wu =

3.75 KN/m 0.10 KN/m 0.10 KN/m 3.95 KN/m 5.93 KN/m

Meridional Stress

50.93

r = 8.12 m

Ѳ 50.93 45.00 40.00 35.00 30.00 25.00 20.00 15.00 5.00 0.00

Mt 0.003 MPa 0.025 MPa 0.041 MPa 0.055 MPa 0.067 MPa 0.077 MPa 0.086 MPa 0.093 MPa 0.100 MPa 0.101 MPa

Hoop Stress Ѳ 50.93 45.00 40.00 35.00 30.00 25.00 20.00 15.00 5.00 0.00

Maximum Meridional Stress

Mt 0.197 MPa 0.188 MPa 0.182 MPa 0.176 MPa 0.172 MPa 0.168 MPa 0.165 MPa 0.163 MPa 0.161 MPa 0.160 MPa 0.197 MPa

fck Fy бst Area of steel Bar Dia Spacing

128 sqmm

Area of steel Bar Dia No of Bars

509 sqmm 16 mm 3 nos

20 MPa 415 MPa 230.00 Area of steel

10 mm 613 c/c

Meridional Thrust @ Base Horizontal Component on Ring Beam Hoop Tension on Ring Beam

0.101 MPa

Maximum Hoop Stress

Bar Dia Spacing

29 KN/m 19 KN/m 117 KN

66 sqmm 10 mm 1187 c/c

3 Hinged Arch Design 19.7 KNm2 Dimensions of Dome Diameter Height

Radius of Sphere

Loading Dead Load Live Load Other Load Total Load Factored Load

Vertical Reaction Horizontal Reaction

d= h=

12600 mm 5000 mm

r= Φ= Ѳ=

6469 mm 76.87 0 to 76.87

DL = LL = OL = W= Wu =

3.00 KN/m 0.10 KN/m 10.00 KN/m 13 KN/m 20 KN/m

VA = VB = HA = HB =

123.8 KN 234.0 KN

Ѳ 76.87 75.00 60.00 50.00 40.00 30.00 20.00 10.00 5.00 0.00

x 0.00 0.05 0.70 1.34 2.14 3.07 4.09 5.18 5.74 6.30

y 0.00 0.21 1.77 2.69 3.49 4.13 4.61 4.90 4.98 5.00

Max Values

Moment 0 -42 -331 -481 -596 -680 -737 -769 -777 -780 780 KN-m

########

Design

d = 12.60 m 76.87

r = 6.47 m

Radial Shear 67 59 -10 -56 -100 -141 -178 -209 -222 -234

Normal Thrust 174 180 224 245 259 265 262 252 244 234

234 KN

265 KN

0 42 331 481 596 680 737 769 777 780

67 59 10 56 100 141 178 209 222 234

174 180 224 245 259 265 262 252 244 234

Circular Beam Dimensions of Ring Beam Radius r= No of supports n=

Constants

6.30 mts 8 nos

Ѳ= Φm =

23 deg 9 1/2

C1 = C2 = C3 =

0.066 0.03 0.005

Wu =

10 KN/m

0.3927 radians 0.1658 radians

Loading

FΦ Φ

Shear Force

MΦ Bending Moment KN-m -20.62 -0.05 10.39

Mmt Torsional Moment KN-m 0.00 1.57 0.00

deg 0 9 1/2 22 1/2

KN 24.74 14.29 0.00

width depth

300 mm 600 mm

Ve = V+1.6(T/b) =

33 KN

T=M Φ

1 KN-m 22 KN-m

Mt = BM due to torsion M e1 = Equivalent BM on tension side

20 KN-m

M e2 = Equivalent BM on compression side

Beam Data

Equivalent Shear

Equivalent Moment Mt = T((1+D/b)/1.7) = Me1 = M+Mt = Me2 = M-Mt =

A Moment Bottom Top

Load x-dir

2700 y-dir 0 6

29 137

Col Type

Rectangular Column (reinf. on 2 sides) x-dir

Unsupported Length Col Size d'/D d'

y-dir 8250 8250 200 900 0.05 0.20 40

Concrete Steel

20 415

D

Effective Length Ratio

E

0.80 from IS Code 0.90 manual Calculation Effective Length to be considered from Manual Calculation Effective Length (le) lex Ley 7425 7425 Slenderness Ratio le/D 8 Short Column le/b 37 Slender Column Moment due to Slen Muax 0 Muay 372 Min Ecc

ex ey Moment due to ecc

G

46.5 23.2 Mux Muy

125.55 62.55

Asc

2.18 3924

Puz

2841

Reduction of Moments Percentage assumed

x-x y-y

k1 0.219 0.184

Kx Ky

0.06 0.06

Additional Moments due to ecc

Modified Initial Moments

K2 0.096 -0.022

Max May

Mux Muy

Pb 367 291

0 21

3.6 70.6

Summary of Moments A Moment due to eccentricity + Modified additional moments Mux 126 Muy 83 B

Modified initial moments + Modified additional moments Mux 4 Muy 91

C

0.4Muz + Modified additional moments Mux 0 Muy 32

Final Design Loads Pu Mux Muy

2700 126 91

Bi-Axial Column Design Loads Pu = 2400 KN Mux = 192 KN-m Muy = 517 KN-m Col Data b = 600 mm D = 750 mm d' = 40.0 mm d'/D = 0.10 d'/b = 0.10 Material Grades fck = 20 MPa fy = 415 MPa Design Constants Steel % pt = 1.2 pt/fck = 0.06 Pu/fck*b*D = 0.27 Mux/fck*b*D2 = 0.11 Muy/fck*b*D2 = 0.11

Ast = 5400 sqmm Min Ast = 3600 sqmm

Puz = 5682 Mux1 = 743 Muy1 = 594 Pu/Puz = 0.42 Mux/Mux1 = 0.26 Muy/Muy1 = 0.87

αn = 1.37 (Mux/Mux 1 ) αn + (Muy/Muy 1 ) αn

0.98

Steel Percentage OK

Type 1 Type 2 Total Steel Percentage

Steel Details nos dia 4 20 mm 8 16 mm 12 0.64%

ast 1257 sqmm 1608 sqmm 2865 sqmm

Deflection Calculation Simply supported beam with UDL W 8 KN/m l 2.60 m

Load Length

Elasticity of Concrete Ec 22000000 MPa = 5000(√fck) Width Depth Moment Reaction Moment of Inertia bd3/12 Deflection Formula

b d M R =

0.20 m 0.45 m 8.66 m 13.33 m

Ixx 0.0015 mm4 dy

0.1 mm 5Wl4/384EI

Simply supported beam with Point Load 70 KN/m 3.00 m 22000000 MPa 0.20 m 0.60 m 82.13 m 109.50 m 0.0036 mm4 0.5 mm Wl3/48EI

alculation Cantilever beam with UDL 1400 KN/m 3.80 m

Cantilever beam with Point Load 10 KN/m 5.00 m

22000000 MPa

22000000 MPa

1.50 m 1.10 m 2601.46 m 2738.38 m

0.20 m 0.60 m 40.63 m 32.50 m

0.1664 mm4

0.0036 mm4

10.0 mm Wl4/8EI

5.3 mm Wl3/3EI

125 mm Span

Moment 2 Mu/bd (KNm)

Ast (mm2)

150 mm Spacing

Moment 2 Mu/bd (KNm)

Ast (mm2)

12# @ 243 c/c 3

16

1.45

465

1.01

386

2

669

1.36

2.54

899

0.75

16# @ 224 c/c

1.04

2.25

956

369 16# @ 546 c/c 12# @ 269 c/c

26

0.8

421 16# @ 479 c/c

12# @ 181 c/c 1.33

624

16# @ 278 c/c

38

0.59

16# @ 450 c/c

32

12# @ 202 c/c 34

1.05

559

16# @ 322 c/c

16# @ 360 c/c

12# @ 137 c/c 41

1.71

824

16# @ 210 c/c

12# @ 153 c/c 44

1.36

741

16# @ 244 c/c

16# @ 271 c/c

12# @ 109 c/c 5

50

2.08

1039

12# @ 121 c/c 54

1.67

931

16# @ 194 c/c

16# @ 216 c/c

12# @ 85 c/c 5.5

61

2.54

1327

Spacing 12# @ 306 c/c

19

447

12# @ 118 c/c 4.5

Ast (mm2)

12# @ 253 c/c 25

723

Moment 2 Mu/bd (KNm)

16# @ 597 c/c

12# @ 156 c/c 1.78

Spacing

337

16# @ 375 c/c

30

200 mm

12# @ 336 c/c 18

536

12# @ 126 c/c 28

Ast (mm2)

12# @ 211 c/c 23

16# @ 301 c/c

4

Moment 2 Mu/bd (KNm)

16# @ 521 c/c

12# @ 169 c/c 22

Spacing 12# @ 293 c/c

17 16# @ 432 c/c

3.5

175 mm

12# @ 98 c/c 65

2.01

1155

16# @ 152 c/c

16# @ 174 c/c 12# @ 80 c/c

6

77

2.38

1418 16# @ 142 c/c

DESIGN OF RETAINING WALL 1

2

3

Preliminary Data i) Height of RW ii) Soil Density iii) SBC

h γs qo

iv) Angle of repose

Ø

v)

Surcharge Angle

Ө

vi) Coefficient of friction vii) Surcharge Load

µ Ws

3.00 meters 18 KN/cum 250 KN/sqm 30 degrees 0.524 radians 0 degrees 0.000 radians 0.5 4 KN/sqm

Ca

0.333

Cp

3.00

Pressure Coefficients Active Pressure Coefficients i) =(cosӨ-√(cos2Ө-cos2Ø)*cosӨ) / (cosӨ+√(cos2Өcos2Ø)) Passive Pressure Coefficients ii) = (1+SinØ) / (1+SinØ)

Preliminary Dimensions i)

Thickness of Stem

Proposed -

Adopted 0.20 meters

0.24 meters 1.61 meters 2.09 meters

0.30 meters

ts

Thickness of footing base slab Length of base slab iii) or

tb = 0.08 * (h + hs) L = 1.5 * √(Ca/3) * (h + hs) L = 0.6h to 0.65h

ii)

iv) Extra Height of Retaining Wall due to Surcharge

hs = W s/γs

0.22 meters

Total Height of Retaining Wall due to Surcharge

Hs = h+hs

3.22 meters

vi) Extra Height of RW due to inclined back fill

hi = (L-ts)* tanӨ

0.00 meters

vii) Total Height of RW due to inclined back fill

Hi = h+hi

3.00 meters

v)

viii) Design Height of RW considered H = Max of H1 & H2

4

3.22 meters

Stability against Overturning i) Active pressure due Surcharge Load ii)

Active pressure due Backfill Load

iii) Total Load on stem iv)

Pa1 = Ca*W s*h

4 KN

Pa2 = Ca*γs*h2 / 2

27 KN

Pa = Pa1 + Pa2

31 KN

Mo= (Pa1 * h/2) +(( Pa2*CosӨ)* h/3)

Overturning Moment

Load

v)

33 KNm

Lever arm from end of stem

= (L-ts)*(h-tb)*γs

87 KN

(L-ts) / 2

0.90 meters

79 KNm

= Ca*Ws*h

4 KN

(L-ts) / 2

0.90 meters

4 KNm

W 3 Inclined Backfill Load W 4 Stem self weight

= ((L-ts)*hi)/2*γs

0 KN

(L-ts) / 3

0.60 meters

0 KNm

= ts*(h-tb)*γconc

14 KN

(L- (ts/2))/2

0.95 meters

13 KNm

W 5 Base self weight W 6 Downward component

= L*tb*γconc

15 KN

L/2

1.00 meters

15 KNm

= Pa*sinӨ

0 KN ∑W

0 KNm ∑Mw

120 KN

xw=∑Mw/∑W

vi) Distance of Resultant Vertical Force from end of heel

Mr =∑W * (L - xw)

vii) Stabilizing Moment viii) Factor of Safety against OVERTURNING (FS)OT = 0.9 * (Mr/Mo)

Pa*CosӨ F = µ*∑W

Factor of Safety against SLIDING (FS)SL=0.9*(F/(Pa*CosӨ))

iv) Shear key Design

Distance from stem Heigth of exacavation

x y z h1

0.00 meters 0.00 meters 0.00 meters 0.00 meters

Heigth of exacavation

h2 = h1 + y + (z * tanØ)

0.00 meters

Shear Key Size

b) c) d)

Pp =

Cp*γs*(h12-h22)

e)

Passive Pressure

v)

Revised Factor of Safety against SLIDING (FS)sliding = 0.9 * ((F+Pp)/(Pa*CosӨ)) Safe against Sliding

/2

0 KN

1.74 > 1.4

Soil Pressures at footing base ∑W = R i) Resultant Vertical Reaction Lr = (Mw+Mo)/R ii) Distance of R from heel e = Lr- L/2 iii) Eccentricity Eccentricity lies within middle third of the base hence OK iv) Pressure Distridution on soil

qmax = R/L * (1+(6*e/L))

qmin = R/L * (1-(6*e/L)) Max Pressure qmax 1.4 Shear Key not required

a)

0 KNm 110 KNm 0.92 meters 130 KNm

Safe against Overturning

3.54 > 1.4

Stability against Sliding i) Sliding Force ii) Resisting Force iii)

6

Moment

W 1 Backfill Load W 2 Surcharge Load

W 6 Other Load

5

2.00 meters

120 KN 1.19 meters 0.19 meters

95 KN/sqm 25 KN/sqm

88 KN/sqm

DESIGN OF L Shaped Cantilever RETAINING WALL 1

Preliminary Data i) Height of Retaining Wall ii) Soil Density iii) SBC iv) Angle of repose Surcharge Angle

Ө

vi) Coefficient of friction vii) Surcharge Load

µ Ws

v)

2

3

h γs qo Ø

3.60 meters 18 KN/cum 150 KN/sqm 30 degrees 0.524 radians 0 degrees 0.000 radians 0.5 2 KN/sqm

Pressure Coefficients i) Active Pressure Coefficients =(cosӨ-√(cos2Ө-cos2Ø)*cosӨ) / (cosӨ+√(cos2Ө-cos2Ø)) ii) Passive Pressure Coefficients = (1+SinØ) / (1+SinØ)

Ca

0.333

Cp

3.00

Preliminary Dimensions ts

Proposed min 200mm

Adopted 0.20 meters

ii) Thickness of footing base slab iii) Length of base slab

tb = 0.08 * (h + hs) L = 1.5 * √(Ca/3) * (h + hs) L = 0.6h to 0.65h

0.29 meters 1.86 meters 2.41 meters

0.25 meters

iv) Extra Height of Retaining Wall due to Surcharge

hs = W s/γs

0.11 meters

v)

Hs = h+hs

3.71 meters

vi) Extra Height of RW due to inclined back fill

hi = (L-ts)* tanӨ

0.00 meters

vii) Total Height of RW due to inclined back fill

Hi = h+hi

3.60 meters

i)

Thickness of Stem

Total Height of Retaining Wall due to Surcharge

viii) Design Height of RW considered H = Max of H1 & H2

4

3.71 meters

Stability against Overturning i) Active pressure due Surcharge Load ii)

Active pressure due Backfill Load

41 KN 44 KN

Pa = PHS + PH MOIL = PHS*h/2

5 KN

v)

MODL = PH*h/3

51 KN

Mo = (1.2*MDIL) + (1.4*MOIL)

68 KN

Overturning Moment due to Backfill load

= (L-ts)*(h-tb)*γs

W 3 Stem self weight W 4 Base self weight ∑W viii)

143 KN 0 KN

((L-ts) / 3) + ts

0.97 meters

17 KN

ts / 2

0.10 meters

2 KNm

16 KN 176 KN

L/2

1.25 meters

20 KNm 215 KNm

= L*tb*γconc

Safe against Overturning

1.81 > 1.4

qmax = W/L * (1+(6*e/L))

129 KN/sqm qmin = W/L * (1-(6*e/L)) 12 KN/sqm Max Pressure qmaxL6 Eccentricity lies outside the middle third of the base. Revise the base dimensions iv) Pressure Distridution on soil

qmax = W/L * (1+(6*e/L))

43 KN/sqm qmin = W/L * (1-(6*e/L)) -7 KN/sqm Max Pressure qmax
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF