Download R-J2 Controller P-200 Maintenance Manual...
FANUC Robotics SYSTEM R-J2 Controller P–10, P–15 and P–200 Electrical Maintenance Manual MARO2P10203704E REV B This publication contains proprietary information of FANUC Robotics North America, Inc. furnished for customer use only. No other uses are authorized without the express written permission of FANUC Robotics North America, Inc. FANUC Robotics North America, Inc. 3900 W. Hamlin Road Rochester Hills, Michigan 48309-3253
2
MARO2P10203704E REV B The descriptions and specifications contained in this manual were in effect at the time this manual was approved for printing. FANUC Robotics North America, Inc, hereinafter referred to as FANUC Robotics, reserves the right to discontinue models at any time or to change specifications or design without notice and without incurring obligations. FANUC Robotics manuals present descriptions, specifications, drawings, schematics, bills of material, parts, connections and/or procedures for installing, disassembling, connecting, operating and programming FANUC Robotics’ products and/or systems. Such systems consist of robots, extended axes, robot controllers, application software, the KAREL programming language, INSIGHT vision equipment, and special tools. FANUC Robotics recommends that only persons who have been trained in one or more approved FANUC Robotics Training Course(s) be permitted to install, operate, use, perform procedures on, repair, and/or maintain FANUC Robotics’ products and/or systems and their respective components. Approved training necessitates that the courses selected be relevant to the type of system installed and application performed at the customer site.
WARNING This equipment generates, uses, and can radiate radio frequency energy and if not installed and used in accordance with the instruction manual, may cause interference to radio communications. As temporarily permitted by regulation, it has not been tested for compliance with the limits for Class A computing devices pursuant to subpart J of Part 15 of FCC Rules, which are designed to provide reasonable protection against such interference. Operation of the equipment in a residential area is likely to cause interference, in which case the user, at his own expense, will be required to take whatever measure may be required to correct the interference.
FANUC Robotics conducts courses on its systems and products on a regularly scheduled basis at its headquarters in Rochester Hills, Michigan. For additional information contact FANUC Robotics North America, Inc. Training Department 3900 W. Hamlin Road Rochester Hills, Michigan 48309-3253 Tel: (248)377-7234 FAX: (248)377-7367 or (248)377-7362 web site: www.fanucrobotics.com Send your comments and suggestions about this manual to:
[email protected]
MARO2P10203704E REV B
3
Copyright 2000 by FANUC Robotics North America, Inc. All Rights Reserved The information illustrated or contained herein is not to be reproduced, copied, translated into another language, or transmitted in whole or in part in any way without the prior written consent of FANUC Robotics North America, Inc. AccuStat , ArcTool , DispenseTool , FANUC LASER DRILL , KAREL , INSIGHT , INSIGHT II , PaintTool , PaintWorks , PalletTool , SOCKETS , SOFT PARTS SpotTool , TorchMate , and YagTool are Registered Trademarks of FANUC Robotics. FANUC Robotics reserves all proprietary rights, including but not limited to trademark and trade name rights, in the following names: AccuFlow ARC Mate ARC Mate Sr. IntelliTrak LaserTool MotionParts PaintWorks II PalletMate SureWeld TurboMove
Conventions Used in this Manual
This manual includes information essential to the safety of personnel, equipment, software, and data. This information is indicated by headings and boxes in the text.
WARNING Information appearing under WARNING concerns the protection of personnel. It is boxed and in bold type to set it apart from other text.
CAUTION Information appearing under CAUTION concerns the protection of equipment, software, and data. It is boxed to set it apart from other text.
NOTE Information appearing next to NOTE concerns related information or useful hints.
Issued United States Patents One or more of the following U.S. patents might be related to the FANUC Robotics products described in this manual. 3,906,323 4,274,802 4,289,441 4,299,529 4,336,926 4,348,623 4,359,815 4,366,423 4,374,349 4,396,973 4,396,975 4,396,987 4,406,576 4,415,965 4,416,577 4,430,923 4,431,366 4,458,188 4,462,748 4,465,424 4,466,769 4,475,160 4,479,673 4,479,754 4,481,568 4,482,289 4,482,968 4,484,855 4,488,242 4,488,746 4,489,821 4,492,301 4,495,453 4,502,830 4,504,771 4,530,062 4,530,636 4,538,639 4,540,212 4,542,471 4,543,639 4,544,971
4,549,276 4,549,846 4,552,506 4,554,497 4,556,361 4,557,660 4,562,551 4,575,666 4,576,537 4,591,944 4,603,286 4,626,756 4,628,778 4,630,567 4,637,773 4,638,143 4,639,878 4,647,753 4,647,827 4,650,952 4,652,203 4,653,975 4,659,279 4,659,280 4,663,730 4,672,287 4,679,297 4,680,518 4,697,979 4,698,777 4,700,118 4,700,314 4,701,686 4,702,665 4,706,000 4,706,001 4,706,003 4,707,647 4,708,175 4,708,580 4,712,972 4,723,207
4,727,303 4,728,247 4,728,872 4,732,526 4,742,207 4,742,611 4,750,858 4,753,128 4,754,392 4,771,222 4,773,523 4,773,813 4,774,674 4,775,787 4,776,247 4,777,783 4,780,045 4,780,703 4,782,713 4,785,155 4,796,005 4,805,477 4,807,486 4,812,836 4,813,844 4,815,011 4,815,190 4,816,728 4,816,733 4,816,734 4,827,203 4,827,782 4,828,094 4,829,454 4,829,840 4,831,235 4,835,362 4,836,048 4,837,487 4,842,474 4,851,754
4,852,024 4,852,114 4,855,657 4,857,700 4,859,139 4,859,845 4,866,238 4,873,476 4,877,973 4,892,457 4,892,992 4,894,594 4,894,596 4,894,908 4,899,095 4,902,362 4,903,539 4,904,911 4,904,915 4,906,121 4,906,814 4,907,467 4,908,559 4,908,734 4,908,738 4,916,375 4,916,636 4,920,248 4,922,436 4,931,617 4,931,711 4,934,504 4,942,539 4,943,759 4,953,992 4,956,594 4,956,765 4,965,500 4,967,125 4,969,109 4,969,722
4,969,795 4,970,370 4,970,448 4,972,080 4,972,735 4,973,895 4,974,229 4,975,920 4,979,127 4,979,128 4,984,175 4,984,745 4,988,934 4,990,729 5,004,968 5,006,035 5,008,832 5,008,834 5,012,173 5,013,988 5,034,618 5,051,676 5,055,754 5,057,756 5,057,995 5,060,533 5,063,281 5,063,295 5,065,337 5,066,847 5,066,902 5,075,534 5,085,619 5,093,552 5,094,311 5,099,707 5,105,136 5,107,716 5,111,019 5,111,709 5,115,690
iv
CUSTOMER FOCUS CENTER 1–800–47–ROBOT (1–800–477–6268) (International: 011–1–248–377–7159) SERVICE & REPAIR PRESS 1 Tel: 248–377–7159 / Fax: 248–377–7463 24 Hour Hot–Line Technical Service
Support Hot–Line
personnel dispatch
After–hours
parts support (8:00 p.m. to 8:00 a.m.)
PARTS & PART REPAIR PRESS 2 Tel: 248–377–7278 / Fax: 248–377–7832 8:00 am to 8:00 pm / Mon – Fri Parts
for down robots
Replenishment Warranty Robot
part order
part replacement
TRAINING PRESS 3 Tel: 248–377–7234 / Fax: 248–377–7367 8:00 am to 5:00 pm / Mon – Fri Training
class registration
Consultation
for special training or on–site requests
MARKETING & SALES PRESS 4 Tel: 248–377–7000 / Fax: 248–377–7366 8:00 am to 5:00 pm / Mon – Fri Marketing
Application New
Review
Robot Sales
Systems
software and PACs
Information
Solution Sales
________________________
________________________
________________________
________________________
For best call results have:
For best call results have:
For best call results have:
For best call results have:
Customer Company
number (if known) name
Customer Company
number (if known) name
Customer Company
number (if known)
Company
name
Company
name address
Your
name
Your
name
Your
name
Your
name
Your
phone & fax numbers
Your
phone & fax numbers
Your
phone & fax numbers
Your
phone & fax numbers
Part
name & number (if known)
Your
shipping or billing address
Description
Robot “F#”
& controller type
or serial number of robot
Hour
meter reading (if available)
Software
type and edition
Any
error messages and LED displays (if applicable)
Your
P.O., Credit Card, or Receiving # for warranty or down robot or preventive maintenance service orders
“F#”
or serial number of robot, if available (req’d for warranty)
P.O.,
Credit Card, or Receiving # for warranty, down units, or software
Shipping Reason
& billing addresses
for repair (any symptoms, error codes, or diagnostic LEDs that were identified)
Types
of your need
of courses needed
Special Robot
Requirements and controller type
Proposed Number
Schedules of people attending
Method
of payment (P.O., credit card, etc.)
*NOTE: A RETURN AUTHORIZATION (“RA”) FROM “PARTS” IS REQUIRED BEFORE SHIPPING ANY MATERIAL BACK TO FANUC ROBOTICS FOR PROPER RECEIVING & TRACKING. F# IS LOCATED ON THE ROBOT BASE OR OP. PANEL. Revised: 12/15/99
MXXXXXXXXXXXXXE REV X
3
Page4
UPDATES
UPDATES Updates–1
MARO2P10203704E
This section lists the update that has been made to the FANUC Robotics SYSTEM R–J2 Controller P–10, P–15 and P–200 Electrical Maintenance Manual in the following area: Page
Table 5–1 Fused Flange–Mounted Disconnect Switch, C–Size Controller
5–3
Figure A–1 Transportation
A–2
Figure 14–40 P–200 Brake Release Option Package
14–81
Fused Flange–Mounted Disconnect Switch, C–Size Controller The correct part number for the 50A fuse is XGMF–00382. The correct part number for the 30A fuse is XGMF–00160.
Transportation and Installation Addendum A When transporting a controller, an appropriate certified lifting strap should be used. The term rope is incorrect.
P–200 Brake Release Option Package, Figure 14–40 The correct terminations for the Axis 4 and 5 wires is as follows: Wire BKP3(Blk–5) and BKP3(Blk–11) BKM3(Blk–6) and BKM3(Blk–12)
Terminal Location BKP(Terminal 3) BKM(Terminal 4)
UPDATES Updates–2
MARO2P10203704E
UPDATES Updates–3
MARO2P10203704E
Figure 1–1. Main Disconnect Location MAIN DISCONNECT
Fuse Block
FL1 FL2 FL3
Table 1–1.
Fused Flange-Mounted Disconnect Switch, C-Size Cabinet
Fused Flange-Mounted Disconnect Switch Inputt Inp Voltage
Fuse Size
Part Number
220 240
50A
Fuse XGMF-00382 (A60L–0001-0042 #JG2-50)
380 416 460 480 500 550
30A
Fuse XGMF-00160 (A60L–0001-0042 #JG1-30)
575
20A
Fuse XGMF-04148 (A60L–0001-0042 #JG1-20)
UPDATES Updates–4
1.1 TRANSPORTATION
MARO2P10203704E
The controller is transported by a crane. Attach a lifting strap to the eye bolts at the top of the controller, as shown in Figure A–1. Figure A–1. Transportation
Î Î ÎÎÏ Ï Î Ï Ï Î
UPDATES Updates–5
MARO2P10203704E
Figure 2. P-200 Brake Release Option Package
MOUNT SWITCHES AND RC’S ON ALTERED COVER PLATE
MOUNT TERMINALS AND RELAY ON HEAT EXCHANGER
PURGE UNIT
ROBOT CABLE CONNECTION TO TERMINAL STRIP
BLUE–17 EE–3287–110–XXX
BLUE–18
AXES 1 & 2
BLUE 19
EE–3287–120–XXX
BLUE–20 2’’ BLUE 19
TO PURGE BRAKE BOARD
BLUE–20
EE–3287–112–XXX AXES 3 & 7
BLUE–17
EE–3287–122–XXX
BLUE–18 ISB UNIT 6’’
BLACK–5 BLACK–6 BLACK–11 BLACK–12
2 3/4 ’’
EE–3287–111–XXX
AXES 4,5,6
EE–3287–121–XXX
BLACK–17 BLACK–18 BATTERY PACK
1
1
2
2
3
3
4
4
5
6
7
8
9
10
BKP2
BKP1
BKM2
BKM1
BKP3
BKP3
BKM3
BKM3
BKP4
BKM4
BKP1
BKM1
BKP2
BKM2
NOTE: AXIS 6 WIRES CONNECTED EVEN IN UNITS WHERE AXIS 6 DOES NOT HAVE BRAKES
OPENER CONNECTIONS INSIDE VIEW 1
INSTALLATION IN C SIZE CONTROLLER
2
3
4
AXES
AXES
1&7
4&5
5
6
AXIS 6
7
8
AXIS 2
9
10
11
12
13
14
TERMINAL STRIP MOUNTED ON CONTROLLER DOOR HEAT EXCHANGER
AXIS 3
P–200 BRAKE RELEASE OPTION PACKAGE EE–3287–516
Page4
UPDATES
UPDATES
UPDATES –3
MARO2P10203704E
Figure 1. P-200 Brake Release Option Package
MOUNT SWITCHES AND RC’S ON ALTERED COVER PLATE
MOUNT TERMINALS AND RELAY ON HEAT EXCHANGER
PURGE UNIT
ROBOT CABLE CONNECTION TO TERMINAL STRIP
BLUE–17 EE–3287–110–XXX
BLUE–18
AXES 1 & 2
BLUE 19
EE–3287–120–XXX
BLUE–20 2’’ BLUE 19
TO PURGE BRAKE BOARD
BLUE–20
EE–3287–112–XXX AXES 3 & 7
BLUE–17
EE–3287–122–XXX
BLUE–18 ISB UNIT 6’’
BLACK–5 BLACK–6 BLACK–11 BLACK–12
2 3/4 ’’
EE–3287–111–XXX
AXES 4,5,6
EE–3287–121–XXX
BLACK–17 BLACK–18 BATTERY PACK
1
1
2
2
3
3
4
4
5
6
7
8
9
10
BKP2
BKP1
BKM2
BKM1
BKP3
BKP3
BKM3
BKM3
BKP4
BKM4
BKP1
BKM1
BKP2
BKM2
NOTE: AXIS 6 WIRES CONNECTED EVEN IN UNITS WHERE AXIS 6 DOES NOT HAVE BRAKES
OPENER CONNECTIONS INSIDE VIEW 1
INSTALLATION IN C SIZE CONTROLLER
2
3
4
AXES
AXES
1&7
4&5
5
6
AXIS 6
7
8
AXIS 2
9
10
11
12
13
14
TERMINAL STRIP MOUNTED ON CONTROLLER DOOR HEAT EXCHANGER
AXIS 3
P–200 BRAKE RELEASE OPTION PACKAGE EE–3287–516
UPDATES Updates–1
MARO2P10203704E
This section lists the update that has been made to the FANUC Robotics SYSTEM R–J2 Controller P–10, P–15 and P–200 Electrical Maintenance Manual in the following area: Page
Figure 14–40 P–200 Brake Release Option Package
14–81
P–200 Brake Release Option Package, Figure 14–40 The correct terminations for the Axis 4 and 5 wires are as follows: Wire BKP3(Blk–5) and BKP3(Blk–11) BKM3(Blk–6) and BKM3(Blk–12)
Terminal Location BKP(Terminal 3) BKM(Terminal 4)
UPDATES
Updates–2
MARO2P10203704E
Page2
UPDATES
UPDATES
UPDATES –1
MARO2P10203704E
NOTE: This page replaces page 12–43.
Figure 1–1. P-200 R-J2 Robot Control Drawing Purge and Intrinsic Wiring sheet 1 DELTRON W112A
NON–HAZARDOUS LOCATION (250 VAC MAXIMUM)
24V 120VAC 24VDC FROM POWER CONVEYOR SUPPLY
OPERATOR PANEL
INTRINSIC SAFETY BARRIER STAHL 9001/01–252–100–14
EE–3112–600 24V
3 4
1 2
OVP UNIT
PANEL I/F
EMGIN1 EMGIN2
PURGE CIRCUITS CNPG
SOL1 SOL2
BRAKE CONTROL
CNIN FROM I/O
MAIN CPU RDI/RDO
CRM10
24V I/P SIG 24V
24V TO ACCUFLOW SIG
CNCA
FROM I/O FROM I/O
E–STOP PCB
3 4
ISB2 OPTIONAL IS GND 7 4 8 ISB3 6 9 10 KHD2–SR–EX1.2S.P 11 +24 P&F 12 7ISB4KFD2–SD–EX1.36 + 1 2 8 9 + +1 P&F 10 ISB5 2 7 +24 KHD2–CD–1.P32 8 8 +1 P&F 2 ISB6 Z787 7 +4 5 3 6
FLOW SWITCH
C2 A3
ROBOT OVERTRAVEL SWITCH
C3 A4
SERVO TRANSFORMER
HAND BROKEN
C4 A5 220 VAC C5
220V (44)
A6 0V C6
NOTES: 1.)ACCEPTABLE I.S. BATTERY PACKS: A05B–2363–C040 EE–3185–551
+24VDC PSU
R
+V AC
S
0V G
2.) ALTERNATE I.S. BATTERY PACKS: A05B–2072–C181 A05B–2047–C182 SHALL BE USED PER EG–00127–SECTION VI 3.) I.S. GROUND CONNECTION SHALL BE PER NEC(NFPA 70) SECTION 504–50 AND ANSI/ISA RP 12.6
TRIGGER 1
ISB6–1 ISB6–2 ISB6–4
TRIGGER 2
O1 O4 HAND BRKN
ROBOT WIRE HARNESS SOLENOID CABLE EE–3287–323–001 EE–3287–348–001 M1 M4 SOL SOL PURGE
M1 M4
P2 N2 P3 N3 P4 N4
TP DISCONNECT SWITCH
P5
MISC. SWITCH (RDI2)
P6
I.S. BATTERY PACK
I.S. GND
I/S GROUND
1
PRES. SW CABLE EE–3044–345–001 PS1 PS1
P1
N5
+24P
FIRE ALARM
FLOW METER
IDEC IBRC6062R
CRR5
220V (43)
UNIT
ISB5–2
ISB8–1 ISB8–2
A2
FOR PAINT R–J TYPE
I/P
+1 2
N1
EE–3287–328–001 CBL
ISB4–1 ISB4–2 ISB5–1
8+ ISB8 Z728 P&F 7
PRESSURE SWITCH
EE–3185–356–001 BYPASS SWITCH
N4
P1 P4
+1 2
CRR22
CNIS
N1 ISB3–4 ISB3–6
ISB7–1 ISB7–2
C1
BKP4 BKM4
CONNECTION CABLE EE–3287–117–XXX
8+ ISB7 Z728 P&F 7
A1
CRR21
HAZARDOUS LOCATION CLASS I, II & III DIVISION 1 GROUPS C D E F & G
ISB1
IS GND 1 2
CNPG
NOTICE NO REVISIONS WITHOUT PRIOR APPROVAL FROM FACTORY MUTUAL (FM)
FLOW SW CABLE EE–3287–340–001 FS1 FS1
M1 M4 ISTB 1 PSA1 2 PSA2 3 PSB1 4 PSB2 5 FSA1 6 FSA2 7 FSB1 8 FSB2 9 OT11 10 OT12 11 OT21 12 OT22 13 OT31 14 OT32 15 OT41 16 OT42 17 OT51 18 OT52 19 HBK1 20 HBK2 21 TP1 22 TP2 23 EOAT1 24 EOAT2
S1 S4
SOLENOID VALVE ROBOT PRESSURE SWITCH ROBOT FLOW SWITCH
EE–3287–324–001 BATT BATT ENCODER
I.S. GND X6 FOR PEDESTAL CABLE ROBOT PURGED CAVITY X7 FOR RAIL EE–3066–115–00X OPTIONAL CATRAC CABLE OPTIONAL DOOR OPENER DEVICE (FMRC APPROVED) MODEL Q–DRQ AK1AK2EE–3066–215–00XAK3 AK4 EE–3066–323–001 OPENER SOLENOID
AJ1 AJ2
AJ3
EE–3066–322–001
AJ4
OPENER PRESS SWITCH
AH1 AH2
AH3
AH4
AE1 AE2
AE3
AE4
EE–3066–321–001 OPENER FLOW SWITCH
EE–3066–316–001 ENCODER
I.S. GND
X2
N6
+ P–200 R–J2 MODELS
6 +
F1 F2 F3 F4 F5
ISB UNIT A05B–2308–C370
TO CRS1 (MAIN CPU)
MODEL
P–200–6–J2
MODEL
P–200–7–J2
MODEL
P–200–6+2–J2
MODEL
P–200–7+2–J2
MODEL
P–200–7+3–J2
I/S TEACH PENDANT A05B–2308–C300 FRAME GND.
EE-3287-550-001
MARO2P10203703E
Preface
vii
Purpose of this Manual
The SYSTEM R-J2 Controller P-10, P-15 and P-200 Electrical Maintenance Manual provides specific information regarding FANUC Robotics electrical hardware. The information contained within the manual has been arranged so that it can answer specific questions quickly and accurately.
How to Use this Manual
Use this table to locate specific information in the manual. If you want to
Refer to
Find information about a specific topic
Table of Contents
Identify the components of the SYSTEM R-J2 controller
Chapter 1, Overview
Use diagnostic and controller initialization utilities
Chapter 2, Diagnostic Screens
View status information on teach pendant screens and using other indicators
Chapter 3, Lights, Indicators, and LEDs
Perform troubleshooting procedures and identify specific errors
Chapter 4, Troubleshooting
Look at fuse information or replace a fuse
Chapter 5, Replacing Fuses
Release the brakes
Chapter 6, Brakes
Turn outputs on or off and simulate inputs
Chapter 7, Controlling I/O
Master the robot
Chapter 8, Mastering
Replace controller components
Chapter 9, Replacing Components
Adjust switch settings and potentiometers on PCBs
Chapter 10, Board Adjustments and Calibrations
Find controller connection schematics and connector configurations
Chapter 11, Connections
Find complete schematics of the controller circuitry
Chapter 12, Schematics
Find wiring diagrams of the P-200 cables.
Chapter 13, Cables
Find wiring diagrams and schematics for the P-10 and P-15 openers, Integral Pump Control, and the Brake Release Option
Chapter 14, Openers and Options
Use controller transportation and installation information
Appendix A, Transportation and Installation
viii
Conventions Used in this Manual
PREFACE
MARO2P10203703E
This manual includes information essential to the safety of personnel, equipment, software, and data. This information is indicated by headings and boxes in the text.
WARNING Information appearing under WARNING concerns the protection of personnel. It is boxed and in bold type to set it apart from other text.
CAUTION Information appearing under CAUTION concerns the protection of equipment, software, and data. It is boxed to set it apart from other text.
NOTE Information appearing next to NOTE concerns related information or useful hints.
Page3
TABLE OF CONTENTS
MARO2P10203703E
Table of Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ix vii xxv
Chapter 1 OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–1
1.1 OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 BACKPLANE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 MAIN CPU PRINTED CIRCUIT BOARD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.1 Identifying Kinds of Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 SUB CPU PRINTED CIRCUIT BOARD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 AUX AXIS PRINTED CIRCUIT BOARD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6 POWER SUPPLY UNIT PRINTED CIRCUIT BOARD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.7 EMERGENCY STOP CONTROL PRINTED CIRCUIT BOARD . . . . . . . . . . . . . . . . . . . . . . 1.8 SERVO AMPLIFIERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.9 MULTI-TAP TRANSFORMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.10 INTERFACE DEVICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.10.1 Modular I/O Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.10.2 ABRIO and Genius I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.11 ETHERNET REMOTE PRINTED CIRCUIT BOARDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.12 USER TRANSFORMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.13 OPERATOR PANEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.14 TEACH PENDANT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.15 HEAT EXCHANGE AND FANS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.16 PURGE CONTROL UNIT A05B–2363–C020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.17 PURGE SYSTEM IBRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.18 PURGE UNIT POWER SUPPLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.19 PURGE INTRINSICALLY SAFE BARRIERS AND SIGNAL REPEATERS . . . . . . . . . . . . 1.20 BRAKE RELEASE (OPTION) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.21 P-10 DOOR OPENER P-15 HOOD AND DECK OPENER (OPTIONS) . . . . . . . . . . . . . . . . 1.22 INTEGRAL PUMP CONTROL (OPTION) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–3 1–6 1–10 1–10 1–13 1–16 1–17 1–18 1–20 1–27 1–29 1–29 1–33 1–34 1–37 1–38 1–39 1–40 1–41 1–42 1–44 1–45 1–55 1–56 1–57
Chapter 2 DIAGNOSTIC SCREENS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–1
2.1 SAFETY SIGNAL STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 VERSION IDENTIFICATION STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 MEMORY STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 POSITION STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 AXIS STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 ALARM LOG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7 I/O STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–3 2–5 2–8 2–10 2–12 2–16 2–18
x
TABLE OF CONTENTS
MARO2P10203703E
Chapter 3 LIGHTS, INDICATORS, AND LEDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–1
3.1 TEACH PENDANT DIAGNOSTIC INDICATORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 OPERATOR PANEL AND CABINET LIGHTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 SERVO ON LIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 CIRCUIT BOARD DIAGNOSTIC LEDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.1 Power Supply Unit (PSU) Diagnostic LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.2 Main CPU Board Diagnostic LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.3 Sub CPU Board Diagnostic LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.4 Modular (Model A) I/O LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.5 Servo Amplifier Diagnostic LED (7-Segment Display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.6 Emergency Stop Control Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.7 Module Assembly # EE–3044–401 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.8 Contact Signal Transducer (IBRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.9 R-J2 Ethernet LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–2 3–3 3–4 3–5 3–7 3–8 3–10 3–13 3–14 3–16 3–18 3–19 3–20
Chapter 4 TROUBLESHOOTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–1
4.1 POWER ON SEQUENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 CONTROLLER SHUTDOWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 SERVO LOCKOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 CLASS 1 FAULT TROUBLESHOOTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 CLASS 2 FAULTS TROUBLESHOOTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6 CLASS 3 FAULT TROUBLESHOOTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.1 SRVO-001 ER_SVAL1 Operator Panel E-Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.2 SRVO-002 ER_SVAL1 Teach Pendant E-stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.3 SRVO-003 ER_SVAL1 Deadman switch released . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.4 SRVO-004 ER_SVAL1 Fence open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.5 SRVO-005 ER_SVAL1 Robot Overtravel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.6 SRVO-006 ER_SVAL1 Hand Broken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.7 SRVO-007 ER_SVAL1 External Emergency Stops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.8 SRVO-011 ER_SVAL1 TP Released While Enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.9 SRVO-012 ER_SVAL1 Power Failure Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.10 SRVO-014 Fan Motor Abnormal (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.11 SRVO-015 ER_SVAL1 System Over Heat (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . 4.6.12 SRVO-019 ER_SVAL1 SVON input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.13 SRVO-020 ER_SVAL1 SRDY off (TP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.14 SRVO-021 ER_SVAL1 SRDY off (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.15 SRVO-022 ER_SVAL1 SRDY on (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.16 SRVO-023 ER_SVAL1 Stop Error Excess (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . .
4–3 4–4 4–4 4–5 4–21 4–23 4–24 4–25 4–26 4–27 4–28 4–30 4–32 4–34 4–34 4–34 4–35 4–36 4–36 4–37 4–40 4–40
MARO2P10203703E
4.6.17 4.6.18 4.6.19 4.6.20 4.6.21 4.6.22 4.6.23 4.6.24 4.6.25 4.6.26 4.6.27 4.6.28 4.6.29 4.6.30 4.6.31 4.6.32 4.6.33 4.6.34 4.6.35 4.6.36 4.6.37 4.6.38 4.6.39 4.6.40 4.6.41 4.6.42 4.6.43 4.6.44 4.6.45 4.6.46 4.6.47 4.6.48 4.6.49 4.6.50 4.6.51 4.6.52 4.6.53 4.6.54 4.6.55 4.6.56 4.6.57 4.6.58
TABLE OF CONTENTS
SRVO-024 ER_SVAL1 Move Error Excess (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . SRVO-026 ER_WARN Motor Speed Limit (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . SRVO-027 ER_WARN Robot Not Mastered (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . SRVO-033 ER_WARN Robot Not Calibrated (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . SRVO-035 ER_WARN Joint Speed Limit (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . SRVO-036 Imposition Time Over (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-037 ER_SVAL1 IMSTP Input (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-038 PULSE MISMATCH (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-042 ER_SVAL2 MCAL Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-043 ER_SVAL2 DCAL Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-044 ER_SVAL2 HVAL Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-045 ER_SVAL2 HCAL Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-046 ER_SVAL2 OVC Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-047 ER_SVAL2 LVAL Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-049 ER_SVAL1 OHAL1 Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-050 ER_SVAL1 CLALM Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-051 ER_SVAL2 CUER Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-053 ER_WARN Disturbance excess (Group:i Axis: J) . . . . . . . . . . . . . . . . . . . . . . . SRVO-054 ER_SVAL1 DSM memory error (DS:i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-061 ER_SVAL2 CKAL Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-062 ER_SVAL2 BZAL Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-063 ER_SVAL2 RCAL Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-064 ER_SVAL2 PHAL Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-065 ER_WARN BLAL Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-066 ER_SVAL2 CSAL Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-067 ER_SVAL2 OHAL2 Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-068 ER_SVAL2 DTERR Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-069 ER_SVAL2 CRCERR Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-070 ER_SVAL2 STBERR Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-071 ER_SVAL2 SPHAL Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-072 ER_SVAL2 PMAL alarm (Group:%d Axis:%d) . . . . . . . . . . . . . . . . . . . . . . . . SRVO-073 ER_SVAL2 CMAL alarm (Group:%d Axis:%d) . . . . . . . . . . . . . . . . . . . . . . . . SRVO-074 ER_SVAL2 LDAL alarm (Group:%d Axis:%d) . . . . . . . . . . . . . . . . . . . . . . . . SRVO-075 ER_WARN Pulse not established (G:%d A:%d) . . . . . . . . . . . . . . . . . . . . . . . . SRVO-081 ER_WARN EROFL Alarm (Track encoder:n) . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-082 ER_WARN DAL Alarm (Track encoder:n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-083 ER_WARN CKAL Alarm (Track encoder:n) . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-084 ER_WARN BZAL Alarm (Track encoder:n) . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-085 ER_WARN RCAL Alarm (Track encoder:n) . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-086 ER_WARN PHAL Alarm (Track encoder:n) . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-087 ER_WARN BLAL Alarm (Track encoder:n) . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-088 ER_WARN CSAL Alarm (Track encoder:n) . . . . . . . . . . . . . . . . . . . . . . . . . . .
xi 4–40 4–41 4–41 4–41 4–41 4–41 4–41 4–42 4–43 4–44 4–46 4–47 4–48 4–48 4–49 4–49 4–50 4–50 4–50 4–50 4–51 4–52 4–52 4–52 4–53 4–53 4–54 4–56 4–56 4–56 4–57 4–57 4–57 4–58 4–58 4–59 4–59 4–59 4–59 4–59 4–60 4–60
xii
TABLE OF CONTENTS
MARO2P10203703E
4.6.59 SRVO-089 ER_WARN OHAL2 Alarm (Track encoder:n) . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.60 SRVO-090 ER_WARN DTERR Alarm (Track encoder:n) . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.61 SRVO-091 ER_WARN CRCERR Alarm (Track encoder:n) . . . . . . . . . . . . . . . . . . . . . . . . 4.6.62 SRVO-092 ER_WARN STBERR Alarm (Track encoder:n) . . . . . . . . . . . . . . . . . . . . . . . . 4.6.63 SRVO-093 ER_WARN SPHAL Alarm (Track encoder:n) . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.64 SRVO-147 SERVO LVAL(DCLK) alarm (G:%d A:%d) . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.65 SRVO-163 ER_FATL DSM Hardware Mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.66 SRVO-164 ER_FATL DSM/Servo param mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.67 SRVO-165 ER_FATL Panel (SVON abnormal) E-Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.68 SRVO-166 ER_FATL TP (SVON abnormal) E-Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.69 SRVO-167 ER_FATL Deadman switch (SVON abnormal) . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.70 SRVO-168 ER_FATL External/SVON (SVON abnormal) E-Stop . . . . . . . . . . . . . . . . . . . 4.7 CLASS 4 FAULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7.1 Process Fault - Both Guns Do Not Trigger or Work Intermittently . . . . . . . . . . . . . . . . . . . . 4.7.2 Both Guns Will Not Shut Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7.3 Paint Gun Trigger Troubleshooting Procedure (Electrical) . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7.4 Process Fault - Transducer Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7.5 Process Fault - Flow Meter Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–60 4–60 4–60 4–60 4–61 4–61 4–61 4–61 4–61 4–61 4–62 4–62 4–63 4–64 4–65 4–66 4–73 4–76
Chapter 5 REPLACING FUSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5–1
5.1 FUSED FLANGE-MOUNTED DISCONNECT FUSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 MULTI-TAP TRANSFORMER FUSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 POWER SUPPLY UNIT FUSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 SERVO AMPLIFIER FUSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 EMERGENCY STOP CONTROL PCB FUSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6 PURGE POWER SUPPLY FUSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7 MODULAR I/O (MODEL A) FUSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.8 SUB CPU PRINTED CIRCUIT BOARD FUSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5–2 5–4 5–5 5–6 5–7 5–8 5–9 5–12
Chapter 6 BRAKE RELEASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6–1
6.1 BRAKE RELEASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6–2
Chapter 7 CONTROLLING I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7–1
7.1 FORCING OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2 SIMULATING INPUTS AND OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3 SOP I/O STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7–2 7–4 7–5
MARO2P10203703E
TABLE OF CONTENTS
xiii
Chapter 8 MASTERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8–1
8.1 RESETTING ALARMS AND PREPARING FOR MASTERING . . . . . . . . . . . . . . . . . . . . . 8.2 STANDARD MASTERING FOR THE P-200 ROBOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3 SINGLE AXIS MASTERING FOR THE P-200 ROBOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4 STANDARD MASTERING FOR THE P-10 DOOR OPENER AND THE P-15 HOOD AND DECK OPENER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8–2 8–4 8–16 8–19
Chapter 9 REPLACING COMPONENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9–1
9.1 REPLACING R-J2 BATTERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2 REPLACING RELAYS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.1 Operator Control Panel Relays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.2 Emergency Stop Control Board (EMG) Printed Circuit Board Relay Replacement . . . . . . . 9.2.3 Purge Control PCB Relay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3 REPLACING A PRINTED CIRCUIT BOARD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3.1 Removal and Replacement of a Printed Circuit Board from the Backplane Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3.2 Replacing the Backplane Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.4 REPLACING A MODULE ON THE MAIN CPU OR AUX AXIS CONTROL PRINTED CIRCUIT BOARD REFER TO CHAPTER 1 FOR PART NUMBERS. . . . . . . . . 9.5 REPLACING AN I/O MODULE (MODEL A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.5.1 Replacing a Model A Interface Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.5.2 Replacing a Model A I/O Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.6 REPLACING THE MULTI-TAP TRANSFORMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.7 REPLACING A SERVO AMPLIFIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.8 REPLACING THE OPERATOR PANEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.9 REPLACING THE FAN MOTOR IN THE BACKPLANE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.10 REPLACING THE TEACH PENDANT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.11 REPLACING A SERIAL PULSE CODER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9–2 9–6 9–6 9–7 9–8 9–9 9–10 9–12 9–13 9–16 9–17 9–17 9–19 9–20 9–21 9–22 9–24 9–25
Chapter 10 BOARD ADJUSTMENTS AND CALIBRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10–1
10.1 I/P TRANSDUCER/ REGULATOR PERFORMANCE CHECK . . . . . . . . . . . . . . . . . . . . . . 10.2 MANUAL FLOW TEST (BEAKERING TEST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3 COLD START (START COLD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4 POWER ON SEQUENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.5 CONTROLLER SHUTDOWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.6 SERVO LOCKOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10–2 10–5 10–7 10–10 10–11 10–11
xiv
TABLE OF CONTENTS
MARO2P10203703E
Chapter 11 CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11–1
11.1 NOISE REDUCTION GUIDELINES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 MODULAR I/O OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3 ETHERNET REMOTE PRINTED CIRCUIT BOARD DIAGNOSTICS . . . . . . . . . . . . . . . . 11.4 MODULAR I/O INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.5 ANALOG INPUT MODULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11–1 11–2 11–11 11–12 11–14
Chapter 12 SCHEMATICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12–1
Chapter 13 CABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13–1
Chapter 14 OPENERS AND OPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14–1
Appendix A TRANSPORTATION AND INSTALLATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A–1
A.1 TRANSPORTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.2 INSTALLATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.2.1 Installation Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.2.2 Assembly During Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.2.3 Adjustment and Checks at Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A–2 A–3 A–3 A–4 A–5
List of Procedures Procedure 2–1 Procedure 2–2 Procedure 2–3 Procedure 2–4 Procedure 2–5 Procedure 2–6 Procedure 2–7 Procedure 4–1 Procedure 4–2 Procedure 4–3 Procedure 4–4 Procedure 4–5 Procedure 4–6 Procedure 4–7 Procedure 4–8 Procedure 4–9 Procedure 6–1 Procedure 7–1 Procedure 7–2 Procedure 7–3
Displaying Safety Signal Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Displaying the Version Identification Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Displaying Memory Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Displaying Position Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Displaying the Axis Status Pulse Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Displaying the Alarm Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Displaying I/O Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Troubleshooting Purge Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Controller Shutdown Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Servo Lockout Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Troubleshooting Turn-on Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Both Guns Do Not Trigger or Work Intermittently . . . . . . . . . . . . . . . . . . . . . . . . Both Guns Will Not Shut Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paint Gun Trigger Troubleshooting Procedure (Electrical) . . . . . . . . . . . . . . . . . . Transducer Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flow Meter Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brake Release Using the Operator Panel Switch . . . . . . . . . . . . . . . . . . . . . . . . . . Forcing Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Simulating and Unsimulating Inputs and Outputs . . . . . . . . . . . . . . . . . . . . . . . . . Displaying and Forcing SOP I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–4 2–5 2–8 2–10 2–13 2–17 2–18 4–3 4–4 4–4 4–12 4–64 4–65 4–66 4–73 4–76 6–2 7–2 7–4 7–6
MARO2P10203703E
TABLE OF CONTENTS
xv
Procedure 8–1 Procedure 8–2 Procedure 8–3 Procedure 8–4
Preparing the Robot or Opener for Mastering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–2 Standard Mastering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–4 Mastering a Single Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–16 Standard Mastering for the P-10 Door Opener and the P-15 Hood and Deck Opener . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–19 Procedure 9–1 Replacing the PSU Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–2 Procedure 9–2 Replacing the SPC Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–3 Procedure 9–3 Replace PCMCIA Memory Card (Optional) Battery . . . . . . . . . . . . . . . . . . . . . . . 9–4 Procedure 9–4 Printed Circuit Board Removal and Replacement . . . . . . . . . . . . . . . . . . . . . . . . . 9–10 Procedure 9–5 Replacing Backplane Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–12 Procedure 9–6 Replacing a Module on the Main CPU or Aux Axis Control Printed Circuit Board 9–13 Procedure 9–7 Replacing the Base Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–16 Procedure 9–8 Replacing a Model A Interface Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–17 Procedure 9–9 Replacing a Model A I/O Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–17 Procedure 9–10 Replacing the Multi-Tap Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–19 Procedure 9–11 Replacing a Servo Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–20 Procedure 9–12 Replacing the Operator Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–21 Procedure 9–13 Fan Motor Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–22 Procedure 9–14 Replacing Internal Mounted Serial Pulse Coder . . . . . . . . . . . . . . . . . . . . . . . . . . 9–25 Procedure 9–15 Replacing an Externally Mounted Serial Pulse Coder . . . . . . . . . . . . . . . . . . . . . . 9–27 Procedure 10–1 Transducer/Regulator Performance Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–2 Procedure 10–2 Manual Flow Test (Beakering Test) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–5 Procedure 10–3 Performing a Cold Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–7 Procedure 10–4 Powering on the Robot Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–10 Procedure 10–5 Controller Shutdown Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–11 Procedure 10–6 Servo Lockout Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–11
List of Figures Figure 1–1. External View of the P-200 R-J2 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–2. Internal View of the P-200 R-J2 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–3. R-J2 C-Size Controller with Side Cabinet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–4. 2-Slot Backplane (A05B-2316-C107) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–5. 3-Slot Backplane (A05B-2316-C105) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–6. 5-Slot Backplane (A05B-2316-C111) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–7. Main CPU Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–8. Sub-CPU Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–9. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–10. Aux Axis Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–11. Power Supply Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–12. Emergency Stop Control Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–13. Servo Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–14. Servo Amplifier Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–15. Mounting Locations of Servo Amplifiers for the P-200 6 Axis Robot . . . . . . . . . . . Figure 1–16. Mounting Locations of Servo Amplifiers for the P-200 7 Axis Robot . . . . . . . . . . . Figure 1–17. Mounting Locations of Servo Amplifiers for the P-200 6+2 Robot . . . . . . . . . . . . .
1–3 1–4 1–5 1–7 1–8 1–9 1–12 1–14 1–15 1–16 1–17 1–19 1–21 1–22 1–22 1–23 1–23
xvi
TABLE OF CONTENTS
Figure 1–18. Figure 1–19. Figure 1–20. Figure 1–21. Figure 1–22. Figure 1–23. Figure 1–24. Figure 1–25. Figure 1–26. Figure 1–27. Figure 1–28. Figure 1–29. Figure 1–30. Figure 1–31. Figure 1–32. Figure 1–33. Figure 1–34. Figure 1–35. Figure 1–36.
MARO2P10203703E
Mounting Locations of Servo Amplifiers for the P-200 7+2 Robot . . . . . . . . . . . . . Mounting Locations of Servo Amplifiers for the P-200 7+3 Robot . . . . . . . . . . . . . Multi-Tap Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Modular I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ER-1 Ethernet Printed Circuit Boards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ER-2 Ethernet Printed Circuit Boards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . User Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operator Panel without Teach Panel Disconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . Teach Pendant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Heat Exchange System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purge Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Contact Signal Transducer (IBRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purge Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Intrinsic Safety Barrier Stahl 9001/01-252-100-14 . . . . . . . . . . . . . . . . . . . . . . . . . . Intrinsic Safety Barrier Pepperl + Fuchs KFD2-SR-Ex1.P and KFD2-SR2-Ex1.W . Intrinsic Safety Barrier Pepperl+Fuchs KFD2-SD-Ex1.36 . . . . . . . . . . . . . . . . . . . . Intrinsic Safety Barrier Pepperl+Fuchs KHD2-CD-1P32 and KFD2-CD-Ex1.32 . . . Intrinsic Safety Barrier Pepperl+Fuchs Z727 and Z787 . . . . . . . . . . . . . . . . . . . . . . . Intrinsic Safety Barrier Pepperl+Fuchs KFD2-SR-Ex1.2S.P and KFD2-SR-Ex1.W.LB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–37. C Size R-J2 Controller With Optional Brake Release Switches . . . . . . . . . . . . . . . . Figure 1–38. P-10 Door opener and P-15 Hood and Deck Opener . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–39. Integral Pump Control Component Locator Diagram . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–40. Top Hat and Side Saddle Mounted Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 2–1. Teach Pendant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 2–2. Alarm Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 3–1. Teach Pendant Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 3–2. Operator Panel LEDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 3–3. Servo Amp Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 3–4. Diagnostic LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 3–5. Power Supply Unit (PSU) Diagnostic LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 3–6. Main CPU Board Diagnostic LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 3–7. Sub CPU Board Diagnostic LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 3–8. Modular I/O LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 3–9. Servo Amplifier LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 3–10. Emergency Stop Control Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 3–11. Intrinsic Barrier Relay Control Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 3–12. Intrinsic Barrier Relay Control Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 3–13. ER-1 and ER-2 Printed Circuit Board LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 3–14. ER-2 Ethernet Printed Circuit Boards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 4–1. 24 Volt (24V) Power Distribution Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 4–2. 24 Volt (24E) Power Distribution Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–24 1–24 1–28 1–29 1–35 1–36 1–37 1–38 1–39 1–40 1–41 1–43 1–44 1–48 1–49 1–49 1–50 1–50 1–51 1–55 1–56 1–58 1–59 2–2 2–16 3–2 3–3 3–4 3–6 3–7 3–8 3–10 3–13 3–14 3–16 3–18 3–19 3–20 3–21 4–19 4–20
MARO2P10203703E
TABLE OF CONTENTS
Figure 4–3. Servo Amplifier Switch Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 4–4. Connector and Terminal (T1) Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 4–5. Switch 3 and 4 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 4–6. Servo LED Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 4–7. Module Assembly # EE-3044-401 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 4–8. I/O Module LEDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 4–9. Interface Module PWR LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 4–10. Interface Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 4–11. Pin Out and Locator for Connector CP32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 4–12. Interface Module PWR LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 4–13. Intrinsic Safety Barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 4–14. Intrinsic Safety Barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 5–1. Main Disconnect Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 5–2. Replacing Transformer Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 5–3. Replacing a Fuse of the Power Supply Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 5–4. Replacing Fuses of Servo Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 5–5. Replacing Emergency Stop Control Board Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 5–6. Purge Power Supply Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 5–7. Interface Module AIF01A Fuse Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 5–8. Modular I/O Fuse Locations – AOA05E, ADA08E, and AOA12F . . . . . . . . . . . . . . . Figure 5–9. Modular I/O Fuse Locations – AOS08C and AOD08D . . . . . . . . . . . . . . . . . . . . . . . . Figure 5–10. Main CPU Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 6–1. Operator Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 6–2. C Size R-J2 Controller With Optional Brake Release Switches . . . . . . . . . . . . . . . . . Figure 8–1. Zero Degree Position of the P-200 Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 8–2. Axes 4, 5, and 6 1005 Wrist Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 8–3. Axes 4, 5, and 6 1005 Wrist Mastering Positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 8–4. Axes 4, 5, and 6 1405 Wrist Mastering Positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 8–5. Robot Pedestal Axis 1 1005/1405 Mastering Surface Location . . . . . . . . . . . . . . . . . . Figure 8–6. Axis 2 1005/1405 Mastering Surface Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 8–7. Axis 3 1005 Mastered Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 8–8. Axis 3 Mastering Position (1405 Wrist) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 8–9. Mastering Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 8–10. Axis 7 Mastering Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 8–11. Mastering Position of the P-200 robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 8–12. P-10 and P-15 Opener Mastering Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 8–13. P-10 and P-15 Axis One Mastering Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 8–14. P-10 and P-15 Axis Two Mastering Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 8–15. P-10 and P-15 Axis Three Mastered Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–1. Replacing the Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–2. Internal View of the P-200 R-J2 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–3. Replacing Memory Card Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xvii 4–38 4–39 4–45 4–45 4–55 4–67 4–68 4–69 4–70 4–70 4–71 4–72 5–3 5–4 5–5 5–6 5–7 5–8 5–9 5–10 5–11 5–12 6–2 6–3 8–4 8–5 8–6 8–7 8–8 8–9 8–10 8–11 8–12 8–13 8–16 8–20 8–21 8–22 8–23 9–2 9–4 9–5
xviii
TABLE OF CONTENTS
MARO2P10203703E
Figure 9–4. 3-Slot Backplane (A05B-2316-C105) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–5. Operator Control Panel Relay Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–6. EMG Printed Circuit Board Relay Locations for B-Size Cabinet . . . . . . . . . . . . . . . . Figure 9–7. Purge Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–8. Battery Transfer to Maintain CMOS RAM Memory . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–9. Replacing the Components on the Backplane Printed Circuit Board . . . . . . . . . . . . . . Figure 9–10. Replacing the Backplane Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–11. Moving the Latches on the End of the Module Socket . . . . . . . . . . . . . . . . . . . . . . . Figure 9–12. Installing a New Module at an Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–13. Pushing in the Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–14. Mounting Locations of the Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–15. Replacing the Base Unit of the Model A I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–16. Replacing a Model A I/O Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–17. Replacing the Multi-Tap Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–18. Replacing a Servo Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–19. Replacing the Operator Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–20. Replacing the Fan Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–21. Replacing the Teach Pendant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–22. Removing the Internally Mounted serial pulse coder . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–23. Removing the Black Plastic Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 10–1. Emergency Stop Control Board Jumpers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 10–2. Teach Pendant and Operator Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 11–1. ER-1 and ER-2 Printed Circuit Board LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–1. R-J2 P-200 Controller Total Circuit Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–2. R-J2 P-200 Controller Total Circuit Diagram (Multi-Tap Transformer Details) . . . . Figure 12–3. R-J2 P-200 Controller Total Circuit Diagram (Amplifier Configurations) . . . . . . . . Figure 12–4. R-J2 P-200 Controller Total Circuit Diagram (Amplifier Configurations) . . . . . . . . Figure 12–5. R-J2 P-200 Controller Total Circuit Diagram (Amplifier Configurations) . . . . . . . . Figure 12–6. R-J2 P-200 Controller Total Circuit Diagram (AMP PWM Signal Connections) . . . Figure 12–7. R-J2 P-200 Controller Total Circuit Diagram (Power Supply Connections) . . . . . . . Figure 12–8. R-J2 P-200 Controller Total Circuit Diagram (CPU Connector Details) . . . . . . . . . Figure 12–9. R-J2 P-200 Controller Total Circuit Diagram (ESTOP Connection Details) . . . . . . . Figure 12–10. R-J2 P-200 Controller Total Circuit Diagram (Optional Process I/O Connections) Figure 12–11. R-J2 P-200 Controller Total Circuit Diagram (Optional I/O Connections) . . . . . . . Figure 12–12. R-J2 P-200 Controller Total Circuit Diagram (Purge Circuitry) . . . . . . . . . . . . . . . Figure 12–13. R-J2 P-200 Controller Total Circuit Diagram (Purge Wiring Diagram) . . . . . . . . . Figure 12–14. R-J2 P-200 Controller Total Circuit Diagram (Purge Board Details) . . . . . . . . . . . Figure 12–15. R-J2 P-200 Controller Total Circuit Diagram (ESTOP Wiring Detail) . . . . . . . . . . Figure 12–16. R-J2 P-200 Controller Total Circuit Diagram (OP Panel Details) . . . . . . . . . . . . . . Figure 12–17. R-J2 P-200 Controller Total Circuit Diagram (Operator Panel) . . . . . . . . . . . . . . . . Figure 12–18. R-J2 Controller P-200 Amplifier Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–19. R-J2 Robot Controller Cabinet Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9–5 9–6 9–7 9–8 9–9 9–11 9–12 9–13 9–14 9–14 9–15 9–16 9–18 9–19 9–20 9–21 9–23 9–24 9–26 9–27 10–4 10–8 11–11 12–3 12–5 12–7 12–9 12–11 12–13 12–15 12–17 12–19 12–21 12–23 12–25 12–27 12–29 12–31 12–33 12–35 12–37 12–39
MARO2P10203703E
TABLE OF CONTENTS
Figure 12–20. P-200 R-J2 Controller FM Retrofit Package Cabinet Layout . . . . . . . . . . . . . . . . . Figure 12–21. P-200 R-J2 Robot Control Drawing Purge and Intrinsic Wiring sheet 1 . . . . . . . . . Figure 12–22. P-200 R-J2 Robot Control Drawing Purge and Intrinsic Wiring sheet 2 . . . . . . . . . Figure 12–23. P-200 R-J2 Control Drawing Purge and Intrinsic Wiring Sheet 3 . . . . . . . . . . . . . . Figure 12–24. P-200 R-J2 Pedestal North American Purge, No PGS (Seal Off Req’d) Cable Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–25. P-200 R-J2 Rail Robot North American Purge, PGS For Penetration Plate Cable Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–26. P-200 R-J2 Pedestal Robot PTB Purge, PGS For Penetration Plate Cable Layout . Figure 12–27. P-200 R-J2 Rail Robot PTB Purge, PGS For Penetration Plate . . . . . . . . . . . . . . . . Figure 12–28. P-200 Controller Basic Process Option I/P Flow and Trigger . . . . . . . . . . . . . . . . . Figure 12–29. P-200 Controller Process Option Basic Option With Second Trigger . . . . . . . . . . . Figure 12–30. P-200 Controller Bypass Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–31. AccuFlow Counter Input Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–32. Trigger Valve/Regulator Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–33. Color Changer 24 Color Moduclean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–34. Upper Gun Control Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–35. Color Changer Lines 24 Color Pedestal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–36. Lower Gun Control Lines Pedestal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–37. Lower Gun Control Lines Rail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–38. Color Changer Rail 4 Color Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–39. FANUC R-J2 P-200 Single Stage Purge Paint Process Control With Connector Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–40. FANUC R-J2 P-200 Single Stage Purge Paint Process Control With Connector Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–41. FANUC R-J2 P-200 Single Stage Purge Paint Process Control With Connector Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–42. Flow Meter Interface Circuitry FANUC R-J2 P-200 Single Stage Purge Paint Process Control With Connector Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–43. I/O Rack Layout FANUC R-J2 P-200 Single Stage Purge Paint Control With Connector Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–1. P-200 Purge/Battery/Paint Connection Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–2. P-200 R-J2 Paint Control Robot Arm Cable Dual Trigger . . . . . . . . . . . . . . . . . . . . . Figure 13–3. P-200 I/P Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–4. P-200 Trigger Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–5. P-200 Flow Detector Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–6. Axes 1 and 2 Power Connection Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–7. Axes 4, 5, and 6 Motor Connection Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–8. Axes 3 and 7 Power Connection Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–9. EE-3287-113-005 through 155 Pulse Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–10. P-200 R-J2 Purge/Battery Connection Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–11. P-200 Robot Ground Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–12. Axes 1, 2, and 3 Power and Pulse Harness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–13. Axes 4, 5, and 6 Power Harness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xix 12–41 12–43 12–45 12–47 12–49 12–51 12–53 12–55 12–57 12–59 12–61 12–63 12–65 12–67 12–69 12–71 12–73 12–75 12–77 12–79 12–81 12–83 12–85 12–87 13–3 13–5 13–7 13–9 13–11 13–13 13–15 13–17 13–19 13–21 13–23 13–25 13–27
xx
TABLE OF CONTENTS
MARO2P10203703E
Figure 13–14. Purge Control Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–15. Six Axis Battery Harness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–16. Purge Flow Switch Arm Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–17. Solenoid Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–18. Purge Pressure Switch Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–19. R-J2 Robot Bypass Switch Arm Cable (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–1. P-10 Door Opener Electrical Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–2. P-10 Door Opener Euro Electrical Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–3. P-200 Plus P-10 or P-15 Controller Bypass Package . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–4. P-10 or P-15 Power Connection Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–5. P-10 or P-15 European Shielded Power Connection Cable . . . . . . . . . . . . . . . . . . . . Figure 14–6. P-10 or P-15 Axis 1 Rail Power/Brake Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–7. P-10 or P-15 Axis 2 Inner Arm Power/Brake Cable . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–8. P-10 or P-15 Axis 3 Outer Arm Power/Brake Cable . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–9. P-10 or P-15 Axis 1 Encoder Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–10. P-10 or P-15 Axis 2 Pulse Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–11. P-10 or P-15 Axis 3 Pulse Coder Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–12. P-10 or P-15 Purge Flow Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–13. P-10 or P-15 European Purge Connect Arm Cable . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–14. P-10 or P-15 European Solenoid Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–15. P-10 or P-15 Sensor Splitout Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–16. P-10 or P-15 End of Arm Tool Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–17. P-10 Magnet Sensor Breakaway Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–18. P-10 or P-15 Solenoid Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–19. Ground Cable M5 to M5 Stud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–20. P-10 Breakaway Magnet Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–21. P-15 Hood/Deck Opener Electrical Layout Domestic Version . . . . . . . . . . . . . . . . . Figure 14–22. P-15 Hood/Deck Opener Electrical Layout European Version . . . . . . . . . . . . . . . . . Figure 14–23. P-15 Opener End of Arm Tooling Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–24. P-15 Part Present Proximity Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–25. Integral Pump Control Drawing Index and System Index . . . . . . . . . . . . . . . . . . . . Figure 14–26. Integral Pump Control I/O Rack Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–27. Integral Pump Control Controller Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–28. Top Hat Option Drawing Index and System Layout . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–29. Side Saddle Option Drawing Index and System Layout . . . . . . . . . . . . . . . . . . . . . Figure 14–30. Top Hat and Side Saddle Option Drawing Index and System Layout . . . . . . . . . . . Figure 14–31. Top Hat and Side Saddle Option Cable and Wiring Diagram . . . . . . . . . . . . . . . . . Figure 14–32. Top Hat and Side Saddle Option Purge and Intrinsic Wiring Control Drawing . . . . Figure 14–33. Top Hat and Side Saddle Options Cable Layout Diagram . . . . . . . . . . . . . . . . . . . . Figure 14–34. Top Hat Option Intrinsic Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–35. Side Saddle Option Intrinsic Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–36. Top Hat and Side Saddle Options Axis 3, Pumps 1 and 2 Motor Power Cable Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13–29 13–31 13–33 13–35 13–37 13–39 14–3 14–5 14–7 14–9 14–11 14–13 14–15 14–17 14–19 14–21 14–23 14–25 14–27 14–29 14–31 14–33 14–35 14–37 14–39 14–41 14–43 14–45 14–47 14–49 14–51 14–53 14–55 14–57 14–59 14–61 14–63 14–65 14–67 14–69 14–71 14–73
MARO2P10203703E
TABLE OF CONTENTS
Figure 14–37. Top Hat and Side Saddle Options Pumps 1 and 2 Pulse Cable Reference . . . . . . . . Figure 14–38. Top Hat and Side Saddle Options Intrinsic Cable Reference . . . . . . . . . . . . . . . . . . Figure 14–39. Integral Pump Control Process Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–40. P-200 Brake Release Option Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–41. P-200 Brake Release Wiring Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure A–1. Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure A–2. Installation Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure A–3. Assembly During Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xxi 14–75 14–77 14–79 14–81 14–83 A–2 A–3 A–4
List of Tables Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table
1–1. Main CPU Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2. Sub CPU Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3. Servo Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4. Dip Switch Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5. Multi-Tap Transformer Part Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–6. Selecting Transformer Taps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–7. Digital Input Module Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–8. Digital Output Module Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9. I/O Module Part Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–10. FANUC R-J2 Ethernet Remote Style Printed Circuit Board Part Numbers . . . . . . . 1–11. Purge Intrinsically Safety Barriers and Signal Repeaters . . . . . . . . . . . . . . . . . . . . . 1–12. Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1. Safety Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2. Version Identification Status Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3. Memory Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4. Axis Status Pulse Screen Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1. Teach Pendant Status Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2. Standard Operator Panel Status Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–3. Servo Amp On Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4. Troubleshooting Main CPU Board Diagnostic LEDs . . . . . . . . . . . . . . . . . . . . . . . . . 3–5. Troubleshooting Sub CPU Board STATUS LEDs (Green) . . . . . . . . . . . . . . . . . . . . . 3–6. Troubleshooting Sub CPU Board ALARM LEDs (Red) . . . . . . . . . . . . . . . . . . . . . . 3–7. Troubleshooting Sub CPU Board ALARM LEDs (Red) . . . . . . . . . . . . . . . . . . . . . . 3–8. Modular I/O LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–9. Servo Amplifier LED Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–10. Emergency Stop Control Printed Circuit Board LED Functions . . . . . . . . . . . . . . . 3–11. Modular I/O LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–12. Modular I/O LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–13. ER-1 Alarm LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–14. ER-2 Alarm LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1. Troubleshooting Procedure 1 (Initial Purge Troubleshooting Procedure) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–12 1–14 1–25 1–26 1–27 1–28 1–31 1–31 1–32 1–34 1–45 1–51 2–3 2–5 2–8 2–12 3–2 3–3 3–4 3–9 3–11 3–12 3–12 3–13 3–15 3–17 3–18 3–19 3–22 3–22 4–6
xxii
TABLE OF CONTENTS
Table 4–2. Table 4–3. Table 4–4. Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table
MARO2P10203703E
Troubleshooting Procedure 2 (IBRC Troubleshooting Procedure) . . . . . . . . . . . . . . . Troubleshooting Procedure 3 (Non-Specific Purge Problems) . . . . . . . . . . . . . . . . . . Troubleshooting Procedure 4 (General Power Supply Troubleshooting) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–5. Troubleshooting Procedure 5 (Transformer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–6. Troubleshooting Procedure 6 (Power Supply Alarms) . . . . . . . . . . . . . . . . . . . . . . . . 4–7. Troubleshooting Procedure 7 (Power Supply Output) . . . . . . . . . . . . . . . . . . . . . . . . 4–8. Class 2 Faults Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–9. SRVO-001 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–10. SRVO-002 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–11. SRVO-003 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–12. SRVO-004 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–13. SRVO-005 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–14. SRVO-006 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–15. SRVO-006 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–16. SRVO-014 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–17. SRVO-015 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–18. SRVO-019 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–19. SRVO-020 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–20. SRVO-021 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–21. SRVO-022 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–22. SRVO-023 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–23. SRVO-038 Alarm Reset Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–24. SRVO-042 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–25. SRVO-043 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–26. SRVO-044 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–27. SRVO-045 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–28. SRVO-047 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–29. SRVO-049 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–30. SRVO-050 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–31. SRVO-051 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–32. SRVO-061 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–33. SRVO-062 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–34. SRVO-063 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–35. SRVO-064 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–36. SRVO-065 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–37. SRVO-066 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–38. SRVO-067 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–39. SRVO-068 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–40. SRVO-071 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–41. SRVO-072 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–42. SRVO-071 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–9 4–10 4–13 4–15 4–17 4–19 4–21 4–24 4–25 4–26 4–27 4–28 4–31 4–32 4–34 4–35 4–36 4–36 4–37 4–40 4–40 4–42 4–43 4–44 4–46 4–47 4–48 4–49 4–49 4–50 4–50 4–51 4–52 4–52 4–52 4–53 4–53 4–55 4–56 4–57 4–57
MARO2P10203703E
Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table
TABLE OF CONTENTS
4–43. SRVO-071 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–44. SRVO-071 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–45. SRVO-081 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–46. SRVO-082 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1. Fused Flange-Mounted Disconnect Switch, C-Size Cabinet . . . . . . . . . . . . . . . . . . . 5–2. Multi-Tap Transformer Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–3. PSU Fuse Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–4. Servo Fuse Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–5. Emergency Stop Control Printed Circuit Board Fuses . . . . . . . . . . . . . . . . . . . . . . . . 5–6. Emergency Stop Control PCB Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–7. Emergency Stop Control PCB Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–8. Emergency Stop Control PCB Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–1. Standard Operator Panel Input Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–2. Standard Operator Panel Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–1. EMG Printed Circuit Board Relay Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–2. EMG Printed Circuit Board Relay Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–3. EMG Printed Circuit Board Relay Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–4. Teach Pendant Part Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–1. I/P Transducer/Regulator Performance Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–1. Output Module AOD32A, Non-isolated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–2. Output Modules AOD08C and AOD08D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–3. Output Modules AOD16C and AOD16D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–4. Output Module AOD32C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–5. Output Module AOD32D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–6. Output Modules AOA05E and AOA08E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–7. Output Module AOA12F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–8. Output Modules AOR08G and AOR16G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–9. Output Module ADA02A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–10. Input Module AID32B, Non-isolated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–11. Input Modules AID16C and AID16D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–12. Analog Input Module AAD04A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–1. Physical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xxiii 4–57 4–58 4–58 4–59 5–3 5–4 5–5 5–6 5–7 5–8 5–9 5–12 7–5 7–5 9–6 9–7 9–8 9–24 10–3 11–2 11–3 11–4 11–5 11–6 11–7 11–8 11–9 11–10 11–12 11–13 11–14 A–6
SAFETY
Page2
MARO2P10203703E
Safety
xxv
FANUC Robotics is not and does not represent itself as an expert in safety systems, safety equipment, or the specific safety aspects of your company and/or its work force. It is the responsibility of the owner, employer, or user to take all necessary steps to guarantee the safety of all personnel in the workplace. The appropriate level of safety for your application and installation can best be determined by safety system professionals. FANUC Robotics therefore, recommends that each customer consult with such professionals in order to provide a workplace that allows for the safe application, use, and operation of FANUC Robotic systems. According to the industry standard ANSI/RIA R15–06, the owner or user is advised to consult the standards to ensure compliance with its requests for Robotics System design, usability, operation, maintenance, and service. Additionally, as the owner, employer, or user of a robotic system, it is your responsibility to arrange for the training of the operator of a robot system to recognize and respond to known hazards associated with your robotic system and to be aware of the recommended operating procedures for your particular application and robot installation. FANUC Robotics therefore, recommends that all personnel who intend to operate, program, repair, or otherwise use the robotics system be trained in an approved FANUC Robotics training course and become familiar with the proper operation of the system. Persons responsible for programming the system-including the design, implementation, and debugging of application programs-must be familiar with the recommended programming procedures for your application and robot installation. The following guidelines are provided to emphasize the importance of safety in the workplace.
xxvi
SAFETY
MARO2P10203703E
CONSIDERING SAFETY FOR YOUR ROBOT INSTALLATION
Safety is essential whenever robots are used. Keep in mind the following factors with regard to safety: The safety of people and equipment Use of safety enhancing devices Techniques for safe teaching and manual operation of the robot(s) Techniques for safe automatic operation of the robot(s) Regular scheduled inspection of the robot and workcell Proper maintenance of the robot
Keeping People and Equipment Safe
The safety of people is always of primary importance in any situation. However, equipment must be kept safe, too. When prioritizing how to apply safety to your robotic system, consider the following: People External devices Robot(s) Tooling Workpiece
Using Safety Enhancing Devices
Always give appropriate attention to the work area that surrounds the robot. The safety of the work area can be enhanced by the installation of some or all of the following devices: Safety fences, barriers, or chains Light curtains Interlocks Pressure mats Floor markings Warning lights Mechanical stops EMERGENCY STOP buttons DEADMAN switches
Setting Up a Safe Workcell
A safe workcell is essential to protect people and equipment. Observe the following guidelines to ensure that the workcell is set up safely. These suggestions are intended to supplement and not replace existing federal, state, and local laws, regulations, and guidelines that pertain to safety. Sponsor your personnel for training in approved FANUC Robotics training course(s) related to your application. Never permit untrained personnel to operate the robots. Install a lockout device that uses an access code to prevent unauthorized persons from operating the robot. Use anti-tie-down logic to prevent the operator from bypassing safety measures. Arrange the workcell so the operator faces the workcell and can see what is going on inside the cell.
MARO2P10203703E
SAFETY
xxvii
Clearly identify the work envelope of each robot in the system with floor markings, signs, and special barriers. The work envelope is the area defined by the maximum motion range of the robot, including any tooling attached to the wrist flange that extend this range. Position all controllers outside the robot work envelope. Never rely on software as the primary safety element. Mount an adequate number of EMERGENCY STOP buttons or switches within easy reach of the operator and at critical points inside and around the outside of the workcell. Install flashing lights and/or audible warning devices that activate whenever the robot is operating, that is, whenever power is applied to the servo drive system. Wherever possible, install safety fences to protect against unauthorized entry by personnel into the work envelope. Install special guarding that prevents the operator from reaching into restricted areas of the work envelope. Use interlocks. Use presence or proximity sensing devices such as light curtains, mats, and capacitance and vision systems to enhance safety. Periodically check the safety joints or safety clutches that can be optionally installed between the robot wrist flange and tooling. If the tooling strikes an object, these devices dislodge, remove power from the system, and help to minimize damage to the tooling and robot. Make sure all external devices are properly filtered, grounded, shielded, and suppressed to prevent hazardous motion due to the effects of electro-magnetic interference (EMI), radio frequency interference (RFI), and electro-static discharge (ESD). Make provisions for power lockout/tagout at the controller. Eliminate pinch points. Pinch points are areas where personnel could get trapped between a moving robot and other equipment. Provide enough room inside the workcell to permit personnel to teach the robot and perform maintenance safely. Program the robot to load and unload material safely. If high voltage electrostatics are present, be sure to provide appropriate interlocks, warning, and beacons. If materials are being applied at dangerously high pressure, provide electrical interlocks for lockout of material flow and pressure.
xxviii
Staying Safe While Teaching or Manually Operating the Robot
SAFETY
MARO2P10203703E
Advise all personnel who must teach the robot or otherwise manually operate the robot to observe the following rules: Never wear watches, rings, neckties, scarves, or loose clothing that could get caught in moving machinery. Know whether or not you are using an intrinsically safe teach pendant if you are working in a hazardous environment. Before teaching, visually inspect the robot and work envelope to make sure that no potentially hazardous conditions exist. The work envelope is the area defined by the maximum motion range of the robot. These include tooling attached to the wrist flange that extends this range. The area near the robot must be clean and free of oil, water, or debris. Immediately report unsafe working conditions to the supervisor or safety department. FANUC Robotics recommends that no one enter the work envelope of a robot that is on, except for robot teaching operations. However, if you must enter the work envelope, be sure all safeguards are in place, check the teach pendant DEADMAN switch for proper operation, and place the robot in teach mode. Take the teach pendant with you, turn it on, and be prepared to release the DEADMAN switch. Only the person with the teach pendant should be in the work envelope. WARNING Never bypass, strap, or otherwise deactivate a safety device, such as a limit switch, for any operational convenience. Deactivating a safety device is known to have resulted in serious injury and death. Know the path that can be used to escape from a moving robot; make sure the escape path is never blocked. Isolate the robot from all remote control signals that can cause motion while data is being taught. Test any program being run for the first time in the following manner: WARNING Stay outside the robot work envelope whenever a program is being run. Failure to do so can result in injury.
– Using a low motion speed, single step the program for at least one full cycle. – Using a low motion speed, test run the program continuously for at least one full cycle. – Using the programmed speed, test run the program continuously for at least one full cycle. Make sure all personnel are outside the work envelope before running production.
MARO2P10203703E
Staying Safe During Automatic Operation
SAFETY
xxix
Advise all personnel who operate the robot during production to observe the following rules: Make sure all safety provisions are present and active. Know the entire workcell area. The workcell includes the robot and its work envelope, plus the area occupied by all external devices and other equipment with which the robot interacts. Understand the complete task the robot is programmed to perform before initiating automatic operation. Make sure all personnel are outside the work envelope before operating the robot. Never enter or allow others to enter the work envelope during automatic operation of the robot. Know the location and status of all switches, sensors, and control signals that could cause the robot to move. Know where the EMERGENCY STOP buttons are located on both the robot control and external control devices. Be prepared to press these buttons in an emergency. Never assume that a program is complete if the robot is not moving. The robot could be waiting for an input signal that will permit it to continue activity. If the robot is running in a pattern, do not assume it will continue to run in the same pattern. Never try to stop the robot, or break its motion, with your body. The only way to stop robot motion immediately is to press an EMERGENCY STOP button located on the controller panel, teach pendant, or emergency stop stations around the workcell.
Staying Safe During Inspection
When inspecting the robot, be sure to Turn off power at the controller. Lock out and tag out the power source at the controller according to the policies of your plant. Turn off the compressed air source and relieve the air pressure. If robot motion is not needed for inspecting the electrical circuits, press the EMERGENCY STOP button on the operator panel. Never wear watches, rings, neckties, scarves, or loose clothing that could get caught in moving machinery.
xxx
SAFETY
MARO2P10203703E
If power is needed to check the robot motion or electrical circuits, be prepared to press the EMERGENCY STOP button, in an emergency. Be aware that when you remove a servomotor or brake, the associated robot arm will fall if it is not supported or resting on a hard stop. Support the arm on a solid support before you release the brake.
Staying Safe During Maintenance
When performing maintenance on your robot system, observe the following rules: Never enter the work envelope while the robot or a program is in operation. Before entering the work envelope, visually inspect the workcell to make sure no potentially hazardous conditions exist. Never wear watches, rings, neckties, scarves, or loose clothing that could get caught in moving machinery. Consider all or any overlapping work envelopes of adjoining robots when standing in a work envelope. Test the teach pendant for proper operation before entering the work envelope. If it is necessary for you to enter the robot work envelope while power is turned on, you must be sure that you are in control of the robot. Be sure to take the teach pendant with you, press the DEADMAN switch, and turn the teach pendant on. Be prepared to release the DEADMAN switch to turn off servo power to the robot immediately. Whenever possible, perform maintenance with the power turned off. Before you open the controller front panel or enter the work envelope, turn off and lock out the 3-phase power source at the controller. Be aware that when you remove a servomotor or brake, the associated robot arm will fall if it is not supported or resting on a hard stop. Support the arm on a solid support before you release the brake. WARNING Lethal voltage is present in the controller WHENEVER IT IS CONNECTED to a power source. Be extremely careful to avoid electrical shock. HIGH VOLTAGE IS PRESENT at the input side whenever the controller is connected to a power source. Turning the disconnect or circuit breaker to the OFF position removes power from the output side of the device only. Release or block all stored energy. Before working on the pneumatic system, shut off the system air supply and purge the air lines.
MARO2P10203703E
SAFETY
xxxi
Isolate the robot from all remote control signals. If maintenance must be done when the power is on, make sure the person inside the work envelope has sole control of the robot. The teach pendant must be held by this person. Make sure personnel cannot get trapped between the moving robot and other equipment. Know the path that can be used to escape from a moving robot. Make sure the escape route is never blocked. Use blocks, mechanical stops, and pins to prevent hazardous movement by the robot. Make sure that such devices do not create pinch points that could trap personnel.
WARNING Do not try to remove any mechanical component from the robot before thoroughly reading and understanding the procedures in the appropriate manual. Doing so can result in serious personal injury and component destruction.
Be aware that when you remove a servomotor or brake, the associated robot arm will fall if it is not supported or resting on a hard stop. Support the arm on a solid support before you release the brake. When replacing or installing components, make sure dirt and debris do not enter the system. Use only specified parts for replacement. To avoid fires and damage to parts in the controller, never use nonspecified fuses. Before restarting a robot, make sure no one is inside the work envelope; be sure that the robot and all external devices are operating normally.
xxxii
SAFETY
MARO2P10203703E
KEEPING MACHINE TOOLS AND EXTERNAL DEVICES SAFE
Certain programming and mechanical measures are useful in keeping the machine tools and other external devices safe. Some of these measures are outlined below. Make sure you know all associated measures for safe use of such devices.
Programming Safety Precautions
Implement the following programming safety measures to prevent damage to machine tools and other external devices. Back-check limit switches in the workcell to make sure they do not fail. Implement ‘‘failure routines” in programs that will provide appropriate robot actions if an external device or another robot in the workcell fails. Use handshaking protocol to synchronize robot and external device operations. Program the robot to check the condition of all external devices during an operating cycle.
Mechanical Safety Precautions
Implement the following mechanical safety measures to prevent damage to machine tools and other external devices. Make sure the workcell is clean and free of oil, water, and debris. Use software limits, limit switches, and mechanical hardstops to prevent undesired movement of the robot into the work area of machine tools and external devices.
MARO2P10203703E
SAFETY
xxxiii
KEEPING THE ROBOT SAFE
Observe the following operating and programming guidelines to prevent damage to the robot.
Operating Safety Precautions
The following measures are designed to prevent damage to the robot during operation. Use a low override speed to increase your control over the robot when jogging the robot. Visualize the movement the robot will make before you press the jog keys on the teach pendant. Make sure the work envelope is clean and free of oil, water, or debris. Use circuit breakers to guard against electrical overload.
Programming Safety Precautions
The following safety measures are designed to prevent damage to the robot during programming: Establish interference zones to prevent collisions when two or more robots share a work area. Make sure that the program ends with the robot near or at the home position. Be aware of signals or other operations that could trigger operation of tooling resulting in personal injury or equipment damage. In dispensing applications, be aware of all safety guidelines with respect to the dispensing materials. NOTE Any deviation from the methods and safety practices described in this manual must conform to the approved standards of your company. If you have questions, see your supervisor.
xxxiv
ADDITIONAL SAFETY CONSIDERATIONS FOR PAINT ROBOT INSTALLATIONS
SAFETY
MARO2P10203703E
Process technicians are sometimes required to enter the paint booth, for example, during daily or routine calibration or while teaching new paths to a robot. Maintenance personnel also must work inside the paint booth periodically. Whenever personnel are working inside the paint booth, ventilation equipment must be used. Instruction on the proper use of ventilating equipment usually is provided by the paint shop supervisor. Although paint booth hazards have been minimized, potential dangers still exist. Therefore, today’s highly automated paint booth requires that process and maintenance personnel have full awareness of the system and its capabilities. They must understand the interaction that occurs between the vehicle moving along the conveyor and the robot(s), hood/deck and door opening devices, and high-voltage electrostatic tools. Paint robots are operated in three modes: Teach or manual mode Automatic mode, including automatic and exercise operation Diagnostic mode During both teach and automatic modes, the robots in the paint booth will follow a predetermined pattern of movements. In teach mode, the process technician teaches (programs) paint paths using the teach pendant. In automatic mode, robot operation is initiated at the System Operator Console (SOC) or Manual Control Panel (MCP), if available, and can be monitored from outside the paint booth. All personnel must remain outside of the booth or in a designated safe area within the booth whenever automatic mode is initiated at the SOC or MCP. In automatic mode, the robots will execute the path movements they were taught during teach mode, but generally at production speeds. When process and maintenance personnel run diagnostic routines that require them to remain in the paint booth, they must stay in a designated safe area.
MARO2P10203703E
Paint System Safety Features
SAFETY
xxxv
Process technicians and maintenance personnel must become totally familiar with the equipment and its capabilities. To minimize the risk of injury when working near robots and related equipment, personnel must comply strictly with the procedures in the manuals. This section provides information about the safety features that are included in the paint system and also explains the way the robot interacts with other equipment in the system. The paint system includes the following safety features: Most paint booths have red warning beacons that illuminate when the robots are armed and ready to paint. Your booth might have other kinds of indicators. Learn what these are. Some paint booths have a blue beacon that, when illuminated, indicates that the electrostatic devices are enabled. Your booth might have other kinds of indicators. Learn what these are. EMERGENCY STOP buttons are located on the robot controller and teach pendant. Become familiar with the locations of all E-STOP buttons. An intrinsically safe teach pendant is used when teaching in hazardous paint atmospheres. A DEADMAN switch is located on each teach pendant. When this switch is held in, and the teach pendant is on, power is applied to the robot servo system. If the engaged DEADMAN switch is released during robot operation, power is removed from the servo system, all axis brakes are applied, and the robot comes to an EMERGENCY STOP. Safety interlocks within the system might also E-STOP other robots.
WARNING An EMERGENCY STOP will occur if the DEADMAN switch is released on a bypassed robot.
Overtravel by robot axes is prevented by software limits. All of the major and minor axes are governed by software limits. Limit switches and hardstops also limit travel by the major axes.
xxxvi
SAFETY
MARO2P10203703E
EMERGENCY STOP limit switches and photoelectric eyes might be part of your system. Limit switches, located on the entrance/exit doors of each booth, will EMERGENCY STOP all equipment in the booth if a door is opened while the system is operating in automatic or manual mode. For some systems, signals to these switches are inactive when the switch on the SCC is in teach mode. When present, photoelectric eyes are sometimes used to monitor unauthorized intrusion through the entrance/exit silhouette openings. System status is monitored by computer. Severe conditions result in automatic system shutdown.
Staying Safe While Operating the Paint Robot
When you work in or near the paint booth, observe the following rules, in addition to all rules for safe operation that apply to all robot systems.
WARNING Observe all safety rules and guidelines to avoid injury.
WARNING Never bypass, strap, or otherwise deactivate a safety device, such as a limit switch, for any operational convenience. Deactivating a safety device is known to have resulted in serious injury and death. Know the work area of the entire paint station (workcell). Know the work envelope of the robot and hood/deck and door opening devices. Be aware of overlapping work envelopes of adjacent robots. Know where all red, mushroom-shaped EMERGENCY STOP buttons are located. Know the location and status of all switches, sensors, and/or control signals that might cause the robot, conveyor, and opening devices to move. Make sure that the work area near the robot is clean and free of water, oil, and debris. Report unsafe conditions to your supervisor. Become familiar with the complete task the robot will perform BEFORE starting automatic mode. Make sure all personnel are outside the paint booth before you turn on power to the robot servo system.
MARO2P10203703E
SAFETY
xxxvii
Never enter the work envelope or paint booth before you turn off power to the robot servo system. Never enter the work envelope during automatic operation unless a safe area has been designated. Never wear watches, rings, neckties, scarves, or loose clothing that could get caught in moving machinery. Remove all metallic objects, such as rings, watches, and belts, before entering a booth when the electrostatic devices are enabled. Stay out of areas where you might get trapped between a moving robot, conveyor, or opening device and another object. Be aware of signals and/or operations that could result in the triggering of guns or bells. Be aware of all safety precautions when dispensing of paint is required. Follow the procedures described in this manual.
Staying Safe During Maintenance
When you perform maintenance on the painter system, observe the following rules, and all other maintenance safety rules that apply to all robot installations. Only qualified, trained service or maintenance personnel should perform repair work on a robot. Paint robots operate in a potentially explosive environment. Use caution when working with electric tools. When a maintenance technician is repairing or adjusting a robot, the work area is under the control of that technician. All personnel not participating in the maintenance must stay out of the area. For some maintenance procedures, station a second person at the control panel within reach of the EMERGENCY STOP button. This person must understand the robot and associated potential hazards. Be sure all covers and inspection plates are in good repair and in place. Always return the robot to the ‘‘home’’ position before you disarm it. Never use machine power to aid in removing any component from the robot. During robot operations, be aware of the robot’s movements. Excess vibration, unusual sounds, and so forth, can alert you to potential problems. Whenever possible, turn off the main electrical disconnect before you clean the robot.
xxxviii
SAFETY
MARO2P10203703E
When using vinyl resin observe the following:
– Wear eye protection and protective gloves during application and removal
– Adequate ventilation is required. Overexposure could cause drowsiness or skin and eye irritation.
– If there is contact with the skin, wash with water. When using paint remover observe the following:
– Eye protection, protective rubber gloves, boots, and apron are required during booth cleaning.
– Adequate ventilation is required. Overexposure could cause drowsiness.
– If there is contact with the skin or eyes, rinse with water for at least 15 minutes.
Page1
1 OVERVIEW
MARO2P10203703E
1
Topics In This Chapter
OVERVIEW 1–1
Page
Overview
This manual describes the SYSTEM R-J2 controller which is used in conjunction with the P-200 robot, P-10 door opener, P-15 hood and deck opener and the Systems PaintTool software. This chapter describes the major components used in the controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3
Backplane
Three styles of backplane are available. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–6
Main CPU Printed Circuit Board
The main CPU PC board contains the central processing units, integrated circuit, and all the memory used by the controller. . . . . . . . . . . . . . . . . 1–10
Sub-CPU Printed Circuit Board
The sub CPU performs all calculations required by the controller. . . . . . . . . . . . . 1–13
Aux Axis Printed Circuit Board
The aux axis printed circuit board contains up to five servo control modules that provide servo control to the available auxiliary axes. . . . . . . . . . . . 1–16
Power Supply Unit Printed Circuit Board
The power supply unit printed circuit board is supplied with 210 VAC nominal. from the multi-tap transformer and produces DC voltages. . . . . . . . . . . . . . . . . . . 1–17
Emergency Stop Control Printed Circuit Board
Supplies 24 VDC to the (Magnetic Control Contactor), turns off 24 VDC to the (Magnetic Control Contactor) during fault conditions, supplies power to the motor brakes and to the serial pulse coders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–18
Servo Amplifiers
The servo amplifier drives the motor(s) in response to signals from the axis control circuitry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–20
Multi-Tap Transformer
The multi-tap transformer is supplied 3 phase VAC from the main disconnect or circuit breaker. This supply voltage can range from 220 - 575 volts. To accommodate the various levels of supply, tap selections are provided on the primary side of the transformer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–27
Interface Devices
The interface between controller and peripheral devices is provided by input and output signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–29 Modular I/O Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–29 ABRIO and Genius I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–33
Ethernet Remote Printed Circuit Boards
Ethernet remote PCB’s are an R-J2 option that use communication protocols to back up and restore all the information on a controller to and from an external device, or host computer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–34
User Transformer
The option user transformer supplies 120VAC single phase power to a outlet receptacle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–37
Operator Panel
Pushbuttons and LEDs on the operator panel of the R-J2 are used to start and shut down the robot and indicate status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–38
Teach Pendant
The teach pendant is a hand held device used to operate and program the robot and controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–39
Heat Exchange and Fans
The temperature in the controller is kept within operating range through the use of an air-to-airheat exchange system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–40
Purge Control Unit
The purge control unit consists of an purge intrinsically safe barrier unit module, contact signal transducer, purge control PCB, and 24VDC power supply. . . . . . . 1–41
Purge System IBRC
The IBRC is an intrinsically safe barrier unit that is used as part of the purge system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–42
Purge Unit Power Supply
The purge unit power supply is a 24VDC auxiliary power supply used exclusively for the purge system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–44
1. OVERVIEW
1–2
MARO2P10203703E
Topics In This Chapter
Page
Purge Intrinsically Safe Barriers
The Purge Intrinsically Safety Barriers are used in the purge system in that they restrict power that may cause a spark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–45
Brake Release (Option)
The brake release option adds (4) optional brake switches to selectively release the gravity and non-gravity axes of the P-200 robot. . . . . . . . . . . . . . . . . . . . . . . . . 1–55
P-10 Door Opener and P-15 Hood and Deck Opener (Option)
The P-10 opener is a three axis, electrically-driven door opener and the P-15 opener is a three axis, electrically-driven hood and deck opener. . . . . . . . . 1–56
Integral Pump Control (Option)
The Integral Pump Control option is the FANUC Robotics integrated two component fluid delivery system which features metering pumps directly coupled to FANUC servomotors that are controlled by the FANUC R-J2 controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–57
1. OVERVIEW MARO2P10203703E
1.1 OVERVIEW
1–3
The R-J2 controller, hereafter referred to as the controller, contains the computer that operates the robots. It executes a user-defined program to perform the following functions: Supply drive power to the servomotors of the P-10, P-15, and P-200, robots to move it through a series of program motions. Send control signals to process devices and other peripheral equipment. The controller consists of modular circuit boards, components, controls and indicators that are housed in a C-size cabinet with or without a side cabinet depending if a door or hood and deck opener are included. Figure 1–1 illustrates an external view of the controller. Figure 1–2 illustrates the internal view of the controller. Figure 1–3 illustrates a R-J2 C-size controller with side cabinet.
Figure 1–1. External View of the P-200 R-J2 Controller
Î Î Î ÎÎ Î ÎÎÎ Î ÎÎÎ Î ÎÎ Î ÎÎ Î ÎÎ ÎÎ ÎÎ Î Î
Teach pendant
1. OVERVIEW
1–4
MARO2P10203703E
Î ÎÏÎ ÏÎÎ Î ÎÎ ÎÎ ÎÎÎ ÎÎÎ ÎÎ
Figure 1–2. Internal View of the P-200 R-J2 Controller Purge Control Power Supply
Operator panel Servo amplifier #4
Purge Control PCB ISBU
IBRC
Modular I/O rack
Main power disconnect
Front Door Flowmeter interface module Servo amplifiers #1–3
Fuses FL1–3 Main CPU
Power supply unit SERVO ON Light Aux axis board
Emergency stop control printed circuit board
Teach pendant ISB unit SPC battery case
User transformer
Multi-tap transformer
1. OVERVIEW MARO2P10203703E
1–5 Figure 1–3. R-J2 C-Size Controller with Side Cabinet
Side cabinet
R-J2-C Size cabinet with door removed
PURGE CONTROL UNIT
OVP DELTRON W112A
24V @ 1.2A
ISB3 ISB4 ISB5 ISB7 ISB9
ISB6 ISB8
AMP 5
AMP 6
ON
ON
CONTACT SIGNAL TRANSDUCER
AMP 1
AMP 2
AMP 3
ON
ON
ON
OFF
OFF
OFF
OFF
OFF
FANUC AC SERVO AMPLIFIER
FANUC AC SERVO AMPLIFIER
FANUC AC SERVO AMPLIFIER C series
FANUC AC SERVO AMPLIFIER C series
FANUC AC SERVO AMPLIFIER C series
DISCONNECT
I/O RACK
1”W X 4”H DUCT EMG BOARD 1 MAIN PSU CPU
0 FANUC AC SERVO AMPLIFIER
AMP 4 STATUS
8
1 1/2 ”W X 4”H DUCT
USER TRANS.
OPT
1. OVERVIEW
1–6
MARO2P10203703E
1.2
Three styles of backplane are available:
BACKPLANE
2-Slot 3-Slot 5-Slot
2-SLOT A05B-2316-C107 3-SLOT A05B-2316-C105 5-SLOT A05B-2316-C111
These three printed circuit boards are interchangeable. The backplane consists of a printed circuit board and two, three, or five board racks attached to it. The controller printed circuit boards are mounted on the backplane printed circuit board. See Figure 1–4, Figure 1–5, and Figure 1–6. It provides the bus structure for communication between the controller printed circuit boards. A thermostat switch is mounted on the backplane printed circuit board. It senses the temperature within the controller. If the internal temperature exceeds 65 degrees centigrade (149 degrees Fahrenheit), the thermostat will open, generating a system overheat alarm. The board racks support the printed circuit boards and guides them into their electrical connectors on the backplane printed circuit board. A 24 VDC cooling fan is mounted in the top of each backplane board rack.
1. OVERVIEW
1–7
MARO2P10203703E
Figure 1–4. 2-Slot Backplane (A05B-2316-C107) 2 slot back plane printed circuit board A20B-2001-0860
Total version
Fan
Fan
GND1
Main CPU
Power Supply PCMCIA Memory Card
Backplane Printed Circuit Board
1. OVERVIEW
1–8
MARO2P10203703E
Figure 1–5. 3-Slot Backplane (A05B-2316-C105) 3 slot back plane printed circuit board A20B-2001-0670
Total version
Fan
Main CPU Power Supply PCMCIA Memory Card
Backplane Printed Circuit Board
Fans
1. OVERVIEW
1–9
MARO2P10203703E
Figure 1–6. 5-Slot Backplane (A05B-2316-C111) 5 slot back plane printed circuit board A20B-2001-0990
Total version
Fan
Fan Main CPU Power Supply PCMCIA Memory Card
Backplane Printed Circuit Board
1. OVERVIEW
1–10
1.3 MAIN CPU PRINTED CIRCUIT BOARD A16B–3200–0040 NOTE: This part number specifies a Main CPU without daughter boards.
MARO2P10203703E
The main Central Processor Unit printed circuit board is mounted in the slot marked “1” at the far left end of the backplane. It contains the central processing units, integrated circuit, and all the memory used by the controller. The main CPU performs all calculations required by the controller. It generates axis drive signals on the basis of programmed requirements and feedback signals from encoders driven by each axis. The main CPU also acts as the interface between the controller and the operator and attached devices, through connections to: The I/O unit(s) The teach pendant One or more general purpose serial communication ports The operator panel lights and push buttons A storage capacitor on the main CPU printed circuit board maintains power to the CMOS RAM for short periods of time (up to 30 minutes) if the main CPU is removed from the backplane. The BAT-VBAT connector can be used to connect the battery from the power supply unit to the main CPU when either of the two printed circuit boards is removed from the backplane for an extended period of time. The main CPU consists of a main mother board with several modules installed perpendicular to it. The modules are small printed circuit boards with components surface-mounted on both sides. The modules are installed in sockets, allowing them to be changed quickly and easily.
1.3.1
The following kinds of memory exist in the controller:
Identifying Kinds of Memory
Controller memory Flash ROM (F-ROM or FROM) C-MOS RAM D-RAM (or DRAM)
Controller Memory
Controller memory consists of Flash Read Only Memory (Flash ROM), Complementary Metal Oxide Semiconductor Random Access Memory (C-MOS RAM), and Dynamic Random Access Memory (D-RAM). C-MOS RAM memory stores some robot system software, some application software, and some user programs. Flash ROM stores the majority of the robot system software such as core, and application software. Most of the SYSTEM R-J2 system software executes from D-RAM. When the controller is turned on, the system software is loaded from Flash ROM to D-RAM and then is executed. Teach pendant programs are stored and are executed from C-MOS RAM.
1. OVERVIEW
1–11
MARO2P10203703E
Flash ROM
Flash ROM Module contains System and Application Software. Flash ROM (F-ROM or FROM disk) is not battery-backed but is non-volatile. Non-volatile means that all data in Flash ROM is saved even after you turn off and turn on the controller. Flash ROM has three parts: a system memory section, an image memory section, and a flash file section. The system memory section contains the software that executes all system software. Image memory contains software options. The flash file system section contains space for backing up user programs and robot configuration information. It also holds hidden files required for Re-INIT start (CMOSINIT).
C-MOS RAM
D-RAM
CMOS RAM Module stores user programs, system variables, I/O configuration files, and mastering data. C-MOS RAM is battery-backed. C-MOS RAM is non-volatile only while the batteries are working. If the batteries are faulty or removed, C-MOS RAM is lost. C-MOS RAM has two parts: the TPP memory pool, and the permanent (PERM) memory pool. The TPP memory pool contains the teach pendant programs. The PERM memory pool contains system variables. PERM can also contain system software and options. DRAM (Dynamic) Module loads information from Flash ROM, eliminates fragmentation and must reload after a cold start. D-RAM is volatile, but it is loaded from flash ROM when the controller is turned on. D-RAM also has three parts: a SYSTEM memory pool, an IMAGE memory pool, and a TEMP memory pool. The SYSTEM memory pool contains the software that executes all system software. The IMAGE memory pool contains KAREL programs and software options. The TEMP memory pool contains the read/write scratch space for system and KAREL software and KAREL programs. CAUTION Data in C-MOS RAM can be lost if the battery is removed or loses its charge, or if new core software is loaded on the controller. The C-MOS RAM memory will last for 30 minutes without the battery when power is off. To prevent loss of data, back up or copy all files for permanent storage.
CAUTION To transport or store the contents of the MAIN CPU, you can plug the battery into the VBAT connector in the MAIN CPU. However, do not plug it into the RESET connector; otherwise you could damage equipment. Figure 1–7 shows the board layout. Table 1–1 lists the modules available for installation on the board.
1. OVERVIEW
1–12
MARO2P10203703E
Figure 1–7. Main CPU Printed Circuit Board
CMOS module Flash ROM module
DRAM module Axis module (J1,-J2) Axis module (J3, J4) Axis module (J5, J6)
Table 1–1. Name
Main CPU Modules Part Number
Remarks
Flash ROM Module
A20B-2902-0370
2.0 Mbyte
Flash ROM Module
A20B-2902-0371
4.0 Mbyte
Flash ROM Module
A20B-2902-0372
6.0 Mbyte
Flash ROM Module
A20B-2902-0373
8.0 Mbyte
CMOS RAM Module
A20B-2902-0211
0.5 Mbyte
CMOS RAM Module
A20B-2902-0210
1.0 Mbyte
CMOS RAM Module
A20B-2902-0380
2.0 Mbyte
DRAM Module
A20B-2902-0021
3.0 Mbyte
DRAM Module
A20B-2902-0531
4.0 Mbyte
DRAM Module
A20B-2902-0530
8.0 Mbyte
Axis Control Module
A20B-2902-0070
Three required
Robot Output Driver DV1 and DV2
A76L-0151-0062
Two required
1. OVERVIEW
1–13
MARO2P10203703E
1.4 SUB CPU PRINTED CIRCUIT BOARD A16B–3200–015 NOTE: This part number specifies a Sub CPU without daughter boards.
The sub Central Processor Unit printed circuit board is mounted in the slot marked “1” at the far left end of the backplane. It contains the central processing units, integrated circuit, and all the memory used by the controller. The sub CPU performs all calculations required by the controller. It generates axis drive signals on the basis of programmed requirements and feedback signals from encoders driven by each axis. The Sub CPU also acts as the interface between the controller and the operator and attached devices, through connections to: The I/O unit(s) The teach pendant One or more general purpose serial communication ports The operator panel lights and push buttons The sub CPU consists of a main mother board with one module installed perpendicular to it. The module is a small printed circuit board with components surface-mounted on both sides. The module is installed in a socket, allowing it to be changed quickly and easily.
1. OVERVIEW
1–14
MARO2P10203703E
Figure 1–8. Sub-CPU Printed Circuit Board
RISC-B FANUC
A16B-3200-015 STATUS ALARM
D16
ÎÎ ÎÎ
ÎÎ Î ÎÎÎ
Table 1–2. Name ROM Module
LV ALM F21 5A
5.0 A
PC13
PC5
ÎÎ ÎÎ ÎÎ ÎÎÎÎ PC3
PR1
JNA
EPROM MODULE
BAT1
VD1
Sub CPU Modules Part Number
Remarks Memory for the sub-CPU
1. OVERVIEW
1–15
MARO2P10203703E
Figure 1–9. Block Diagram
SUB-CPU
DRAM
BUS I/F
SHARED RAM
SUB-CPU System ROM
FANUC BUS BUS I/F
1. OVERVIEW
1–16
MARO2P10203703E
1.5
The auxiliary axis control printed circuit board is mounted in the slot marked “3” at the right end of the backplane. It contains up to five servo control modules that provided servo control of the available auxiliary axes (7 through 16). It is required whenever more than six axes are used, such as for a rail-mounted P-200 robot. See Figure 1–10.
AUX AXIS PRINTED CIRCUIT BOARD A16B–2202–0820
Figure 1–10. Aux Axis Printed Circuit Board
Servo control module (for axis 7 and 8) A20B–2902–0070 Servo control module (for axis 9 and 10) A20B–2902–0070
JNA
JRY2
Servo control module (for axis 11 and 12) A20B–2902–0070 Servo control module (for axis 13 and 14) A20B–2902–0070 Servo control module (for axis15 and 16) A20B–2902–0070
AUX.AXIS CONT. PCB
AMP16 JV16 AMP15 JV15
AMP14 JV14
AMP13 JV13
AMP12 JV12
AMP11 JV11
AMP10 PV10
AMP9 JV9
AMP8
JV8 AMP7 JV7
ENC16 JRF1B
ENC15 JRF1A
ENC14 JF14
ENC13 JF13
ENC12 JF12
ENC11 JF11
ENC10 JF10
ENC9 JF9
ENC8 JF8
ENC7 JF7
LINE2 JF22 RS232C /RS422 JD29
1. OVERVIEW
1–17
MARO2P10203703E
1.6 POWER SUPPLY UNIT PRINTED CIRCUIT BOARD A16B-1212-0870
The power supply unit printed circuit board is mounted on the backplane in the slot marked PSU. See Figure 1–11. The power supply unit printed circuit board is supplied with 210 VAC nominal from the multi-tap transformer and produces the following DC voltages: +24V used: – For inputs, outputs receivers, drivers, and relays – As the power source for the teach pendant power supply circuitry +15V, –15V, and +5V used: – For logic power within the controller The power supply unit printed circuit board also contains the ON/OFF logic circuits used by the controller. CAUTION The CMOS RAM backup battery is mounted on the power supply unit printed circuit board. Do not remove the board for longer than 30 minutes; otherwise, all controller software will be lost and will need to be reloaded. Figure 1–11. Power Supply Unit
JNPO F1: 7.5A fuse for AC input
PCMCIA receptacle Battery cover Battery
PIL: Green LED for indicating the AC power supply status ALM: Red LED for indicating an alarm F4: 5A fuse for +24E F3: 5A Slow-Blow fuse for +24V (With the battery cover removed)
1. OVERVIEW
1–18
1.7 EMERGENCY STOP CONTROL PRINTED CIRCUIT BOARD A16B-1212-0931
MARO2P10203703E
The emergency stop control printed circuit board is mounted on the side of the board rack adjacent to the CPU. See Figure 1–2, for location. It contains the circuits that: Supply 24VDC to the servo amplifiers magnetic control contactors (MCCs) during normal operation. Turn off 24VDC for the MCC during fault conditions such as:
– – – – –
Emergency stop Axis overtravel Safety fence open Teach pendant DEADMAN switch Hand breakage detection
Supply power to the motor brakes to release them during normal operation. Brake power is turned off (applying motor brakes) during major alarm conditions, or when regulated by the software. There is a second brake circuit that is manually operated by a front panel key switch. See Section 6. This key switch operated circuit provides a method to move the robot manually should servo power fail, or when mastering is required. Supply 24VDC required for serial pulse code (SPC) encoder operation through the 24 to 5VDC converter unit located within the robot base and switched on through the purge complete relay contacts for protection from explosive gases. Figure 1–12 shows the emergency stop control printed circuit board layout.
1. OVERVIEW
1–19
MARO2P10203703E
Figure 1–12. Emergency Stop Control Printed Circuit Board
COM B
A
B
A
HBK
COMMON JUMPER A=0VDC common B=24VDC common
HAND BROKEN JUMPER
A= USING SWITCH B= BY-PASSING SWITCH
RLY4 RLY5 RLY6 Door interlock jumper/connector
RLY1
RLY2 RLY3
1. OVERVIEW
1–20
1.8 SERVO AMPLIFIERS
MARO2P10203703E
The servo amplifiers are mounted on the back wall of the controller. See Figure 1–2 for component location. The servo amplifier drives the motor(s) in response to signals from the axis control circuitry.
Refer to Table 1–3 for part numbers.
Servo amplifiers are supplied in single, double or triple-axis configurations. CAUTION While two servo amplifiers might look identical, they might have different output power capabilities. If you replace a servo amplifier, make sure that the new unit has the same part number as the old one. Otherwise, the servo amplifier or servomotor might be damaged or destroyed. See Figure 1–13 for a typical servo amplifier. The P-200 controller uses α-series SVU type amplifiers. The features of the servo amplifier units are as follows: Compact – The servo amplifier unit is integrated with a power supply. It enables implementation of a compact system with one or two feed axes. Satisfies safety standards – The servo amplifier unit is designed to comply with the VDE 0160 (Europe), UL (USA), and CSA (Canada) safety standards. New interfacing capability – The servo amplifier unit provides a new interface (type B) as well as the conventional interface (type A) for the CNC. Up-to-date power device – The servo amplifier unit uses an up-to-date power device, IPM (intelligent power module), to reduce power loss and enhance alarm detection, thereby increasing its reliability.
1. OVERVIEW
1–21
MARO2P10203703E
Figure 1–13. Servo Amplifier
Circuit breaker Terminal board T1
13 L1C 14 L2C 15 TH1 16 TH2 17
RC
18 19
RI RE
20 FAN1 21 FAN2
1 PE (G) 2 L1 (R) 3
L2 (S)
4
L3 (T)
5 6
100A 100B
7 8
MC1 MC2
9 10
U V
11
W G
12
IRL ISL
IRM ISM
0V
+5V
LED Fuse
1. OVERVIEW
1–22
MARO2P10203703E
Figure 1–14. Servo Amplifier Specifications
Item
Power Supply
Specifications
Three-phase input for power
Voltage : 200/220/230 VAC +10 %. –15 % Frequency : 50/60 Hz +/- 2Hz Voltage deviation due to load (at maximum output) shall be 79% or less).
Single-phase input for control power
Voltage : 200/220/230 VAC + 10 %, - 15% Frequency : 50/60 Hz +/- 2Hz
Control of main circuit
Sine-wave PWM control by transistor bridge (IPM)
Alarm and protection functions
Over-voltage alarm Low control power voltage alarm Low DC link voltage alarm Regenerative discharge control circuit failure alarm Over-regenerative discharge alarm Dynamic brake circuit failure alarm Over-current alarm IPM alarm Circuit breaker
Figure 1–15 through Figure 1–19 show the mounting location of amplifiers for various robot locations. Figure 1–15. Mounting Locations of Servo Amplifiers for the P-200 6 Axis Robot
Amp1
Amp2
Amp 3
J1-J4
J3-J5
J6
Amp 4 J2
1. OVERVIEW
1–23
MARO2P10203703E
Figure 1–16. Mounting Locations of Servo Amplifiers for the P-200 7 Axis Robot
Amp 1
Amp 2
Amp 3
J1-J4
J3-J5
J6-J7
Amp 4 J2
Figure 1–17. Mounting Locations of Servo Amplifiers for the P-200 6+2 Robot
Amp 1
Amp 2
Amp 3
J1-J4
J3-J5
J6
Amp 4
Amp 5
J2
J7–J8
1. OVERVIEW
1–24
MARO2P10203703E
Figure 1–18. Mounting Locations of Servo Amplifiers for the P-200 7+2 Robot
Amp 1
Amp 2
Amp 3
J1-J4
J3-J5
J6–J7
Amp 4
Amp 5
J2
J8-J9
Figure 1–19. Mounting Locations of Servo Amplifiers for the P-200 7+3 Robot Side Cabinet
C-Size Cabinet
Amp 1
Amp 2
Amp 3
J1-J4
J3-J5
J6–J7
Amp 4
Amp 5
Amp 6
J2
J8
J9-J10
1. OVERVIEW
1–25
MARO2P10203703E
Table 1–3. Amp Spec.
Servo Amplifiers
Servo Amplifier 1
Servo Amplifier 2
Servo Amplifier 3
Servo Amplifier 4
SVU2-12/80 L(12A)=J4 M(80A)=J1 A06B–6089-H209
SVU2–12/80 L(12A)=J5 M(80A)=J3 A06B-6089–H209
SVU1-12 J6
SVU1–130 J2
A06B-6089–H101
A06B–6089-H106
SVU2-12/80 L(12A)=J4 M(80A)=J1 A06B–6089-H209
SVU2-12/80 L(12A)=J5 M(80A)=J3 A06B-6089-H209
SVU2-12/80 L(12A)=J6 M(80A)=J7 A06B-6089-H209
SVU1-130 J2 A06B–6089–H106
SVU2-12/80 L(12A)=J4 M(80A)=J1 A06B–6089-H209
SVU2–12/80 L(12A)=J5 M(80A)=J3 A06B–6089-H209
SVU1–12 J6
SVU1-130 J2
A06B-6089–H101
A06B–6089–H106
P-200 6+2 (Hood – Deck) Axes Control
SVU2–12/80 L(12A)=J4 M(80A)=J1 A06B-6089-H209
SVU2-12/80 L(12A)–J5 M(80A)=J3 A06B-6089–H209
SVU1-12 J6
SVU1-130 J2
A06B-6089-H101
A06B-6089-H106
P-200 7+2 (Door Opener) Axes Control
SVU2-12/80 L(12A)=J4 M(80A)=J1 A06B-6089–H209
SVU2-12/80 L(12A)=J5 M(80A)=J3 A06B-6089-H209
SVU2–12/80 L(12A)=J6 M(80A)=J7 A06B-6089-H209
SVU1–130 J2
SVU2-12/80 L(12A)=J4 M(80A)=J1 A06B-6089-H209
SVU2–12/80 L(12A)=J5 M(80A)=J3 A06B-6089-H209
SVU2-12/80 L(12A)=J6 M(80A)=J7 A06B-6089-H209
SVU2-12/80 L(12A)=J4 M(80A)=J1 A06B-6089-H209
SVU2–12/80 L(12A)=J5 M(80A)=J3 A06B-6089-H209
SVU2-12/80 L(12A)=J6 M(80A)=J7 A06B-6089-H209
P-200 6 Axes Control
P-200 7 Axes Control
P-200 6+2 (Door Opener) Axes Control
P-200 7+2 (Hood–Deck) Axes Control P-200 7+3 (Opener) Axes Control Amp Spec. P-200 7+3 (Opener) Axes Control
Servo Amplifier 6 SVU2–80/80 L(80A)=J9 M(80A)=J10 A06B-6089–H208
A06B-6089-H106 SVU1-130 J2 A06B–6089-H106 SVU1-130 J2 A06B–6089-H106
Servo Amplifier 5
SVU2-12/12 L(12A)=J7 M(12A)=J8 A06B–6089-H201 SVU2-80/80 L(80A)=J7 M(80A)=J8 A06B–6089–H208 SVU2-12/12 L(12A)=J8 M(12A)=J9 A06B-6089–H201 SVU2–80/80 L(80A)=J8 M(80A)=J9 A06B-6089–H208 SVU1–80 J8=(80A) A06B-6089–H208
1. OVERVIEW
1–26
MARO2P10203703E
Table 1–4. Machine Type
Dip Switch Settings
Servo Amplifier 1
Servo Amplifier 2
Servo Amplifier 3
Servo Amplifier 4
P-200 – 6 Axes
1 ON 2 OFF 3 ON 4 ON
1 ON 2 OFF 3 ON 4 ON
1 ON 2 OFF 3 ON 4 ON
1 ON 2 OFF 3 ON 4 ON
P-200 – 7 Axes
1 ON 2 OFF 3 ON 4 ON
1 ON 2 OFF 3 ON 4 ON
1 ON 2 OFF 3 ON 4 ON
1 ON 2 OFF 3 ON 4 ON
P-200 – 6 + 2
1 ON 2 OFF 3 ON 4 OFF
1 ON 2 OFF 3 ON 4 ON
1 ON 2 OFF 3 ON 4 ON
1 ON 2 OFF 3 ON 4 ON
1 ON 2 OFF 3 ON 4 ON
P-200 – 7 + 2
1 ON 2 OFF 3 ON 4 OFF
1 ON 2 OFF 3 ON 4 ON
1 ON 2 OFF 3 ON 4 ON
1 ON 2 OFF 3 ON 4 ON
1 ON 2 OFF 3 ON 4 ON
P-200 – 7 + 3
1 ON 2 OFF 3 ON 4 OFF
1 ON 2 OFF 3 ON 4 ON
1 ON 2 OFF 3 ON 4 ON
1 ON 2 OFF 3 ON 4 ON
1 ON 2 OFF 3 ON 4 ON
Machine Type P-200 – 7 + 3
Servo Amplifier 6 1 ON 2 OFF 3 ON 4 OFF
Servo Amplifier 5
1. OVERVIEW
1–27
MARO2P10203703E
1.9 MULTI-TAP TRANSFORMER Refer to TABLE 1–5 for part numbers.
The multi-tap transformer is located on the floor of the controller on the right side of the rear cabinet. See Figure 1–2 for component location. The multi-tap transformer is supplied 3-phase VAC from the main disconnect or circuit breaker. This supply voltage can range from 220 – 575 volts. To accommodate the various levels of supply, tap selections are provided on the primary side of the transformer. The transformer output supplies the following voltages: 3–phase 210 VAC nominal for the servo amplifiers 1–phase 210 VAC nominal for the backplane–mounted components 1–phase 210 VAC nominal for the IBRC module 1–phase 210 VAC nominal for the 24VDC Purge Power Supply 1–phase 100VAC nominal for the brakes and servo amplifier A06B–6066–Hxxx MCC Two series-connected thermostats are mounted on the transformer. They are connected to fault detection circuitry in one servo amplifier. If the transformer overheats, the controller will signal a SRVO–0043 DCAL alarm. Figure 1–20 shows the transformer. Table 1–5 and Table 1–6 list the information necessary for selecting a proper primary tap. Table 1–5.
Multi-Tap Transformer Part Numbers
Transformer Type 7.5kVA 5kVA
Part Number A80L–0026–0010#A A80L–0024–0010#A
1. OVERVIEW
1–28
MARO2P10203703E
Figure 1–20. Multi-Tap Transformer 575V 550V 500V 480V 460V 240/415V 220V/380V F4 7.5
F1
F5 7.5
13
F2
2 3 4 5 6 7
F3
A1
A2
0V 575V 550V 500V 480V 460V 240/415V 220V/380V
23
31
1
3
5
41
32
2
4
6
42
14
0V 575V 550V 500V 480V 460V 240/415V 220V/380V
24
0V
Table 1–6.
1
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24
Selecting Transformer Taps Primary Tap
S pply Voltage Supply
L1
L2
L3
Jumper
220
7
15
23
8–15/16–23/24–7
240
6
14
22
8–14/16–22/24–6
380
7
15
23
415
6
14
22
460
5
13
21
480
4
12
20
500
3
11
19
550
2
10
18
575
1
9
17
8–16
16–24
Connection Type DELTA
Y STAR
1. OVERVIEW
1–29
MARO2P10203703E
1.10
The interface between the controller and peripheral devices is provided by input and output signals from one or more of the following:
INTERFACE DEVICES
Modular I/O (Model A) Unit Distributed I/O (Model B) Unit Process I/O printed circuit board A printed circuit board specializing in communicating with a logic controller, which includes
– ABRIO for communication to an Allen-Bradley PLC – Genius I/O for communication to a GE Fanuc programmable controller Digital I/O to and from the robot through the axis control board. External E-Stop peripheral device connections.
1.10.1
The modular I/O unit provides communication between the controller and various peripheral devices. See Figure 1–21.
Modular I/O Unit
Figure 1–21. Modular I/O
Interface Module
I/O Module
F
Modular I/O Rack (Backplane)
Slot 2 Slot 1 Slot I/F
Interface Module
I/O Module
1. OVERVIEW
1–30
MARO2P10203703E
The modular I/O unit uses the following communication modes: Discrete (On or Off) input and output signal lines at 24VDC or 120VAC. Outputs can be sink or source outputs. Analog signal lines, which can vary from –10VDC to +10VDC The modular I/O unit consists of the following: The base unit The interface module Various discrete input and output (I/O) modules The control can use as many as 64 modular I/O modules concatenated (daisy-chained) together on multiple racks. A single modular I/O unit is referred to as rack 1. The I/O modules are located in slots 1 to 5 or 1 - 10, depending on the model used. Base Unit 5 I/O Module Slot A03B-0807-C002 10 I/O Module Slot A03B-0807-C001
Interface Module With 1 Rack A03B-0807-C011 Additional Racks A03B-0807-C012
Discrete Input Modules Refer to Table 1–7 and Table 1–9 for specifications and part numbers.
Discrete Output Modules Refer to Table 1–8 and Table 1–9 for specifications and part numbers.
The base unit is the backplane for the modular I/O unit. The interface module and the I/O modules plug into it. The base unit has no LEDs, fuses, or electrical connections, except for the module sockets. The first slot to the left (I/F) always contains the interface module. The other slots are used for the I/O modules. The interface module transfers data between the main CPU and the I/O modules. The interface module is connected to the JD4 connector on the main CPU printed circuit board through connector JD1B. The interface module is always mounted in the I/F (first) slot. Discrete input modules receive 24VDC or 120VAC signals on their terminals and relay the data to the interface module.
Discrete output modules transmit 24VDC or 120VAC signals on their terminals under command of the interface module.
1. OVERVIEW
1–31
MARO2P10203703E
Table 1–7. Input Type Non-isolated DC input
Optically isolated DC input inp t
AC input
Rated Voltage 24VDC
Rated Current 7.5 mA
32
External Connection Connector
Not provided
AID32B
24VDC
7.5 mA
Both
Maximum 2 ms
32
Connector
Not provided
AID16C
24 VDC
7.5 mA
NEG
Maximum 20 ms
16
Terminal block Provided
AID16D
24VDC
7.5 mA
POS
Maximum 20 ms
16
Terminal block Provided
AID32E
24VDC
7.5 mA
Both
Maximum 20 ms
32
Connector
Not provided
AID32F
24VDC
7.5 mA
Both
Maximum 2 ms
32
Connector
Not provided
AIA16G
100~ 120VAC
10.5 mA (120VAC)
16
Terminal block Provided
* Polarity is defined as follows:
Not fused DC output
Fused AC output
Relay output
Module Name AOD32A
Polarity* Both
Response Time Maximum 20 ms
ON Max 35 ms OFF Max 45 ms
Points
LED Display
Negative: 0 V common (current source type); ON when input is at low level. Positive: 24 V common (current sink type); ON when input is at high level. Table 1–8.
Output Type Not fused DC output Fused DC output
Digital Input Module Specifications
Module Name AID32A
Digital Output Module Specifications
2A
NEG (Sink)
8
8
LED Display Not provided Terminal block Provided
AOD08D
2A
POS (Source)
8
8
Terminal block Provided
Provided
AOD16C
0.5 A
NEG (Sink)
16
8
Terminal block Provided
Not provided
AOD16D
0.5 A
POS (Source)
16
8
Terminal block Provided
Not provided
AOD32C
0.3 A
NEG (Sink)
32
8
Connector
Not provided
Not provided
AOD32D
0.3 A
POS (Source)
32
8
Connector
Not provided
Not provided
100 ~ 240 VAC
2A
—
5
1
Terminal block Provided
Provided
1A
—
8
4
Terminal block Provided
Provided
AOA12F
100 ~ 120 VAC
0.5 A
—
12
6
Terminal block Provided
Provided
AOR08G
Maximum 250 VAC /30 VD
4A
—
8
1
Terminal block Provided
Not provided
2A
—
16
4
Terminal block Provided
Not provided
AOD08C
AOA05E AOA08E
AOR16G
Rated Voltage 5~ 24 VDC 12 ~ 24 VDC
* Polarity is defined as follows:
Maximum Polarity* Points Current 0.3A NEG 32
Points/ Common 8
External Connection Connector
Fuses Not provided Provided
Negative: 0 V common (current sink type); output is at low level when ON. Positive: 24 V common (current source type); output is at high level when ON.
1. OVERVIEW
1–32
MARO2P10203703E
Table 1–9.
I/O Module Part Numbers Part Number
Name DC input module
Non-isolated
32 points 20 ms
AID32A
A03B-0807-C101
32 points 2 ms
AID32B
A03B-0807-C102
16 points NEG
AID16C
A03B-0807-C103
16 points POS
AID16D
A03B-0807-C104
32 points 20 ms
AID32E
A03B-0807-C105
32 points 2 ms
AID32F
A03B-0807-C106
AIA16G
A03B-0807-C107
32 points NEG
A0D32A
A03B-0807-C162
8 points NEG
AOD08C
A03B-0807-C151
8 points POS
AOD08D
A03B-0807-C152
16 points NEG
AOD16C
A03B-0807-C153
16 points POS
AOD16D
A03B-0807-C154
32 points NEG
AOD32C
A03B-0807-C155
32 points POS
AOD32D
AO3B-0807-C156
5 points, 2 A AOA05E
A03B-0807-C157
8 points 1A
AOA08E
A03B-0807-C158
12 points 0.5 A
AOA12F
A03B-0807-C159
8 points 4A
AOR08G
A03B-0807-C160
16 points 2A
AOR16G
A03B-0807-C161
Analog input module
AAD04A
A03B-0807-C051
Analog output module
ADA02A
A03B-0807-C052
Optically isolated
AC input module 16 points DC output Not fused module Fused
Not fused
AC output module
Fused
Relay output module
1. OVERVIEW
1–33
MARO2P10203703E
1.10.2 ABRIO and Genius I/O R-J2 style: A20B-8001-0120-RIO with Ethernet and A20B-8001-0121-RIO A15L-0001-0026-GENIUS I/O Daughter Board and A16B-2203-0291-GENIUS Mother Board PCB
The ABRIO and Genius I/O printed circuit boards use serial communication to interface to a programmable controller. These printed circuit boards are used for communicating control information between the R-J2 controller and the programmable controller. Refer to the following manuals for information on these boards. A User’s Guide to the FANUC Robotics Genius Network Interface for GEFanuc A User’s Guide to the FANUC Robotics Genius Network Interface for GEFanuc (R-H Style Board in R-J2 Controller) A User’s Guide to the FANUC Robotics Remote I/O Interface for an Allen-Bradley PLC (R-H Style Board in R-J2 Controller) A User’s Guide to the FANUC Robotics SYSTEM R-J2 Controller Remote I/O Interface for an Allen Bradley PLC.
1. OVERVIEW
1–34
1.11 ETHERNET REMOTE PRINTED CIRCUIT BOARDS
MARO2P10203703E
Two general styles of the Ethernet Remote printed circuit board are available. These are Ethernet Remote-1 Printed Circuit Board (ER-1) Ethernet Remote-2 Printed Circuit Board (ER-2) The ER-1 style consists of a full-size motherboard printed circuit board with an optionally attached daughter printed circuit board. The five kinds of ER-1 printed circuit boards that support Ethernet are listed in Table 1–10. See Figure 1–22 for the ER-1 Printed Circuit Boards. The ER-2 style consists of a single printed circuit board in a half-slot form factor that allows it to be installed in the half slot available in the power supply unit. The three kinds of ER-2 that support Ethernet are listed in Table 1–10. See Figure 1–23 for the ER-2 Printed Circuit Boards. Table 1–10. FANUC R-J2 Ethernet Remote Style Printed Circuit Board Part Numbers Part
Greenbook Part Number
Spare Part Number
ER-2 Ethernet PCB (10Base2)
A05B-2350-J121
A20B-8001-0122
ER-2 A-B RIO/Ethernet PCB (10Base2)
A05B-2350-J122
A20B-8001-0120
ER-2 A-B RIO-Ethernet 10BaseT PCB
Contact FANUC Robotics Customer Service for part numbers
ER-1 PLC I/O-Ethernet 10Base5 PCB A05B-2300-J122
A16B-2201-0892
Order also: ER-1 A-B RIO D-PCB
A05B-2300-J130
A20B-9001-0610
ER-1 PLC I/O-Ethernet PCB (10Base2)
A05B-2300-J121
A16B-2201-0891
Order also: ER-1 Genius I/O D-PCB
A05B-2300-J131
A15L-0001-0026
ER-1 PLC I/O-Ethernet 10Base5 PCB A05B-2300-J122
A16B-2201-0892
Order also: ER-1 Genius I/O D-PCB
A05B-2300-J131
A15L-0001-0026
ER-1 PLC I/O-Ethernet 10Base5 PCB A05B-2300-J122
A16B-2201-0892
ER-1 A-B RIO/Ethernet 10BaseT Kit
Contact FANUC Robotics Customer Service for part numbers
ER-1T + A-B/RIO
A05B-2350-J127
A16B-2203-0290
ER-1T + GENIUS (Motherboard)
A05B-2350-J128
A16B-2203-0291
ER-1T + GENIUS (Daughterboard)
A05B-2300-J131
A15L-0001-0026
Refer to the appropriate application-specific SYSTEM R-J2 Software Installation Manual for software part number information.
1. OVERVIEW
1–35
MARO2P10203703E
Figure 1–22. ER-1 Ethernet Printed Circuit Boards
ER-1
1 23 4
1
1 23 4
2
3
4
AB RIO
PF PC IP
ACTIVE POWER
A–B
A–B
RACK SEL
SMGN
AUI CD27
BAUD SEL DISC/BLK LAST RACK LAST STAT RESTART RACK SIZ
ETHER NET
F1 2.0A
LINK OK
2.0 A
10 BASE T
ER-1 PLC I/O-Ethernet Printed Circuit Board(10Base2)
ER-1 PLC I/O-Ethernet Printed Circuit Board(10Base5)
ER-1 PLC I/O-Ethernet Printed Circuit Board(10BaseT)
1. OVERVIEW
1–36
MARO2P10203703E
Figure 1–23. ER-2 Ethernet Printed Circuit Boards
ER-2
ER-2 Ethernet Printed Circuit Board(10Base2)
ER-2 A-B RIO/Ethernet Printed Circuit Board(10Base2)
1. OVERVIEW
1–37
MARO2P10203703E
1.12 USER TRANSFORMER A80L-0001-0520
The controller can contain an optional user transformer. It supplies 120VAC single-phase power to a National Electrical Manufacturers Association (NEMA) outlet receptacle and is located on the lower left side of the controller. See Figure 1–24. Figure 1–24. User Transformer
Multi-tap transformer
1. OVERVIEW MARO2P10203703E
1–38
1.13 OPERATOR PANEL A05B-2363-C001 A05B-2363-C002
Pushbuttons and LEDs on the operator panel of the R-J2 are used to start the robot and indicate status. The panel has a port for serial interface to an external device. The operator panel can be equipped with one or both of the following Disconnectable teach pendant port with a switch for operation without serial interface to an external device. DB–25 connector for serial interface (External disk drive, for example.) An emergency stop button on the operator panel places the system into the emergency stop condition when pressed. Figure 1–25. Operator Panel without Teach Panel Disconnect
Î Î Î Î
BATTERY ALARM
CYCLE START
ON
ENABLED HOLD
OFF
FAULT
FAULT RESET
ÎÎ Î ÎÎÎ ÎÎ ÎÎÎ ÏÏ ÏÏ
PURGE COMPLETE
PURGE ENABLE
PURGE FAULT
ÎÎ ÎÎ ÏÏ ÏÏ REMOTE
REMOTE
LOCAL
BRAKE ENABLE ON
PORT
OFF
HOUR METER
ÎÎÎ ÎÎÎ ÎÎÎ
EMERGENCY STOP
1. OVERVIEW
1–39
MARO2P10203703E
1.14 TEACH PENDANT A05B–2308–C300
The teach pendant is a hand held device used to operate and program the robot and controller. See Figure 1–26. Keys on the teach pendant are used to enter data, jog the robot, and to display menus. The pendant has a liquid crystal display 16 lines long by 40 characters wide. The teach pendant also has an emergency stop button that, when pressed, places the robot into an emergency stop condition. A DEADMAN switch mounted on the back of the teach pendant enables servo drive power if held with the teach pendant on/off switch turned to ON. When the teach pendant switch is turned to OFF, pressing the DEADMAN switch is not required to keep servo drive power enabled.
WARNING The robot will become fully functional and capable of being started at the operator panel if the teach pendant is turned off and the fence circuit is not installed or closed. When working in the robot envelope, ALWAYS CARRY THE TEACH PENDANT and HAVE THE TEACH PENDANT ENABLED. Otherwise, you could injure personnel or damage equipment.
Seven of the keys on the teach pendant provide different functions depending on the software in the controller. Eleven indicators, located on the left side of the LCD display, indicate status of the system. The indicator labels are different based on software operating in the controller. Refer to Chapter 3, “Lights, Indicators, and LEDs,” for an explanation of the indicators. Figure 1–26. Teach Pendant Indicators LCD Display Emergency Stop Button
Indicator Labels
DEADMAN Switches
Enable/disable switch Software-Dependent Keys
1. OVERVIEW
1–40
MARO2P10203703E
1.15 HEAT EXCHANGE AND FANS Refer to Figure 1–27 for Fan Part Numbers
The temperature in the controller is kept within operating range through the use of an air-to-air heat exchange system. The controller is sealed to prohibit outside air from entering the controller cabinet. Internal controller air is circulated by fans around the inside of the controller and downward through the internal side of the heat exchange unit. Outside air is circulated upward through the external side of the heat exchange unit also by using a fan. This process cools the inside air. Fans are provided on the printed circuit board racks mounted on the backplane to circulate air over the printed circuit boards. Cooling fins connected to the servo amplifiers are within the heat exchange unit to keep the heat generated by the servo power circuits out of the controller. Figure 1–27 shows the heat exchange system for the controller. Figure 1–27. Heat Exchange System
Backplane fan(s) A90L–0001–0378 A90L–0001–0385#A
Fan 1 A05B–2301–C901 Fan Assy A90L–0001–0213 Fan
Air flow Internal air Outside air
Fan 2
A05B–2051–C902 Fan Assy A90L–0001–219#A Fan
Outside air in Fan 3 A02B–0056–C904 Fan Assy A90L–0001–0219#A Fan
1. OVERVIEW
1–41
MARO2P10203703E
1.16 PURGE CONTROL UNIT A05B–2363–C020
The purge control unit consists of an Intrinsically Safe Barrier Unit (ISBU) module, an IDEC model IBRC contact signal transducer (IBRC), purge control PCB, and 24VDC power supply. There are no authorized adjustments on the purge control unit. Refer to Figure 1–28 for identification of components and Figure 1–2 for component locations.
WARNING The purge control timer is set at five minutes to conform to Factory Mutual Specifications. Do not adjust the purge control timer; otherwise, an explosion or fire could occur.
Figure 1–28. Purge Control Unit
Purge control PCB 1
2 3 4 5 6 7 8 9 1011 12 1314 1516 171819 20 21 222324
1 2 3 4
5 6 7 8 9 1011 12 13 14 15 16 1718 19 20 21 22 2324
P1 N1 P2 N2 P3 N3 P4 N4 P5 N5 P6 N6 G
G FG
CH1 CH2 CH3 CH4 CH5 CH6 A1 C1 A2 C2 A3 C3 A4 C4 A5 C5 A6 C6 0V 200V 220V
ISBU
IBRC
Power supply
1. OVERVIEW
1–42
1.17 PURGE SYSTEM IBRC
A15L–0001–0048
MARO2P10203703E
The IDEC model IBRC contact signal transducer is an intrinsically safe isolation unit that is used as part of the purge system. It has six photo-isolated relays and provides an intrinsically safe barrier for the following signals. See Figure 1–29. Channel 1 (P1-N1) Pressure switch from robot or pressure switches from robot and opener in series. Channel 2 (P2-N2) Flow switch from robot or flow switches from robot and opener in series. Channel 3 (P3-N3) Robot overtravel switches, If used. Channel 4 (P4-N4) Hand broken signal, If used. Channel 5 (P5-N5) Teach pendant disconnected, If used. Channel (P6-N6) End of arm tooling input, Not used. The IBRC operates on 220 (max. 250)VAC from a secondary winding of TF1. There are six red LEDs, one for each device used in the field. There are a pair of terminals, labeled Px and Nx, for each hazardous signal, while the corresponding safe side terminals have Ax and Cx. Ax and Cx are the normally open contact output located on the safe side. When the hazardous location switches are closed, the IBRC LED will be illuminated for that particular contact. Should a jumper be installed across the P and N terminals, the LED for those terminals will be illuminated. When plant air is supplied to the robot, and power is available to the IBRC when the disconnect switch is in the ON position, the PS-1 LED will be illuminated.
1. OVERVIEW
1–43
MARO2P10203703E
Figure 1–29. Contact Signal Transducer (IBRC)
P1 N1 P2 N2 P3 N3 P4 N4 P5 N5 P6 N6 G
G
FG
idec IZBARL Relay Barrier Type IBRC6062R Intrinsically Sake Circuit
DC16V
14mA
Safety Rating of Out Put
Relay AC/DC 250V
CH1
CH2
CH3
CH4
CH5
CH6
A1 C1 A2 C2 A3 C3 A4 C4 A5 C5 A6 C6 0V 200V 220V
1. OVERVIEW
1–44
MARO2P10203703E
1.18 PURGE UNIT POWER SUPPLY A20B–1000–0472
The Purge Unit Power Supply is a 24VDC auxiliary power supply used exclusively for the purge system. It is mounted alongside the IBRC unit. It provides voltage necessary to energize the purge solenoid valve within the robot and opening devices when applicable. It also provides 24VDC to the relay coils mounted on the piggy-back Purge Control PCB in the EMG module. It requires 210VAC supplied by TF1 and is internally fused by two fuses mounted on the power supply PCB itself, F-11 and F-12. See Figure 1–30. Figure 1–30. Purge Power Supply
Cover
Purge Power Supply F12 F11 Contact Signal Transducer IBRC
1. OVERVIEW
1–45
MARO2P10203703E
1.19 PURGE INTRINSICALLY SAFE BARRIERS AND SIGNAL REPEATERS STAHL and PEPPERL+FUCH
The P-200 R-J2 controller contains a number of Intrinsically Safety Barriers (ISB) units and signal repeaters. They are used for the robot or opener purge circuits. The number of barriers and repeaters installed is dependant on the options ordered for that particular installation. The Purge Intrinsically Safety Barriers and repeaters are mounted to the left of the IBRC unit. These devices limit the energy in their respective circuits to eliminate the possibility of an explosion in the hazardous environment of the paint booth. The internal atmosphere of the robot must be considered hazardous prior to operation, therefore a Purge Intrinsically Safe Barrier or repeater device is used to safely control the purge process. Purge Intrinsically Safe Barriers and repeaters are similar to a fuse. If one should be found defective, it must be replaced by a known good Purge Intrinsically Safe Barrier or repeater, and you must discard the defective one. Refer to Table 1–11 for part number used for specific ISB functions. For detailed illustrations of the Purge Intrinsically Safe Barriers and Signal repeaters see Figure 1–31 through Figure 1–36. To troubleshoot faults you might encounter with the Purge Intrinsically Safe Barriers and Signal repeaters refer to Table 1–12. The barriers ISB1 and ISB2 are used to energize the purge air solenoid valves in the base of the robot or opener. ISB3 and ISB10 are Intrinsically Safe repeater relays which are used to isolate the signals from the robot/opener bypass switches, used to detect that powered down units are out of the way and it is safe for the conveyor to run. ISB4, 5, 6, 7, and 8 are used to provide power and control to the various circuits which control paint flow. ISB9 is use specifically for the P-10 and P-15 openers. ISB9 detects the status of the proximity switch in the openers arm. Refer to Table 1–11 for additional information regarding intrinsically safety barriers and signal repeaters. Table 1–11.
Part Number
Terminals
Figure Figure 1–31 Refer to Figure 12–13 Figure 12–21 Figure 12–22 Figure 12–23
P-200 Purge Solenoid
1
Input Terminals 1 and 2 24V Output Terminals 3 and 4 to purge solenoid
2
Input Terminals 1 and 2 24V Output Terminals 3 and 4 to opener purge solenoid
Figure 1–31 Refer to Figure 12–13 Figure 12–21 Figure 12–22 Figure 12–23
Opener Purge Solenoid For P-200-+2 versions ISB2 use Stahl 9001-01/-280-165-10 For P-200-+3 (P10) ISB2 use Stahl 9001-01/-252-100-14
9001/01-252-100-14
For P-200+2 versions this barrier is Stahl 9001/01-280-165-10 For openers the barrier is Stahl 9001/01-252-100-14
Purge Intrinsically Safety Barriers and Signal Repeaters
ISB#
Description
1. OVERVIEW
1–46
MARO2P10203703E
Table 1–11. (Cont’d) Purge Intrinsically Safety Barriers and Signal Repeaters Part Number
ISB#
Terminals
Figure
Description
3
Input Terminals 1+,3 ≈DC8V/≈8mA Intrinsically safe Output I Terminals 7,8,9 Output II Terminals 10,11,12 Terminals 14(L+).-.15(L-) DC 20V 30V
Figure 1–32 Refer to Figure 12–13 Figure 12–21 Figure 12–22 Figure 12–23
P-200 Bypass Switch Single Channel DC 24 V Nominal Power Supply Selectable Mode of Operation Output: 1 Signal Output with 2 Form “C” Relays Optional Lead Breakage (LB) Monitoring
4
Input Terminals 7 (L+) - 8 (L-) DC 15V 35V Not intrinsically safe Output Terminals 1+ - 2≤24V Intrinsically safe
Figure 1–33 Refer to Figure 12–13 Figure 12–21 Figure 12–22 Figure 12–23
I/P Power Single Channel DC 24 V Loop Powered Max. 80mA Output Current
5
Input Power Rail and Terminals 7 (L+),8(L-) DC 20V...35V Output Terminals 1+,2Input not intrinsically safe Terminals 9+, 10-,11+
Figure 1–34 Refer to Figure 12–13 Figure 12–21 Figure 12–22 Figure 12–23
I/P Signal Single Channel DC 24 V Nominal Power Supply Voltage/Current or Current /Voltage Conversion Adjustable “Zero Point Zero” Conversion Ranges: 0/4-20mA, 0/1-5V, 0/2-10V
6
28 V, 300 Ω Hazard Area Connections Terminals 1 and 2 Safe Area Terminals 7 and 8
Figure 1–35 Refer to Figure 12–13 Figure 12–21 Figure 12–22 Figure 12–23
24 V Power for Flow meter Single or Double Channel Positive Polarity SafeSnap Zener Barrier
7 and 8
28 V, 300 Ω Hazard Area Connections Terminals 1 and 2 Safe Area Terminals 7 and 8
Figure 1–35 Refer to Figure 12–13 Figure 12–21 Figure 12–22 Figure 12–23
ISB7 = Trigger 1 Signal ISB8 = Trigger 2 Signal Single Channel Positive Polarity SafeSnap Zener Barrier
KHD2-SR-Ex1.2S.P KFD2-SR2-Ex1.W.LB SWITCH POSITIONS S1 = I S2 = I S3 = II
KFD2-SD-Ex1.36
KHD2-CD-1.P 32 KFD2-CD-Ex1.32.
Z787
Z728
1. OVERVIEW
1–47
MARO2P10203703E
Table 1–11. (Cont’d) Purge Intrinsically Safety Barriers and Signal Repeaters Part Number
ISB#
Terminals
Figure Figure 1–36 Refer to Figure 12–13 Figure 12–23
9
Input Terminals 1+,3 ≈DC8V/≈8mA Output Terminals Not intrinsically safe 7,8,9 Terminals 14(L+).-.15(L-) DC 20V 30V
Single Channel DC 24 V Nominal Power Supply Selectable Mode of Operation 1 Signal Output with 1 Form “C” Relay Lead Breakage (LB) Monitoring
Figure 1–36 Refer to Figure 12–13
10
Input Terminals 1+,3 ≈DC8V/≈8mA Output Terminals Not intrinsically safe 7,8,9 Terminals 14(L+).-.15(L-) DC 20V 30V
From P-10 Bypass Switch Single Channel DC 24 V Nominal Power Supply Selectable Mode of Operation 1 Signal Output with 1 Form “C” Relay Lead Breakage (LB) Monitoring
KHD2-SR-Ex1.P KFD2-SR2-Ex1.W SWITCH POSITIONS S1 = I S2 = II S3 = I KHD2-SR-Ex1.P KFD2-SR2-Ex1.W SWITCH POSITIONS S1 = I S2 = I S3 = II
Description
WARNING When you replace this Purge Intrinsically Safe Barrier device, pay careful attention to the exact model or part number. Many models appear physically identical, but have different power ratings and entity ratings. Also, careful observance of which end of the device is considered to be the “SAFE” side, or the “HAZARDOUS” side is critical. Typically the end with the “Blue” colored cap should be connected to the device located in the HAZARDOUS zone for STAHL barriers. Otherwise, you could injure personnel or damage equipment.
1. OVERVIEW
1–48
MARO2P10203703E
Figure 1–31. Intrinsic Safety Barrier Stahl 9001/01-252-100-14
STAHL 9001/01-252-100-14
1
2
“BLUE” colored cap
STAHL
3
4
1. OVERVIEW
1–49
MARO2P10203703E
Figure 1–32. Intrinsic Safety Barrier Pepperl + Fuchs KFD2-SR-Ex1.P and KFD2-SR2-Ex1.W
Pepperl+Fuchs KFD2-SR-Ex1.P KFD2-SR2-Ex1.W
LED Relay output (yellow)
1 4
2 5
3 6
Power (green) LED
LED LB (red) Switch S1= I For Open SW = De-Energized (mode of operation) Switch S2 = II For Lead Breakage on 10-11-12 (switch for output II)
I II 7 8 9 10 11 12 13 14 15
Switch S3 = I For Namur Input (LB Monitoring)
Figure 1–33. Intrinsic Safety Barrier Pepperl+Fuchs KFD2-SD-Ex1.36
Pepperl+Fuchs KFD2-SD-Ex1.36
1 4
2 5
3 6
7 8 9 10 11 12
1. OVERVIEW
1–50
MARO2P10203703E
Figure 1–34. Intrinsic Safety Barrier Pepperl+Fuchs KHD2-CD-1P32 and KFD2-CD-Ex1.32
Pepperl+Fuchs KHD2-CD-1.P32 KFD2-CD-Ex1.32
1 4
2 5
3 6
7 8 9 10 11 12
Figure 1–35. Intrinsic Safety Barrier Pepperl+Fuchs Z727 and Z787
Pepperl+Fuchs Zener Barriers Z727 Z787 1 2 3 4
5 6 7 8
1. OVERVIEW
1–51
MARO2P10203703E
Figure 1–36. Intrinsic Safety Barrier Pepperl+Fuchs KFD2-SR-Ex1.2S.P and KFD2-SR-Ex1.W.LB
Pepperl+Fuchs KFD2-SR-Ex1.2S.P KFD2-SR2-Ex1.W.LB
LED Relay output (yellow)
1 4
2 5
3 6
Power (green) LED
LED LB (red) Switch S1 (mode of operation)
Switch S3 (LB Monitoring) I II 7 8 9 10 11 12 13 14 15
Switch S2 (no functions)
ISB3 and ISB10 Switch Positions S1 = I S2 = I S3 = II ISB9 Switch Positions S1 = I S2 = II S3 = I
Table 1–12.
Troubleshooting
ISB
Manufacturer
Troubleshooting
1
Stahl
Symptom: Incomplete purge cycle. See Figure 1–31 and Refer to Table 1–11 for additional information. 1. Check for 24 VDC on terminals 1 and 2 during controller purge cycle. If 24VDC is not present troubleshoot controller. If 24VDC is present go to Step 2. 2. Check for 18 VDC on terminals 3 and 4 during controller purge cycle. If 18V is not present barrier is defective. If 18V is present troubleshoot flow switch or robot.
2
Stahl
Symptom: Incomplete purge cycle. See Figure 1–31 and Refer to Table 1–11 for additional information. 1. Check for 24 VDC on terminals 1 and 2 during controller purge cycle. If 24VDC is not present troubleshoot controller. If 24VDC is present go to Step 2. 2. Check for 18 VDC on terminals 3 and 4 during controller purge cycle. If 18V is not present barrier is defective. If 18V is present troubleshoot the opener.
1. OVERVIEW
1–52
MARO2P10203703E
Table 1–12. (Cont’d) Troubleshooting ISB
Manufacturer
Troubleshooting
3
Pepperl+Fuchs
Symptom:No bypass signal in “parked” position. Robot and or opener are safely parked out of the path of the conveyer. Provides signal to conveyer system. Bypass circuits See Figure 1–32 or Figure 1–36 and Refer to Table 1–11 for additional troubleshooting information. Yellow LED OFF : Problem in the hazard area (ex. proximity switch wires) go to Step 7. Green LED power indicator 1. Check for green power ON LED. If LED is not ON go to Step 2. If LED is ON go to Step 7. 2. Check input 120VAC to Deltron 24V power supply. If voltage is present go to Step 3. If voltage is not present troubleshoot 120 VAC from the conveyer. 3. Check output 24V from Deltron to OVP (EE-3112-600). If 24 VDC is present go to Step 4. If 24VDC is not present replace the power supply. 4. Check input 24V to OVP. If 24VDC is present go to Step 5. If 24VDC is not present replace wiring between the power supply and the OVP. 5. Check the output voltage from the OVP. If 24 VDC is present go to Step 6. If 24VDC is not present replace the OVP. 6. Check for 24 VDC between terminals 14 and 15 on the ISB. If 24 VDC is present the ISB is defective . If 24VDC is not present replace the wiring between the OVP and the ISB. 7. Check for signal on terminals 1 and 3 .If signal is present barrier is defective. If signal is not present robot proximity switch may be out of adjustment or defective.
4
Pepperl+Fuchs
Symptom:Problem controlling atomizing pressure. Supplies power to the current to pressure solenoid. See Figure 1–33 and Refer to Table 1–11 for additional troubleshooting information. 1. Check for 24VDC input signal on terminals 7 and 8. If 24V is not present troubleshoot the P-200 I/O. If 24VDC is present go to Step 2. 2. Check for 18VDC output signal on terminals 1 and 2. If 18V is not present the barrier is defective . If the 18 VDC output signal is present trouble shoot the current to pressure solenoid
5
Pepperl+Fuchs
Symptom:Problem controlling atomizing pressure. Relays signal to the current to pressure transducer. See Figure 1–34 and Refer to Table 1–11 for additional troubleshooting information. 1. Check for 24VDC input signal on terminals 9 and 10. If 24VDC is not present troubleshoot the P-200 I/O. If 24VDC is present go to Step 3. 2. Check for 24VDC output signal on terminals 7 and 8. If 24V is not present check connection to purge control printed circuit board (A16B-1310-0601). If 24VDC is present go to Step 3. 3. Check for 18VDC output signal on terminals 1 and 2. If 18V is not present defective barrier. If 18 VDC signal is present transducer is defective.
1. OVERVIEW
1–53
MARO2P10203703E
Table 1–12. (Cont’d) Troubleshooting ISB
Manufacturer
Troubleshooting
6
Pepperl+Fuchs
Symptom:No flowmeter data, accuflow errors. See Figure 1–35 and Refer to Table 1–11 for additional troubleshooting information. 1. Check for 24VDC input signal on terminals 7 and 8. If 24VDC is not present troubleshoot controller. If 24VDC is present go to Step 2. 2. Check for 24VDC output signal on terminals 1 and 2. If 24VDC is not present the barrier is defective. If 24VDC is present go to Step 3. 3. Check for input signal on terminals 2 and 4. If input signal from the P-200 flow meter is not present troubleshoot the flow meter. If the input signal is present go to Step 4. 4. Check for output signal on terminals 7 and 8. If the signal is not present the barrier is defective. If the signal is present troubleshoot the P-200 I/O.
7
Pepperl+Fuchs
Symptom:Paint gun will not trigger. Paint process trigger one signal. See Figure 1–35 and Refer to Table 1–11 for additional troubleshooting information. 1. Check for 24VDC input signal on terminals 7 and 8. If 24V is not present troubleshoot the P-200 I/O. If the 24VDC is present go to Step 2. 2. Check for output signal on terminals 1 and 2. If the output signal is not present defective barrier. If the output signal is present trouble shoot the number one trigger.
8
Pepperl+Fuchs
Symptom:Paint gun #2 will not trigger. Paint process trigger two signal. See Figure 1–35 and Refer to Table 1–11 for additional troubleshooting information. 1. Check for 24VDC input signal on terminals 7 and 8. If 24V is not present troubleshoot the P-200 I/O. If the 24VDC is present go to Step 2. 2. Check for output signal on terminals 1 and 2. If the output signal is not present defective barrier. If the output signal is present trouble shoot the number two trigger.
1. OVERVIEW
1–54
MARO2P10203703E
Table 1–12. (Cont’d) Troubleshooting ISB
Manufacturer
Troubleshooting
9
Pepperl+Fuchs
Symptom: Opener “acquire” signal inoperative. See Figure 1–36 and Refer to Table 1–11 for additional information. Yellow LED magnet on opener acquired the door or hood. Red LED lead breakage indicator Green LED power is ON. 1. Check for green power ON LED. If LED is not ON go to Step 2. If LED is ON go to Step 3. 2. Check for 24VDC input between terminals 8 and 15, 11 and 15, 14 and 15. If 24VDC is not present at any one of the tested terminals troubleshoot the controller. If 24VDC is present go to Step 3. 3. Check for signal on terminals 1 and 3 .If signal is present barrier is defective. If signal is not present opener lead break switch may be out of adjustment or defective.
10
Pepperl+Fuchs
Symptom: No opener “bypass” signal in parked position. Robot and or opener are safely parked out of the path of the conveyor. Provides signal to conveyor system. Bypass circuits See Figure 1–36 and Refer to Table 1–11 for additional troubleshooting information. Yellow LED OFF : Problem in the hazard area (ex. proximity switch wires) go to Step 7. Green LED power indicator 1. Check for green power ON LED. If LED is not ON go to Step 2. If LED is ON go to Step 7. 2. Check input 120VAC to Deltron 24V power supply. If voltage is present go to Step 3. If voltage is not present troubleshoot 120 VAC from the conveyer. 3. Check output 24V from Deltron to OVP (EE-3112-600). If 24 VDC is present go to Step 4. If 24VDC is not present replace the power supply. 4. Check input 24V to OVP. If 24VDC is present go to Step 5. If 24VDC is not present replace wiring between the power supply and the OVP. 5. Check the output voltage from the OVP. If 24 VDC is present go to Step 6. If 24VDC is not present replace the OVP. 6. Check for 24 VDC between terminals 14 and 15 on the ISB. If 24 VDC is present the ISB is defective . If 24VDC is not present replace the wiring between the OVP and the ISB. 7. Check for signal on terminals 1 and 3 .If signal is present barrier is defective. If signal is not present opener proximity switch might be out of adjustment or defective.
1. OVERVIEW
1–55
1.20 BRAKE RELEASE (OPTION)
The brake release option adds (4) optional brake switches to selectively release the gravity and non-gravity axes of the P-200 robot. Refer to Procedure 6–1 . For circuit schematics and cable diagrams refer to Chapter 14 Openers and Options. WARNING Releasing the brakes could cause the robot to move. Provide support for the arm of the robot before releasing the brakes; otherwise, you could injure personnel or damage equipment. Figure 1–37. C Size R-J2 Controller With Optional Brake Release Switches
SYSTEM R–J2
P-200 AXES 1,4,5,7
P-200 AXIS 2
P-200 OPENER ALL AXIS 3 AXES
P-200BRAKE SELECT SWITCHES
P-200 AXES 1,4,5,7
P-200 AXIS 2
P-200 OPENER ALL AXIS 3 AXES
P-200 BRAKE SELECT SWITCHES
1. OVERVIEW
1–56
MARO2P10203703E
1.21 P-10 DOOR OPENER P-15 HOOD AND DECK OPENER (OPTIONS)
The P-10 opener is a three axis, electrically-driven door opener and the P-15 opener is a three axis, electrically-driven hood and deck opener. Refer to Chapter 14, “Openers and Options,” for schematics and diagrams.
Figure 1–38. P-10 Door opener and P-15 Hood and Deck Opener
Outer Arm
Inner Arm
Axis 3 Link
Riser (P-15 only) Base
Axis 2
P-10 End of Arm Tool Carriage Axis 1 Rail
P-15 End of Arm Tool
1. OVERVIEW
1–57
MARO2P10203703E
1.22 INTEGRAL PUMP CONTROL (OPTION)
The Integral Pump Control option is the FANUC Robotics integrated two component fluid delivery system which features metering pumps directly coupled to FANUC servomotors that are controlled by the FANUC R-J2 controller. This is a high performance fluid delivery system that accurately controls variable ratios and flow rates of two component materials. The P-200 robot and the R-J2 controller provide control for the color change sequence, fluid metering and fluid flow control operations. The paint process control enclosure provides the electro-pneumatic interface between the R-J2 controller and the spray applicator. The operator interface is provided via the R-J2 teach pendant. See Figure 1–39. For circuit schematics and cable diagrams refer to Chapter 14 Openers and Options. Two different styles of the Integral Pump Control are available. The Top hat model which is mounted atop the outer arm and the Side Saddle model which is mounted on the rail next to the robot. See Figure 1–40. The integrated two component fluid delivery system offers the following features and benefits: Enhanced trigger response time Common fluid control and robot motion control architecture Gear pump and servo motor integral to P-200 robot mechanical unit Reduced color change time and paint waste compared to conventional wall mounted two component systems Accurate flow and ratio control through precise pump control The integrated two component fluid delivery system consists of the following major components: Two mechanical coupled gear pump assemblies Two FANUC servo controlled motors One FANUC servo amplifier Four pressure transducers One mixing block assembly One trigger assembly One purged enclosure One by-pass manifold One Sames Moduflow valve stack assembly
1. OVERVIEW
1–58
MARO2P10203703E
Figure 1–39. Integral Pump Control Component Locator Diagram
Purge Enclosure
View From Front of Arm By-Pass Block
OUT
Mix Valves
IN
To Gun Axis 3 Trigger Valve Ass’y Mix Tube
Motor and Gear Reducer Assy. Inlet Regulators
IN PR1
Pump Outlet Transducers Gear Pump #1
BP 1 OUT REG. 1 0–100 P.S.I.
OUT
0–500 P.S.I. IN 0–500 P.S.I. IN
IN
0–100 P.S.I. REG. 2
OUT
IN
#1 FAR SIDE
PR2
BP 2
#2
FAR SIDE
OUT
Pump Inlet Transducers
OUT
Gear Pump #2
1. OVERVIEW
1–59
MARO2P10203703E
Figure 1–40. Top Hat and Side Saddle Mounted Models
Top Hat Mounted
Side Saddle Mounted
Page2
2 DIAGNOSTIC SCREENS
MARO2P10203703E
2
Topics In This Chapter
DIAGNOSTIC SCREENS 2–1
Page
Safety Signals
The safety signal screen displays the status of safety-related control signals coming into the controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3
Version ID Status
The STATUS Version ID screen displays information specific to your controller. 2–5
Memory Status
The STATUS Memory screen displays information about controller memory. . . . 2–8
Position Status
The POSITION screen displays positional information in joint angles or Cartesian coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–10
Axis Status
The axis status screen displays information for each axis. . . . . . . . . . . . . . . . . . . 2–12
Alarm Log
The Alarm Log displays a list of the 100 most recent alarms. . . . . . . . . . . . . . . . . 2–16
I/O Status
You can view the status of an I/O signal by displaying a status screen. . . . . . . . . 2–18
Various built-in diagnostic screens reveal important information regarding the status of the controller. This section describes each of these screens in detail. The diagnostic screen section provides coverage of the P-200. Figure 2–1 displays the teach pendant that displays the Status Screens.
2. DIAGNOSTIC SCREENS
2–2
MARO2P10203703E
Figure 2–1. Teach Pendant
FAULT HOLD STEP BUSY RUNNING MAN ENBL PROD MODE JOINT XYZ TOOL
OFF
ON
MAN FCTNS MOVE MENU
QUEUE
APPL INST
POSN
ALARMS
STATUS
2. DIAGNOSTIC SCREENS
2–3
MARO2P10203703E
2.1 SAFETY SIGNAL STATUS
The safety signal screen displays the status of safety-related control signals coming into the controller. The safety signal screen displays the current state (TRUE or FALSE) of each safety signal. You cannot change the condition of the safety signal using this screen. Table 2–1 lists and describes each safety signal. Use Procedure 2–1 to display safety signal status. Table 2–1.
SAFETY SIGNAL
Safety Signals DESCRIPTION
SOP E-Stop
Indicates whether the EMERGENCY STOP button on the operator panel has been pressed. The status is TRUE if the operator panel EMERGENCY STOP button has been pressed.
TP E-Stop
Indicates whether the EMERGENCY STOP button on the teach pendant has been pressed. The status is TRUE if the teach pendant EMERGENCY STOP button has been pressed.
Ext E-Stop
Indicates whether an external emergency exists. The status is TRUE if the external emergency stop contacts are open on the emergency control (EMG) printed circuit board and the following conditions exist: SOP E-STOP is FALSE TP E-Stop is FALSE Hand Broken is FALSE Overtravel is FALSE If any one of these conditions is TRUE, Ext E-Stop is displayed as FALSE even though these contacts could be open.
Fence Open
Indicates whether the safety fence switch is open. The status is TRUE if the safety fence contacts are open on the emergency control (EMG) printed circuit board.
TP Deadman
Indicates when either the left or right teach pendant DEADMAN switch is pressed. The status is TRUE if either DEADMAN switch is pressed. When released with teach pendant enabled, this alarm shuts off servo power.
TP Enable
Indicates whether the teach pendant ON/OFF switch is ON. The status is TRUE when the teach pendant ON/OFF switch is ON.
Hand Broken
Indicates whether the safety joint switch in the robot hand has been tripped and the hand might be damaged. The status is TRUE when the safety joint switch has been tripped. This turns off the hand broken signal (*HBK) to the axis control printed circuit board. This alarm shuts off servo power.
Overtravel
Indicates whether the robot has moved beyond its overtravel limits. The status is TRUE when the robot has moved beyond its overtravel limits tripping the overtravel switch. This turns off (*ROT) to the axis control printed circuit board. This alarm shuts off servo power.
Low Air Alarm
Indicates whether the air pressure has decreased below the acceptable limit. Low Air Alarm is usually connected to an air pressure sensing device. The status is TRUE when the air pressure is below the acceptable limit. This opens the pressure switch which turns off (*PPABN) to the axis control printed circuit board. You must set the $PPABN_ENBL system variable to TRUE to use this signal. This alarm shuts off servo power.
2. DIAGNOSTIC SCREENS
2–4
MARO2P10203703E
Procedure 2–1 Step
Displaying Safety Signal Status 1 Press MENUS. 2 Select STATUS. 3 Press F1, [TYPE]. 4 Select Safety Signal. You will see a screen similar to the following. STATUS Safety 1 2 3 4 5 6 7 8 9
SIGNAL NAME SOP E–Stop: E–Stop SOP TP E–Stop: Ext E–Stop: Fence Open: TP Deadman: TP Enable: Hand Broken: Overtravel: Low Air Alarm
[ TYPE ]
JOINT STATUS TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
10 % 1/10
2. DIAGNOSTIC SCREENS
2–5
MARO2P10203703E
2.2
The STATUS Version ID screen displays information specific to your controller. Use this information when you call the FANUC Robotics Hotline if a problem occurs with your controller. You cannot change the information displayed on this screen. Table 2–2 lists and describes the version identification status information.
VERSION IDENTIFICATION STATUS
Table 2–2.
Version Identification Status Items DESCRIPTION
ITEM SOFTWARE
Lists the software item loaded.
ID
Lists the version number of the software item loaded.
Use Procedure 2–2 to display version identification status. Procedure 2–2 Step
Displaying the Version Identification Status 1 Press STATUS. 2 Press F1, [TYPE]. 3 Select Version ID. You will see a screen similar to the following. STATUS Version ID
1 1: 2: 3: 4: 5: 6: 7: 8: 9: 10:
SOFTWARE: PaintTool P-200 Robot Servo Code Motion Parameter Std Operating System PaintTool Softparts
JOINT
10 % 1/24
ID: V4.30 V4.30 JB08.03
Core Built-ins Paint Built-ins User Frame
11: Background Editing 12: PLC I/O (A-B/GENIUS) 13: Core PaintTool 14: Paint Tool Tracking 15: Color Change V4.30 16: MOTET Interface V4.30 17: KAREL Command Lang V4.30 18: 19: 20: 21: 22: 23: 24: [ TYPE ] SOFTWARE MOT_ID MOT_INF
SER_PAR
2. DIAGNOSTIC SCREENS
2–6
MARO2P10203703E
4 Press the key that corresponds to the version ID status screen you want to display: To display software version information, press F2, SOFTWARE. To display motor types for each axis, press F3, MOT_ID. You will see a screen similar to the following.
STATUS Version IDs 1: 2: 3: 4: 5: 6: 7: 8: 9: 10:
GRP: 1 1 1 1 1 1 * * * *
AXIS: 1 2 3 4 5 6 * * * *
[ TYPE ] SOFTWARE
JOINT MOTOR ID: ACA3/3000 40A ACA3/3000 40A ACA1/3000 12A ACA0.5B/3000 12A ACA0.5B/3000 12A ACA0.5B/3000 12A Uninitialized Uninitialized Uninitialized Uninitialized MOT_ID
MOT_INF
10 % 1/16
SER_PAR
To display the motor information for each axis, press F4, MOT_INF. You will see a screen similar to the following. STATUS Version IDs GRP: AXIS: 1: 1 1 2: 1 2 3: 1 3 4: 1 4 5: 1 5 6: 1 6 7: * * 8: * * 9: * * 10: * * [ TYPE ] SOFTWARE
JOINT 10 % MOTOR INFO: 1/16 H1 DSP1–L H2 DSP1–M H3 DSP2–L H4 DSP2–M H5 DSP3–L H6 DSP3–M Uninitialized Uninitialized Uninitialized Uninitialized MOT_ID
MOT_INF
SER_PAR
To display the servo parameters for each axis, press F5, SER_PAR. You will see a screen similar to the following.
2. DIAGNOSTIC SCREENS
2–7
MARO2P10203703E
STATUS Version ID GRP: AXIS: 1 1: 1 1 2: 1 2 3: 1 3 4: 1 4 5: 1 5 6: 1 6 7: * * 8: * * 9: * * 10: * * [ TYPE ] SOFTWARE
E1 JOINT SERVO PARAM ID: PB08.02 PB08.02 PB08.02 PB08.02 PB08.02 PB08.02 Uninitialized Uninitialized Uninitialized Uninitialized MOT_ID
MOT_INF
10 % 1/16
SER_PAR
2. DIAGNOSTIC SCREENS
2–8
MARO2P10203703E
2.3
The STATUS Memory screen displays information about controller memory. Table 2–3 lists and describes each memory status item.
MEMORY STATUS
Use Procedure 2–3 to display memory status. Table 2–3. Memory Status MEMORY STATUS
DESCRIPTION
Pools
Indicates the amount of memory for TPP contains teach pendant programs PERM contains system variables and some KAREL variables SYSTEM contains the operating system IMAGE contains KAREL programs and options TEMP contains temporary memory used for system operations
Hardware
Indicates the total amount of memory for FROM Flash ROM DRAM D-RAM CMOS CMOS RAM
Procedure 2–3 Step
Displaying Memory Status 1 Press STATUS. 2 Press F1, [TYPE]. 3 Select Memory. You will see a screen similar to the following. STATUS Memory
E1
JOINT
10 %
Total Available Pools ----------------------TPP CMOS 600.0 KB 554.4 KB PERM CMOS 999.8 KB 275.8 KB TEMP DRAM 5054.9 KB 4340.4 KB Description: TPP: Used by .TP, .MR, .JB, .PR PERM: Used by .VR, RD:, Options TEMP: USed by .PC, .VR, Options [ TYPE ] DETAIL
HELP
2. DIAGNOSTIC SCREENS
2–9
MARO2P10203703E
4 To display the DETAIL screen, press F2, DETAIL. You will see a screen similar to the following. STATUS Memory
E1
JOINT
10 %
Total Free Lrgst Free Pools–––––––––––––––––––––––––––––––––––––– TPP 1200.0 KB 1181.8 KB 1181.8 KB PERM 2023.9 KB 564.7 KB 564.6 KB SYSTEM 1010.4 KB 7.1 KB 7.1 KB IMAGE 2303.9 KB 358.8 KB 358.8 KB TEMP 3774.9 KB 2954.5 KB 2943.3 KB Hardware––––––––––––––––––––––––––––––––––– FROM 6.0 MB DRAM 8.0 MB CMOS 2.0 MB [ TYPE ] BASIC
5 To display the first screen, press F2, BASIC.
HELP
2. DIAGNOSTIC SCREENS
2–10
MARO2P10203703E
2.4
The POSITION screen displays positional information in joint angles or Cartesian coordinates. The positional information on this screen is updated continuously when the robot moves. You cannot change the displayed information using this screen.
POSITION STATUS
NOTE E1, E2, and E3 indicate extended axis positional information if extended axes are installed in your system. Joint
The joint screen displays positional information in degrees for each robot axis. Tool indicates the number of the active tool frame.
User
The user screen displays positional information in Cartesian coordinates based on the user frame. Tool indicates the number of the active tool frame. Frame indicates the number of the active user frame.
World
The world screen displays positional information in Cartesian coordinates based on the world frame. Tool indicates the number of the active tool frame. Use Procedure 2–4 to display position status.
Procedure 2–4
Step
Displaying Position Status
1 Press POSN. 2 Select the appropriate coordinate system. For joint, press F2, JNT. You will see a screen similar to the following.
POSITION Joint
J1: J4: E1:
E1
[ TYPE ]
.001 J2: –.000 J5: .000 E2:
JNT
JOINT
10.028 J3: 34.998 J6: .001 E3:
USER
10 % Tool: 1
–35.025 .001 .001
WORLD
NOTE E1:, E2:, and E3 are displayed only if you have extended axes.
2. DIAGNOSTIC SCREENS
2–11
MARO2P10203703E
For user, press F3, USER. You will see a screen similar to the following.
POSITION User
E1
JOINT Frame: 0
Configuration: F, 0, 0, 0 x: 1906.256 y: .041 w: 178.752 p: –89.963 E1: .001 E2: .001
[ TYPE ]
JNT
10 % Tool: 1
z: 361.121 r: 1.249 E3: .001
USER
WORLD
For world, press F4, WORLD. You will see a screen similar to the following.
POSITION World
E1
Configuration: F, 0, 0, 0 x: 1906.256 y: .041 w: 178.752 p: –89.963
[ TYPE ]
JNT
USER
WORLD
z: r:
10 % Tool: 1
361.121 1.249
WORLD
2. DIAGNOSTIC SCREENS
2–12
MARO2P10203703E
2.5 AXIS STATUS
The axis status screen displays information for each axis. This information is continually updated. Use this information when you call the FANUC Robotics Hotline if a problem occurs with your robot. This screen displays: Status 1 Status 2 Pulse Monitor Tracking Disturbance Torque The Axis Status Pulse screen displays information about axis motion. Table 2–4 lists and describes each kind of information displayed on this screen. Use Procedure 2–5 to display the axis status pulse screen. Table 2–4.
ITEM
Axis Status Pulse Screen Items DESCRIPTION
Motion Command
Displays the desired value of the Serial Pulse Coder (SPC) when the robot gets to the position commanded by the controller.
Machine Pulse
Shows the actual SPC count as read by the controller.
Position Error
Displays the difference between the commanded SPC count versus the actual SPC count.
You cannot change any information on this screen except for the group number. Group number only applies if you have multiple groups; otherwise, it remains as 1.
2. DIAGNOSTIC SCREENS
2–13
MARO2P10203703E
Procedure 2–5 Step
Displaying the Axis Status Pulse Screen 1 Press STATUS. 2 Press F1, [TYPE]. 3 Select Axis. 4 Display the status screen you want: For Status 1, press F2, STATUS1. STATUS
J1: J2: J3: J4: J5: J6:
JOINT
Flag Bits 1/2 0000000000001011 0000000000001011 0000000000001011 0000000000001011 0000000000001011 0000000000001011
[ TYPE ]
STATUS1
10 %
GRP [ 1] History 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000
STATUS2
PULSE
GRP# >
For Status 2, press F3, STATUS2. STATUS
J1: J2: J3: J4: J5: J6:
JOINT
Alarm Status 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000
[ TYPE ]
STATUS1
10 %
GRP [ 1] History 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000
STATUS2
For Pulse, press F4, PULSE.
PULSE
GRP# >
2. DIAGNOSTIC SCREENS
2–14
MARO2P10203703E
STATUS
J1: J1: J2: J3: J4: J5: J6:
E1
Position Error 0 0 0 0 0 0
[ TYPE ]
STATUS1
JOINT
10 %
GRP [ 1] Motion Command 0 0 0 0 0 0
Machine Pulse 00000000 00000000 00000000 00000000 00000000 00000000
STATUS2
PULSE
[UTIL] >
For Monitor, press MORE, >, and then press F2, MONITOR. STATUS
JOINT
10 %
GRP [ 1] J1: J1: J2: J3: J4: J5: J6:
Torque Monitor Ave. / Max. 0.000 0.000 0.000 0.000 0.000 0.000
[ TYPE ]
Inpos OT VRDY 1 0 ON 1 0 ON 1 0 ON 1 0 ON 1 0 ON 1 0 ON
0.000 0.000 0.000 0.000 0.000 0.000
MONITOR TRACKING DISTURB
GRP# >
For Tracking, press MORE, >, and then press F3, TRACKING. For Disturbance Torque, press MORE, >, and then press F4, DISTURB. STATUS
JOINT
10 %
GRP [ 1] Tracking Status J1: Flag Bits 1 P1: 0000000000000000 P2: 0000000000000000
P1: P2:
Alarm Status 000000000000 000000000000
[ TYPE ]
Flag Bits 2 0000000000000000 0000000000000000 Counter Value 0 0
MONITOR TRACKING DISTURB
GRP# >
2. DIAGNOSTIC SCREENS
2–15
MARO2P10203703E
5 To change the group number, press F5, GRP#. STATUS
JOINT
Disturbance Torque Current J1: –46080.000 / J2: –46080.000 / J3: –46080.000 / J4: –23040.000 / J5: –23040.000 / J6: –23040.000 /
[ TYPE ]
Max. 0.000 0.000 0.000 0.000 0.000 0.000
/ / / / / /
10 %
GRP [ 1] Min. –91802.813 –91802.813 –91802.813 –45901.406 –45901.406 –45901.406
MONITOR TRACKING DISTURB
GRP# >
2. DIAGNOSTIC SCREENS
2–16
2.6 ALARM LOG
MARO2P10203703E
The Alarm Log displays a list of the 100 most recent alarms. Figure 2–2 shows an example of the Alarm Log. Figure 2–2. Alarm Log
1 2 3
SRVO–049 OHAL 1 alarm (Group=1 Axis=6) PROGRAM LINE 4 Alarm JOINT 10% 1/100 1 SRVO–049 OHAL 1 alarm (Group:1 Axis:6) 2 SRVO–042 MCAL 1 Alarm (Group:1 Axis:6) 3 R E S E T
[ TYPE ]
CLEAR
4
HELP
The areas of the Alarm Log are as follows: 1. This is the most recent alarm message. This message will be displayed in this line regardless of the screen you choose. 2. Indicates the program name and line number of program last having been acted upon. 3. Lists all of the alarm messages, up to 100, with the most recent alarm on the top of the list. When the RESET key is pressed, a RESET is logged on the alarm message screen. 4. Indicates the line number the cursor is on in proportion to how many lines numbers available. Use Procedure 2–6 to display the Alarm Log.
2. DIAGNOSTIC SCREENS
2–17
MARO2P10203703E
Procedure 2–6
Condition Step
Displaying the Alarm Log An error has occurred. 1 Press ALARMS. 2 Press F1, [TYPE]. 3 Select Alarm Log. The alarm log will be displayed. This lists all errors. See the following screen for an example. SRVO–002 Teach pendant emergency stop TEST1 LINE 15 ABORTED Alarm WORLD 100 % 1/100 1 SRVO–002 Teach pendant emergency sto 2 SRVO–001 Operator panel emergency st 3 R E S E T 4 SRVO–029 Robot calibrated (Group:1) 5 SRVO–001 Operator panel emergency st 6 SRVO–012 Power fail recovery 7 INTP–127 Power fail detected 8 SRVO–047 LVAL alarm (Group:1 Axis:5) 9 SRVO–047 LVAL alarm (Group:1 Axis:4) 10 SRVO–002 Teach pendant emergency sto [ TYPE ]
CLEAR
HELP
The most recent error is number 1. To display the complete message for a message that does not fit on the screen, press and hold the SHIFT key and press the right arrow key. 4 To display the motion log, which lists only motion-related errors, press F1, [TYPE], and select Motion Log. 5 To display the system log, which displays only system errors, press F1, [TYPE], and select System Log. 6 To display the application log, which displays only application-specific errors, press F1, [TYPE], and select Appl Log. 7 To display more information about an error, move the cursor to the error and press F5, HELP. The error help screen displays information specific to the error you selected. When you are finished viewing the information, press PREV. 8 To remove all of the error messages displayed on the screen, press F4, CLEAR.
2. DIAGNOSTIC SCREENS
2–18
MARO2P10203703E
2.7
You can view the status of an I/O signal by displaying a status screen. Use Procedure 2–7 to display I/O status.
I/O STATUS Procedure 2–7 Step
Displaying I/O Status 1 Press MENUS. 2 Select I/O. 3 Press F1, [TYPE]. 4 Select the kind of I/O for which you want to display status: spot welding, digital, analog, group, robot, UOP, or SOP. For digital outputs for example, you will see a screen similar to the following. I/O Digital Out # SIM STATUS DO[ 1] UU OFF [ DO[ 2] U ON [ DO[ 3] U OFF [ DO[ 4] U OFF [ DO[ 5] U OFF [ DO[ 6] U ON [ DO[ 7] U OFF [ DO[ 8] U OFF [ DO[ 9] U OFF [ DO[ 10] U OFF [ [ TYPE ]
CONFIG
IN/OUT
WORLD
10% ] ] ] ] ] ] ] ] ] ]
SIMULATE UNSIM
5 To change the display between inputs and outputs, press F3, IN/OUT. 6 To view the I/O configuration of the signal, press F2, CONFIG.
Index
3 LIGHTS, INDICATORS, AND LEDS
MARO2P10203703E
3
LIGHTS, INDICATORS, AND LEDS 3–1
Topics In This Chapter
Page
Teach Pendant Diagnostic Indicators
The teach pendant has several indicators to assist you in determining controller status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2
Operator Panel and Cabinet Lights
The operator panel has several LEDs to assist you in determining the status of the controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–3
Servo On Lights
The controller cabinet has a single Servo On light on the right-hand side of the cabinet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4
Circuit Boards Diagnostic LEDs
The R-J2 controller contains several diagnostic LEDs within the controller. . . . . Power supply unit (PSU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Main CPU board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sub CPU board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Modular I/O (Model A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Servo Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Emergency Stop Control Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . Module Assembly # EE–3044–401 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Contact Signal Transducer (IBRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R-J2 Ethernet LEDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–5 3–7 3–8 3–10 3–13 3–14 3–16 3–18 3–19 3–20
This chapter describes the lights, indicators and LEDs you can use for diagnostics.
3. LIGHTS, INDICATORS, AND LEDS
3–2
MARO2P10203703E
3.1 TEACH PENDANT DIAGNOSTIC INDICATORS
The teach pendant has several indicators to assist you in determining controller status. Figure 3–1 shows the teach pendant indicators and Table 3–1 lists and describes the teach pendant indicators. The indicators whose labels are blank vary depending on the application. Refer to the Systems PaintTool Setup and Operations Manual for information on indicators. Figure 3–1. Teach Pendant Indicators
ÎÎ ÎÎ ÎÎ ÎÎ ÎÎ ÎÎ ÎÎ ÎÎ
Indicators
FAULT HOLD STEP BUSY RUNNING MAN ENBL PROD MODE JOINT XYZ TOOL
OFF
Table 3–1.
ON
Teach Pendant Status Indicators
INDICATOR
DESCRIPTION
FAULT
Indicates that a fault condition has occurred.
HOLD
Indicates that the robot is in a hold condition. HOLD is not on continuously during a hold condition.
STEP
Indicates that the robot is in step mode.
BUSY
Indicates that the controller is processing information.
RUNNING
Indicates that a program is being executed.
MAN ENBL
Indicates that the robot is in MANUAL MODE.
PROD MODE
Indicates that the robot is in PRODUCTION MODE.
JOINT
Indicates that the current jog coordinate system is JOINT.
XYZ
Indicates that the current jog coordinate system is CARTESIAN (JOG FRAME OR WORLD).
TOOL
Indicates that the current jog coordinate system is TOOL.
3. LIGHTS, INDICATORS, AND LEDS
3–3
MARO2P10203703E
3.2 OPERATOR PANEL AND CABINET LIGHTS
The operator panel has several LEDs to assist you in determining the status of the controller. Figure 3–2 shows the operator panel LEDs for the P-200 robot. Table 3–2 describes the indicator functions. Figure 3–2. Operator Panel LEDS
ÎÎ ÎÎ ÎÎ ÎÎ ÎÎ BATTERY ALARM
CYCLE START
ON
ENABLED
OFF
HOLD
TEACH PENDANT FAULT h m
FAULT RESET
ÎÎ Î ÏÏ ÏÏ ÎÎ ÎÎ ÏÏ ÏÏ
PURGE COMPLETE
REMOTE
PURGE ENABLE
REMOTE
LOCAL
PURGE FAULT
H
BRAKE ENABLE ON
OFF
PORT
HOUR METER METER HOUR
h
h
Table 3–2. INDICATOR BATTERY ALARM TEACH PENDANT ENABLED FAULT REMOTE
PURGE COMPLETE
ÎÎ ÎÎ
H
EMERGENCY STOP
Standard Operator Panel Status Indicators
DESCRIPTION Indicates that the backup battery voltage is low. Replace the battery. Refer to Procedure 9–1 . Indicates that the teach pendant is enabled and has motion control. Indicates a fault condition has occurred. Indicates that robot motion can only be started by a remote device (PLC or other remote device). The operator panel cycle start pushbutton cannot cause robot motion. This is determined by the position of the REMOTE/LOCAL keyswitch. Identifies that the robot cavities for the P-200 motor cavity containment cases have been purged and are presently at the prescribed pressure as outlined in the FANUC Robotics SYSTEM R-J2 Controller P-200 and In Booth Rail Mechanical Unit Parts and Service Manuals . This LED must be illuminated in order to turn power on to the R-J2 controller.
PURGE FAULT PURGE ENABLE PUSHBUTTON
Indicates a fault exists with the purge system. Indicates that the purge cycle has started. You can now release the pushbutton if you are holding it. POWER ON PUSHBUTTON LED Indicates that the robot is powered on. CYCLE START PUSHBUTTON LED Indicates that the robot is currently running a program HOLD Indicates that the robot is in a software hold condition.
3. LIGHTS, INDICATORS, AND LEDS
3–4
MARO2P10203703E
3.3 SERVO ON LIGHT
The controller cabinet has a single Servo On light on the right-hand side of the cabinet. See Figure 3–3 for light location. Refer to Table 3–3 for a description of the Servo On light.
Figure 3–3. Servo Amp Light
Î ÎÎ Î Î ÎÎ
SERVO ON Light
ÎÎ ÎÎÎ ÎÎ Î ÎÎ Î Î ÎÎ ÎÎ
Table 3–3. INDICATOR SERVO ON
Servo Amp On Description
DESCRIPTION Indicates that power is available to the servo amplifiers.
3. LIGHTS, INDICATORS, AND LEDS
3–5
MARO2P10203703E
3.4 CIRCUIT BOARD DIAGNOSTIC LEDS
The R-J2 controller contains several diagnostic LEDs within the controller. They are on the circuit boards that plug into the backplane, on the servo amplifiers, and on the Modular I/O (Model A) and Distributed I/O (Model B) units as well as the Intrinsic Barrier Relay Control (IBRC) Purge Control Unit. Figure 3–4 shows an overview of the circuit board diagnostic LEDs. Refer to the following sections for descriptions of each circuit board diagnostic LED: Power supply unit (PSU) Main CPU board Sub CPU board Modular I/O (Model A) Servo amplifier Emergency Stop Control Printed Circuit Board Module Assembly #EE-3044-401 Contact Signal Transducer (IBRC) ABRIO PCB (optional)
3. LIGHTS, INDICATORS, AND LEDS
3–6
MARO2P10203703E
Figure 3–4. Diagnostic LEDs
Main CPU LEDs Section 3.4.2
IBRC Section 3.4.6
CH1 CH2 CH3 CH4 CH5 CH6
PSU LEDs Section 3.4.1
IBRC
MODEL A INTERFACE MODULE Section 3.4.3
A1234567 B1234567
I/O MODULE Section 3.4.3
Interface I/O Module Module
SERVO AMPLIFIER LED Section 3.4.4
Servo Amplifier
EMG Stop Control PCB Section 3.4.5
Main CPU
PSU
3. LIGHTS, INDICATORS, AND LEDS
3–7
MARO2P10203703E
3.4.1
Figure 3–5 shows each power supply unit (PSU) diagnostic LED.
Power Supply Unit (PSU) Diagnostic LEDs
Figure 3–5. Power Supply Unit (PSU) Diagnostic LEDs
The PIL LED lights if 210 VAC nominal is being supplied to the PSU from the Transformer (circuit breaker is on), if Fuse F1 is not blown, if 24VDC Aux is supplied, and the power supply internal circuitry is in good condition.
PIL LED ALM LED The ALM LED will light if one of the following conditions exist: – Bad DC Power Supply – Alarm received from the remote device – Fuse F3 on the Power Supply unit is blown
3. LIGHTS, INDICATORS, AND LEDS
3–8
3.4.2 Main CPU Board Diagnostic LEDs
MARO2P10203703E
The Main CPU printed circuit board alarm LEDs are shown in Figure 3–6. Table 3–4 provides information for troubleshooting problems. Figure 3–6. Main CPU Board Diagnostic LEDs
3. LIGHTS, INDICATORS, AND LEDS
3–9
MARO2P10203703E
Table 3–4. 1
2
Troubleshooting Main CPU Board Diagnostic LEDs
Remarks
LEDs 3
4
STATUS ALARM
Procedure
Parity alarm on RAM in the Main CPU.
1. Restart the controller. 2. Reload Software. 3. Replace the Main CPU.
1
2
3
4
STATUS ALARM
The battery voltage that backs up the Main CPU CMOS RAM memory is low.
1. Get a replacement battery. 2. Turn off controller power and lock out the controller. 3. Replace the battery. The controller will retain memory for at least a half hour between the time the controller is turned off and the new battery is installed. WARNING: Lethal voltage is present in the controller WHENEVER IT IS CONNECTED to a power source. Be extremely careful to avoid electrical shock. 1. Restart the controller.
1
2
3
4
Non-maskable interrupt occurred in 2. Reload software. the ABC chip on the 3. Replace the Main CPU. Main CPU Board.
1
2
3
4
Servo alarm occurred on the Main CPU Board.
STATUS ALARM
STATUS ALARM
1. Restart the controller. 2. Reload software. 3. Replace the Main CPU.
1
2
3
4
1
2
3
4
STATUS ALARM
STATUS ALARM
Non-maskable 1. Restart the controller. interrupt occurred in 2. Reload software. the SLC2 chip on 3. Replace the Main CPU. the Main CPU Board SYS FAIL Signal occurred
1. Restart the controller. 2. Reload software. 3. Replace the Main CPU.
1
2
3
4
Normal Status
Controller should be operational.
STATUS ALARM
= OFF
= ON
NOTE To save time during board replacement, preload software on a spare main CPU board first. Refer to the appropriate software installation manual specific to your software for software loading information.
CAUTION To prevent software loss in the CMOS RAM module of the removed board, be sure a battery backup is attached to the main CPU before the board is removed from the controller.
3. LIGHTS, INDICATORS, AND LEDS
3–10
3.4.3 Sub CPU Board Diagnostic LEDs
MARO2P10203703E
The Sub CPU printed circuit board alarm LEDs are shown in Figure 3–7. Table 3–5 provides information for troubleshooting problems. Figure 3–7. Sub CPU Board Diagnostic LEDs
RISC-B
STATUS ALARM
LV ALM F21 5A
5.0 A
3. LIGHTS, INDICATORS, AND LEDS
3–11
MARO2P10203703E
Table 3–5.
Troubleshooting Sub CPU Board STATUS LEDs (Green) DESCRIPTION
LEDs 1
2
3
4
Power-off
1
2
3
4
Power on
1
2
3
4
SUBCPU start up
1
2
3
4
DRAM test OK
1
2
3
4
Software loading complete. Operating system start.
1
2
3
4
Software internal checking. (Kernel software initialization complete)
STATUS ALARM
STATUS ALARM
STATUS ALARM
STATUS ALARM
STATUS ALARM
STATUS ALARM
1
2
3
4
Software internal checking. (Task scheduling start)
1
2
3
4
Software internal checking. (Operating system initialization start)
1
2
3
4
Software internal checking. (Operating system initialization end)
1
2
3
4
Software internal checking. (INIT task initialization process start)
1
2
3
4
Software internal checking. (System work area initialization)
1
2
3
4
Software internal checking. (Non-volatile memory initialization)
1
2
3
4
Software internal checking. (Non-volatile memory recover)
1
2
3
4
Software internal checking. (Create system tasks)
STATUS ALARM
STATUS ALARM
STATUS ALARM
STATUS ALARM
STATUS ALARM
STATUS ALARM
STATUS ALARM
STATUS ALARM
3. LIGHTS, INDICATORS, AND LEDS
3–12
MARO2P10203703E
Table 3–5. (Cont’d) Troubleshooting Sub CPU Board STATUS LEDs (Green) LEDs
DESCRIPTION
1
2
3
4
Software internal checking. (Create system tasks)
1
2
3
4
Software internal checking. (Task creation complete)
1
2
3
4
Software internal checking. ((INIT task initialization process complete)
STATUS ALARM
STATUS ALARM
STATUS ALARM
= OFF Table 3–6.
Troubleshooting Sub CPU Board ALARM LEDs (Red) Procedure
LEDs 1
2
= ON
3
4
The Sub-CPU is not started.
STATUS ALARM
1
2
3
4
A parity alarm occured in the SRAM.
1
2
3
4
A parity alarm occured in the DRAM on the Sub-CPU board
STATUS ALARM
STATUS ALARM
= OFF Table 3–7.
= ON
Troubleshooting Sub CPU Board ALARM LEDs (Red) Procedure
LEDs
The output voltage of the 3.3V power supply exceeded the specified range. LV ALM
(Red)
= ON NOTE To save time during board replacement, preload software on a spare sub CPU board first. Refer to the appropriate software installation manual specific to your software for software loading information.
3. LIGHTS, INDICATORS, AND LEDS
3–13
MARO2P10203703E
3.4.4 Modular (Model A) I/O LEDs
The LEDs associated with module I/O are on the interface module printed circuit board and on each I/O module. Figure 3–8 shows the modular I/O LEDs. Table 3–8 describes the I/O LEDs. Figure 3–8. Modular I/O LEDs
LEDS PWR
LINK
A0 1 2 3 4 5 6 7
BAI
LEDS
BAO
B0 1 2 3 4 5 6 7
AIF0IA
JD1B
JD1A
CP32
JD2
INTERFACE MODULE
Table 3–8.
I/O MODULE
Modular I/O LEDs
LED PWR Link
Location Interface module Interface module
BA1
Interface module
BA0
Interface module
A01234567 B01234567
I/O Module
Description ON: The interface module is supplied with 24 VDC power. ON: The I/O Link is operating properly. Normally, this LED lights several seconds after the power is turned on. These LEDs indicate that a fault has occurred in the modular I/O system.
Indicates if the input or output is on.
3. LIGHTS, INDICATORS, AND LEDS
3–14
MARO2P10203703E
3.4.5 Servo Amplifier Diagnostic LED (7-Segment Display)
Figure 3–9 shows the servo amplifier seven-segment LED and Table 3–9 shows and describes the LED displays.
Figure 3–9. Servo Amplifier LED
4
α
3 2 1 ON
LED Circuit breaker
DIP SWITCH
3. LIGHTS, INDICATORS, AND LEDS
3–15
MARO2P10203703E
Table 3–9. Name
Servo Amplifier LED Functions
Indication
Over–voltage alarm (HV)
Description This alarm occurs if the DC voltage of the main circuit power supply is abnormally high. This alarm occurs if the control power voltage is abnormally low.
Low control power voltage alarm (LV) Low DC link voltage alarm (LVDC) Regenerative discharge control circuit failure alarm (DCSW)
This alarm occurs if the DC voltage of the main circuit power supply is abnormally low or the circuit breaker trips. This alarm occurs if: –The short-time regenerative discharge energy is too high –The regenerative discharge circuit is abnormal.
Over-regenerative discharge alarm (DCOH)
This alarm occurs if: –The average regenerative discharge energy is too high (too frequent acceleration/deceleration). –The transformer overheats.
Dynamic brake circuit failure alarm (DBRLY) L-axis over-current alarm (HCL) M-axis over-current alarm (HCM) L- and M- axis over current alarm (HCLM) L-Axis IPM alarm (IPML)
This alarm occurs if the relay contacts of the dynamic brake welds together.
M-Axis IPM alarm (IPMM) L- and M- axis IPM alarm (IPMLM) Circuit breaker
This alarm is detected by the IPM (intelligent power module) of the M-axis.*
This alarm occurs if an abnormally high current flows in the L-axis motor. This alarm occurs if an abnormally high current flows in the M-axis motor. This alarm occurs if an abnormally high current flows in the L- and M axis-motors This alarm is detected by the IPM (intelligent power module) of the L-axis.*
Trips
The MCC contactor in the servo amplifier is turned on. The amplifier is armed and can drive the motor. The circuit breaker trips if an abnormally high current (exceeding the working current of the circuit breaker) flows through it. **
Amplifier not ready
Indicates that the servo amplifier is not ready to drive the motor.
Amplifier ready
Indicates that the servo amplifier is ready to drive the motor
*NOTE The IPM can detect the following alarms. Over-current Over-heat Drop in IPM control power voltage **NOTE When the control power is separated from the main power, if the circuit breaker for the servo amplifier is off, low DC link voltage alarm (LVDC) is detected.
3. LIGHTS, INDICATORS, AND LEDS
3–16
3.4.6 Emergency Stop Control Printed Circuit Board
MARO2P10203703E
The LEDs associated with the Emergency Stop Control Printed Circuit Boards are shown in Figure 3–10 and described in Table 3–10. Figure 3–10. Emergency Stop Control Printed Circuit Board
BrakefuseblownalarmLED
1
4
2
3
3. LIGHTS, INDICATORS, AND LEDS
3–17
MARO2P10203703E
Table 3–10. Functions
Emergency Stop Control Printed Circuit Board LED
LED BRAKE FUSE ALARM 1 LED 2 LED 3 LED 4 LED
Function Brake fuse blown. SVON Q1 and Q2 ON (Brakes 1, 2, and 3) Q4 ON (Brake 4) Q3 ON (Brakes 6 and 7)
3. LIGHTS, INDICATORS, AND LEDS
3–18
MARO2P10203703E
3.4.7 Module Assembly # EE–3044–401
The Module Assembly # EE–3044–401 is located in the robot purge cavity. Before you enter to the purge cavity, be sure to perform the procedures and warnings in Section 4.6.43 shall be performed. The LED indicators are described in Table 3–11 and are shown in Figure 3–11. Figure 3–11. Intrinsic Barrier Relay Control Indicators ‘
CR1 DC/DC MODULE
6.5V LED 24V LED
MODULE ASSY # EE–3044–401
24V 6.5V
Table 3–11. Channel 24V 6.5V
Modular I/O LEDs
Function Indicates 24VDC input from 24VDC power supply in controller Indicates output of 6.5 VDC through relay CR1
3. LIGHTS, INDICATORS, AND LEDS
3–19
MARO2P10203703E
3.4.8 Contact Signal Transducer (IBRC)
The Intrinsic Barrier Relay Control (IBRC) LED indicators are described in Table 3–12 and are shown in Figure 3–12. Figure 3–12. Intrinsic Barrier Relay Control Indicators
CH1
Table 3–12. Channel
CH2
CH3
CH4
CH5
CH6
Modular I/O LEDs
CH2 CH3 CH4 CH5
Function Air pressure switch Flow switch *ROT switch *HBK switch TPDSC switch
Description Monitors internal air pressure. The switch is closed when the robot is in a safe operating state. Monitors air flow during purge sequence. Robot overtravel closed when robot is not in an overtravel condition. Hand broken switch. Robot wrist is broken. Normally this is a closed input. Teach pendant disconnect switch.
CH6
EOAT switch
End of arm tooling switch triggers RDI2.
CH1
3. LIGHTS, INDICATORS, AND LEDS
3–20
MARO2P10203703E
3.4.9 R-J2 Ethernet LEDs
Figure 3–13 and Figure 3–14 show ER-1 and ER-2 R-J2 Ethernet printed circuit boards. Refer to A User’s Guide to the FANUC Robotics SYSTEM R-J2 Controller Remote I/O Interface for an Allen-Bradley PLC for LED descriptions. Figure 3–13. ER-1 and ER-2 Printed Circuit Board LEDs
ER-1
1 23 4
1
1 23 4
2
3
4
AB RIO
PF PC IP
ACTIVE POWER
A–B
A–B
RACK SEL
SMGN
AUI CD27
BAUD SEL DISC/BLK LAST RACK LAST STAT RESTART RACK SIZ
ETHER NET
F1 2.0A
LINK OK
2.0 A
10 BASE T
ER-1 PLC I/O-Ethernet Printed Circuit Board(10Base2)
ER-1 PLC I/O-Ethernet Printed Circuit Board(10Base5)
ER-1 PLC I/O-Ethernet Printed Circuit Board(10BaseT)
3. LIGHTS, INDICATORS, AND LEDS
3–21
MARO2P10203703E
Figure 3–14. ER-2 Ethernet Printed Circuit Boards
ER-2
ER-2 Ethernet Printed Circuit Board(10Base2)
ER-2 A-B RIO/Ethernet Printed Circuit Board(10Base2)
3. LIGHTS, INDICATORS, AND LEDS
3–22
MARO2P10203703E
ER-1 Alarm LEDs
Table 3–13 lists and describes the ER-1 alarm LEDs. Table 3–13.
ER-1 Alarm LEDs
ALARM
DESCRIPTION 1
2
3
4
STATUS ALARM Fuse Alarm DRAM Parity Error Soft Alarm LED Soft Alarm LED
Turned on and off by system software.
DRAM Parity Error
Turns on when a DRAM parity error occurs.
Fuse Alarm
Turns on when a fuse has blown (for 10BASE5 PCBs only).
ER-2 Alarm LEDs
Table 3–14 lists and describes the ER-2 alarm LEDs. Table 3–14.
ER-2 Alarm LEDs
ALARM
DESCRIPTION Soft Alarm LED
A1
A4
Not used
DRAM Parity Error
A2
A3
Not used
ALARM Soft Alarm LED
Turned on and off by system software.
DRAM Parity Error
Turns on when a DRAM parity error occurs.
Page23
4 TROUBLESHOOTING
MARO2P10203703E
4
Topics In This Chapter
TROUBLESHOOTING 4–1
Page
Power ON Sequence
The following procedures are applicable to all P-200 robot systems including those on a pedestal, rail or with an opener. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3
Controller shutdown
Use this procedure for complete controller shutdown including purge circuitry. . 4–4
Servo Lockout
Servo Lockout Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–4
Class 1 Fault Troubleshooting
A Class 1 Fault is a malfunction that prevents the controller from operating. The main contactor might or might not be energized. No text is displayed on the teach pendant. Refer to Section 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–5
Class 2 Fault Troubleshooting
A Class 2 Fault is a malfunction that prevents the Boot ROM operating system from turning the system over to the application software. Text will be displayed on the the teach pendant, but the teach pendant display will be frozen and will not respond to keypad entries. Refer to Section 4.5. . . . . . . . . . . . . . . . . . . . . . . . 4–21
Class 3 Fault Troubleshooting
A Class 3 Fault is a malfunction that prevents the robot from operating normally, even though the application software is running. A numbered alarm message will be displayed on the teach pendant. You can access teach pendant menus and diagnostic screens during a Class 3 fault. Refer to Section 4.6. . . . . . . . . . 4–23 SRVO-001 Operator Panel E-Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–24 SRVO-002 Teach Pendant E-stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–25 SRVO-003 Deadman switch released . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–26 SRVO-004 Fence Open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–27 SRVO-005 Robot Overtravel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–28 SRVO-006 Hand Broken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–30 SRVO-007 External Emergency Stops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–32 SRVO-011 TP Released While Enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–34 SRVO-012 Power Failure Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–34 SRVO-014 Fan Motor Abnormal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–34 SRVO-015 System Over Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–35 SRVO-019 ER_SVAL1 SVON input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–36 SRVO-020 ER_SVAL1 SRDY off (TP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–36 SRVO-021 ER_SVAL1 SRDY off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–37 SRVO-022 ER_SVAL1 SRDY on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–40 SRVO-023 ER_SVAL1 Stop Error Excess . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–40 SRVO-024 ER_SVAL1 Move Error Excess . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–40 SRVO-026 ER_WARN Motor Speed Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–41 SRVO-027 ER_WARN Robot Not Mastered . . . . . . . . . . . . . . . . . . . . . . . . . . 4–41 SRVO-033 ER_WARN Robot Not Calibrated . . . . . . . . . . . . . . . . . . . . . . . . . . 4–41 SRVO-035 ER_WARN Joint Speed Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–41 SRVO-036 Imposition Time Over . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–41 SRVO-037 ER_SVAL1 IMSTP Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–41 SRVO-038 PULSE MISMATCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–42 SRVO-042 ER_SVAL2 MCAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–43 SRVO-043 ER_SVAL2 DCAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–44 SRVO-044 ER_SVAL2 HVAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–46 SRVO-045 ER_SVAL2 HCAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–47 SRVO-046 ER_SVAL2 OVC Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–48 SRVO-047 ER_SVAL2 LVAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–48 SRVO-049 ER_SVAL2 OHAL1 Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–49 SRVO-050 ER_SVAL1 CLALM Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–49 SRVO-051 ER_SVAL2 CUER Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–50 SRVO-053 ER_WARN Disturbance excess . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–50 SRVO-054 ER_SVAL1 DSM memory error . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–50 SRVO-061 ER_SVAL2 CKAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–50 SRVO-062 ER_SVAL2 BZAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–51
4. TROUBLESHOOTING
4–2
MARO2P10203703E
Topics In This Chapter
Page
Class 3 Fault Troubleshooting (continued)
SRVO-063 ER_SVAL2 RCAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-064 ER_SVAL2 PHAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-065 ER_WARN BLAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-066 ER_SVAL2 CSAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-067 ER_SVAL2 OHAL2 Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-068 ER_SVAL2 DTERR Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-069 ER_SVAL2 CRCERR Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-070 ER_SVAL2 STBERR Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-071 ER_SVAL2 SPHAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-072 ER_SVAL2 PMAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-073 ER_SVAL2 CMAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-074 ER_SVAL2 LDAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-075 ER_WARN Pulse Not Established . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-081 ER_WARN EROFL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-082 ER_WARN DAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-083 ER_WARN CKAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-084 ER_WARN BZAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-085 ER_WARN RCAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-086 ER_WARN PHAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-087 ER_WARN BLAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-088 ER_WARN CSAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-089 ER_WARN OHAL2 Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-090 ER_WARN DTERR Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-091 ER_WARN CRCERR Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-092 ER_WARN STBERR Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-093 ER_WARN SPHAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-147 SERVO LVAL(DCLK) Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-163 ER_FATL DSM Hardware Mismatch . . . . . . . . . . . . . . . . . . . . . . . SRVO-164 ER_FATL DSM/Servo Param Mismatch . . . . . . . . . . . . . . . . . . . . SRVO-165 ER_FATL Panel (SVON Abnormal) E-Stop . . . . . . . . . . . . . . . . . SRVO-166 ER_FATL TP (SVON Abnormal) E-Stop . . . . . . . . . . . . . . . . . . . . SRVO-167 ER_FATL Deadman Switch (SVON Abnormal) . . . . . . . . . . . . . . SRVO-168 ER_FATL External/SVON(SVON Abnormal) E-Stop . . . . . . . . . .
4–52 4–52 4–52 4–53 4–53 4–54 4–56 4–56 4–56 4–57 4–57 4–57 4–58 4–58 4–59 4–59 4–59 4–59 4–59 4–60 4–60 4–60 4–60 4–60 4–60 4–61 4–61 4–61 4–61 4–61 4–61 4–62 4–62
Class 4 Fault Troubleshooting
A Class 4 Fault is a malfunction that prevents the robot paint system components in the outer arm of the P-200 from operating normally, even though the application software is running. No numbered alarm messages will be displayed as in the case of a class 3 fault. Process defects will be noticed on each job as a result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Trigger Valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Shut Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Trigger (Electrical) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Process Fault Transducer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flow Meter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–63 4–64 4–65 4–66 4–73 4–76
This chapter describes the steps you must follow to repair electrical faults in the R-J2 controller.
WARNING The procedures described in this section require you to work with high voltage circuits. Carelessness or inattention can kill you. Do not attempt any of these procedures unless you are trained and experienced in electrical repair.
4. TROUBLESHOOTING
4–3
MARO2P10203703E
4.1
The following procedures are applicable to all P-200 robot systems including those on a pedestal, rail or with an opener. In the case of a P-200 robot and opener, both units must be properly purged before the controller can be turned on.
POWER ON SEQUENCE
Procedure 4–1 Step
Troubleshooting Purge Problems 1 With the main disconnect ON, you should observe: Purge complete LED is off. Purge enable pushbutton (purging) lamp is off. ON pushbutton lamp is off. Purge fault LED is on 2 Push and hold the PURGE ENABLE pushbutton. You should observe Purge solenoid engages when minimum pressure requirements are met. Purge fault LED turn off. Purging lamp (behind purge enable pushbutton) lights. 3 Release the purge enable pushbutton. 4 At the end of the 5 minute purge, the pushbutton purging lamp will turn off and the purge complete LED will turn on. Also, the purge solenoid will shut off. 5 If this procedure does not work, go to troubleshooting Table 4–1. If the purge cycle works correctly but the robot will not power up, go to Procedure 4–4 .
4. TROUBLESHOOTING
4–4
MARO2P10203703E
4.2
Use this procedure for complete controller shutdown including purge circuitry.
CONTROLLER SHUTDOWN Procedure 4–2 Step
Controller Shutdown Procedure 1 Push the E-stop push button. 2 Push the controller “OFF” pushbutton. 3 Pull the Main Disconnect switch.
4.3
For servo lockout use the following procedure:
SERVO LOCKOUT
Procedure 4–3 Step
Servo Lockout Procedure 1 Push the E-stop push button. 2 Open the servo lockout disconnect switch. 3 Lockout switch
4. TROUBLESHOOTING
4–5
MARO2P10203703E
4.4 CLASS 1 FAULT TROUBLESHOOTING How to use the Troubleshooting Tables
This section contains troubleshooting information for Class 1 Faults. A Class 1 fault prevents the controller from operating. The main A.C. line contractor (ALC) might be energized. The Purge Complete light might be on. No text is displayed on the teach pendant. This section contains several tables. Each table provides procedures to correct the fault. To troubleshoot a Class 1 fault, always start at Procedure 4–1 . Perform the procedures in order. You will either correct the fault using Table 4–1 or it will refer you to another table in this section. Use the other tables only when Table 4–1 refers you to them.
Class 1 Fault Condition
If the following conditions are true, follow the steps in Table 4–1. The main disconnect is ON. The ON button has been pressed. The power on sequence (Procedure 4–1 ) has been attempted. The controller does not operate. Without turning off the main disconnect, open the controller door. Release the disconnect latch by turning the screw to the lower right of the disconnect handle.
4. TROUBLESHOOTING MARO2P10203703E
4–6
Table 4–1. Troubleshooting Procedure 1 (Initial Purge Troubleshooting Procedure) Troubleshooting Procedure 1.
Illustration
Find the Purge Complete light on the Standard Operator Panel. If the light is on this indicates that the purge cycle was successful. If the light is on go to Table 4–4.
ÎÎÎ ÎÎ Î ÎÎÎ ÎÎÎ
BATTERY ALARM
CYCLE START
ON
TEACH PENDANT ENABLED
If the light is off continue troubleshooting. Purge Complete Light
HOLD
OFF
FAULT
FAULT RESET
ÎÎ ÎÎ ÎÎ ÎÎ ÏÏ ÏÏ ÎÎ PURGE COMPLETE
REMOTE
PURGE ENABLE
REMOTE
LOCAL
PURGE FAULT
Purge Enable Pushbutton and Lamp
2.
Find the Purge Fault light on the Standard Operator Panel. If the light is on go to Step 4. If the light is out continue troubleshooting.
FAULT RESET
ÎÎ ÎÎÎ Î ÎÎ ÎÎ ÏÏ ÏÏ ÎÎÎ ÏÏ ÏÏ PURGE COMPLETE
REMOTE
PURGE ENABLE
REMOTE
LOCAL
PURGE FAULT
Purge Fault Light
BRAKE ENABLE ON
OFF
PORT
HOUR METER
ÎÎÎ ÎÎÎ ÎÎÎ
EMERGENCY STOP
4. TROUBLESHOOTING
4–7
MARO2P10203703E
Table 4–1. (Cont’d) Troubleshooting Procedure 1 (Initial Purge Troubleshooting Procedure) Troubleshooting Procedure 3.
Press and hold the Purge Enable pushbutton on the Standard Operator Panel until it lights (1 - 5 seconds) and then release. If the Purge Complete light comes on test the controller for proper operation. Go to Table 4–4.
If the Purge Enable or Purge Complete light does not come on and/or the Purge Fault light comes on continue troubleshooting.
Î ÎÎ
FAULT RESET
Illustration
Î
PURGE COMPLETE
Purge enable
Î Î Ï Ï
PURGE FAULT
Purge fault
PORT
ÏÏ ÏÏ
REMOTE
PURGE ENABLE
LOCAL
BRAKE ENABLE ON
OFF
HOUR METER
ÎÎÎ ÎÎÎ ÎÎÎ
EMERGENCY STOP
4. 5.
Turn off the main disconnect handle. On the Intrinsically Safe Terminal Board (ISTB) unit, connect test jumper wires between terminals 1 and 4, and between terminals 5 and 8 on the ISTB. These terminals are the inputs from the robot-mounted air pressure and air flow switches. Go to Step 6. Refer to Figure 12–13.
NOTE: Jumper 1-2 simulates the pressure switch from the robot. Jumper 3-4 simulates the pressure switch from the opener, If applicable (If there is no opener all ready jumpered). Jumper 5-6 simulates the flow switch from the robot. Jumper 7-8 simulates the flow switch from the opener, if applicable (If there is no opener all ready jumpered).
6.
Turn on the main disconnect handle.
Test Jumpers
ISTB
4. TROUBLESHOOTING MARO2P10203703E
4–8 Table 4–1. (Cont’d) Troubleshooting Procedure 1 (Initial Purge Troubleshooting Procedure) Troubleshooting Procedure 7.
Press and hold the Purge Enable pushbutton on the Standard Operator Panel until it lights (1 - 5 seconds) and then release it. If the purge circuit is cycling, the purge enable pushbutton will stay lit until the 5 minute purge is complete. The Purge Fault light will be out. If the robot does not purge with jumpers inserted go to step 8. If the purge is successful with jumpers the problem could be: – The wiring connected to the pressure switch(s) or the flow switch(s)
–
The pressure switch in robot (or opener if applicable)
– –
The flow switch in robot (or opener if applicable)
Possibly a casting leak in robot (or opener if applicable) Locate the problem and replace faulty component. If problem still exists check any Auxiliary device pressure and flow switches. If not used check jumpers across terminals 3 and 4, and terminals 5 and 6. Locate the problem and replace faulty component. Refer to Figure 12–13. Remove jumpers from step 5 and retest purge system. If the purge is successful without jumpers Go to Table 4–4. 8.
Illustration
PURGE ENABLE
Purge Enable Purge Fault
ÎÎ ÎÎ ÏÏ ÏÏ
PURGE FAULT
ÏÏ REMOTE
LOCAL
BRAKE ENABLE ON
OFF
PORT
HOUR METER
ÎÎ ÎÎ ÎÎ
EMERGENCY STOP
Replace purge control PCB. Retest purge control without jumpers. If purge control is still not working go to Table 4–2.
WARNING The purge control timer is adjusted to five minutes to conform to Factory Mutual Specifications. Do not adjust the purge control timer; otherwise, an explosion or fire could occur.
4. TROUBLESHOOTING
4–9
MARO2P10203703E
Table 4–2. Procedure)
Troubleshooting Procedure 2 (IBRC Troubleshooting
Troubleshooting Procedure 1.
If one or more of the lights are on go to Table 4–3.
2.
Illustration
Observe the lights on the IDEC IBRC unit . If all of the lights are off go to Step 2.
Measure the AC voltage coming into the IDEC IBRC unit at terminals 220 VAC and 0V. If the voltage is 200 to 240 VAC replace the IDEC IBRC Unit. If there is no voltage continue troubleshooting.
Lights
CH1 CH2 CH3 CH4 CH5 CH6
MultiTap Transformer
TF1 43
44
Refer to Figure 12–1, Figure 12–12, Figure 12–13 and Figure 12–15. 3.
Measure the AC Voltage at terminals R and S on the purge control PCB If the voltage is 200 to 240 VAC replace the wires between IDEC IBRC and CP1 on the purge control PCB.
Purge Control PCB 200A
200B
If there is no voltage check for continuity between terminals FRA1 and FRA2 on purge control PCB. If there is no continuity replace jumper between FRA1 and FRA2. If there is continuity continue troubleshooting. Refer to Figure 12–1, Figure 12–7 and Figure 12–13. 4.
Measure the AC voltage coming into the purge control PCB at terminals 200A and 200B. If there is 200 to 240 VAC replace purge control PCB. If there is no voltage turn off main power disconnect and check for continuity between terminals 200A and 200B on purge control PCB and terminals 43 and 44 on the multi-tap transformer. Continue troubleshooting. Refer to Figure 12–1, Figure 12–7 and Figure 12–13.
5.
If there is no continuity replace the wires between terminals 200A and 200B on the purge control PCB and terminals 43 and 44 on the multi-tap transformer. If there is continuity go to Table 4–5.
FRA 2
FRA 1 R
S
. . G
AC IN 24VDC PSU 15ma MAX.
220VAC
0V
IDEC IBRC
4. TROUBLESHOOTING MARO2P10203703E
4–10 Table 4–3.
Troubleshooting Procedure 3 (Non-Specific Purge Problems) Illustration
Troubleshooting Procedure 1.
Turn off the power disconnect handle. Continue troubleshooting.
2.
Reseat the following connectors: Contact signal transducer (IDEC IBRC) connector CNCA. Purge control printed circuit board (mounted with EMG control PCB) connector CNIN. Continue troubleshooting. Refer to Figure 12–1, Figure 12–12, Figure 12–13 and Figure 12–14.
3.
Turn off the power disconnect handle. FAULT RESET
Purge Fault
Î Î ÎÎ ÏÏ ÏÏ ÎÎ Î ÎÎ Î ÏÏ ÏÏ
PURGE COMPLETE
REMOTE
PURGE ENABLE
REMOTE
LOCAL
PURGE FAULT
BRAKE ENABLE ON
4.
Observe on the Standard Operator Panel that the purge fault light is lit.
OFF
PORT
HOUR METER
ÎÎ ÎÎ ÎÎ
EMERGENCY STOP
4. TROUBLESHOOTING
4–11
MARO2P10203703E
Table 4–3. (Cont’d) Troubleshooting Procedure 3 (Non-Specific Purge Problems) Troubleshooting Procedure 5.
Re-initiate the purge sequence. Go to Procedure 4–1 . If the controller does not purge properly go to Step 6. If the purge was successful go to Table 4–4.
6.
Illustration
PSU2
Measure the DC voltage between the (+) and (-) on PSU2. If the voltage is 24 VDC go to Step 9. If there is no voltage check fuses F11 and F12 on the purge unit power supply board. If either fuse or both fuses are blown replace bad fuses. If new fuses blow check 24VDC wiring. If fuses are not bad continue troubleshooting. Refer to Figure 12–13.
F11
3.2A
F12
3.2A
Power supply (–) 7.
If CH1 light is on, go to Step 8. If CH1 light is out, test jumper ISTB terminals 1 to 4 and observe if the light comes on. If the CH 1 light did not light replace the IDEC IBRC unit If the light comes on replace the pressure switch or wiring for proper operation. Continue troubleshooting. Remove test jumpers at the end of each step.
(+)
Test Jumpers for step 7 Test Jumpers for Step 8 ISTB
4. TROUBLESHOOTING MARO2P10203703E
4–12
Table 4–3. (Cont’d) Troubleshooting Procedure 3 (Non-Specific Purge Problems) Troubleshooting Procedure 8.
Illustration
If CH 2 light is out, test jumper ISTB terminals 5 to 8 and observe if the light comes on. If the CH 2 light does not come on go to step 9. If the light comes on replace the auxiliary flow switch or wiring or replace the jumper, when auxiliary flow switch is not used.
IDEC IBRC
CH1
CH2
CH3
CH4
CH5
CH6
NOTE Remove test jumpers at the end of each step.
Lights 9.
Replace the following in the order shown: Purge enable switch Purge control PCB IBRC unit
Procedure 4–4 Condition
Troubleshooting Turn-on Problems You have performed Procedure 4–1 and the system is purged. The following conditions exist: Purge complete LED on Purge enable pushbutton (purging) lamp is off. ON pushbutton lamp is off. Purge fault LED off.
Step
1 Attempt normal power by pressing the ON pushbutton. The ON pushbutton will light. Main CPU and axis control PCBs also execute internal diagnostics. When the diagnostics are all complete the MCC on all servo amplifiers will energize and “click”. When this occurs, the teach pendant is on and the controller is ready to operate. If unit powered up correctly go to Section 4.5. If the unit did not turn ON normally, go to Table 4–4.
4. TROUBLESHOOTING
4–13
MARO2P10203703E
Table 4–4. Troubleshooting Procedure 4 (General Power Supply Troubleshooting) Troubleshooting Procedure 1.
Illustration
Check and see if the green PIL light in the center of the Power Supply Unit module is ON. If the light is on go to Table 4–6.
CP1 3 G
If the light is off continue troubleshooting.
2.
Check fuse F1 in the top center of the Power Supply Unit module. A white flag in the center of the fuse indicates it is bad. If the fuse is bad, replace it and attempt the power up Procedure 4–4 . If the fuse is good go to step 3.
If the white flag does not appears in the center fuse window and the green PIL light still does not come on, check fuse with an ohmeter If the fuse is blown replace the fuse.
S
1
R
F1: 7.5A fuse for AC input
CP2 CP3 3 G1 G2 3
If the fuse continues to blow go to step 5.
3.
2
2 S1 S2
2
1 R1 R2
1
Battery
If the fuse blows again replace the Power Supply Unit. If the fuse is OK and the green PIL light does not come on continue troubleshooting.
4.
Disconnect CP1 at the top of the Power Supply Unit module. Measure the voltage coming into the PSU on the two red wires in the harness connector (S and R). Check to see if the voltage is 220 to 240 VAC. If the voltage is ok go to step 5.
PIL: Green LED for indicating the AC power supply status ALM: Red LED ffor indicating an alarm
If their is no voltage go to Table 4–5.
5.
Turn off the main disconnect switch and, using an ohmmeter, to test for a short in the wiring harnesses at CP2 and CP3. If no short is evident go to step 6. If there is a short replace the shorted wiring harness and attempt power up sequence.
F4: 5A fuse for +24E
F3: 5A Slow-Blow fuse for +24V
4. TROUBLESHOOTING MARO2P10203703E
4–14 Table 4–4. (Cont’d) Troubleshooting Procedure 4 (General Power Supply Troubleshooting) Troubleshooting Procedure 6.
7.
Reconnect harnesses CP2 and CP3 and turn the main disconnect switch to on. Press the ON pushbutton and check for proper operation. If the fuse continues to blow Continue troubleshooting. If fuse F1 has blown again it is due to a short in one of the following. Replace components one at a time the until problem is solved. Wiring harness to servo power control coil Servo power control coil Wiring harness to fans (check in particular where cable and front door hinge point meet). Fan motor shorted. Replace fan motor, replace fuse.
Illustration
Power Supply Unit Module PIL: Green LED Su ly Status AC Power Supply ALM Red Alarm Light
F4: 5-Afuse for +24E F3: 5-AS slow–blow fuse for +24V
4. TROUBLESHOOTING
4–15
MARO2P10203703E
Table 4–5.
Troubleshooting Procedure 5 (Transformer) Illustration
Troubleshooting Procedure 1.
Measure the AC voltage between Multi-Tap Transformer terminals 43 and 44 of TF1. You should see 200 to 240 VAC. If 200 to 240 VAC is present replace the harness between the Power Supply Unit and the Multi-Tap Transformer.
MULTI–TAP TRANSFORMER TF1 A1 A2
EE–0989–550
L1
If voltage is not present or incorrect continue troubleshooting. Refer to Figure 12–1 and Figure 12–3.
L2
F1
575 550 500 480 460 415/240 380/220
F2 F3
F4
3
4
SERVO POWER CONTROL (220VAC) SERVO POWER (210 VAC)
5
6
13
14
23
24
100 VAC
F5
OV 575 550 500 480 460 415/240 380/220 24
2
30A
OV 575 550 500 480 460 415/240 380/220 ST1
L3
1
7.5A
43 44
220 VAC
OV 51 52
ST2
THERMOSTAT FOR OVERHEAT
SPECIFICATION OF TF1 CAPACITY 7.5KVA
2.
Check Multi-Tap Transformer tap settings. As shown in Section 1.9. If the tap settings are set incorrectly Set to correct values.
3.
Check AC voltage between transformer primary terminals. Check between terminals L1 and L2. Check between terminals L2 and L3. Check between terminals L1 and L3. All voltage readings should be the be the same depending on plant supplied 3 phase voltage. If proper voltage is present replace Multi-Tap Transformer. If incorrect or no input voltage is present continue troubleshooting. Refer to Figure 12–1 and Figure 12–3.
F1,F2,F3
IN CASE OF CIRCUIT BREAKER BREAKER
If the tap settings are correct continue troubleshooting. Refer to Figure 12–1 and Figure 12–3.
SPECIFICATION A80L–0026–0010#A
L1 L2 L3 G FUSE UNIT FL1 FL2 FL3
DISCONNECT SWITCH IN CASE OF DISCONNECT SWITCH
30A
F4,F5 7.5A
F1
4. TROUBLESHOOTING MARO2P10203703E
4–16
Table 4–5. (Cont’d) Troubleshooting Procedure 5 (Transformer) 4.
Troubleshooting Procedure
Illustration
Check AC voltage between bottom terminals of fuses FL1, FL2, & FL3. All voltage readings should be the be the same depending on plant supplied 3 phase voltage. If voltage is present replace wiring harness between Multi-Tap Transformer and Fuse Block.
Fuse Block
If voltage is not present continue troubleshooting.
FL1 FL2 FL3
Refer to Figure 12–1 and Figure 12–3. 5.
Check AC voltage between top terminals of fuses FL1, FL2, and FL3. All voltage readings should be the be the same depending on plant supplied 3 phase voltage. If voltage is present fuses F1, F2, F3 is/are blown Replace the bad fuse. If it blows again, replace the Multi-Tap Transformer. If voltage is not present continue troubleshooting. Refer to Figure 12–1 and Figure 12–3.
6.
Check AC voltage between terminals at bottom of the Main Disconnect Switch. All voltage readings should be the be the same depending on plant supplied 3 phase voltage. If voltage is present replace wiring harness between Fuse Block and Main Disconnect Switch.
Main Disconnect Switch
If voltage is not present continue troubleshooting.
7.
Check AC voltage between terminals at top of disconnect. All voltage readings should be the be the same depending on plant supplied 3 phase voltage. Replace Main Disconnect Switch if voltage is present; otherwise, contact plant maintenance.
Fuse Block FL1, FL2, FL3
4. TROUBLESHOOTING
4–17
MARO2P10203703E
Table 4–6.
Troubleshooting Procedure 6 (Power Supply Alarms) Illustration
Troubleshooting Procedure 1.
Check the red alarm light in the center of the Power Supply Unit module. The alarm light should be off. If the light is ON go to Table 4–7.
Power Supply Unit Module PIL: Green LED AC Power Supply Status
If the light is OFF continue troubleshooting.
ALM Red Alarm Light
F4: 5-A fuse for +24E F3: 5-AS slow–blow fuse for +24V 2.
Listen and look for main cabinet cooling fans to be running. Fans should be running indicating that the 200V outputs from PSU, CPZ, ,and CP3 are ON. If fans are not running go to Step 3.
COOLING FANS Fan#1
If fans are running go to Table 4–7.
Backplane Fan
Fan#2 Fan#3
3.
Check for 200 to 240 VAC at Power Supply Unit Module on connector CP2 by checking contacts R1 and S1 or on CP3 by checking contacts R2 and S2. You should see 200 to 240 VAC on either connector. If there is 200 to 240 VAC replace the wiring to the fans and/or the Servo power control relay. If there is not 200 to 240 VAC go to Step 4. Refer to Figure 12–16 and Figure 12–17.
Power Supply Unit Module CP2 CP3 G1 G2 CP2 CP3
S1 S2 R1 R2
4. TROUBLESHOOTING MARO2P10203703E
4–18
Table 4–6. (Cont’d) Troubleshooting Procedure 6 (Power Supply Alarms) Illustration
Troubleshooting Procedure 4.
Check the terminal block TBOP1 on the operator panel for jumpers between terminals (EX COM) and (EX OFF). If you use an external OFF button, there will be a wire on each terminal. If the terminals are connected with a jumper wire check for loose screws and good contact. If an external OFF button is used test for continuity of the external OFF, and DIL circuits replace it if necessary. Continue troubleshooting.
CNOP PORT 2
CRS1
CNHM SVON1
EXON
SVON2
EXCOM
E STOP1
EXOFF
E STOP2
EMGIN1
EMGOUT1
EMGIN2
EMGOUTC
FENCE 1
EMGOUT2
FENCE 2
KA1
Refer to Figure 12–16 and Figure 12–17.
5.
On the operator panel, momentarily connect (Ex ON) to (Ex COM). Controller should turn on. If the controller turns on there is a break in the on/off switch circuit replace any damaged wire or the on/off switch circuit. If the controller does not turn on replace the Power Supply Unit module.
KA2
KA3
Refer to Figure 12–16 and Figure 12–17.
TBOP2
TBOP1
KA4
4. TROUBLESHOOTING
4–19
MARO2P10203703E
Table 4–7.
Troubleshooting Procedure 7 (Power Supply Output) Illustration
Troubleshooting Procedure Check fuse F3 at the bottom of the Power Supply Unit. A white flag in the center of the fuse indicates it is bad and that 24V power is missing. If the fuse is blown there might be a short circuit in one of the following: -Backplane (See Figure 4–1 and Figure 4–2) -24VDC Cooling Fans for module card cage -Process I/O 24 VDC supply -Main CPU Module -Modular I/O 24 VDC supply -Option #1 Card -Option #2 Card -Option #3 Card
Power Supply Unit Module ALM: Red LED for indicating an alarm
F4: 5-A fuse for +24E
F3: 5-AS slow blow fuse for +24V
Isolate the short and replace the defective component. If the fuse is good replace the Power Supply Unit. Refer to Figure 12–6, Figure 12–7 and Figure 12–8. Figure 4–1. 24 Volt (24V) Power Distribution Chart
JNA3
CA44
JRM10
JRM3
3 JD1A
1.
For 5 slot backplane only
CNOP (FOR PAINT ONLY)
4. TROUBLESHOOTING MARO2P10203703E
4–20
JNA3
JRA5
#3 CRM10
JRA5
Figure 4–2. 24 Volt (24E) Power Distribution Chart
For 5 slot backplane only
ISB CNOP
4. TROUBLESHOOTING
4–21
MARO2P10203703E
4.5 CLASS 2 FAULTS TROUBLESHOOTING
A Class 2 Fault occurs when frozen text (letters or numbers) are displayed on the teach pendant. This indicates a problem with the main CPU printed circuit board caused by either the memory, processor, the board itself, or a bad teach pendant cable. Use Table 4–8 to troubleshoot a class 2 fault. Table 4–8.
Class 2 Faults Troubleshooting Procedure
Troubleshooting Procedure 1.
Is the Battery light on the main CPU module on? If the Battery light is on replace the battery. Refer to Procedure 9–1 . Continue troubleshooting.
Perform a cold start of the controller following the procedures in the S ystems PaintTool Setup and Operations Manual. Go to Step 3. 3. Are all four green LEDs on the main CPU board turned on? If all four green LEDs are on continue troubleshooting. 2.
If all four green LEDs are not on troubleshoot the controller using Table 3–4 . 4.
5.
Turn the controller off. Hold down the NEXT and PREV keys on the teach pendant and press the ON button. Check the teach pendant cable by swapping it with a known working cable or by doing a continuity test. Does the “BMON>” prompt appear on the teach pendant? If it does not appear, replace the main CPU printed circuit board and reload the software. Otherwise, continue troubleshooting. Perform the following steps on the teach pendant to check the CMOS memory: a. Press the NEXT key twice. b. Press F1, DIAG. c. Press ENTER.The prompt changes to DIAG> (diagnostic monitor). d. Press the NEXT key three times. e
Press F5, TEST.
f.
Press F1, CMOS.
g. Press ENTER. The teach pendant will display a message that gives you an opportunity to exit without destroying the contents of CMOS memory.
CAUTION
Do not continue unless your controller actually has a Class 2 fault. Continuing beyond this point will erase all software stored in the controller including all taught positions in your application. Otherwise, a complete software reload will be required.
h. Press 1, and then press ENTER if you want to continue with the test. The CMOS memory test will take a few minutes to run. If an error is encountered, replace the CMOS module and reload the software. Refer to the Paint Tool SYSTEM R-J2 Controller Software installation manual for more information. If the CMOS memory test passes, continue troubleshooting.
4. TROUBLESHOOTING
4–22
MARO2P10203703E
Table 4–8. (Cont’d) Class 2 Faults Troubleshooting Procedure Troubleshooting Procedure 6.
Perform the following steps on the teach pendant to check the FROM: a. Press the NEXT key three times. b. Press F5, TEST. c. Press F3, FROM. d. Press ENTER. The teach pendant will display a message that gives you an opportunity to exit without destroying the contents of Flash ROM memory. e. Press 1, and then ENTER if you want to continue with the test. The Flash ROM memory test will take a few minutes to run. If an error is encountered, replace the Flash ROM module and reload the software. Otherwise, continue troubleshooting.
7.
Perform the following steps on the teach pendant to check the DRAM: a. Press the NEXT key three times. b. Press F2, DRAM. c. Press ENTER. The teach pendant will display a message that gives you an opportunity to exit without destroying the contents of the DRAM memory. d. Press 1 and then ENTER if you want to continue with the test. The DRAM memory test will take a few minutes to run. If an error is encountered, replace the DRAM module. The software does not have to be reloaded. Otherwise, go to Step 8.
8.
The hardware in your controller is OK. Reload your application software. Refer to the Paint Tool SYSTEM R-J2 Controller Software installation manual for more information.
4. TROUBLESHOOTING
4–23
MARO2P10203703E
4.6 CLASS 3 FAULT TROUBLESHOOTING
A class 3 fault occurs when the teach pendant displays a fault message. This section contains troubleshooting procedures for each class 3 fault message. To determine which procedure to use, perform the following steps: 1. Press the MENUS key on the teach pendant. 2. Select ALARM. 3. Refer to the appropriate section and follow the corresponding troubleshooting procedure. The subsections that follow are arranged in numerical error code order.
4. TROUBLESHOOTING
4–24
MARO2P10203703E
4.6.1
The operator panel emergency stop pushbutton is pressed.
SRVO-001 ER_SVAL1 Operator Panel E-Stop
Remedy: Twist the operator panel emergency stop push button clockwise to reset. Press RESET. If the problem still exists, it is caused by an error in the emergency stop circuit or a bad main CPU. Perform the following troubleshooting procedure: Table 4–9.
SRVO-001 Troubleshooting Procedure Illustration
Troubleshooting Procedure 1.
Make sure that the teach pendant E-stop button is not pressed and that the external emergency stop inputs and fence switch inputs are jumpered or closed.
2.
Reseat the CNOP connector on the operator panel. Reseat the JRM10 connector on the main CPU.
3.
Turn on the controller and check for proper operation. If the problem is still present, continue troubleshooting.
4.
Open the door of the controller. Press and release the E-stop button several times. Listen for relay KA4 to click. Does the relay KA4 on the standard operator panel click? If yesreplace the cable between the operator panel CNOP and main CPU JRM10.
E-Stop button
CNOP
If nocontinue troubleshooting. 5.
Connect jumper wires across terminals 1 and 2 of each switch section of the E-stop switch and then press reset on teach pendant. Does the fault reset? If yesreplace the E-stop switch assembly If noreplace the operator panel.
Refer to Figure 12–9, Figure 12–15 and Figure 12–16.
PORT 2
CRS1
CNHM SVON1
EXON
SVON2
EXCOM
E STOP1
EXOFF
E STOP2
EMGIN1
EMGOUT1
EMGIN2
EMGOUTC
FENCE 1
EMGOUT2
FENCE 2
KA1
KA2
KA3
TBOP2 TBOP1 1
2
E-Stop Switch NC NC 2 1
KA4
4. TROUBLESHOOTING
4–25
MARO2P10203703E
4.6.2
The teach pendant emergency stop (E-Stop) pushbutton has been pressed.
SRVO-002 ER_SVAL1 Teach Pendant E-stop
Remedy: Twist the teach pendant emergency stop pushbutton clockwise to release and press RESET. If the problem still exists, it is caused by the loss of 24VDC to the teach pendant relay RLY2 or the 5VDC signal to the matrix decoding from the normally closed contact of the teach pendant relay RLY2. Any of the following can cause this problem: A defective teach pendant emergency stop switch. A defective component on the teach pendant printed circuit board. Loss of 24VDC to the E-STOP switch (not part of the teach pendant power). This loss of power can be caused by a bad teach pendant emergency stop switch, a broken wire in the teach pendant cable, a bad operator panel, or a bad cable between the operator panel CNOP and the main CPU JRM10. You can fix it by replacing the teach pendant. If you want to troubleshoot the problem further, perform the following troubleshooting procedure: Table 4–10.
SRVO-002 Troubleshooting Procedure
Troubleshooting Procedure 1.
Turn off the controller.
2.
Reseat CNOP at the operator panel interface and connector JRM10 at the main CPU.
3.
Turn on the controller and check for proper operation. If the problem is still present, continue troubleshooting.
4.
One of the following components is bad. Replace the teach pendant. Replace the operator panel. Replace cable between CNOP on the operator panel and JRM10 on the main CPU. Replace main CPU. Determine the bad component by substituting it with a new component.
Refer to Figure 12–8 and Figure 12–16.
4. TROUBLESHOOTING
4–26
4.6.3 SRVO-003 ER_SVAL1 Deadman switch released
MARO2P10203703E
The teach pendant DEADMAN switch is released while the teach pendant is enabled. Remedy: Press and hold the teach pendant DEADMAN switch. Press RESET. If the problem still exists, perform the following steps:
Table 4–11.
SRVO-003 Troubleshooting Procedure
Troubleshooting Procedure 1.
Turn off the controller.
2.
Reseat the teach pendant cable at both ends, connector JRM10 at the operator panel printed circuit board, and connector JRM10 at the main CPU.
3.
Turn on the controller and check for proper operation. If the problem is still present, continue troubleshooting.
4.
Open the controller door. Turn on the controller. Make sure the teach pendant E-Stop pushbutton is not pressed.
5.
Press and release a DEADMAN switch several times. You should be able to hear relay KA1 click on the operator panel interface. If the relay clicks replace cable between the operator panel interface and the main CPU. After replacing the cable check the DEADMAN switch for proper operation, if problem still exists continue troubleshooting. Go to step 6. If the relay does not click one of the following components is bad: The teach pendant The teach pendant cable The operator panel interface. Determine the bad component by substitution. Problem solved.
6.
If your teach pendant is bad, and you want to troubleshooting the teach pendant continue troubleshooting.
7.
Turn off the controller.
8.
Remove the seven screws on the teach pendant endant back.
9.
Remove the teach pendant back but leave all electrical connectors in place.
10. Press each DEADMAN switch bar while you watch the switch body inside the teach pendant. 11. Make sure that the copper strip presses the switch actuator all the way into the switch body. You should be able to hear and feel it click into place. 12. If the actuator is frozen or will not click sharply, replace the switch. 13. Slide the wiring connector half way off the circuit board connector. 14. Measure the resistance between: Pins 1 and 2 Pins 3 and 4.
NOTE When the DEADMAN switch is not pressed, there is continuity between pins 1 and 2 and no continuity between pins 3 and 4.
NOTE When the DEADMAN switch is pressed, there is no continuity between pins 1 and 2 and continuity between pins 3 and 4. If one or more measurements are bad replace the DEADMAN switch assembly. If the measurements are good the teach pendant is defective replace the teach pendant.
4. TROUBLESHOOTING
4–27
MARO2P10203703E
4.6.4
The safety fence gate is open.
SRVO-004 ER_SVAL1 Fence open
Remedy: Close the gate. Several gates in the workcell might be involved. If the problem still exists, perform the following troubleshooting procedure: Table 4–12.
SRVO-004 Troubleshooting Procedure Illustration
Troubleshooting Procedure 1.
Look at terminals Fence 1 and Fence 2 on TBOP1 on the operator panel interface. Check for a jumper connecting the terminals or a wire on each terminal. There should be continuity between the two terminals. If there is no continuity install a jumper or repair the external fence circuit. If there is continuity continue troubleshooting.
2.
PORT 2
CRS1
CNHM SVON1
EXON
SVON2
EXCOM
E STOP1
EXOFF
E STOP2
EMGIN1
EMGOUT1
EMGIN2
EMGOUTC
FENCE 1
EMGOUT2
FENCE 2
Turn off the controller.
3.
Reseat CNOP at the operator panel interface and connector JRM10 at the main CPU.
4.
Make sure that no EMERGENCY STOP buttons are pressed.
5.
Open the controller door.
6.
Disconnect one end of the fence jumper or external fence circuit.
7.
CNOP
Briefly short the two fence terminals on the operator panel interface together. You should be able to hear and see relay KA4 click on the operator panel interface. If the relay clicks replace the cable between the operator panel interface CNOP and the main CPU connector JRM10.
KA1
KA3
If the relay does not click replace the operator panel. Refer to Figure 12–8 and Figure 12–16.
KA2
TBOP2
TBOP1
KA4
4. TROUBLESHOOTING
4–28
MARO2P10203703E
4.6.5 SRVO-005 ER_SVAL1 Robot Overtravel
An overtravel error occurs when the robot moves beyond the software motion limits, tripping the overtravel limit switch. If more than one axis is moving when the switch is tripped, the controller will report an overtravel error on several axes. Table 4–13.
SRVO-005 Troubleshooting Procedure Illustration
Troubleshooting Procedure 1.
If you have not already done so, continuously press and hold the DEADMAN switch and turn the teach pendant ON/OFF switch to ON.
2.
Hold down the SHIFT key and press RESET.
3.
Press COORD until you select the JOINT coordinate system.
4.
Jog the axis in overtravel off of the overtravel switch.
5.
If you cannot jog the robot off of the overtravel switch the wrong motion inhibit flag has been set; therefore, continue to Step 6. Otherwise, the axis (or axes) are no longer in overtravel and you can end the procedure now.
6.
Cold start the controller and go to Step 1. If the overtravel still cannot be cleared, continue troubleshooting. NOTE In some instances, the teach pendant screen will indicate a FALSE for a given axis when a TRUE should be set because of the way overtravel is read in the software. It is best to perform the following procedure on all of the axes.
7.
Press MENUS.
8.
Select MANUAL FCTNS.
9.
Press F1, [TYPE].
10. Select OT Release. 11. Move the cursor to the OT PLUS or OT MINUS value of the axis in overtravel. The status of OT PLUS or OT MINUS for that axis is TRUE.
MENUS SHIFT
12. Press and hold SHIFT and press F2, RELEASE. 13. Press and hold SHIFT and press RESET. 14. Press COORD until you select the JOINT coordinate system.
RESET
15. Continuously press and hold the DEADMAN switch and turn the teach pendant ON/OFF switch to ON. 16. Jog the axis off of the overtravel switch.
COORD
4. TROUBLESHOOTING
4–29
MARO2P10203703E
Table 4–13. (Cont’d) SRVO-005 Troubleshooting Procedure Troubleshooting Procedure 17. Turn the teach pendant ON/OFF switch OFF and release the DEADMAN switch. If the error cannot be reset continue troubleshooting.
Illustration
Central Processing Unit Power Supply Unit
18. Check fuse F4 on the power supply unit. If the fuse is blown replace it and check for a short circuit in the external 24V circuit (I/O and/or end effector power.)
JRF2
If fuse is not blown continue troubleshooting. 19. Reseat connector JRF2 at the main CPU and connectors CRM11 and JRF2 on the emergency stop control board. 20. Turn on the controller and check for proper operation. If the problem is still present, continue troubleshooting. 21. Using an ohmmeter and the wiring diagrams, check the CRM11 (Emergency Stop Control Board) cable for continuity. If a break is found, replace the cable on CRM11 emergency stop control board. 22. If error still exist, one of the following is bad: Determine the bad component by substitution. The ribbon connector between the main CPU connector JRF2 and Emergency Stop Control Board connector JRF2. The Emergency Stop Control Board. The main CPU. Refer to Figure 12–8 and Figure 12–9.
F4: 5-A fuse for +24E
4. TROUBLESHOOTING
4–30
4.6.6 SRVO-006 ER_SVAL1 Hand Broken
MARO2P10203703E
A hand breakage error occurs when the hand (wrist) breakage detection switch or aux hand breakage detection switch is tripped. Remedy: If you are not using the hand broken function, ensure that the HBK jumper on the Emergency Stop Control Printed Circuit Board is set to the A side. If you are using the hand broken function, perform the following steps: 1. If you have not already done so, continuously press and hold the DEADMAN switch and turn the teach pendant ON/OFF switch to ON. 2. Hold down the SHIFT key and press RESET. The robot can now be moved. 3. Jog the robot to a safe position off of the limit switch. 4. Turn the teach pendant ON/OFF switch to OFF and release the DEADMAN switch.
4. TROUBLESHOOTING
4–31
MARO2P10203703E
If the problem still exists, perform the following troubleshooting procedure: Table 4–14.
SRVO-006 Troubleshooting Procedure
Troubleshooting Procedure 1.
Turn off the controller and check fuse F4 on the power supply unit. If the fuse is blown replace it and check for a short circuit in the external 24V circuit (I/O and/or end effector power.)
Illustration
Power Supply Unit F4: 5-A fuse for +24E
If fuse is not blown continue troubleshooting. 2.
Reseat the CRM10 and JRF2 connectors on the main CPU and the CRM11 and JRF2 connectors on the emergency stop control board.
3.
Turn on the controller and check for proper operation. If the problem still exists, continue troubleshooting.
4.
Test the end effector switch and its wires at the robot for continuity. If there is no continuity replace the switch or its wires. If there is continuity continue troubleshooting.
5.
Set the HBK jumper on the Emergency Stop Control Board to the A side and test the robot for proper operation. If the fault is fixed replace the cable between the main CPU connector CRM10 and the robot. Be sure to reset the jumper on the emergency stop control board to the B side. If the fault is not fixed one of the following components is bad.
Emergency Stop Control Board HBK
HAND BROKEN JUMPER
Power Supply Unit
Determine the bad component by substitution.
The Emergency Stop control board. The ribbon cable between the Emergency Stop Control Board and the main CPU.
Main CPU.
CRM 10
4. TROUBLESHOOTING
4–32
MARO2P10203703E
4.6.7 SRVO-007 ER_SVAL1 External Emergency Stops
An external emergency stop button somewhere in the workcell has been pressed. Remedy: Locate and release the external emergency stop button. Press reset on the operator panel or teach pendant. If the problem still exists, perform the following troubleshooting procedure: Table 4–15.
SRVO-006 Troubleshooting Procedure Illustration
Troubleshooting Procedure 1.
Look at terminals EMGIN1 and EMGIN2 on the operator panel interface. Check for a jumper connecting the terminals or a wire on each terminal. There should be continuity between the two terminals. If there is no continuity install a jumper or repair the external fence circuit. If there is continuity continue troubleshooting.
CNOP PORT 2
CRS1
CNHM SVON1
EXON
SVON2
EXCOM
E STOP1
EXOFF
E STOP2
EMGIN1
EMGOUT1
EMGIN2
EMGOUTC
FENCE 1
KA1
KA2
KA3
EMGOUT2
TBOP2 2.
Turn off the controller.
3.
Reseat the JRM10 connector at the operator panel interface and the JRM10 connector at the main CPU.
FENCE 2
TBOP1
MAIN CPU
KA4
4. TROUBLESHOOTING
4–33
MARO2P10203703E
Table 4–15. (Cont’d) SRVO-006 Troubleshooting Procedure Troubleshooting Procedure 4.
5.
Illustration
Turn off the controller and check for proper operation. If the problem still exists continue troubleshooting.
Make sure that no EMERGENCY STOP push buttons are pressed. Check the operator panel, teach pendant and any other external EMERGENCY STOP buttons that were added.
CNOP PORT 2
CRS1
CNHM SVON1
EXON
KA1 6.
Open the controller door.
7.
Disconnect one end of the EMGIN1 and 2 jumper or external emergency stop circuit.
SVON2
EXCOM
E STOP1
EXOFF
E STOP2
EMGIN1
EMGOUT1
EMGIN2
EMGOUTC
FENCE 1
EMGOUT2
FENCE 2
KA2
KA3 8.
Briefly short the EMGIN1 and EMGIN2 terminals on the operator panel interface TBOP1 together. You should be able to hear relay KA4 click on the operator panel interface. If the relay clicks replace cable between the operator panel CNOP and the main CPU If not replace the operator panel. Refer to Figure 12–8, Figure 12–9 and Figure 12–16.
TBOP2
TBOP1
KA4
4. TROUBLESHOOTING
4–34
MARO2P10203703E
4.6.8
Teach pendant DEADMAN switch was released while enabled.
SRVO-011 ER_SVAL1 TP Released While Enabled
Remedy: Press the DEADMAN switch, then press RESET.
4.6.9
Normal power is on (hot start).
SRVO-012 ER_SVAL1 Power Failure Recovery
Remedy: This message is normal and does not indicate a problem. No action is required by the operator.
4.6.10
One or all of the 24VDC cooling fans in the backplane cage are not running.
SRVO-014 Fan Motor Abnormal (Group:i Axis:j)
Each double-board board cage in the backplane has a cooling fan mounted in its top. Each fan contains a centrifugal switch that opens when the fan is not running.
Table 4–16.
SRVO-014 Troubleshooting Procedure Illustration
Troubleshooting Procedure 1.
With power on, test whether each fan is turning by passing a strip of paper over the top of each board cage. If all fans are turning go to Step 3. If one or more fans are motionless continue troubleshooting.
2.
Remove the circuit boards from the board cage with the motionless fan. Reconnect the four-wire connector on the backplane behind the board cage. Re-install the boards and turn on the controller. If the fault is not fixed replace the fan.
Fan motor Cable
3.
One of the fans or the board is probably defective. Determine which part is bad by temporarily replacing it with a known-good part. If the fault is not fixed continue troubleshooting.
Connector
Backplane Back lane
4.
Replace the backplane.
4. TROUBLESHOOTING
4–35
MARO2P10203703E
4.6.11 SRVO-015 ER_SVAL1 System Over Heat (Group:i Axis:j)
The temperature in the controller is too high, or the overheat sensor located on the backplane has opened.
Table 4–17.
SRVO-015 Troubleshooting Procedure
Troubleshooting Procedure 1.
Check the heat exchanger fans for operation. If the fans are operating replace the backplane. If one or more fans do not work continue troubleshooting.
2.
Check the AC voltage at the terminals of the non-working fan(s). If the voltage is 200 to 240 VAC replace the non operational fan(s). If the voltage is out of tolerance replace the fan motor wiring harness.
Print Reference Figure 12–1.
4. TROUBLESHOOTING
4–36
MARO2P10203703E
4.6.12
The SVON (servo ON/OFF) input is asserted.
SRVO-019 ER_SVAL1 SVON input
Perform the following troubleshooting steps.
Table 4–18.
SRVO-019 Troubleshooting Procedure
Troubleshooting Procedure 1.
Check for continuity between SVON1 and SVON2 on the operator panel interface terminal strip TBOP2. If no continuity jumper terminals together or replace application wiring.
Print Reference Figure 12–16.
If there is continuity replace the operator panel. If the alarms still exist replace the cable between the operator panel (CNOP) and the Main CPU (JRM10). If alarm still exists replace the main CPU.
4.6.13 SRVO-020 ER_SVAL1 SRDY off (TP)
The teach pendant cable is disconnected or a momentary break occurred in any of the teach pendant emergency stop circuits; DEADMAN switch or teach pendant EMERGENCY STOP button. Perform the following troubleshooting steps.
Table 4–19.
SRVO-020 Troubleshooting Procedure
Troubleshooting Procedure 1.
Replace the teach pendant cable or teach pendant as necessary. If alarm still exists replace the cable between the operator panel (CNOP) and the main CPU If alarm still exists replace the main CPU.
Print Reference Figure 12–8 and Figure 12–16.
4. TROUBLESHOOTING
4–37
MARO2P10203703E
4.6.14 SRVO-021 ER_SVAL1 SRDY off (Group:i Axis:j)
The Magnetic Control Contactor on the servo amplifier cannot turn on and no obvious emergency stop conditions exist. Perform the following troubleshooting steps. Refer to Table 4–20. NOTE The paint robot is normally set up for Group 1, Axes 1-6 or Group 1, Axes 1-7. The opener, if present is usually set up as Group 2. The alarms will indicate which group is having problems.
Table 4–20.
SRVO-021 Troubleshooting Procedure
Troubleshooting Procedure 1.
Check the continuity of the plunger switch that detects an open controller door. The switch should Figure 12–1 show continuity when the actuator is pressed. ressed. Figure 12–15. If the plunger p g switch does not show continuity y replace the plunger g switch. If the plunger switch shows continuity continue troubleshooting.
2.
Remove connector from CRM15 on the Emergency Stop Control Board and check switch continuity thru CRM15 socket.
3.
Check the servo amplifier connections between the Emergency Stop Control Board.
4.
Check servo amplifier switch settings. See Figure 4–3.
5.
Check for proper cable connections between Emergency Stop Control Board and servo amplifier. See Figure 4–4.
6.
Turn on the controller and check for proper operation. If the problem is still exists continue troubleshooting.
7.
Check the Magnetic Control Contactor coil for continuity: If the Magnetic Control Contactor (MCC) coil is bad replace the MCC. If the MCC coil is good continue troubleshooting.
8.
Print Reference
One of the following components is bad. Determine the bad component by substituting it with a new component. Replace the following components one at a time until problem the is solved. The Emergency Stop Control Board Cable between the Emergency Stop Control Board (CRR15) and the MCC. The cable between the MCC (CRR20) and the servo amplifiers. The ribbon connector between the main CPU and the Emergency Stop Control Board (JRV1). Cable from Emergency Stop Control board JS1 thru JS6 and servo amplifier. The servo amplifier.
4. TROUBLESHOOTING
4–38
MARO2P10203703E
Figure 4–3. Servo Amplifier Switch Settings
OFF There are four channel switches above the 7-segment LED behind the terminal board cover on the front of the servo amplifier. These switches should be set as described below before you use the servo amplifier. The switches are sequentially numbered 1, 2, 3, and 4 with the one at the bottom as switch 1. The OFF position is on the left and the ON position is on the right. Switch 1 ON Type B Interface OFF Type A Interface Switch 1 determines the interface type. Paint controllers use the Type B interface for Robot Axes 1–6 Set switch 2 to OFF. If the setting is incorrect, SRVO-021 SRDY OFF alarm might occur. Normal settings for switches 3 and 4 are in the ON position. Refer to Figure 4–6.
ON 4 3 2 1 LED
4. TROUBLESHOOTING
4–39
MARO2P10203703E
Figure 4–4. Connector and Terminal (T1) Identification
AO6B-6089-H201-H210
AO6B-6089-H101-H106 7
5
7
3
6
5
8 9
4
3
8 9 2
1
NAME
INDICATION
REMARK
Connector for L-Axis (major channel) type A interface Connector for M-Axis (minor channel) type A interface
JV1B
TYPE A Interface
JV2B
TYPE A Interface
3
Connector for L-Axis (major channel) type B interface
JS1B
TYPE B Interface
4
Connector for L-Axis (minor channel) type B interface N/A
JS2B
TYPE B Interface
JF1
TYPE B Interface
6
N/A
JF2
TYPE B Interface
7
N/A
JA4
TYPE B Interface
CX3
1 pin 3 pin
CX4
2 pin: ESP (at open) 3 pin: 24V
1 2
5
8 Connector for main power supply (Y key) Connector for expo signal 9 (X key)
1
4. TROUBLESHOOTING
4–40
4.6.15 SRVO-022 ER_SVAL1 SRDY on (Group:i Axis:j)
MARO2P10203703E
The Magnetic Control Contactor on the servo amplifier is on before it is expected to be on. Perform the following troubleshooting steps.
Table 4–21.
SRVO-022 Troubleshooting Procedure
Troubleshooting Procedure 1.
Print Reference
Check the Magnetic Control Contactor (MCC) for stuck contacts. If the contacts are stuck replace the MCC. If the MCC is OK continue troubleshooting.
2.
Refer to the Section 4.6.14.
4.6.16 SRVO-023 ER_SVAL1 Stop Error Excess (Group:i Axis:j)
The axis position is too far from its commanded position when the robot is stopping, or the robot is stopped and it will not move. The torque necessary to decelerate an overloaded motor could cause this alarm to occur. Perform the following troubleshooting steps.
Table 4–22.
SRVO-023 Troubleshooting Procedure
Troubleshooting Procedure 1.
Make sure that the load on the robot is not excessive.
2.
Check that the affected axis is not binding and rotates freely. Especially, make sure that the brake is not stuck.
3.
Check that the motor power cables do not have any open wires and that the cables are not misconnected.
4.
Either the motor or the servo amplifier is bad. Determine the bad component by substituting it with a new component.
4.6.17 SRVO-024 ER_SVAL1 Move Error Excess (Group:i Axis:j)
Print Reference
The servo error is too big when the robot is moving, or the robot moves when it is supposed to be stopped. Remedy: Same as SRVO-023, Stop Error Excess.
4. TROUBLESHOOTING
4–41
MARO2P10203703E
4.6.18 SRVO-026 ER_WARN Motor Speed Limit (Group:i Axis:j)
The motor cannot rotate as fast as the calculated speed required for the current motion. Remedy: Even though this is just a warning, every attempt should be made to eliminate this error by modifying the programmed speed or motion.
4.6.19
The robot is not mastered.
SRVO-027 ER_WARN Robot Not Mastered (Group:i Axis:j)
Remedy: Master the robot. Refer to Chapter 8.
4.6.20
The robot is not calibrated. Remedy: Calibrate the robot. Refer to Chapter 8.
SRVO-033 ER_WARN Robot Not Calibrated (Group:i Axis:j)
4.6.21 SRVO-035 ER_WARN Joint Speed Limit (Group:i Axis:j)
4.6.22 SRVO-036 Imposition Time Over (Group:i Axis:j)
Joint cannot rotate as fast as the calculated speed required for the current motion. Remedy: Even though this is just a warning, every attempt should be made to eliminate this error by modifying the programmed or motion speed.
The robot is not in position for the specified period, or the servo error is in excess of the specified position when the robot is stopping, or the robot is stopped and it will not move. The torque necessary to decelerate an overloaded motor could cause this alarm to occur. Remedy: Same as SRVO-023, Stop Error Excess.
4.6.23 SRVO-037 ER_SVAL1 IMSTP Input (Group:i Axis:j)
IMSTP (immediate stop) UOP (User Operator Panel) input asserted. Remedy: If using a UOP, determine the cause and repair. If not using UOP, select the I/O menus and zero UOP mapping.
4. TROUBLESHOOTING
4–42
4.6.24 SRVO-038 PULSE MISMATCH (Group:i Axis:j)
MARO2P10203703E
When the controller was powered up, one or more of its axes was at a different position from when it was powered off. This might occur when a motor is replaced or when a CPU from one controller is installed in another. Remedy: Perform the following procedure:
Table 4–23.
SRVO-038 Alarm Reset Procedure
Reset Procedure 1.
Press MENUS.
2.
Select SYSTEM.
3.
Press F1, [TYPE].
4.
Select MASTER/CAL
If MASTER/CAL is not displayed, perform the following: a. Select VARIABLES. b. Select $MASTER_ENB. c. Set $MASTER_ENB to 1. d. Press F1 [TYPE] and select MASTER/CAL. 5.
Press F3, RES_PCA.
6.
Press F4, YES.
7.
Press RESET to clear the alarm without turning off the controller. If the fault does not reset, cold start the controller. Refer to Procedure 10–3 .
Print Reference
4. TROUBLESHOOTING
4–43
MARO2P10203703E
4.6.25 SRVO-042 ER_SVAL2 MCAL Alarm (Group:i Axis:j)
The servo amplifier magnetic control contactor (MCC) is welded closed. If the contact of the MCC is already closed when the contactor is turned on, this alarm circuit regards the contact as welded closed and the MCC alarm occurs. This error code can also be caused by improper controller shut down sequence (see Procedure 10–5 ) or improper servo lockout procedure (see Procedure 10–6 ). Perform the following troubleshooting procedure:
Table 4–24.
SRVO-042 Troubleshooting Procedure
Troubleshooting Procedure 1.
2. 3.
Does this alarm occur with SRVO-049? If SRVO-049 occurs check for the absence of input three-phase voltage. Connect as necessary. Check (reseat) the cable between the servo amplifier and the Emergency Stop Control Board. Turn the controller power off for fifteen second and then turn it on again. See Procedure 4–1 . If the alarm is still present, continue troubleshooting. Replace the servo amplifier. If error still exists replace re lace the cable between the Emergency Stop Sto Control Board and the servo amplifier. If error still exists replace re lace the cable between the Emergency Stop Sto Control Board (JRV1) and the main CPU. If error still exists replace replace the Emergency Stop Control Board. Board If error still exists replace the main CPU.
Print Reference Figure 12–8 Figure 12–9.
4. TROUBLESHOOTING
4–44
4.6.26 SRVO-043 ER_SVAL2 DCAL Alarm (Group:i Axis:j)
MARO2P10203703E
The regenerative energy produced by the motor exceeded the specifications.
NOTE The amplifier supplies the energy (velocity energy) to the motor when the axis (without gravity) moves at the acceleration and constant speed. When the axis moves at the deceleration and constant speed and with gravity (gravity energy), the motor supplies this energy (velocity energy plus gravity energy) to the amplifier.
This energy from the motor to the amplifier is the regenerative energy. The amplifier discharges this energy by converting this energy to heat energy through the discharge resistor. If the charged energy exceeds the discharged energy, this alarm occurs. Remedy: Check the LED on the amplifier, then perform the following troubleshooting procedure.
Table 4–25.
SRVO-043 Troubleshooting Procedure
Troubleshooting Procedure 1.
Is “4” or “5” indicated on the servo amplifier 7-segment display? Step 2. If 4 is indicated go to Ste If 5 is indicated go to Step 3. If no number is indicated check the cables between the servo amplifier and Emergency Stop Control Board. Board Verify the correct switch 3 and 4 setting (see Figure 4–5). 4 5) If the error still exists replace the servo amplifier. If the error still exists re replace lace the cable between the servo amplifier am lifier and the Emergency Stop Sto Control Board. If the error still exists replace the ribbon cable (JRV1) between the main CPU and Emergency Stop Control Board. Sto If the error still exists replace the Emergency Stop Control Board.
2.
3.
If the error still exists replace the main CPU. A “4” is indicated (DCSW alarm) when the regenerative transistor is on continuously for one second or longer. See Figure 4–6. Reduce the load of the robot. If error still exists replace the servo amplifier. A “5” is indicated (DCOH alarm). See Figure 4–6. The DCOH alarm is caused when the regenerative resistor overheats and is sensed by the thermostat or the thermostat in transformer TF1 opens. opens If the average regenerative energy is excessive This alarm occurs when the acceleration/deceleration frequency is high or gravity energy at the axis is large. Relax the o operating erating conditions. For robots with extended axes or if the thermostat is incorrectly wired or is defective When a separate regenerative discharge unit or power transformer for the servo controller is used, check the wiring for the thermostat according to the connection diagrams for proper wiring.
Print Reference Figure 12–1 Figure 12–3
4. TROUBLESHOOTING
4–45
MARO2P10203703E
Figure 4–5. Switch 3 and 4 Settings SWITCH 3 AND 4 SETTINGS The setting varies depending on the regenerative discharge resistance used. If the setting is incorrect, the regenerative discharge control circuit failure alarm (DCSW) cannot be detected. Normal setting for switches 3 and 4 are ON. SVU1 (12, 20) Regenerative Discharge Resistor
3
4
ON
ON
Built-in
ON
OFF
Separate A06B-6089-H510
OFF
OFF
Separate A06B-6089-H500
SVU1 (40, 80), SVU2 3
/
Regenerative Discharge Resistor
4 Built-in
ON
ON
ON
OFF
Separate A06B–6089-H500
OFF
OFF
Separate A06B-6089 H713(800W), A06B-6089-H714(1200W) SVU1 (130)
3
Regenerative Discharge Resistor
4
ON
ON
Built-in
ON
OFF
Separate A06B-6089-H711
OFF
OFF
Separate A06B-6089-H712
Figure 4–6. Servo LED Display SERVO LED DISPLAY Regenerative discharge control circuit failure alarm (DCSW) Over regenerative discharge alarm (DC0II)
4 5
This alarm occurs if: The short-time regenerative discharge energy is too high. The regenerative discharge circuit is abnormal. This alarm occurs if: The average regenerative discharge energy is too high (too frequent acceleration/deceleration). The transformer overheats.
4. TROUBLESHOOTING
4–46
4.6.27 SRVO-044 ER_SVAL2 HVAL Alarm (Group:i Axis:j)
MARO2P10203703E
The DC voltage on the main power circuit of the servo amplifier exceeded specification. HVAL (High Voltage Alarm) Remedy: Check the three-phase voltage to the servo amplifier input. It should not exceed 253 VAC phase-to-phase. If the problem still exists, perform the following troubleshooting procedure: Table 4–26.
SRVO-044 Troubleshooting Procedure
Troubleshooting Procedure 1.
Is the voltage of the three-phase input servo to the amplifier higher than 253 VAC? If the voltage than 253 VAC check multi-tap transformer TF1 taps. If it is within limits 200 to 240 VAC continue troubleshooting.
2.
Is the load of the robot within the specification? This alarm can be caused by the charge of the regenerative energy when the load exceeds the specification. If it exceeds the specification reduce the load of the robot. If the specification is not exceeded continue troubleshooting.
3.
Replace the servo amplifier. If the error still exists replace replace the cable between the Emergency Stop Control Board and the servo amplifier. If error still exists replace the cable (JRV1) between the Emergency Stop Control Board and the main CPU. CPU replace Stop Control Board. If error still existsre lace the Emergency Sto If error still exists replace the main CPU.
Print Reference Figure 12–3
4. TROUBLESHOOTING
4–47
MARO2P10203703E
4.6.28
The current in the main power circuit of the servo amplifier exceeded specification. The servo amplifier LED should display “8”, “9”, “6”, “8.”, “9.”, or “6.”.
SRVO-045 ER_SVAL2 HCAL Alarm (Group:i Axis:j)
Remedy: If no alarm is indicated on the servo amplifier 7-segment display, check the cabling between the servo amplifier (JS1B or JS2B) and the Emergency Stop Control Printed Circuit Board (JS1-6). If the problem still exists, perform the following troubleshooting procedure: Table 4–27.
SRVO-045 Troubleshooting Procedure
Troubleshooting Procedure 1.
Disconnect the motor power lines from the amplifier terminals and turn on the power. This alarm will re-occur if the servo amplifier is defective. If an HCAL (High Current Alarm) alarm occurs replace the servo amplifier. If an HCAL alarm does not occur continue troubleshooting.
2.
Remove the motor power lines from the amplifier terminals and check the continuity between GND and each of the lines U, V, and W that go to the motor. If any are short-circuited go to Step 3. If all are not shorted go to Step 4.
3.
Remove the power lines from the motor connectors (J1-6) and re-check the continuity between GND and each of the lines U, V, and W to the robot motor. If any lines are shorted, the motor is defective replace the motor. If all lines are open the power lines to the motor are defective replace the line that was shorted to GND.
4.
Remove the motor power lines from the amplifier terminals and measure the resistance between U-V, V-W, and W-U on the servo amplifier using a measuring instrument sensitive enough to detect small resistances. If the three measured values are the same go to Step 5. If the three measured values are different go to Step 6.
5.
Remove the power lines from the motor connectors and remeasure the resistance between U-V, V-W, and W-U using a measuring instrument sensitive enough to detect small resistances. If the three measured values are the same the power lines are defective. Replace the power lines. If the three measured values are different the motor is defective replace the motor. Go to Step 7.
6. 7.
Replace the servo amplifier. Continue troubleshooting. Check whether you are using the robot under conditions that exceed the specification. For example, load, duty, and so forth. If there is no mechanical reason (binding and so forth) to cause this alarm, alarm this alarm might occur under conditions that exceed the specification. specification If you are using the robot over the specification, relax the operating conditions. If the error still exists existsreplace replace the cable between the servo amplifier and the Emergency Stop Control Board. If the error still exists replace replace the cable between the Emergency Stop Control Board (JRV1) and the main CPU. If the error still exists replace replace the Emergency Stop Control Board Board. If the error still exists replace the main CPU.
Print Reference
4. TROUBLESHOOTING
4–48
4.6.29 SRVO-046 ER_SVAL2 OVC Alarm (Group:i Axis:j)
4.6.30 SRVO-047 ER_SVAL2 LVAL Alarm (Group:i Axis:j)
MARO2P10203703E
The average current calculated by the servo software exceeded specification. OVC (Over Current Alarm). This is caused by excessive load or by a collision with an axis hard stop or an object in the robot work envelope.
The DC voltage on the main power circuit of the servo amplifier is lower than specification. LVAL (Low Voltage Alarm) Remedy: If no alarm is indicated on the servo amplifier LED, check the cabling between the servo amplifier and the Emergency Stop Control Board. If the problem still exists, perform the following troubleshooting procedure: Table 4–28.
SRVO-047 Troubleshooting Procedure
Troubleshooting Procedure 1.
Does the LED of the amplifier indicate “2” ? Check the three-phase input voltage to the amplifier. If the LED indicates a “2” the voltage is lower than the recommended specification. The phase-to-phase input voltage at the servo amplifier terminals should measure at least 170VAC between each phase Check for 200 to 240 VAC input power to terminals 13 and 14 of the servo amplifier. If it is low or missing, check multi-tap transformer TF1 taps, fuses, and Magnetic Control Contactor (MCC). If the alarm occurs again replace the servo amplifier. Go to Step 4.
2.
Does the LED of the amplifier indicate “3” ? This indicates the DC current in the main power circuit is too low. Check the three-phase 200 to 240 VAC input voltage to the amplifier. If the voltage is lower than 170VAC the three-phase input voltage needs to be adjusted to within the FANUC specifications. Check the multi-tap transformer TF1 taps and fuses.
3.
Did the circuit breaker on the servo amplifier trip? (If a circuit breaker trips, this alarm will occur incidentally.) If a circuit breaker trips turn on the breaker. If it trips again, replace the servo amplifier. Continue troubleshooting.
4.
Does the LED of the amplifier indicate a “7”? This alarm could occur when the contact of the magnetic contactor (MCC) is melted (welded together).
Refer to the SRVO-042 MCAL alarm. See Section 4.6.25. 5.
If the servo amplifier has been replaced and the error still exists; replace the cable between the servo amplifier am lifier and the Emergency Stop Sto Control Board. If error still exists replace the cable between the Emergency Stop Control Board (JRV1) and the main CPU CPU. If error still existsre replace Stop Control Board. lace the Emergency Sto If error still exists replace the main CPU.
Print Reference Figure 12–1 Figure 12–3
4. TROUBLESHOOTING
4–49
MARO2P10203703E
4.6.31 SRVO-049 ER_SVAL1 OHAL1 Alarm (Group:i Axis:j)
The servo amplifier or transformer is overheated. OHAL1 (Over Heat Alarm 1) Remedy: Check the fans and the heat exchange unit for proper operation. If the problem still exists, perform the following troubleshooting procedure: Table 4–29.
SRVO-049 Troubleshooting Procedure
Troubleshooting Procedure 1.
Relax the operating condition (duty cycle). If the alarm no longer g occurs the operating g condition of the robot exceeded the specification.
Print Reference Figure 12–8 Figure 12–15
If the alarm still occurs replace the servo amplifier If no alarm is indicated on the servo amplifier 7-segment display check the cabling between the servo amplifier and the Emergency Stop Control Board. If the cabling is not bad, continue troubleshooting. 2.
Replace the cable between the Emergency Stop Control Board (JRV1) and the main CPU. If the alarm still occurs replace the Emergency Stop Control Board. If the alarm still occurs replace the main CPU.
4.6.32 SRVO-050 ER_SVAL1 CLALM Alarm (Group:i Axis:j)
The servo software detected a disturbance torque that was too high or a collision occurred and tripped a collision detection alarm. CLALM (Collision Alarm) Remedy: Reset the robot by using the teach pendant reset and jog the robot away from obstructions. If the problem still exists, perform the following troubleshooting procedure: Table 4–30.
SRVO-050 Troubleshooting Procedure
Troubleshooting Procedure 1.
Does the load exceed the specifications? (When the robot moves over the specifications, the estimated disturbance torque might become larger and this alarm could occur.) If the load exceeds the specifications lower the load to within the specifications. If the load does not exceed the specifications continue troubleshooting.
2.
Is the three-phase AC input voltage to the servo amplifier lower than 170VAC phase-to-phase (O-V, V-W, U-W). If the voltage is lower than 170VAC increase the input voltage to within the specifications. Check multi-tap transformer TF1 taps and fuses. If the voltage is not lower than 170VAC continue troubleshooting.
3.
Check the continuity of the motor power wires (from the servo amplifier to the motor). If the motor power wires are defective replace as required. If after the motor power wires have been replaced and the problem still exists replace the main CPU.
Print Reference Figure 12–1 Figure 12–3
4. TROUBLESHOOTING
4–50
4.6.33
MARO2P10203703E
The feedback current is abnormal. CUER (Current Error)
SRVO-051 ER_SVAL2 CUER Alarm (Group:i Axis:j) Table 4–31.
SRVO-051 Troubleshooting Procedure
Troubleshooting Procedure 1. 2.
Print Reference
Replace the servo amplifier. If the error still exists continue troubleshooting. Replace the main CPU.
4.6.34
The servo software detected a disturbance torque that was too high.
SRVO-053 ER_WARN Disturbance excess (Group:i Axis: J)
Remedy: Reset the robot and try again.
4.6.35
The DSP module program memory is defective. DSM (Digital Servo Module).
SRVO-054 ER_SVAL1 DSM memory error (DS:i)
4.6.36 SRVO-061 ER_SVAL2 CKAL Alarm (Group:i Axis:j)
Remedy: Replace the appropriate DSP module on the main CPU and continue.
The clock for the rotation counter in the serial pulse coder is abnormal. CKAL (Clock Alarm)
Table 4–32.
SRVO-061 Troubleshooting Procedure
Troubleshooting Procedure 1.
Did a SRVO-068 DTERR, or SRVO-069 CRCERR, or a SRVO-070 STBERR occur with this alarm? If YES disregard error SRVO_061 and refer to the remedy of any of the other three alarms. If NO alarms occur replace the serial pulse coder on the specified axis and master the robot. See Chapter 8.
Print Reference
4. TROUBLESHOOTING
4–51
MARO2P10203703E
4.6.37 SRVO-062 ER_SVAL2 BZAL Alarm (Group:i Axis:j)
The battery voltage for the serial pulse coders is zero volts. BZAL (Battery Zero Alarm).
Table 4–33.
SRVO-062 Troubleshooting Procedure
Troubleshooting Procedure 1.
Did a SRVO-068 DTERR, or SRVO-069 CRCERR, or a SRVO-070 STBERR occur with this alarm? If YES disregard the BZAL alarm and refer to the procedure for the other alarm (SRVO-68 - SRVO-70). If NO continue troubleshooting.
2.
Did this alarm message list only one axis? If YES check the battery cable for the serial pulse coder of the axis listed in the alarm message. Reconnect, or replace as necessary. Go to Step 4. If NO continue troubleshooting.
3.
Press the teach pendant emergency stop button. Turn the controller on. Check the pulse coder batteries for 6 VDC at the battery terminals on the battery box in the door of the controller. Do the batteries read 6 VDC ? If YES replace the battery compartment cable. Go to Step 4. If NO replace the batteries. Continue troubleshooting.
4.
Perform serial pulse coder reset procedure under SRVO-038 alarm.
5.
Turn the controller off and then back on.
6.
It might be necessary to perform the SRVO-038 procedure again. If alarm still exists on only one axis Replace the serial pulse coder (after verifying battery cable is good) .
Print Reference
4. TROUBLESHOOTING
4–52
4.6.38 SRVO-063 ER_SVAL2 RCAL Alarm (Group:i Axis:j)
MARO2P10203703E
The built-in rotation counter on the serial pulse coder is abnormal. RCAL (Revolution Clock Alarm).
Table 4–34.
SRVO-063 Troubleshooting Procedure
Troubleshooting Procedure 1.
Print Reference
Did a SRVO-068 DTERR, or SRVO-069 CRCERR, or a SRVO-070 STBERR occur with this alarm? If YES disregard SRVO_063 and refer to the remedy of any of the other three alarms. If NO replace the serial pulse coder on the specified axis and master the robot. See Chapter 8.
4.6.39 SRVO-064 ER_SVAL2 PHAL Alarm (Group:i Axis:j)
The relationship between the analog signals on the serial pulse coder are abnormal. PHAL (Phase Alarm).
Table 4–35.
SRVO-064 Troubleshooting Procedure
Troubleshooting Procedure 1.
Print Reference
Did a SRVO-068 DTERR, or SRVO-069 CRCERR, or a SRVO-070 STBERR occur with this alarm? If YES disregard SRVO_064 and refer to the remedy of any of the other three alarms. If NO replace the serial pulse coder on the specified axis and master the robot. See Chapter 8.
4.6.40
The serial pulse coder batteries are low. BLAL (Battery Low Alarm).
SRVO-065 ER_WARN BLAL Alarm (Group:i Axis:j)
Table 4–36.
SRVO-065 Troubleshooting Procedure
Troubleshooting Procedure 1.
Did a SRVO-068 DTERR, or SRVO-069 CRCERR, or a SRVO-070 STBERR occur with this alarm? If YES disregard SPC_065 and refer to the remedy of any of the other three alarms. If NO replace the SPC backup batteries with controller power on.
NOTE: Replace the battery as soon as possible when this alarm occurs, otherwise, if the battery voltage goes to zero volts, the robot will require remastering.
Print Reference
4. TROUBLESHOOTING
4–53
MARO2P10203703E
4.6.41 SRVO-066 ER_SVAL2 CSAL Alarm (Group:i Axis:j)
The serial pulse coder ROM checksum data are abnormal. CSAL (Check Sum Alarm).
Table 4–37.
SRVO-066 Troubleshooting Procedure
Troubleshooting Procedure 1.
Print Reference
Did a SRVO-068 DTERR, or SRVO-069 CRCERR, or a SRVO-070 STBERR occur with this alarm? If YES disregard SRVO_066 and refer to the remedy of any of the other three alarms. If No alarms occur replace the serial pulse coder on the specified axis and master the robot. See Chapter 8.
4.6.42
The serial pulse coder overheated. OHAL2 (Over Heat Alarm).
SRVO-067 ER_SVAL2 OHAL2 Alarm (Group:i Axis:j)
Table 4–38.
SRVO-067 Troubleshooting Procedure
Troubleshooting Procedure 1.
Did a SRVO-068 DTERR, or SRVO-069 CRCERR, or a SRVO-070 STBERR occur with this alarm? If YES disregard SRVO-067 and refer to the remedy of any of the other three alarms. If NO continue troubleshooting.
2.
Does the operating condition (load, duty) exceed the specifications? If the operating condition exceeds the specifications relax the operating condition within the specification. (Reduce the load, change the program). If it operating conditions does not exceed the specifications continue troubleshooting.
3.
Turn off the controller and when the temperature of the motor returns to normal, turn it back on. If the alarm immediately occurs again the built-in thermostat in the serial pulse coder is defective. Replace the serial pulse coder. If the alarm occurs again, but not immediately the motor is generating too much heat. Replace the motor.
Print Reference
4. TROUBLESHOOTING
4–54
MARO2P10203703E
4.6.43
The main CPU sent the serial data request signal to the serial pulse coder, but did not receive serial data from the serial pulse coder.
SRVO-068 ER_SVAL2 DTERR Alarm (Group:i Axis:j)
In order to troubleshoot the 24V to 5V converter, it will be necessary to operate the power supply with the covers removed from the robot. The following procedure is necessary to insure the proper pre-test conditions are met. WARNING The robot is designed to operate in a hazardous location. The covers are an integral part of the protection therefore all of the steps listed below must be followed EXACTLY AND IN THE ORDER PRESENTED. These steps must be taken IN ADDITION TO NORMAL SAFETY PRECAUTIONS. Failure to follow these procedures could result in an explosion. Step
1 Consult your plant procedures to insure the area around the robot is KNOWN to be NON HAZARDOUS. Typically this will include the booth in which the robot is located. 2 Take steps to insure the area around the robot will REMAIN NON HAZARDOUS for the duration of the test procedure and until the covers are replaced on the robot. 3 Install a TEMPORARY jumper between terminals ISTB 1 and ISTB 4. 4 Install a TEMPORARY jumper from terminals ISTB 5 to ISTB 8. 5 Shut off the air supply to the robot. 6 If the above procedure causes a loss of controller power, press the purge enable pushbutton and wait 5 minutes. When the PURGE COMPLETE light comes on, the controller can be turned on. 7 After you complete Steps 1-6 remove the covers on the robot and with the controller powered ON, perform the required troubleshooting. 8 After the troubleshooting is complete, replace the covers tightly. 9 Turn on the air supply to the robot. 10
Turn off the controller and open the disconnect switch.
11 Remove both temporary jumpers and insure the connections to the ISTB are correct. WARNING DO NOT TAMPER WITH THE SETTING of the purge timer; otherwise, you could cause an explosion.
4. TROUBLESHOOTING
4–55
MARO2P10203703E
WARNING For continued safety, the temporary jumpers must be removed; otherwise, you could cause an explosion. 12
Close the main disconnect to the controller.
13
Press the PURGE ENABLE pushbutton. Hold the pushbutton until it lights (approximately 10 seconds). This indicates adequate purge air flow. If the pushbutton does not light, purge air flow is not adequate and the robot should be checked for leaks.
14
After the PURGE COMPLETE light comes on, the controller can be turned back on. The controller can not be turned on before the purge complete light comes on.
Table 4–39.
SRVO-068 Troubleshooting Procedure Print Reference
Troubleshooting Procedure 1.
2.
If an individual axes has failed, check for connection and continuity of the serial pulse coder cable. Replace if necessary. If all axes indicate failure or if the alarm occurs again continue troubleshooting. Check the 24V and 6.5 V LEDs on Module Assembly EE-3044-401 located in the purge cavity. See Steps 1 through 14 and Warnings of SRVO-068 and Figure 4-7. If the 24V LED is not illuminated check the wiring between the Module Assembly EE-3044-401 and the 24V power supply in the controller. If the 24V LED is illuminated and 6.5V LED is not illuminated disconnect CONN1 through CONN7 on Module Assy EE-3044-401. If 6.5V LED illuminates, check for shorted Cable. If 6.5V does not illuminate, replace the Module Assembly EE-3044-401. If the 24V LED is illuminated and 6.5 LED is illuminated continue troubleshooting.
3. 4.
Replace the main CPU. If the alarm occurs again continue troubleshooting. Replace the serial pulse coder. Figure 4–7. Module Assembly # EE-3044-401
CR1 DC/DC MODULE LEDs
24V
6.5V
MODULE ASSY #EE-3044-401
4. TROUBLESHOOTING
4–56
4.6.44 SRVO-069 ER_SVAL2 CRCERR Alarm (Group:i Axis:j)
MARO2P10203703E
The serial data from the serial pulse coder changed during communication to the main Central Processor Unit. CRCERR (Cyclical Redundancy Check Error). This fault is frequently caused by electrical noise induced on the serial pulse coder cable. Make sure that the cable does not lie parallel or close to power cables. Make sure that the robot-mounted relays and solenoids have spark suppression diodes. Check all pulsecoder cable shield grounds points. Make sure that all cable connections are properly connected. Only as a last resort should the cable or a serial pulse coder be replaced.
4.6.45 SRVO-070 ER_SVAL2 STBERR Alarm (Group:i Axis:j)
4.6.46 SRVO-071 ER_SVAL2 SPHAL Alarm (Group:i Axis:j)
The communication stop and start bits are abnormal. STBERR (Stop Bit Error). Refer to the SRVO-068 remedy.
The feedback velocity exceeds the specifications. SPHAL (Software Phase Alarm). If the problem still exists, perform the following troubleshooting procedure:
Table 4–40.
SRVO-071 Troubleshooting Procedure
Troubleshooting Procedure 1.
Does this alarm occur with any other alarm? If another alarm occurs this alarm is caused byy the previous alarm of the serial serial pulse coder. d Refer R f to t the th other th alarm l ffor d details. t il If another alarm does not occur replace the serial pulse coder.
Print Reference
4. TROUBLESHOOTING
4–57
MARO2P10203703E
4.6.47
The serial pulse coder fails.
SRVO-072 ER_SVAL2 PMAL alarm (Group:%d Axis:%d) Table 4–41.
SRVO-072 Troubleshooting Procedure
Troubleshooting Procedure 1.
Print Reference
Does this alarm occur with any other alarm? If this alarm occurs along with a SRVO-068 DTERR, SRVO-069 CRCERR, or SRVO-070 STBERR disregard this alarm and refer to the other three alarm remedies. If this alarm does not occur along with a SRVO-068 DTERR, SRVO-069 CRCERR, or SRVO-070 STBERR continue troubleshooting.
2.
Replace the serial pulse coder and master the robot. See Chapter 8 Mastering.
4.6.48 SRVO-073 ER_SVAL2 CMAL alarm (Group:%d Axis:%d)
Incorrect position data detected in the serial pulse coder, or abnormal serial pulse coder data caused by noise.
Table 4–42.
SRVO-071 Troubleshooting Procedure
Troubleshooting Procedure 1.
Print Reference
If this alarm occurs along with a SRVO-068 DTERR, SRVO-069 CRCERR, or SRVO-070 STBERR, disregard this alarm and refer to the other three alarm remedies. If the SRVO-068 DTERR, SRVO-069 CRCERR, or SRVO-070 STBERR, does not occur with this alarm, continue troubleshooting.
2.
Master the robot. See Chapter 8 then continue troubleshooting.
3.
Check the grounding of the serial pulse coder cable shield. If the serial pulse coder cable shield is grounded go to step 4. If the serial pulse coder cable shield is not grounded ground the shield or replace the cable.
4.
Replace the serial pulse coder and master the robot. See Chapter 8, “Mastering”.
4.6.49
The Serial pulse coder failure.
SRVO-074 ER_SVAL2 LDAL alarm (Group:%d Axis:%d)
Table 4–43.
SRVO-071 Troubleshooting Procedure
Troubleshooting Procedure 1.
If this alarm occurs along with a SRVO-068 DTERR, SRVO-069 CRCERR, or SRVO-070 STBERR, disregard this alarm and refer to the other three alarm remedies. Otherwise, continue troubleshooting.
2.
Replace the serial pulse code and master the robot. See Chapter 8, “Mastering”.
Print Reference
4. TROUBLESHOOTING
4–58
4.6.50 SRVO-075 ER_WARN Pulse not established (G:%d A:%d)
MARO2P10203703E
The pulse position is not established until the serial pulse coder is rotated one complete revolution.
Table 4–44.
SRVO-071 Troubleshooting Procedure
Troubleshooting Procedure 1.
Print Reference
The pulse position is not established until the serial pulse coder is rotated one complete revolution.
4.6.51
Line Tracking Overflow Error.
SRVO-081 ER_WARN EROFL Alarm (Track encoder:n) Table 4–45.
SRVO-081 Troubleshooting Procedure
Troubleshooting Procedure 1. 2.
Check the connection between the controller and the line tracking device (absolute encoder or pulse generator). Check that the line speed is within the recommended specification. If the line speed is not within the specification relax the line speed.
Print Reference
4. TROUBLESHOOTING
4–59
MARO2P10203703E
4.6.52
Line Tracking serial pulse coder is disconnected.
SRVO-082 ER_WARN DAL Alarm (Track encoder:n)
Remedy: Check axis control printed circuit board for proper line tracking cable connections. If the problem still exists, perform the following troubleshooting procedure:
Table 4–46.
SRVO-082 Troubleshooting Procedure
Troubleshooting Procedure 1.
Replace the main CPU.
2.
Replace the line tracking serial pulse coder.
4.6.53 SRVO-083 ER_WARN CKAL Alarm (Track encoder:n)
Print Reference
The clock for the rotation counter in the line tracking serial pulse coder is abnormal. Remedy: Refer to SRVO-061 remedy.
4.6.54
The battery voltage for the line tracking serial pulse coder is zero volts.
SRVO-084 ER_WARN BZAL Alarm (Track encoder:n)
Remedy: Refer to SRVO-062 remedy.
4.6.55
The built-in rotation counter on the line tracking serial pulse coder is abnormal.
SRVO-085 ER_WARN RCAL Alarm (Track encoder:n)
4.6.56 SRVO-086 ER_WARN PHAL Alarm (Track encoder:n)
Remedy: Refer to SRVO-063 remedy.
The relationship between the analog signals on the line tracking serial pulse coder are abnormal. Remedy: Refer to SRVO-064 remedy.
4. TROUBLESHOOTING
4–60
MARO2P10203703E
4.6.57
The line tracking serial pulse coder batteries are low.
SRVO-087 ER_WARN BLAL Alarm (Track encoder:n)
Remedy: Refer to SRVO-065 remedy.
4.6.58
The line tracking serial pulse coder ROM checksum data is abnormal.
SRVO-088 ER_WARN CSAL Alarm (Track encoder:n)
Remedy: Refer to SRVO-066 remedy.
4.6.59
The line tracking serial pulse coder overheated.
SRVO-089 ER_WARN OHAL2 Alarm (Track encoder:n)
Remedy: Refer to SRVO-067 remedy.
4.6.60
The axis control printed circuit board sent the request signal, but did not receive serial data from the line tracking serial pulse coder.
SRVO-090 ER_WARN DTERR Alarm (Track encoder:n)
4.6.61 SRVO-091 ER_WARN CRCERR Alarm (Track encoder:n)
Remedy: Refer to SRVO-068 remedy.
The serial data from the line tracking serial pulse coder changed during communication to the axis control printed circuit board. Remedy: Refer to SRVO-069 remedy
4.6.62
The communication stop and start bits for line tracking axis are abnormal.
SRVO-092 ER_WARN STBERR Alarm (Track encoder:n)
Remedy: Refer to SRVO-070 remedy.
4. TROUBLESHOOTING
4–61
MARO2P10203703E
4.6.63
The feedback velocity exceeds the specification for line tracking axis.
SRVO-093 ER_WARN SPHAL Alarm (Track encoder:n)
Remedy: Refer to SRVO-071 remedy.
4.6.64
The back-up charge circuit for the amplifier has an abnormal voltage. This error code can also be caused by improper controller shut down sequence (See Procedure 10–5 ) or improper servo lockout procedure (See Procedure 10–6 ).
SRVO-147 SERVO LVAL(DCLK) alarm (G:%d A:%d)
Remedy: Check the cables and connections between amplifier (CN1) and MCC. Check the fuse (F1,F2) in transformer. Replace the amplifier.
4.6.65
The DSM (Digital Servo Module) hardware does not all match.
SRVO-163 ER_FATL DSM Hardware Mismatch
Remedy: Remove the main Central Processor Unit from the controller and check the part numbers on the DSM boards mounted in the axis module slots. The part numbers should be the same. If the robot has more than six axes, also check the multifunction board DSM hardware. All DSM hardware must have the same part number to prevent this alarm. (See Figure 1–7 and Table 1–1).
4.6.66
The current servo parameters do not match the DSM hardware installed.
SRVO-164 ER_FATL DSM/Servo param mismatch
Remedy: Replace all DSP-IV DSM modules with DSP-V type. (See Figure 1–7 and Table 1–1).
4.6.67
The panel emergency stop button is pressed and the controller detected a wiring error on SVON or EMGIN terminals.
SRVO-165 ER_FATL Panel (SVON abnormal) E-Stop
4.6.68 SRVO-166 ER_FATL TP (SVON abnormal) E-Stop
Remedy: Turn off the controller and check EMGIN and SVON wiring to operator panel interface terminals. Correct external wiring as necessary.
The teach pendant emergency stop button is pressed and the controller detected a wiring error on SVON or EMGIN terminals. Remedy: Turn of the controller and check EMGIN and SVON wiring to operator panel interface terminals. Correct external wiring as necessary.
4. TROUBLESHOOTING
4–62
4.6.69 SRVO-167 ER_FATL Deadman switch (SVON abnormal)
4.6.70 SRVO-168 ER_FATL External/SVON (SVON abnormal) E-Stop
MARO2P10203703E
The teach pendant DEADMAN was released and the controller detected a wiring error on SVON or EMGIN. Remedy: Turn off the controller and check EMGIN and SVON wiring to operator panel interface terminals. Correct external wiring as necessary.
The external emergency stop or external SVON switch is pressed and the controller detected a wiring error on the SVON or EMGIN terminals. Remedy: This error is applicable is the redundant external emergency stop or SVON wiring is used. If so, turn off the controller and check the EMGIN and SVON wiring to the operator panel interface terminals. Correct external wiring as necessary.
4. TROUBLESHOOTING
4–63
MARO2P10203703E
4.7 CLASS 4 FAULTS
A Class 4 Fault occurs when the process equipment within the outer arm of the P-200 robot fails to perform correctly. This section contains troubleshooting procedures for each kind of malfunction. Trigger Valve Malfunctions and Troubleshooting Gun(s) that do not turn on (Trigger) or work intermittently. Refer to Procedure 4–5 . Gun(s) that do not shut off Refer to Procedure 4–6 Paint Gun Trigger Troubleshooting Procedure (Electrical). Refer to Procedure 4–7 . Current to Pressure Transducer Troubleshooting Refer to Section 4.7.4 Poor Film Build (Too heavy or light) Repeated “Adapted Out Of Range” messages Need for continual Preset corrections Transducer Troubleshooting Procedure. Refer to Procedure 4–8 . Flow Meter Troubleshooting Procedure. Refer to Procedure 4–9 . P-200 end of arm troubleshooting error descriptions Error #178, Cal. Timeout at maximum flow Error #179, Cal. Timeout at low flow Error #183, Min. output has flow > setpoint Error # 189, Failed to reach setpoint Display reads 0 cc/min when paint is actually flowing from the gun. Display reads the exact same cc/min value whether paint is flowing or not. Depending on the manufacturer, style and/or type of gun assembly used, these malfunctions could be attributed to a single gun assembly when two guns are mounted on a common manifold having a common supply pilot signal. In this case, the problem would be in the individual gun assembly; the gun assembly would be suspected first and replaced before looking into the supply.
4. TROUBLESHOOTING
4–64
MARO2P10203703E
4.7.1
Remedy: There is no clear cut remedy for this type of malfunction.
Process Fault - Both Guns Do Not Trigger or Work Intermittently
Considerations: This function is electrical and pneumatic in operation. Procedure 4–5 first considers the most common causes which may be pneumatic in nature, then , if the problem still exists, will continue troubleshooting the electrical components.
Procedure 4–5
Both Guns Do Not Trigger or Work Intermittently Perform the following troubleshooting steps.
Step
1 Shut off the plant supplied air to the pilot trigger valve. 2 Remove the output pilot line from the pilot trigger valve. 3 Apply plant supplied air to the pilot trigger valve. 4 Push the mechanical override button on the valve body. Refer to the Trigger Valve/ Regulator Assembly in Figure 12–32. 5 Determine whether pilot air is coming out of the pilot trigger valve. If NO > Remove and replace pilot trigger valve. If YES > Go to step 6.
WARNING This valve is intrinsically safe. Repair of the solenoid and pilot section is prohibited. If the solenoid portion is faulty, you must replace the solenoid and pilot section as one assembly. They are assembled as a matched set and should not be exchanged with other components.
6 Is pilot air sufficient and constant with plant supplied air pressure? Refer to gun manufacture’s specification. If NO > Go to step 7. If YES > Troubleshoot pilot trigger line to gun assembly. Refer to the Trigger Valve/ Regulator Assembly in Figure 12–32. If problem still exists , Go to step 8. 7 Is the air supply to the system sufficient and consistent with plant supplied air pressure? If NO > Troubleshoot air supply. If YES > Remove and replace pilot trigger valve. Is problem solved. If NO > Go to step 9.
4. TROUBLESHOOTING
4–65
MARO2P10203703E
WARNING This valve is intrinsically safe. Repair of the solenoid and pilot section is prohibited. If the solenoid portion is faulty, you must replace the solenoid and pilot section as one assembly. They are assembled as a matched set and should not be exchanged with other components. 8 Troubleshoot the paint spray gun assembly. Determine whether the problem is solved. If NO > go to step 9. 9 Continue troubleshooting with Procedure 4–7 .
4.7.2
Remedy: There is no clear cut remedy for this type of malfunction.
Both Guns Will Not Shut Off
Considerations: This function is electrical and pneumatic in operation. Procedure 4–6 first considers the most common causes which may be pneumatic in nature, then , if the problem still exists will continue troubleshooting the electrical components.
Procedure 4–6
Both Guns Will Not Shut Off Perform the following troubleshooting steps.
Step
1 Shut off the air supply to the pilot trigger valve. Refer to the Trigger Valve/ Regulator Assembly in Figure 12–32. 2 Remove the output pilot line from the pilot trigger valve. 3 Apply air supply to the pilot trigger valve. 4 Is air leaking from valve output port? Refer to the Trigger Valve/ Regulator Assembly in Figure 12–32. If NO > troubleshoot trigger (s) in gun assembly. If YES > Go to step 5. 5 Check for 12Vdc on solenoid/pilot trigger valve. Refer to the Trigger Valve/ Regulator Assembly in Figure 12–32. WARNING This valve is intrinsically safe. Repair of the solenoid and pilot section is prohibited. If the solenoid portion is faulty, you must replace the solenoid and pilot section as one assembly. They are assembled as a matched set and should not be exchanged with other components. If NO > Remove and replace pilot trigger valve. If YES > Go to Procedure 4–7 .
4. TROUBLESHOOTING
4–66
MARO2P10203703E
4.7.3 Paint Gun Trigger Troubleshooting Procedure (Electrical) Procedure 4–7 Step
Use Procedure 4–7 to troubleshoot the electrical paint gun trigger components.
Paint Gun Trigger Troubleshooting Procedure (Electrical) 1 Is DOUT [145] (PT) configured correctly? If NO > Go to step 2. If YES > Go to step 3. I/O Digital Out # SIM STATUS DO[ 140] U OFF [ DO[ 141] U OFF [ DO[ 142] U OFF [ DO[ 143] U OFF [ DO[ 144] U OFF [ DO[ 145] U OFF [ DO[ 146] U OFF [ DO[ 147] U OFF [ DO[ 148] U OFF [ DO[ 149] U OFF [ [ TYPE ]
CONFIG
G2
IN/OUT
JOINT 100% 145/256 Reserved ] Reserved ] Reserved ] Reserved ] Reserved ] Gun 1 pilot ] ] ] ] ] ON
OFF
2 Reconfigure using Site I/O program, then go to step 3. 3 Is DOUT [145] (PT) ON ? If NO > Go to step 4. If YES > Go to step 5. 4 Set DOUT [145] (PT) to ON. Refer to Procedure 7–1 . Is output led (AO) on the output module ON? Refer to Figure 4–8. If NO > Go to step 5. If YES > Go to step 13.
4. TROUBLESHOOTING
4–67
MARO2P10203703E
Figure 4–8. I/O Module LEDS
LEDS A0 1 2 3 4 5 6 7 B0 1 2 3 4 5 6 7
A0 LED
I/O MODULE
5 Is DOUT [145] (PT) simulated. Refer to Procedure 7–2 . If YES > Go to step 6 If NO > Go to step 7. 6 Unsimulate DOUT [145] (PT). Go to step 3.
4. TROUBLESHOOTING
4–68
MARO2P10203703E
7 Determine whether the interface module power LED (PWR) is on? Refer to Figure 4–9. If NO > Go to step 8. If YES > Go to step 10. Figure 4–9. Interface Module PWR LED
PWR
LINK BAI BAO
AIF0IA
PWR LED
JD1B
JD1A
CP32
JD2
INTERFACE MODULE
LINK LED
4. TROUBLESHOOTING
4–69
MARO2P10203703E
8 Determine whether the 24V input fuse is good? Refer to Figure 4–10. If NO > Replace 24VDC input fuses. If YES > Go to step 9. Figure 4–10. Interface Module Interface module AIFO1A
Output 5.0A Fuse
5.0A F2
Input 3.2A Fuse
F1 3.2A
4. TROUBLESHOOTING
4–70
MARO2P10203703E
9 Determine whether 24E at input connector (CP32) to I/F (Interface Module)? Refer to Figure 4–11. If NO > Troubleshoot the 24E circuit and wiring. If YES > Replace I/F module. Figure 4–11. Pin Out and Locator for Connector CP32 I/O UNIT MODEL A POWER SUPPLY A16B–1212–0870
1 2 3
CP6
CP32 +24V 0V
MODULAR I/O 5–SLOT BASE UNIT A03B–0807–J002 10–SLOT BASE UNIT A03B–0807–J001 MODULAR I/O INTERFACE MODULAR I/O CP32 MODULE A03B–0807–J011 JD1B JD1A
MAIN CPU A16B–3200–0040
JD2
JD1A
10
Determine whether the interface module Link LED is ON? Refer to Figure 4–12. If NO > Go to step 11. If YES > Replace output module, AOD16D.
Figure 4–12. Interface Module PWR LED
PWR
LINK BAI BAO
AIF0IA
JD1B
JD1A
CP32
JD2
INTERFACE MODULE
LINK LED
4. TROUBLESHOOTING
4–71
MARO2P10203703E
11 Is output fuse good? Refer to Figure 4–10. If No > Replace output fuse. If YES > Replace interface module. 12
Replace output module, AOD16D.
13
Is there 24Vdc at ISB7 input terminals 7 and 8? Refer to Figure 4–13 If NO > Go to step 14. If YES > Go to step 15.
Figure 4–13. Intrinsic Safety Barrier DC OUTPUT MODULE EE-3287-328-001 LOCATED IN P-200 ROBOT ARM 8663SOL
INTRINSIC CABLE EE-3287-117-XXX ISB7 8336F .5 AMP 2
8
ISB7-1
1
WHT
GRN
P1 7
ISB7-2
2
I.S. GROUND
14
Is wiring from the output module to ISB7 okay? Refer to Figure 4–13. If NO > Repair wiring. If YES > Go to step 16.
15
Is fuse 8336F/0.5A blown? Refer to Figure 4–13. If NO > Replace output module, AOD16D. If YES > Replace 8336F 0.5A Fuse.
4. TROUBLESHOOTING
4–72
MARO2P10203703E
16
Is 12Vdc at ISB7 output terminals 1 and 2 correct. Refer to Figure 4–14.
WARNING Never apply test leads to output terminals during paint booth operations. To do so could injure personnel or damage equipment. Remove ISB7 output terminals 1 and 2 before any voltage measurements are taken.
If NO > Replace Intrinsic Safety Barrier If YES > Go to step 17. Figure 4–14. Intrinsic Safety Barrier DC OUTPUT MODULE EE-3287-328-001 LOCATED IN P-200 ROBOT ARM 8663SOL
INTRINSIC CABLE EE-3287-117-XXX ISB7 8336F .5 AMP 2
8
ISB7-1
1
WHT
GRN
P1 7
ISB7-2
2
I.S. GROUND
17
Is 12Vdc at pilot trigger valve connector? Refer to Trigger Valve/ Regulator Assembly Figure 12–32. If NO > Check the cables and connector. If YES > Replace the 8336SOL valve assembly.
WARNING The 8336SOL valve is intrinsically safe. Repair of the solenoid and pilot section is prohibited. If the solenoid portion is faulty, you must replace the solenoid and pilot section as one assembly. They are assembled as a matched set and should not be exchanged with other components.
4. TROUBLESHOOTING
4–73
MARO2P10203703E
4.7.4
Use Procedure 4–8 to cover:
Process Fault Transducer Troubleshooting Procedure
Poor Film Build (Too heavy or light) Repeated “Adapted Out Of Range” Messages Need for Continual Preset Corrections Remedy: There is no clear remedy for these types of symptoms. It might be caused by a faulty current to pressure transducer (I/P) or a faulty flow meter. Considerations: The current to pressure transducer is an electrical and pneumatic device that is intrinsically safe. The only troubleshooting that can be done to the transducer is covered in Procedure 4.7.4.
Procedure 4–8 Step
Transducer Troubleshooting 1 Is AOUT[1] set to a count of 200? If NO > Go to step 2. If YES > Go to step 3.
I/O Analog Out # SIM VALUE AO[ 1] U 200 AO[ 2] U 200 AO[ 3] U 200 AO[ 4] U 200 DO[ 5] U 0 DO[ 6] U 0 DO[ 7] * * DO[ 8] * * DO[ 9] * * DO[ 10] * * [ TYPE ]
CONFIG
G1 [ [ [ [ [ [ [ [ [ [
JOINT 10% 1/25 Fluid Flow 1 ] Atom. Air 1 ] Fan Air 1 ] Estats 1 ] Flw setpoint ] Flw diag out ] ] ] ] ]
IN/OUT
SIMULATE
UNSIM
2 Set AOUT[1] to a count of 200. Refer to Procedure 7.1. 3 Attach an analog 0 to 60 psi gauge to the gage port on the current to pressure transducer. Refer to Trigger Valve/Regulator Assembly Figure 12–32. 4 Set AOUT[1] to a count of 1000. Refer to Procedure 7.1. 5 Is there any output pressure? If NO > Go to step 6. If YES > Go to step 12.
4. TROUBLESHOOTING
4–74
MARO2P10203703E
6 Is the plant air supply ON? If NO > Turn ON air supply. If YES > Go to step 7. 7 Is your paint system in the proper mode of operation? (Proper mode of operation will depend upon the unique characteristics of your system). If NO > Set paint mode to proper mode of operation. If YES > Go to step 8. 8 Is there 14.5 VDC at the current to pressure transducer I/P connector P1 pins 1 and 6. Refer to Trigger Valve/ Regulator Assembly Figure 12–32. If NO > Go to step 9. If YES > Go to step 12.
WARNING Never apply test leads to output terminals during paint booth operations. Otherwise, you could injure personal and damage equipment.
9 Is there 14.5 Vdc at ISB4 terminals 1 and 2? Refer to Single Stage Purge Process Control Figure 12–41. If NO > Go to step 10. If YES > Go to step 11. 10
Is there 24Vdc at ISB4 input terminals 7 and 8? Refer to Single Stage Purge Process Control Figure 12–41. If NO > Check power supply and wiring. If YES > Replace ISB4.
11 Check the cable and connector wiring from ISB4 to I/P transducer P1. 12
Check for pressure leaks at pneumatic connections. This can be accomplished using a soapy liquid solution. If No > Tighten pneumatic connections. If YES. Go to step 13.
4. TROUBLESHOOTING
4–75
MARO2P10203703E
13
Perform calibration on the Current to Pressure Transducer I/P. Refer to Procedure 10.1.
Consider the following while doing the calibration procedure:
– – – – – – – – 14
Non-Linearity Hunting Poor Response No Reaction at Output Poor Hysteresis Poor Accuracy Poor Repeatability Inaccurate Span
Did the Current to Pressure Transducer (I/P) pass the calibration? If NO > Go to step 15. If YES > Troubleshoot other process equipment.
15
Connect a mA meter in series with terminal 8 of the D/A module (ADA02A) in slot 3 of the I/O rack. Refer to Single Stage Purge Process Control Figure 12–41.
16
Set the AOUT[1] on the teach pendant to 600 counts
I/O Analog Out # SIM VALUE AO[ 1] U 600 AO[ 2] U 200 AO[ 3] U 200 AO[ 4] U 200 DO[ 5] U 0 DO[ 6] U 0 DO[ 7] * * DO[ 8] * * DO[ 9] * * DO[ 10] * * [ TYPE ]
17
CONFIG
G1 [ [ [ [ [ [ [ [ [ [
JOINT 10% 1/25 Fluid Flow 1 ] Atom. Air 1 ] Fan Air 1 ] Estats 1 ] Flw setpoint ] Flw diag out ] ] ] ] ]
IN/OUT
SIMULATE
UNSIM
Is there 12.00mA on the meter? If NO > Go to step 18. If YES > Go to step 19
18
Is there 24 Vdc at ISB5 terminals 7 & 8? Refer to Single Stage Purge Process Control Figure 12–41. If NO > Check source of 24 Vdc power. If YES > Go to step 22.
4. TROUBLESHOOTING
4–76
MARO2P10203703E
19
Connect mA meter in series with terminal 1 of ISB5.
20
Is there 12.00 mA on the meter? If NO > Go to step 21. If YES > Replace I/P transducer.
21
Check the cable and wiring from the ISB5 to the I/P transducer. Is the wiring defective? If NO > Replace the ISB5. If YES. Replace the wiring or cable.
22
Is AOUT[1] configured correctly? If NO use Site I/O program. Refer to PaintTool Manual Setup Chapter. IF YES > Go to step 23.
23
Is AOUT[1] Simulated? Refer to Procedure 7.2 If NO > Check cable/wiring from D/A module to IBS5, terminals 9 and 10. If YES > Unsimulate.
4.7.5 Process Fault - Flow Meter Troubleshooting Procedure
Procedure 4–9 Step
Remedy: There is no clear remedy for these types of symptoms. It may be caused by a faulty flow meter. Considerations:The Flow Meter is a mechanical to electrical feedback transducer. The only troubleshooting that can be done to the transducer is covered in Procedure 4–9 . Flow Meter Troubleshooting 1 Remove MODUFLOW/Flow Meter assembly from the P-200 robot arm. Refer to Figure 12–33. 2 Remove the Flow Meter from the MODUFLOW assembly. 3 Remove the electrical connector from the Flow Meter. 4 Blow air into the Flow Meter input port. Do the gears spin? If NO > Disassemble, clean, and then reassemble the Flow Meter. Return to step 4. If gears do not spin after Flow Meter has been cleaned replace Flow Meter. If YES > Go to step 5.
4. TROUBLESHOOTING
4–77
MARO2P10203703E
5 Reconnect the sensor cable. 6 Monitor GIN[8] and GIN[9] at the teach pendant from the I/O menu.
I/O Group In # SIM VALUE GI[ 1] S 0 [ U GI[ 2] S 0 [ GI[ 3] U 0 [ GI[ 4] U 0 [ GI[ 5] U 0 [ GI[ 6] U 0 [ GI[ 7] U 0 [ GI[ 8] U 59147 [ GI[ 9] U 32767 [ GI[ 10] U 0 [ [ TYPE ]
CONFIG
JOINT 100% 1/25 Init data ] Init type ] CC cycsel ] CC shared ] CC group ] Flw/tpar ] Parm/indc ] Totl cnt ] Rate cnt ] Job type ]
IN/OUT
SIMULATE
UNSIM
7 Blow air into the Flow Meter input port. Did you see a change in GIN[8] and GIN[9]? If NO > Go to step 8 If YES > Go to step 8 Is GIN[8] & GIN[9] configured correctly? If NO > Run Site I/O program Refer to PaintTool Setup Chapter. then > Go back to step 6. If YES > Go to step 9. 9 Is there 24 Vdc at the terminal block of the Flow Meter Interface module, wires 82091 and 82092? Refer to schematics 47 A sheet 082 and 087 If NO > Check wiring and CPU power supply If YES > Go to step 10. 10
Is there +5 Vdc at the terminal block of the Flow Meter Interface module, wires 82142 and 82092? Refer to Figure 12–39 and Figure 12–42. If NO > Go to step 11 If YES > Go to step
11 Is fuse 8214F blown? Refer to Figure 12–43. If NO > Go to step 12 If YES > Replace fuse
4. TROUBLESHOOTING
4–78
MARO2P10203703E
12
Check connector and wiring at JD1A port of the I/F module. Refer to Figure 4–11. If the wiring is damaged replace wiring If the connector is damaged replace I/F module Verify for proper operation. If the problem still exists > Go to step 13.
13
Is there 24 Vdc at the terminal block of the Flow Meter Interface module, wires 87091 and 87101? Refer to Figure 12–39 and Figure 12–42. If No > Replace Flow Meter Interface module. If YES > Go to step 14.
14
Is there 24 Vdc at ISB6, terminals 7 and 8. Refer to Figure 12–42. If NO > Replace wiring If YES > Go to step 15.
15
Is there zero ohms at the terminal block of the Flow Meter Interface module, -Sig. and wire 87101? Refer to Figure 12–42. If NO > Tighten jumper connections or Replace jumper. If YES > Go to step 16.
16
Is there 24 Vdc at ISB6, terminals 1 and 2. Refer Figure 12–42. If NO > Replace ISB6 If YES > Go to step 17.
WARNING Never apply test leads to these pins during paint booth operations. Otherwise, you could injure personnel and damage equipment.
17
Is there 24 Vdc at the Flow Meter connector P1, pins A and B. Refer to Figure 12–42. If NO > Replace wiring If YES > Replace Flow Meter
18
Perform a Flow Test (Beakering Test). Refer to Procedure 10–2 .
4. TROUBLESHOOTING
4–79
MARO2P10203703E
19
Does the amount in the beaker equal the Total (cc) and Flow Rate called for? If NO > Go to step 20. If YES > Troubleshooting completed.
STATUS AccuFlow JOINT 100 % AccuFlow Status Display Selected Operating Mode: Adaptive Current Operating Mode: Open Loop Color Valve Number: 1 Calibration Status: Complete Actual yield ((cc/min)/cnt): .78 Total (cc): 216 Set Point/Actual (cc/min): 600/594 Applicator Trigger: ON Set point reached: ON [ TYPE ] RES TOT HELP
20
Calculate new KFT factor and enter into the Equipment Characteristics parameter section on the teach pendant.
cc in beaker X * old KFT new KFT totalizer
4. TROUBLESHOOTING
4–80
MARO2P10203703E
SETUP AccuFlow
JOINT
AccuFlow Global Parameters 1 2 3 4 5 6 7
100 % 1/25
Mode selection source: Selected operating mode: Percent Tolerance Band: Min. tolerance band: Sample amount: Normal gain modifier (%): Pulsing pump gain mod. (%):
Equipment characteristics 8 KFT factor (CC): 9 Equipment learn done: 10 Trigger delay (ms): 11 Flow delay (ms): 12 Time up (ms/1000 cnts):
Pendant Adaptive 1.8 5 3 95.0 70.0
2366 Done 50 32 72
Calibration parameters 14 Hysteresis checks: 15 Leveling trys: 16 Cal time out (sec): 17 Cal step delay (ms): 18 Table point no. 2 (cc/min):
YES 2 15 800 200
Table adjustment parameters 19 Flow in-tol trys: 20 Indep point shift band (%):
2 30.0
Alarm parameters 21 Adaptive tolerance (%): 10.0 22 Max. error from setpoint (%): 6.0 23 Max. control out (ms): 200 24 Min. set point reached (ms): 3000 25 Grace period (ms): 4000 [ TYPE ] CHAN KFT_CAL [CHOICE] HELP
21
Preform a Flow Test (Beakering Test). Refer to Procedure 10–2
22
Does the amount in the beaker equal the Total (cc) and Flow Rate called for? If NO > Replace Flow Meter Interface module. Verify problem is solved by rerunning the Flow Test if problem still exists Replace Digital 32 bit Input module (AID32B) in the I/O rack. If YES > Troubleshooting completed.
Page81
5 REPLACING FUSES
MARO2P10203703E
5
Topics In This Chapter
REPLACING FUSES 5–1
Page
Fused Flange Mounted Disconnect Fuses
The fused flange-mounted disconnect provides overcurrent protection supply through three fuses; one for each leg of the 3-phase supply. . . . . . . . . . . . . . . . . 5–2
Multi-Tap Transformer Fuses
Five fuses reside on the multi-tap transformer with fuses F1, F2, and F3 for the three-phase 200 VAC servo power and F4 and F5 for 100 VAC. . . . . . . . . . . . . . 5–4
Power Supply Unit Fuses
Three fuses are located in the power supply unit F1 AC input, F3 and F4 +24V. 5–5
Servo Amplifier Fuses
The servo amplifiers for the P-200 contain one fuse (F1), except for Model A06B–6089–H106 which includes a second fuse (F2). . . . . . . . . . . . . . . . . . . . . . 5–6
Emergency Stop Control PCB Fuses
Two fuses reside on the Emergency Stop Control printed circuit board. . . . . . . . 5–7
Purge Power Supply Fuses
Two fuses reside on the Purge Power Supply F11 and F12. . . . . . . . . . . . . . . . . . 5–8
Modular I/O (Model A) Fuses
The modular I/O (Model A) modules that contain fuses are described in this section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–9
Sub-CPU Printed Circuit Board Fuse
One fuse resides on the Sub-CPU printed circuit board. . . . . . . . . . . . . . . . . . . . . 5–12
If a fuse blows in the controller, determine the cause, repair or replace the defective part or unit and replace the fuse with the same type and rating. Fuse replacement procedures are provided for the following fuses in the controller
WARNING Before replacing a fuse, turn the power off and lock out the controller; otherwise, you could injure personnel or damage equipment.
5. REPLACING FUSES
5–2
MARO2P10203703E
5.1
The controller is supplied with a fused flange-mounted disconnect.
FUSED FLANGE-MOUNTED DISCONNECT FUSES
The fused flange-mounted disconnect provides overcurrent protection supply through three fuses; one for each leg of the 3-phase supply. See Figure 5–1 for fused flange-mounted disconnect location and Table 5–1 for description of the fuse flange-mounted disconnect and fuses. The fused flange-flange disconnect provides a means for shutting off power to the controller and locking the power out.
WARNING Lethal voltage is present in the controller WHENEVER IT IS CONNECTED to a power source. Be extremely careful to avoid electrical shock. Turning the disconnect to the OFF position removes power from the output side of the device only. High voltage is always present at the input side whenever the controller is connected to a power source.
5. REPLACING FUSES
5–3
MARO2P10203703E
Figure 5–1. Main Disconnect Location MAIN DISCONNECT
Fuse Block
FL1 FL2 FL3
Table 5–1.
Fused Flange-Mounted Disconnect Switch, C-Size Cabinet
Fused Flange-Mounted Disconnect Switch Inp t Input Voltage
Fuse Size
Part Number
220 240
50A
Fuse XGMF-00160 (A60L–0001-0042 #JG2-50)
380 416 460 480 500 550
30A
Fuse XGMF-04148 (A60L–0001-0042 #JG1-30)
575
20A
Fuse XGMF-04148 (A60L–0001-0042 #JG1-20)
5. REPLACING FUSES
5–4
5.2 MULTI-TAP TRANSFORMER FUSES
MARO2P10203703E
Five fuses reside on the multi-tap transformer with fuses F1, F2, and F3 for the three-phase 200 VAC servo power and F4 and F5 for 100 VAC. The fuses are described in Table 5–2 and are located in Figure 5–2. Table 5–2.
Multi-Tap Transformer Fuses
Fuse Number F1, F2, F3 F4, F5
Robot P-200 P-200
Rated Current 30A 7.5A
Part Number A60L–0001–0042#JG1–30 A60L–0001–0101#P475H
Figure 5–2. Replacing Transformer Fuses
Fuse
Fuse
WARNING Before you replace a fuse, turn the power off and lock out the controller. Otherwise, you could injure personnel or damage equipment.
5. REPLACING FUSES
5–5
MARO2P10203703E
5.3 POWER SUPPLY UNIT FUSES
Refer to Figure 5–3 for fuse locations on the PSU and Table 5–3 for fuse ratings. Table 5–3.
PSU Fuse Ratings
Fuse No. F1 (AC Input) F3 (+24V) F4 (+24E)
Rated current
Part number
7.5A
A60L00010245#GP75
5A
A60L00010075#5.0
5A
A60L00010046#5.0
Figure 5–3. Replacing a Fuse of the Power Supply Unit
F1 : 7.5A fuse for AC input
F3 : 5AS (slow-blow) fuse for +24V
F4 : 5A fuse for +24E
5. REPLACING FUSES
5–6
MARO2P10203703E
5.4 SERVO AMPLIFIER FUSES
The servo amplifiers for the P-200 contain one fuse (F1), except for Model A06B–6089–H106 which includes a second fuse (F2). The fuse(s) are located behind the servo front cover as located in Figure 5–4 and are described in Table 5–4. Table 5–4.
Servo Fuse Ratings
Fuse Number F1 F2
Rating 5A– 250V 5A – 250V
Part Number A60L–0001–0359 A60L–0001–0359
Figure 5–4. Replacing Fuses of Servo Amplifier F1
Circuit breaker
F2 (In servo A06B–6089–H106 only)
5. REPLACING FUSES
5–7
MARO2P10203703E
5.5 EMERGENCY STOP CONTROL PCB FUSES
Two fuses reside on the Emergency Stop Control printed circuit board. The location of these fuses are shown in Figure 5–5 and the specifications are listed in Table 5–5. Table 5–5.
Fuse Number
Rated Current
Emergency Stop Control Printed Circuit Board Fuses Part Number
Purpose
F1
5A
XGMF-00762
Fuse for brake power supply.
F2
0 32 0.32
A60L–0001–0046#0 32 A60L–0001–0046#0.32
Fuse for +24E +24E.
Figure 5–5. Replacing Emergency Stop Control Board Fuses
Fuse2
F2
F1
Fuse1
5. REPLACING FUSES
5–8
5.6 PURGE POWER SUPPLY FUSES
MARO2P10203703E
The two fuses that reside on the Purge Power Supply are described in Table 5–6 and are shown in Figure 5–6. Table 5–6.
Emergency Stop Control PCB Fuses
Fuse Number F11 F12
Rated Current 3.2A 3.2A
Part Number A60L–0001–0175#3.2 A60L–0001–0175#3.2
Figure 5–6. Purge Power Supply Location Purge Power Supply
F11 F12
5. REPLACING FUSES
5–9
MARO2P10203703E
5.7 MODULAR I/O (MODEL A) FUSES
The modular I/O (Model A) modules that contain fuses are described in Table 5–7 and are shown in Figure 5–7, Figure 5–8, and Figure 5–9. Table 5–7.
Emergency Stop Control PCB Fuses
Module Number AIF01A AIF01A AOD08C AOD08D AOA05E AOA08E AOA12F
Rated Current 5.0A 3.2A 5A 5A 3.15A 3.15A 3.15A
Part Number A60L–0001–0290#LM50 A60L–0001–0290#LM32 A60L–0001–0260#5R00 A60L–0001–0260#5R00 A60L–0001–0276#3.15 A60L–0001–0276#3.15 A60L–0001–0276#3.15
Figure 5–7. Interface Module AIF01A Fuse Location
Interface module AIFO1A
5.0A Fuse
3.2A
Fuse
5.0A F2
3.2A
5. REPLACING FUSES
5–10
MARO2P10203703E
Figure 5–8. Modular I/O Fuse Locations – AOA05E, ADA08E, and AOA12F
AOA05E
ADA08E
FUSES FUSES
AOA12F
FUSES
5. REPLACING FUSES
5–11
MARO2P10203703E
Figure 5–9. Modular I/O Fuse Locations – AOS08C and AOD08D AOD08C
FUSES
AOD08D
FUSES
5. REPLACING FUSES
5–12
MARO2P10203703E
5.8
One fuse resides on the Sub-CPU printed circuit board. The location of this fuse is shown in Figure 5–10 and the specifications are listed in Table 5–8.
SUB CPU PRINTED CIRCUIT BOARD FUSE
Figure 5–10. Main CPU Printed Circuit Board RISC-B FANUC
A16B-3200-015 STATUS ALARM
D16
ÎÎ ÎÎ
ÎÎ ÎÎÎ Table 5–8.
Fuse Number F21
LV ALM F21 5A
5.0 A
FUSE
PC13
PC5
ÎÎ ÎÎ ÎÎ ÎÎÎÎ PC3
PR1
JNA
EPROM MODULE
BAT1
VD1
Emergency Stop Control PCB Fuses Rated Current 5.0A
Part Number XGMF-00762
Page13
6 BRAKE RELEASE
6
MARO2P10203703E
Topics In This Chapter Brake Release
BRAKE RELEASE 6–1
Page
You can release the axes brakes using the operator panel switch. . . . . . . . . . . . 6–2
When you troubleshoot and perform some error recovery procedures on the P-200 robot you might need to release the brakes. Refer to Procedure 6–1 for the brake release procedure.
6. BRAKE RELEASE
6–2
MARO2P10203703E
6.1
Use Procedure 6–1 to release the brakes using the operator key.
BRAKE RELEASE Procedure 6–1 Condition
Brake Release Using the Operator Panel Switch Insure that the following conditions exist: Controller main power disconnect is ON. Purge complete. Controller power on Insure that area around robot is clear and that all personnel are clear of the area.
Step
1 Press the EMERGENCY STOP push button on the operator panel. WARNING Releasing the brakes could cause the robot to move. Provide support for the arm of the robot before releasing the brakes; otherwise, you could injure personnel or damage equipment. 2 Insert the key into BRAKE ENABLE key switch on the operator panel and turn to the ON position. See Figure 6–1. 3 If you have the optional brake release switches for individual axes continue to step 4. Figure 6–1. Operator Panel
Î Î Î Î
BATTERY ALARM
CYCLE START
ON
TEACH PENDANT ENABLED
FAULT
FAULT RESET
OFF
HOLD
Î ÎÎ Î ÏÏ ÎÎ ÏÏ Î ÏÏ ÏÏ ÎÎ ÎÎ ÎÎ
PURGE COMPLETE
REMOTE
PURGE ENABLE
REMOTE
LOCAL
PURGE FAULT
BRAKE ENABLE ON PORT
OFF
HOUR METER
EMERGENCY STOP
6. BRAKE RELEASE
6–3
MARO2P10203703E
4 Activate the enable switch for axis: SW1 – P-200 axes 1, 4, 5 and 7 SW2 - P-200 axes 2 * SW3 – P-200 axes 3 * SW4 – Opener all axes * NOTE * P-200 axes 2, 3 and opener axes 2 and 3 will drop due to gravity. They do not have balancers. NOTE * Enable switches must be held, they are momentary switches. Figure 6–2. C Size R-J2 Controller With Optional Brake Release Switches
SYSTEM R–J2
P-200 AXES 1,4,5,7
P-200 AXIS 2
P-200 OPENER ALL AXIS 3 AXES
P-200BRAKE SELECT SWITCHES
P-200 AXES 1,4,5,7
P-200 AXIS 2
P-200 OPENER ALL AXIS 3 AXES
P-200 BRAKE SELECT SWITCHES
Page2
7 CONTROLLING I/O
7
MARO2P10203703E
Topics In This Chapter
CONTROLLING I/O 7–1
Page
Forcing Outputs
Forcing outputs is turning output signals on or off. . . . . . . . . . . . . . . . . . . . . . . . . . 7–2
Simulating Inputs and Outputs
Simulating inputs and outputs is forcing inputs and outputs without signals entering or leaving the controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–4
SOP I/O Status
The I/O SOP screen indicates the status of the standard operator panel signals. 7–5
Controlling I/O allows you to test the I/O in your system for proper function.
7.
CONTROLLING I/O
7–2
MARO2P10203703E
7.1 FORCING OUTPUTS
Forcing outputs is turning output signals on or off. Outputs can also be forced within a program using I/O instructions. Use Procedure 7–1 to force outputs outside of a program. NOTE RO[1] and RO[2] control HAND 1, and RO[3] and RO[4] control HAND 2.
Procedure 7–1 Condition Step
Forcing Outputs The outputs you are forcing have been configured. 1 Press MENUS. 2 Select I/O. 3 Press F1, [TYPE]. 4 Select the type of output you want to force: digital, analog, group, robot, UOP, or SOP.
WARNING Forcing digital outputs causes connected devices to function. Make certain you know what the digital output is connected to and how it will function before forcing it; otherwise, you could injure personnel or damage equipment.
7. CONTROLLING I/O
7–3
MARO2P10203703E
For digital outputs for example, you will see a screen similar to the following. I/O Digital Out # SIM STATUS DO[ 1] U OFF DO[ 2] U ON DO[ 3] U OFF DO[ 4] U OFF DO[ 5] U OFF DO[ 6] U ON DO[ 7] U OFF DO[ 8] U OFF DO[ 9] U OFF DO[ 10] U OFF [ TYPE ] DO[
4] U
OFF
CONFIG
E 1 [ [ [ [ [ [ [ [ [ [
IN/OUT
WORLD
10% ] ] ] ] ] ] ] ] ] ]
SIMULATE UNSIM
5 Move the cursor to the STATUS of the output you want to force. 6 Press the function key that corresponds to the value you want. For digital, robot, UOP, and SOP outputs, press : F4 for ON F5 for OFF
AO[
4] U
12H
For analog and group outputs, move the cursor to value, and use the numeric keys to type the value. Value entry is always in decimal format. To change the displayed value from decimal to hexadecimal, press F4, FORMAT. Hexadecimal numbers are followed by an ‘‘H’’ on the screen.
7.
CONTROLLING I/O
7–4
MARO2P10203703E
7.2 SIMULATING INPUTS AND OUTPUTS
Procedure 7–2 Condition Step
Simulating inputs and outputs is forcing inputs and outputs without signals entering or leaving the controller. Simulate I/O to test program logic and motion when I/O devices and signals are not set up. You can simulate digital, analog, and group I/O only; you cannot simulate robot, UOP, or SOP I/O. When you are finished simulating a signal, you can reset, or unsimulate it. Use Procedure 7–2 to simulate and unsimulate I/O. Simulating and Unsimulating Inputs and Outputs The input or output has been configured. 1 Press MENUS. 2 Select I/O. 3 Press F1, [TYPE]. 4 Select the type of input or output you want to simulate: digital, analog, or group. For digital inputs for example, you will see a screen similar to the following. I/O Digital Input # SIM STATUS DI[ 1] U OFF DI[ 2] S ON DI[ 3] U OFF DI[ 4] U OFF DI[ 5] U OFF DI[ 6] U ON DI[ 7] U OFF DI[ 8] S OFF DI[ 9] U OFF DI[ 10] U OFF [ TYPE ]
CONFIG
WORLD
E 1 [ [ [ [ [ [ [ [ [ [ IN/OUT
10% ] ] ] ] ] ] ] ] ] ]
SIMULATE UNSIM
5 If you simulate a signal, you can force the status by setting it to a value. When the signal is unsimulated, its actual status is displayed. DO[
4]
OFF
6 Move the cursor to the SIM column of the signal you want to simulate. U means the signal is not simulated or unsimulated. S means the signal is simulated. 7 Simulate or unsimulate the signal. To simulate, press F4, SIMULATE. To unsimulate, press F5, UNSIM. 8 To unsimulate all simulated signals, press FCTN and then select UNSIM ALL I/O.
7. CONTROLLING I/O
7–5
MARO2P10203703E
7.3 SOP I/O STATUS
The I/O SOP screen indicates the status of the standard operator panel signals. SOP input signals (SI) and SOP output signals (SO) correspond to internal controller software Panel Digital Input signals (PDI) and Panel Digital Output signals (PDO). Refer to Table 7–1 and Table 7–2. Table 7–1.
SI
PDI
0
1
EMERGENCY STOP
1
2
FAULT RESET
2
3
REMOTE
3
4
HOLD
4
5
PURGE ENABLE
6
7
CYCLE START
7-15
8-16
Standard Operator Panel Input Signals
Function
NOT USED
Description Input signal is normally turned ON, indicating that the EMERGENCY STOP button is not being pressed. Input signal is normally turned OFF, indicating that the FAULT RESET button is not being pressed. Input signal is normally turned OFF, indicating that the controller is not set to remote. Input signal is normally turned ON, indicating that the HOLD push button is not being pressed. Input signal is normally turned OFF, indicating that the PURGE ENABLE push button is not being pressed. Input signal is normally turned OFF, indicating that the CYCLE START push button is not being pressed. Open for additional PDI.
Table 7–2.
Standard Operator Panel Output Signals
SO
PDO
Function
Description
0
1
REMOTE LED
Output signal indicates the controller is set to remote.
1
2
CYCLE START
Output signal indicates the CYCLE START button has been pressed or a program is running.
2
3
HOLD
3
4
FAULT LED
4
5
BATTERY ALARM
5
6
PURGE COMPLETE
6
7
PURGE FAULT
7
8
TEACH PENDANT ENABLED
Output signal indicates the teach pendant is enabled.
8-15
9-16
NOT USED
Open for additional PDO.
Output signal indicates the HOLD button has been pressed or a hold condition exists. Output signal indicates a fault has occurred. Output signal indicates the voltage in the battery is low. Output signal indicates the purge cycle is complete. Output signal indicates a purge fault condition exists.
Use Procedure 7–3 to display and force SOP I/O.
7.
CONTROLLING I/O
7–6
MARO2P10203703E
Procedure 7–3 Step
Displaying and Forcing SOP I/O 1 Press MENUS. 2 Select I/O. 3 Press F1, [TYPE]. 4 Select SOP. You will see a screen similar to the following.
E1
I/O SOP Out # SO[ SO[ SO[ SO[ SO[ SO[ SO[ SO[ SO[ SO[
STATUS 1] OFF OFF 2] OFF 3] OFF 4] OFF 5] OFF 6] OFF 7] OFF 8] OFF 9] OFF 10] OFF
[ TYPE ]
JOINT
[ [ [ [ [ [ [ [ [ [
10 %
] ] ] ] ] ] ] ] ] ] IN/OUT
ON
OFF
To change between the display of the input and output screens, press F3, IN/OUT. To move quickly through the information, press and hold the SHIFT key and press the down or up arrow keys. NOTE You can only view the status of input signals. Input signals cannot be forced. 5 To force an output signal, move the cursor to the output you want to change: To turn on an output signal, press F4, ON. To turn off an output signal, press F5, OFF.
Index
8 MASTERING
8
MARO2P10203703E
Topics In This Chapter
MASTERING 8–1
Page
Resetting Alarms and Preparing for Mastering
Before mastering the robot or opener you must reset the alarm . . . . . . . . . . . . . 8–2
Standard Mastering for the P-200 Robot
Method of choice for the P-200 robot. (To perform Standard Mastering, Select Fixture Position Master) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–4
Single Axis Mastering for the P-200 Robot
Use when mastering was lost due to a single axis going bad, and that axis is the only axis affected.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–16
Standard Mastering for the P-10 Door Opener and P-15 Hood and Deck Opener
Method of choice for the P-10 and P-15 openers. . . . . . . . . . . . . . . . . . . . . . . . . . . 8–19 When mastery was lost due to mechanical disassembly or repair. When a quick master reference position was not previously set.
When you master a robot or an opener you electronically calibrate the serial pulse coders of the servomotor on the robot or opener against a mechanical zero position. When a robot or opener is mastered, the position data from the encoders are stored while the robot or opener is at a known mechanical position. Mastering is required to ensure that the unit axes motion is limited to the designed travel range. Robot and openers must be mastered to operate properly. Robots and openers are usually mastered before they leave FANUC Robotics. However, it is possible that they might lose their mastering data and need remastering. This chapter provides mastering methods for the P-200 robot and P-10 and P-15 openers. Before you master the robot or openers, you must clear any faults that prevent servo power from being restored or that prevent mastering completion.
CAUTION Record the quick master reference position after the robot or opener is installed to preserve the factory mastering settings for future remastering.
8. MASTERING
8–2
MARO2P10203703E
8.1 RESETTING ALARMS AND PREPARING FOR MASTERING
When you turn on the robot or opener after disconnecting the pulsecoder backup batteries you might see a SRVO–062 BZAL or SRVO–038 Pulse mismatch alarm. Before mastering the robot or opener you must reset the alarm and rotate the motor of each axis that lost battery power to prepare the robot or opener for mastering. Use Procedure 8–1 to reset these alarms and prepare the robot or opener for mastering. NOTE These SRVO errors will also appear after you have installed all new application software on a robot or opener.
Procedure 8–1 Condition Step
Preparing the Robot or Opener for Mastering You see a SRVO–062 BZAL or SRVO–038 Servo mismatch alarm. 1 Replace the robot and opener batteries with four new 1.5 volt alkaline batteries, size D. Observe the direction arrows in the battery box for proper orientation of the batteries. Refer to Procedure 9–2 . 2 Press MENUS. 3 Select SYSTEM. 4 Press F1, [TYPE]. 5 Select Master/Cal. If Master/Cal is not listed on the [TYPE] menu, do the following; otherwise, continue to Step 6. a Select VARIABLE from the [TYPE] menu. b Move the cursor to $MASTER_ENB. c Press the numeric key “1” and then press ENTER on the teach pendant. d Press F1, [TYPE]. e Select Master/Cal. You will see a screen similar to the following. SYSTEM Master/Cal 1 2 3 4 5 6
JOINT 10%
FIXTURE POSITION MASTER ZERO POSITION MASTER QUICK MASTER SINGLE AXIS MASTER SET QUICK MASTER REF CALIBRATE Press ’ENTER’ or number key to select.
[ TYPE ]
LOAD
RES_PCA
DONE
8 MASTERING MARO2P10203703E
8–3 6 Press F3, RES_PCA. You will see a screen similar to the following. SYSTEM Master/Cal 1 2 3 4 5 6
JOINT 10%
E1
FIXTURE POSITION MASTER ZERO POSITION MASTER QUICK MASTER SINGLE AXIS MASTER SET QUICK MASTER REF CALIBRATE Press ’ENTER’ or number key to select.
Reset pulse coder alarm? [NO] ‘
[ TYPE ]
YES
NO
7 Press F4, YES. 8 Cold start the controller. a Turn off the robot or the opener. b Press and continue pressing the FAULT RESET button on the operator panel. c While still pressing FAULT RESET, press the ON button on the operator panel. 9 If the SRVO–062 alarm is still present, there is a battery, cable or pulse coder problem. Refer to the FANUC Robotics SYSTEM R-J2 Controller Series Electrical Connection and Maintenance Manual for further information. 10
If a SRVO–038 alarm is present at this time, repeat Step 6 to reset it. It is not necessary to cold start the robot or opener after resetting to clear this alarm.
11 Rotate each axis that lost battery power by at least one motor revolution in either direction to clear SRVO–075 Pulse Not Established. a Jog each rotary axis at least twenty degrees. b Jog each linear axis at least thirty millimeters.
12 Perform any of the mastering procedures from the MASTER/CAL menu.
8. MASTERING
8–4
MARO2P10203703E
8.2
Standard mastering is the preferred method used to master the P-200 robot.
STANDARD MASTERING FOR THE P-200 ROBOT
Use Procedure 8–2 to perform standard mastering.
Procedure 8–2
Standard Mastering
NOTE You do not need a fixture to master the P-200 robot. To perform Standard Mastering, select Fixture Position Master. Condition
You have cleared any servo faults that prevent you from jogging the robot.
You have jogged each axis that has lost mastery at least one motor turn. You have reset all “Pulse not established (SRVO-075)” errors . Step
1 Jog the robot to the approximate mastering position shown in Figure 8–1. Figure 8–1. Zero Degree Position of the P-200 Robot
8 MASTERING MARO2P10203703E
8–5 NOTE Align surfaces using a 1 - 2 - 3 block or other straight edge device. NOTE Always rotate each axis into the mastered position from the same direction to insure backlash errors are not added to the mastering data. Figure 8–2. Axes 4, 5, and 6 100° Wrist Assembly
Axis 4 Bearing Surface
Axis 6 Bearing Surface Inner Knuckle
Outer Knuckle
Axis 5 Bearing Surface
8. MASTERING
8–6
MARO2P10203703E
2 Rotate the inner knuckle counter-clockwise. Align the edge of the notch on the inner knuckle and the pin in the bearing retainer (axis 4) See Figure 8–2. See Figure 8–3 if the wrist is 100°, or Figure 8–4 if . the wrist is 140 Figure 8–3. Axes 4, 5, and 6 100° Wrist Mastering Positions
Axis 4 Mastering Position
Axis 5 Bearing Surface Axis 5 Mastering Position
Mastering Surface
Axis 6 Mastering Position Mastering Pin
8 MASTERING MARO2P10203703E
8–7 Figure 8–4. Axes 4, 5, and 6 140° Wrist Mastering Positions
Axis 4 Mastering Position
AXIS 5 Bearing Surface Axis 5 Mastering Position
Axis 6 Mastering Position Mastering Pin Mastering Surface
3 Rotate the outer knuckle counter-clockwise aligning the edge of the notch on the outer knuckle and the pin in the bearing retainer (axis 5) See Figure 8–2. See Figure 8–3 if the wrist is 100°, or Figure 8–4 if . the wrist is 140 4 Rotate the wrist faceplate counter-clockwise aligning the edge of the notch on the faceplate and the pin in the bearing retainer (axis 6). See Figure 8–2. See Figure 8–3 if the wrist is 100°, or Figure 8–4 if the . wrist is 140
8. MASTERING
8–8
MARO2P10203703E
5 Align the witness marks on the turret and pedestal (axis 1). See Figure 8–5. Figure 8–5. Robot Pedestal Axis 1 100°/140° Mastering Surface Location
Left Hand Mastering Surface
Right Hand Mastering Surface
P-200 Robot Pedestal
Turret Witness Mark
MASTERED POSITION: AXIS 1 = 75 ° Mastering Surface
P-200 Robot Pedestal P-200 Robot Turret
8 MASTERING MARO2P10203703E
8–9 6 Lower the inner arm aligning the witness marks on the inner arm and turret (axis 2). See Figure 8–6. Figure 8–6. Axis 2 100°/140° Mastering Surface Location
Inner Arm
Right Hand Witness Marks Left Hand Witness Marks Mastering Surface
Mastering Surface
P-200 Turret
Mastering Surface
Witness Mark
MASTERED POSITION: AXIS 2 = 20 °
P-200 Turret
Inner Arm
8. MASTERING
8–10
MARO2P10203703E
NOTE If you are mastering a 100 wrist robot, go to step 7. If your robot has a 140° wrist, go to step 8. 7 Lower the outer arm aligning the notches on the inner and outer arm (axis 3). See Figure 8–7. Go to step 14. Figure 8–7. Axis 3 100° Mastered Position
Outer Arm Inner Arm Witness Mark Witness Mark Outer Arm
MASTERED POSITION: AXIS 3 = –65 °
Inner Arm
8 MASTERING MARO2P10203703E
8–11 8 Lower the outer arm aligning the mastering pin on the 140° wrist to the mastering surface located on the inner arm (axis 3). See Figure 8–8. NOTE If your robot is not mounted on a rail, go to to step 16. Figure 8–8. Axis 3 Mastering Position (140° Wrist)
Outer Arm Mastering Pin
Inner Arm 140° Wrist Mastering Surface
Left and Right Side Mastering Pins
MASTERED POSITION: AXIS 3 ARM LENGTH 1200 MM
94.366°
1400 MM
97.0°
8. MASTERING
8–12
MARO2P10203703E
NOTE If your robot is using a P-200 Clean Wall Retrofit (P-150 Retrofit) rail, go to to step 9. If not continue to step 14. 9 Attach the mastering block to the side of the saddle. See Figure 8–9. Figure 8–9. Mastering Block
10
Release the brakes for the rail axis.
11 Manually push the saddle until the mastering block comes in contact with the rail axis master stop. See Figure 8–9.
8 MASTERING MARO2P10203703E
8–13 12
Engage the brakes for the rail axis and reset all faults.
13
Go to Step 16.
14
Jog the robot to the approximate mastering position shown in Figure 8–10.
Figure 8–10. Axis 7 Mastering Position
Witness Mark
Rail
Mastering Surface
AXIS 7
Side View
15
Align the mastering surface on the pedestal to the witness mark on the rail using a 1-2-3 block or other straight edge device.
16
Press MENUS.
17
Select SYSTEM.
18
Press F1, [TYPE].
19
Select Master/Cal.
8. MASTERING
8–14
MARO2P10203703E
NOTE You do not need a fixture to master the P-200 robot. To perform Standard Mastering, select Fixture Position Master. See the following screen for an example. SYSTEM Master/Cal
1 2 3 4 5 6
G1
JOINT 10 % TORQUE =[ON]
FIXTURE POSITION MASTER ZERO POSITION MASTER QUICK MASTER SINGLE AXIS MASTER SET QUICK MASTER REF CALIBRATE
Press ‘Enter’ or number key to select.
[ TYPE ]
20
LOAD
Select FIXTURE POSITION MASTER. You will see a screen similar to the following.
SYSTEM Master/Cal
1 2 3 4 5 6
RES_PCA
G1
JOINT 10 % TORQUE =[ON]
FIXTURE POSITION MASTER ZERO POSITION MASTER QUICK MASTER SINGLE AXIS MASTER SET QUICK MASTER REF CALIBRATE
Press ‘Enter’ or number key to select. Master at master position? [NO] [ TYPE ] YES
NO
8 MASTERING MARO2P10203703E
8–15 21
Press F4, YES. You will see a screen similar to the following.
SYSTEM Master/Cal
G1
JOINT 10 % TORQUE = [ON]
1 FIXTURE POSITION MASTER 2 ZERO POSITION MASTER 3 QUICK MASTER 4 SINGLE AXIS MASTER 5 SET QUICK MASTER REF 6 CALIBRATE Robot Mastered! Mastering Data: < 0> < 0> < 0> [ TYPE ]
LOAD
RES_PCA
DONE
NOTE If there is an encoder fault that was not reset, the teach pendant will not confirm mastering and the mastering position will not be entered. 22 Select CALIBRATE. You will see a screen similar to the following. SYSTEM Master/Cal
1 2 3 4 5 6
G1
JOINT 10 % TORQUE = [ON]
FIXTURE POSITION MASTER ZERO POSITION MASTER QUICK MASTER SINGLE AXIS MASTER SET QUICK MASTER REF CALIBRATE
Press ’Enter’ or number key to select Calibrate [NO] [ TYPE ]
23
YES
NO
Press F4, YES.
SYSTEM Master/Cal
G1
JOINT 10 % TORQUE = [ON]
1 FIXTURE POSITION MASTER 2 ZERO POSITION MASTER 3 QUICK MASTER 4 SINGLE AXIS MASTER 5 SET QUICK MASTER REF 6 CALIBRATE Robot Calibrated! CUR JNT ANG (deg): [ TYPE ]
8. MASTERING
8–16
MARO2P10203703E
8.3
When a single axis of the P-200 has been positioned at its mastering location, single axis mastering can be performed. See Figure 8–11.
SINGLE AXIS MASTERING FOR THE P-200 ROBOT
Figure 8–11. Mastering Position of the P-200 robot
Use Procedure 8–3 to master a single axis. Procedure 8–3
Mastering a Single Axis
Condition
You have cleared any servo faults that prevent you from jogging the machine.
You have jogged each axis that has lost mastery at least one motor turn. Step
1 Press MENUS. 2 Select SYSTEM. 3 Press F1, [TYPE]. 4 Select Master/Cal. If Master/Cal is not listed on the [TYPE] menu, do the following; otherwise, continue to Step 5.
8 MASTERING MARO2P10203703E
8–17
a Select VARIABLE from the [TYPE] menu. b Move the cursor to $MASTER_ENB. c Press the numeric key “1” and then press ENTER on the teach pendant. d Press F1, [TYPE]. e Select Master/Cal. You will see a screen similar to the following. SYSTEM Master/Cal
1 2 3 4 5 6
JOINT
10%
FIXTURE POSITION MASTER ZERO POSITION MASTER QUICK MASTER SINGLE AXIS MASTER SET QUICK MASTER REF CALIBRATE
Press ‘Enter’ or number key to select.
[ TYPE ]
LOAD
RES_PCA
DONE
5 Select 4, Single Axis Master. You will see a screen similar to the following. SINGLE AXIS MASTER ACTUAL POS J1 0.000 J2 3.514 J3 -7.164 J4 -357.366 J5 -1.275 J6 4.571 E1 0.000 E2 0.000 E3 0.000 [ TYPE ]
(MSTR POS) ( 75.000) ( 20.000) ( -65.000) ( 0.000) ( 0.000) ( 0.000) ( 0.000) ( 0.000) ( 0.000)
JOINT (SEL) (0) (0) (0) (0) (0) (0) (0) (0) (0) GROUP
10% 1/9 [ST] [2] [0] [2] [2] [2] [2] [0] [0] [0] EXEC
6 Jog all unaffected axes to their respective mastering positions so that the actual position matches that of the master position column. 7 Using a 1-2-3 block, or other straight edge device, align the unmastered axis (axes) to their witness mark(s) as described in Procedure 8–2 .
8 Move the cursor to the SEL column for each unmastered axis (axes) and press the numeric key “1”, then press ENTER.
8. MASTERING
8–18
MARO2P10203703E
WARNING Do not modify the values in the column labeled (MSTR POS). Otherwise, unexpected motion could occur which could injure personnel or damage equipment.
9 Press F5, EXEC. Mastering will be performed automatically. 10
Press PREV.
11 Select Calibrate. 12
Press F4, YES.
Single axis mastering is now complete.
8 MASTERING MARO2P10203703E
8–19
8.4 STANDARD MASTERING FOR THE P-10 DOOR OPENER AND THE P-15 HOOD AND DECK OPENER Procedure 8–4
Condition
Use Procedure 8–4 to master the P-10 Door Opener and the P-15 Hood and Deck opener. NOTE You do not need a fixture to master the P-10 or P-15 openers. To perform Standard Mastering, select Fixture Position Master on the teach pendant.
Standard Mastering for the P-10 Door Opener and the P-15 Hood and Deck Opener You have cleared any servo faults that prevent you from jogging the opener. You have reset all “Pulse not established (SRVO-075)” errors.
Step
1 Select Motion Group 2. a Press FCTN. b Select CHANGE GROUP. G2 should be displayed in the title line of the teach pendant screen. 2 Jog the opener to the approximate mastering position shown in Figure 8–12. NOTE Align surfaces using a 1 - 2 - 3 block or other straight edge device.
8. MASTERING
8–20
MARO2P10203703E
Figure 8–12. P-10 and P-15 Opener Mastering Position
45°
BOOTH WALL
45° AXIS 2
AXIS 3
AXIS 1
8 MASTERING MARO2P10203703E
8–21 3 Align the mastering surfaces on the x-drive housing and the rail. See Figure 8–13. Figure 8–13. P-10 and P-15 Axis One Mastering Position
700T 25T A View A
RAIL – REF. Mastering Surfaces Line Up Machine Edge On Rail With Cover As Shown
8. MASTERING
8–22
MARO2P10203703E
4 Align the mastering surfaces on the base and the inner arm. See Figure 8–14. Figure 8–14. P-10 and P-15 Axis Two Mastering Position Inner Arm
Mastering Surfaces (Inner Arm To Base)
Inner Arm
Line Up These Surfaces
Base
View B (rear view)
B
Base
B A
View A
Front Of Opener
8 MASTERING MARO2P10203703E
8–23 5 Align the mastering surfaces on the crank and base. See Figure 8–15. Figure 8–15. P-10 and P-15 Axis Three Mastered Position Line Up These Surfaces
Mastering Surfaces (Crank To base)
(Crank To Base)s
BASE
B
View B
45° REF
B
A Front Of Opener
View A
6 Press MENUS. 7 Select SYSTEM. 8 Press F1, [TYPE].
8. MASTERING
8–24
MARO2P10203703E
9 Select Master/Cal. NOTE You do not need a fixture to master the P-10 opener. To perform Standard Mastering, select Fixture Position Master on the teach pendant. You will see a screen similar to the following. SYSTEM Master/Cal
1 2 3 4 5 6
G2
JOINT 10 % TORQUE =[ON]
FIXTURE POSITION MASTER ZERO POSITION MASTER QUICK MASTER SINGLE AXIS MASTER SET QUICK MASTER REF CALIBRATE
Press ‘Enter’ or number key to select.
[ TYPE ]
10
LOAD
Select FIXTURE POSITION MASTER. You will see a screen similar to the following.
SYSTEM Master/Cal
1 2 3 4 5 6
RES_PCA
G2
JOINT 10 % TORQUE =[ON]
FIXTURE POSITION MASTER ZERO POSITION MASTER QUICK MASTER SINGLE AXIS MASTER SET QUICK MASTER REF CALIBRATE
Press ‘Enter’ or number key to select. Master at master position? [NO] [ TYPE ] YES
NO
11 Press F4, [YES]. You will see a screen similar to the following. NOTE If there is an encoder fault that was not reset, the teach pendant will not confirm mastering and the mastering position will not be entered.
8 MASTERING MARO2P10203703E
8–25 12
Select CALIBRATE. You will see a screen similar to the following.
SYSTEM Master/Cal
1 2 3 4 5 6
G2
JOINT 10 % TORQUE =[ON]
FIXTURE POSITION MASTER ZERO POSITION MASTER QUICK MASTER SINGLE AXIS MASTER SET QUICK MASTER REF CALIBRATE
Press ‘Enter’ or number key to select. Calibrate [NO] [ TYPE ]
13
YES
NO
Press F4, YES. The robot is now calibrated and can be jogged in coordinate frames.
SYSTEM Master/Cal
G2
JOINT 10 % TORQUE = [ON]
1 FIXTURE POSITION MASTER 2 ZERO POSITION MASTER 3 QUICK MASTER 4 SINGLE AXIS MASTER 5 SET QUICK MASTER REF 6 CALIBRATE Robot Mastered! Mastering Data: < 0> < 0> < 0> [ TYPE ]
Page2
9 REPLACING COMPONENTS
9
MARO2P10203703E
REPLACING COMPONENTS 9–1
Topics In This Chapter
Page
Replacing R-J2 Batteries
Replacing R-J2 Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Replacing the PSU Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Replacing the SPC Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Replace PCMCIA Memory Card (Optional) Battery . . . . . . . . . . . . . . . . . . . . .
9–2 9–2 9–3 9–4
Replacing Relays
Replacing Relays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operator Control Panel Relays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Emergency Stop Control Board (EMG) Printed Circuit Board Relay Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purge Control PCB Relay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9–6 9–6 9–7 9–8
Replacing a Printed Circuit Board
Replacing a Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–9 Removal and Replacement of a Printed Circuit Board from the Backplane Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–10 Replacing the Backplane Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . 9–12
Replacing a Module on the Main CPU or Aux Axis Control PCB
Use this procedure to replace a module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–13
Replacing an I/O Module (Model A)
Replacing an I/O Module (Model A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Replacing the Base Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Replacing a Model A Interface Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Replacing a Model A I/O Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Replacing the Multi-Tap Transformer
Replacing the Multi-Tap Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–19
Replacing a Servo Amplifiers
Replacing a Servo Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–20
Replacing the Operator Panel
Replacing the Operator Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–21
Replacing the Backplane Fan Motors
Replacing the Fan Motors in the Backplane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–22
Teach Pendant
Replacing the Teach Pendant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–24
Replacing Serial Pulse Coders
Replacing Serial Pulse Coder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–25 Replacing Internal Mounted Serial Pulse Coder . . . . . . . . . . . . . . . . . . . . . . . 9–25 Replacing Externally Mounted Serial Pulse Coder . . . . . . . . . . . . . . . . . . . . . 9–27
9–16 9–16 9–17 9–17
9. REPLACING COMPONENTS
9–2
MARO2P10203703E
9.1
FANUC Robotics recommends that all batteries be changed immediately prior to production start up. Change the batteries annually to assure reliable robot performance for extended periods of time. Use Procedure 9–1 to replace the PSU battery, Procedure 9–2 to replace the SPC battery, and Procedure 9–3 to replace the PCMCIA memory card battery.
REPLACING R-J2 BATTERIES
Procedure 9–1 Step
Replacing the PSU Battery 1 Get the new battery. (number: A98L-0031-0012) 2 Turn off and lock out the controller. CAUTION The battery must be replaced within 30 minutes. If the power is turned off and the battery is removed for 30 minutes or more, the contents of the memory on the main CPU printed circuit board may be lost. WARNING Do not short circuit or incinerate a discarded battery. Follow your company’s procedures for disposing of lithium batteries. Otherwise, you could injure personnel or damage equipment.
WARNING Lethal voltage is present in the controller WHENEVER IT IS CONNECTED to a power source. Be extremely careful to avoid electrical shock. 3 Remove the battery case from the front panel of the power supply unit. See Figure 9–1. The case can be removed easily by squeezing the top and bottom of it and pulling. Figure 9–1. Replacing the Battery
BATTERY
Cable connector
Front panel of the power supply unit Battery (ordering drawing number: A98L-0031-0007)
Battery case
Front panel of the power supply unit
PC board connector
Battery
9. REPLACING COMPONENTS
9–3
MARO2P10203703E
4 Remove the battery and connector from the PSU. 5 Replace the battery and reconnect the connector. 6 Install the battery case. Procedure 9–2 Step
Replacing the SPC Batteries 1 Get four new alkaline D-cell batteries. 2 Turn on the controller. 3 Press the operator panel Emergency Stop button and the teach pendant Emergency Stop button. 4 Remove the black plastic battery cover from the battery box on the inside of the controller cabinet front door. See Figure 9–2. 5 Remove the old batteries. 6 Insert the new batteries while observing battery polarity as shown on the battery case. 7 Replace the battery cover. 8 Cold start the controller. The teach pendant might display a SRVO–065 BLAL alarm. This is normal. It will reset when you cold start the controller.
9. REPLACING COMPONENTS
9–4
MARO2P10203703E
Figure 9–2. Internal View of the P-200 R-J2 Controller
Main power disconnect
Main CPU
Power supply unit
Aux axis board
Emergency stop control printed circuit board SPC battery case
Procedure 9–3 Step
Replace PCMCIA Memory Card (Optional) Battery 1 Get one new BR2325 3V lithium battery. 2 Remove the PCMCIA (memory) card from the Memory Card Interface board (PN A 20B-2000-0600). 3 Insert a small diameter pointed object into the hole on the upper side of the 2 MG SRAM PC card (PN DISKMF32M1LCDA7). 4 Release the battery holder by pressing the small diameter object against the battery holder catch and pull the battery holder straight out from the card. See Figure 9–3 for the location of the battery. 5 Replace the old battery with the new battery. Insure that the (+) symbol on the battery is located as shown on the battery holder.
9. REPLACING COMPONENTS
9–5
MARO2P10203703E
WARNING DO NOT Install the Memory Card Interface board with the power on. This will damage the Interface board.
6 With the new battery in the holder, install the battery holder into the memory card and reinstall the card into the controller. See Figure 9–4. Figure 9–3. Replacing Memory Card Battery
Figure 9–4. 3-Slot Backplane (A05B-2316-C105) 3 slot back plane printed circuit board A20B-2001-0670
Total version
Fan
Main CPU Power Supply PCMCIA Memory Card
Backplane Printed Circuit Board
Fans
9. REPLACING COMPONENTS
9–6
MARO2P10203703E
9.2 REPLACING RELAYS
9.2.1 Operator Control Panel Relays
This section includes relays located on the back of the operator control panel and the EMG printed circuit boards relay replacement procedures. See Figure 9–5 for relay locations and Table 9–1 for operator control panel relay identification. Table 9–1.
EMG Printed Circuit Board Relay Identification
Relay Designation
Relay Identification
Relays KA1 – KA4
A58L–0001–0192#1231R
Figure 9–5. Operator Control Panel Relay Locations
SW1
LED1
SW3
SW2 LED3
SW6
LED6
LED4
SW5
SW7
LED2
Replaceable Relays
CNPG
SWO PDIO
LED5
SW8 CNHM
KA1
KA2
KA3
KA4
SW9
CNOP CRS1
EXON
EXCOM
EXOFF
EMGIN1
EMGIN2
FENCE 1
FENCE 2
TBOP2
SVON2
E–STOP1
E–STOP2
EMGOUT1
EMGOUTC
EMGOUT2
TBOP1
PORT 2
SVON1
SW10
9. REPLACING COMPONENTS
9–7
MARO2P10203703E
9.2.2 Emergency Stop Control Board (EMG) Printed Circuit Board Relay Replacement
See Figure 9–6 for relay locations and refer to Table 9–2 for relay identification. Table 9–2.
EMG Printed Circuit Board Relay Identification
Relay Designation
Relay Identification
RLY1
A58L–0001–0422#3232K
RLY2
A58L–0001–0192#1509A
RLY 3 , RLY4, RLY5, and RLY6
A58L–0001–0192#1472R
Figure 9–6. EMG Printed Circuit Board Relay Locations for B-Size Cabinet
RLY4 RLY5 RLY6
RLY1
RLY2 RLY3
9. REPLACING COMPONENTS
9–8
MARO2P10203703E
9.2.3 Purge Control PCB Relay
Refer to Table 9–3 for relay identification and see Figure 9–7 for relay locations on the purge control printed circuit board. Table 9–3.
EMG Printed Circuit Board Relay Identification
Relay Designation Relays KA5 and KA6
Relay Identification A58L–0001–0192#1231R
Figure 9–7. Purge Control Unit
Purge control PCB 1 2 3 4 5 6 7 8 9 1011 12 1314 1516 171819 20 21 222324
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 1718 19 20 21 22 2324
P1 N1 P2 N2 P3 N3 P4 N4 P5 N5 P6 N6 G
G FG
CH1 CH2 CH3 CH4 CH5 CH6 A1 C1 A2 C2 A3 C3 A4 C4 A5 C5 A6 C6 0V 200V 220V
ISBU
IBRC
Relays KA5 and KA6
Power supply
9. REPLACING COMPONENTS
9–9
MARO2P10203703E
9.3 REPLACING A PRINTED CIRCUIT BOARD
When replacing a printed circuit board, insure that the following precautions are followed: The controller is locked out and tagged out. Remove the battery from the power supply unit and plug it into the battery connector (BAT. VBAT) on the front panel of the main CPU, if the power supply unit or the main CPU are to be removed from the backplane. See Figure 9–8. Figure 9–8. Battery Transfer to Maintain CMOS RAM Memory
Power Supply Unit
Main CPU Printed Circuit Board
Aux Battery Connection (BAT. VBAT)
Battery
9. REPLACING COMPONENTS
9–10
MARO2P10203703E
9.3.1 Removal and Replacement of a Printed Circuit Board from the Backplane Printed Circuit Board
Procedure 9–4
Removal and replacement of a printed circuit board from the backplane printed circuit board is provided in Procedure 9–4 and is shown in Figure 9–9.
Printed Circuit Board Removal and Replacement
1 Turn the power off and remove the cable(s) from the power supply unit or printed circuit board to be replaced. If the cable markings are missing or difficult to read, write them down before removing the cables.
CAUTION Be sure to back up all program and setup data on a floppy disk before you replace a printed circuit board otherwise, you could lose data.
CAUTION When either the power supply or main CPU printed circuit boards are removed from the controller, the data storage battery is disconnected. All boards must be reinstalled properly within half an hour to avoid data loss.
NOTE When removing the printed circuit board, do not touch semiconductor components on it and do not let the components touch other components.
9. REPLACING COMPONENTS
9–11
MARO2P10203703E
2 Squeeze the removal tabs at the top and bottom of the front panel of the power supply unit or printed circuit board. The latches of the control unit rack are released. Holding the tabs in this state, pull out the unit or printed circuit board. See Figure 9–9. Figure 9–9. Replacing the Components on the Backplane Printed Circuit Board Main CPU printed circuit board Power supply unit Optional boards
Removal tab
Removal tab
NOTE If you are removing the printed circuit boards in preparation to remove the backplane go to Procedure 9–5 . 3 Insert a new power supply unit or printed circuit board into the slot of the control unit rack. Carefully push it into the slot until the front panel is latched at the top and bottom. 4 Check that the printed circuit board to be installed is correctly set and adjusted. 5 Connect the cables removed for replacement to the original positions.
9. REPLACING COMPONENTS
9–12
MARO2P10203703E
9.3.2 Replacing the Backplane Printed Circuit Board Procedure 9–5
Procedure 9–5 provides instructions for replacement of the backplane printed circuit boards and Figure 9–10 shows an example of board replacement.
Replacing Backplane Printed Circuit Board 1 When you replace the backplane printed circuit board, remove the entire rack. Remove the power supply unit printed circuit board, main CPU printed circuit board, and any optional printed circuit boards using Procedure 9–4 . 2 Remove the ground cable from the backplane printed circuit board. 3 Loosen the screws fastening the rack at the top. Then remove the screws fastening the rack at the bottom. See Figure 9–10. 4 Lift up on backplane until slots have cleared the mounting screws and carefully move it forward until the backplane is clear of the controller. 5 Install the new backplane in reverse order. Figure 9–10. Replacing the Backplane Printed Circuit Board
Loosen screws
Backplane printed circuit board
Remove screws
9. REPLACING COMPONENTS
9–13
MARO2P10203703E
9.4
Use Procedure 9–6 to replace a module.
REPLACING A MODULE ON THE MAIN CPU OR AUX AXIS CONTROL PRINTED CIRCUIT BOARD
CAUTION Following electrostatic discharge procedures when handling all circuit boards.
Refer to Chapter 1 for part numbers. Procedure 9–6
Step
Replacing a Module on the Main CPU or Aux Axis Control Printed Circuit Board 1 Move the latches at both ends of the module socket toward the outside. The spring of the contact tilts the module. See Figure 9–11. Figure 9–11. Moving the Latches on the End of the Module Socket
2 If the tilted module touches the next module, it might be difficult to remove it. In this case, release the latches of the next module as described in step 1 above. 3 Now the module is free in the socket. Pull out the module carefully in a straight line. Do not pull it out in an arc. The contacts of the socket or module might be damaged. 4 Install a new module in the socket at an angle. Push it into the socket until the bottom of the module reaches the bottom of the socket groove. Be sure you have the module facing in the proper direction. align the groove in the module with the tab as shown in Figure 9–12.
9. REPLACING COMPONENTS
9–14
MARO2P10203703E
Figure 9–12. Installing a New Module at an Angle
Short
Long Fit the recess on the module over the tab in the module socket.
5 Push the module in the top edge so that the module stands upright. See Figure 9–13. Figure 9–13. Pushing in the Module
6 Check that the module is latched properly at both ends of the socket. If it is insufficiently latched, the electrical contact might be improper and a malfunction could occur.
9. REPLACING COMPONENTS
9–15
MARO2P10203703E
Figure 9–14. Mounting Locations of the Modules
CMOS module Flash ROM module
DRAM module Axis module (J1, J2) Axis module (J3, J4) Axis module (J5, J6)
MAIN CPU
JNA
Servo control module (for axis 9 and 10) Servo control module (for axis 7 and 8) JRY2
Servo control module (for axis 5 and 6) Servo control module (for axis 3 and 4) Servo control module (for axis 1 and 2)
AUX AXIS CONTROL PCB
9. REPLACING COMPONENTS
9–16
MARO2P10203703E
9.5 REPLACING AN I/O MODULE (MODEL A)
Procedure 9–7 Step
Use Procedure 9–8 and Procedure 9–9 to replace an Interface Module and I/O Module (Model A). Replacement of the Interface Module is provided in Procedure 9–8 and replacement of the I/O Module is provided in Procedure 9–9 and shown in Figure 9–16. Use Procedure 9–7 to replace the base unit if needed after you remove the I/O Interface Module. Replacing the Base Unit 1 Remove the I/O modules from the base unit. 2 Loosen the upper two mounting screws. 3 Remove the lower two mounting screws and replace the base unit. Figure 9–15. Replacing the Base Unit of the Model A I/O
M4 screw
9. REPLACING COMPONENTS
9–17
MARO2P10203703E
9.5.1
Use Procedure 9–8 to replace a Model A Interface Module.
Replacing a Model A Interface Module Procedure 9–8 Step
Replacing a Model A Interface Module 1 Turn off and lock out the controller. 2 Disconnect the signal and power cables from the interface module. 3 Press the latch on the bottom of the module and rotate the module toward you and up. 4 Engage the hook at the top rear of the module with the bar above the base unit socket. 5 Rotate the module downward until the latch engages. 6 Reconnect the signal and power cables to the interface module.
9.5.2
Use Procedure 9–9 to replace a Model A I/O Module.
Replacing a Model A I/O Module Procedure 9–9 Step
Replacing a Model A I/O Module 1 Turn off and lock out the controller. 2 Remove the wiring harness block. a Lift the latch at the lower left corner of the module window. b Rotate the block toward you and down. 3 Press the latch on the bottom of the module and rotate the module toward you and up. See Figure 9–16. 4 Engage the hook at the top read of the module with the bar above the base unit socket. 5 Rotate the module downward until the latch engages.
9. REPLACING COMPONENTS
9–18
MARO2P10203703E
Figure 9–16. Replacing a Model A I/O Module
6 Install the wiring harness block. a Engage the hook at the bottom rear of the block with the bar at the bottom of the module. b Rotate the block upward until the latch engages.
9. REPLACING COMPONENTS
9–19
MARO2P10203703E
9.6
Use Procedure 9–10 to replace the multi-tap transformer.
REPLACING THE MULTI-TAP TRANSFORMER Refer to Chapter 1 for part numbers. Procedure 9–10 Step
Replacing the Multi-Tap Transformer 1 Turn off and lock out the controller. 2 Remove the acrylic covers from the transformer and ALC relay. 3 Disconnect the wiring harnesses and ground wire from the transformer. 4 Disconnect the three wires from the bottom of the ALC relay. 5 After removing the eight screws fastening the transformer, remove the transformer. See Figure 9–17. Put a new transformer on the rail in the controller and push it into the controller along the rail. Then reinstall the screws. 6 Reconnect the wires and harnesses. 7 Reinstall the acrylic covers. Figure 9–17. Replacing the Multi-Tap Transformer
M5 screws
9. REPLACING COMPONENTS
9–20
MARO2P10203703E
9.7
Use Procedure 9–11 to replace a servo amplifier. See Figure 9–18.
REPLACING A SERVO AMPLIFIER Refer to Chapter 1 for part numbers. Procedure 9–11
Step
Replacing a Servo Amplifier
1 Turn off and lock out the controller. 2 Remove the five bus bars from the servo amplifier bank. 3 Disconnect the wires from the servo amplifier terminal strip. Remove the two screws fastening the servo amplifier and remove the amplifier. 4 Set the terminal strip jumpers on the new servo amplifier to match those of the one you removed. 5 Install the new servo amplifier by following these steps in reverse order. Figure 9–18. Replacing a Servo Amplifier
Screw
9. REPLACING COMPONENTS
9–21
MARO2P10203703E
9.8
Use Procedure 9–12 to replace the operator panel. See Figure 9–19.
REPLACING THE OPERATOR PANEL Refer to Chapter 1 for part numbers. Procedure 9–12 Step
Replacing the Operator Panel 1 Power down and lock out the controller. 2 Remove all connectors and wires from the rear of the rear operator panel and all connectors from the front panel. Identify all wires and connectors for installation of new operator panel. 3 Remove the six nuts fastening the operator panel and remove the operator panel. 4 Install new operator panel using 6 nuts removed during removal of old operator panel. 5 Reconnect all wires and connectors removed during Step 2. Figure 9–19. Replacing the Operator Panel
Î ÎÎ ÎÏ Î Ï ÏÎ ON
Nuts (Qyt 6)
9. REPLACING COMPONENTS
9–22
MARO2P10203703E
9.9 REPLACING THE FAN MOTOR IN THE BACKPLANE Procedure 9–13 Step
Replace a defective fan motor using Procedure 9–13 and as shown in Figure 9–20.
Fan Motor Replacement 1 Identify the defective fan motor and remove any printed circuit board directly below the fan to be replaced. 2 The cable connected to the fan motor is connected to the backplane printed circuit board in the slot. Holding the connector, remove the cable from the backplane printed circuit board. 3 Open the lid at the top of the backplane rack by placing the tip of a flat-blade screwdriver into the center hole at the front of the lid and moving the screwdriver like a lever in the direction in Figure 9–20. this will release the latch. 4 Replace the fan motor. 5 Close the lid until it is latched. 6 Connect the cable of the fan motor to the connector on the backplane printed circuit board. Suspend the center of the cable on the hook in the back of the rack. 7 Reinstall the removed printed circuit board.
9. REPLACING COMPONENTS
9–23
MARO2P10203703E
Figure 9–20. Replacing the Fan Motor
Fan motor
Cable
Connector
9. REPLACING COMPONENTS
9–24
9.10 REPLACING THE TEACH PENDANT
MARO2P10203703E
Replace a defective teach pendant using Table 9–4 for ordering and as shown in Figure 9–21. Figure 9–21. Replacing the Teach Pendant
Table 9–4.
Teach Pendant Part Numbers
Part Number(s) A05B-2301-C305 A05B-2308-C300 Intrinsically Safe Teach Pendant R-J2
Use General use Paint
Remarks English
9. REPLACING COMPONENTS
9–25
MARO2P10203703E
9.11 REPLACING A SERIAL PULSE CODER Procedure 9–14
Use Procedure 9–14 to replace an externally or internally mounted serial pulse coder.
Replacing Internal Mounted Serial Pulse Coder
NOTE The robot will have to be remastered after this procedure. Step
1 Turn off and lock out the robot. 2 At the end of the motor, remove both cables from the serial pulse coder cover. 3 Remove the four bolts that secure the serial pulse coder cover to the motor housing. 4 Remove the four screws holding the large serial pulse coder cable connector to the serial pulse coder cover. 5 Retract the rubber boot on the inside of the serial pulse coder cable connector. 6 Remove the snap ring on the inside of the serial pulse coder cable connector. 7 Separate the two-wire connector on the inside of the internal connector. 8 Detach the serial pulse coder cable from the serial pulse coder housing.
CAUTION In the next step, be sure to remove the correct bolts, as shown in Figure 9–22. Removing the wrong bolts can destroy the serial pulse coder.
9 Remove the four bolts attaching the serial pulse coder to the motor. See Figure 9–22. 10
Remove the serial pulse coder and the black plastic coupling and retain the black plastic coupling to be installed with the new serial pulse coder. See Figure 9–23.
11 Position the new serial pulse coder, with black plastic coupling, onto the motor so that the coupling engages both motor and pulse coder. If there are witness marks on the serial pulse coder case and the motor case, make sure that they line up. 12
Install the new serial pulse coder to the motor housing using four bolts.
13
Attach the serial pulse coder cable to the serial pulse coder housing.
9. REPLACING COMPONENTS
9–26
MARO2P10203703E
14
Install the snap ring on the inside of the serial pulse coder cable connector.
15
Reposition the rubber boot on the inside of the serial pulse coder cable connector.
16
Install the screws holding the serial pulse coder cable connector to the serial pulse coder housing.
17
Connect the two-wire cable connectors together.
18
Install the serial pulse coder housing to the motor, using four bolts
19
Attach both outside cables to the serial pulse coder housing.
Figure 9–22. Removing the Internally Mounted serial pulse coder
CAUTION: DO NOT REMOVE THE SCREWS FROM THESE FOUR RIBBED HOLES. THE SERIAL PULSE CODER WILL SEPARATE AND BE DESTROYED.
M4 Mounting Holes
FANUC
REAR VIEW
9. REPLACING COMPONENTS
9–27
MARO2P10203703E
Figure 9–23. Removing the Black Plastic Coupling
Serial Pulse Coder
Black Plastic Coupling
Procedure 9–15
Replacing an Externally Mounted Serial Pulse Coder
NOTE The robot will have to be remastered after this procedure. Step
1 Turn off and lock out the robot. 2 At the end of the motor, remove the two screws securing the serial pulse coder connector cover. 3 Remove the two screws securing the cable connector to the serial pulse coder receptacle.
CAUTION In the next step, be sure to remove the correct bolts, as shown in Figure 9–22. Removing the wrong bolts can destroy the serial pulse coder. 4 Remove the four screws holding the serial pulse coder to the motor housing and carefully remove the serial pulse coder. See Figure 9–22. Remove the coupling from the motor and serial pulse coder. See Figure 9–23.
9. REPLACING COMPONENTS
9–28
MARO2P10203703E
5 Position the new serial pulse coder, with coupling, onto the motor so that the coupling engages both the shaft of the serial pulse coder and the motor. See If there are witness marks on the serial pulse coder case and the motor case, make sure that they line up. 6 Install four new screws and secure the serial pulse coder housing to the motor. 7 Attach the serial pulse coder connector to the serial pulse coder housing using two screws. 8 Attach the connector cover to the serial pulse coder housing using two screws.
Page29
10 BOARD ADJUSTMENTS AND CALIBRATIONS
MARO2P10203703E
10
Topics In This Chapter
BOARD ADJUSTMENTS AND CALIBRATIONS 10–1
Page
I/P transducer/Regulator Performance Check
On a periodic basis, and whenever a transducer/regulator is replaced, this procedure should be preformed (Procedure 10–1 ). . . . . . . . . . . . . . . . . . . . . . . . . 10–2
Manual Flow Test (Beakering Test)
Measure paint Flow rate in cc/min (Procedure 10–2 ). . . . . . . . . . . . . . . . . . . . . . . 10–5
Cold Start
Standard Method For Turning On Power To The Robot And Controller. (Procedure 10–3 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–7
Powering on the Robot Systems
The following procedures are applicable to all P-200 robot systems including those on a pedestal, rail or with an opener. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–10
Controller Shutdown Procedure
Use this procedure for complete controller shutdown including purge circuitry. . 10–11
Servo Lockout Procedure
For servo lockout use the following procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–11
No board adjustments are required on the controller. However, Emergency Stop Control Board jumper settings are included for reference. See Figure 10–1. These jumpers are set at installation and are not to be changed. To set servo amplifier dip switches, refer to Chapter 1.
10. BOARD ADJUSTMENTS AND CALIBRATIONS MARO2P10203703E
10–2
10.1
On a periodic basis, and whenever a transducer/regulator is replaced, this procedure should be preformed to check out the Paint Regulator (PR) and the Proportion Air transducer/regulator assembly in the P-200 outer arm.
I/P TRANSDUCER/ REGULATOR PERFORMANCE CHECK
Tools Required: 0–60 psi precision pressure gauge with ±0.5 psi accuracy Appropriate hand tools Tubing and fittings as required
Procedure 10–1 Condition Step
Transducer/Regulator Performance Check The robot/controller has been reset, and the system is in the MANUAL or PRODUCTION mode. 1 Remove the air supply to the panel. 2 Remove output line from the regulator. NOTE If a gauge port is available, connect the gauge here. 3 Connect a precision 0-60 psi pressure gauge at the output port on the PR I/P regulator section. This will register a pneumatic output signal while testing the transducer/regulator. NOTE When testing the I/P transducer for acceptable performance, connect at least a volume of approximately one cubic foot to the output of the regulator. Ensure that the inlet pressure is at least 5% higher than the desired output pressure but no more than +10% of the I/P transducer system range being used (maximum of 300 psi). 4 Turn on the air supply to the panel. 5 Ensure all connections are “bubble tight”. NOTE The signal to the transducer/regulator can be varied by selecting the desired transducer count at the analog output (AOUT[1]) menu screen on the teach pendant. 6 Full scale response check: at the teach pendant select I/O, then Press F1 [TYPE]. 7 Select AO (Analog Out) menu. 8 Enter a value of 1000 transducer counts, and press [ENTER] The gauge should climb swiftly and smoothly to a maximum value (it is not important what this value is). 9 Set the AO equal to 200. The gauge will fall steadily (usually slower than climbing) back to zero. Any observable irregular response indicates a problem.
10. BOARD ADJUSTMENTS AND CALIBRATIONS
10–3
MARO2P10203703E
10
Supply 4 mA to the transducer.
11 Starting at 0% (4mA) electrical signal, supply electrical signals in the following incremental and decremental order and observe the corresponding pneumatic output signals: (Refer to Table 10–1)
– Incremental (mA) 4, 8, 12, 16, 20. – Decremental (mA) 20, 16, 12, 8, 4. 12
Verify that the pressure output falls within the tolerance range as listed in Table 10–1 (including the hysteresis between the up and down setpoints).
13
If a unit is found to be defective - Replace the unit. WARNING This I/P transducer/regulator is intrinsically safe and any repair is prohibited. Replacement must be done by ProportionAir. If you attempt any repair yourself, you will violate the warranty and could injure personnel or damage equipment.
Table 10–1.
I/P Transducer/Regulator Performance Check
Input counts to Fanuc Analog Output Module
200 400 600 800 1000
Current (mA) Output from Fanuc Analog Output Module/Current (mA) Input to PR Transducer (mA) 4 8 12 16 20
Percent of Maximum Output from PR Transducer (%)
Output from PR Transducer (±1%) of Full Output
0 25 50 75 100
0 12.5 25 37.5 50
10. BOARD ADJUSTMENTS AND CALIBRATIONS MARO2P10203703E
10–4 Figure 10–1. Emergency Stop Control Board Jumpers
Common Jumper A= 0VDC common B=24VDC common Hand Broken Jumper A= Using Switch B=By–Passing Switch
Removejumperwhenusing Aux.*BRK ON3asseparate control
Aux. brake control input plug CRM16−P1=*BRKON3 CRM16−P2=*BRKON4
Doorinterlockjumper/connector
SBK1−1 Adds Surge Sup pression Across Brake Out puts BKP&M1. SBK1−2 Adds A Diode Across The Brake Coil At BKP&M1. SBK2−1 Adds Surge Sup pression Across Brake Out puts BKP&M4. SBK2−2 Adds A Diode Across The Brake Coil At BKP&M4.
10. BOARD ADJUSTMENTS AND CALIBRATIONS
10–5
MARO2P10203703E
10.2
Use Procedure 10–2 to perform a beaker test.
MANUAL FLOW TEST (BEAKERING TEST) Procedure 10–2 Manual Flow Test (Beakering Test) Condition
All personnel and unnecessary equipment are out of the workcell. The applicator is functioning properly. The controller is in manual mode. This is performed either by the cell controller or by turning on the manual enable input. Turn off the servo disconnect. Place a graduated beaker under gun assembly.
Step
1 Press MAN FCTNS. 2 Press F1, [TYPE]. 3 Select Gun Control. You will see a screen similar to the following. Manual/Appl./Con/
JOINT
10 %
** Entries Affect Outputs Immediately ** Pulse time (sec.): 0.0 Gun OFF
Gun Select 1
Paint Fluid 0.0
Atomizing Ai 30.0
Electrostatic 0.0 Press a function key [ TYPE ] ON PULSE [ TYPE ]
ALLOFF
Color 1 Fan Air 0.0
[GROUP]
>
HELP
>
CAUTION The following steps will actually turn on and off the outputs. Be sure your workcell is set up properly.
10. BOARD ADJUSTMENTS AND CALIBRATIONS MARO2P10203703E
10–6
4 Move the cursor to each item you want to set, and set the item appropriately. Set pulse time. Set gun select Set color number Set paint fluid (Flow rate in cc/min) Set Atomizing Ai, Fam Air and Electrostatic to 0. 5 To pulse the selected output, select the item to be pulsed and press F3, PULSE. The output will pulse on then off automatically. The system will dispense selected color for 30 seconds then turn off. 6 Measure paint in graduated beaker for proper results. 7 To turn off or set all outputs to 0, press NEXT, >, then press F4, ALLOFF. NOTE Any outputs turned on will remain until they are turned off or until all outputs are set to off.
10. BOARD ADJUSTMENTS AND CALIBRATIONS
10–7
MARO2P10203703E
10.3
A cold start (START COLD) is the standard method for turning on power to the robot and controller. A cold start does the following:
COLD START (START COLD)
Initializes changes to system variables Initializes changes to I/O setup Displays the UTILITIES Hints screen A cold start will be complete in approximately 30 seconds. Use Procedure 10–3 to perform a cold start.
Procedure 10–3 Condition
Performing a Cold Start All personnel and unnecessary equipment are out of the workcell. WARNING DO NOT turn on the robot if you discover any problems or potential hazards. Report them immediately. Turning on a robot that does not pass inspection could result in serious injury.
Step ON
OFF POWER DISCONNECT C-SIZE CONTROLLER
1 Visually inspect the robot, controller, workcell, and the surrounding area. During the inspection make sure all safeguards are in place and the work envelope is clear of personnel. 2 Turn the power disconnect circuit breaker on the operator box or operator panel to ON. 3 On the teach pendant, press and hold the PREV and NEXT keys. See Figure 10–2. 4 While still pressing PREV and NEXT on the teach pendant, press the ON button on the operator panel. See Figure 10–2.
10. BOARD ADJUSTMENTS AND CALIBRATIONS MARO2P10203703E
10–8 Figure 10–2. Teach Pendant and Operator Panel
Î ÎÎ ÎÎ Î ÎÎ ÎÎ Î ÎÎ Î ÎÎ Î
BATTERY ALARM
ON BUTTON
CYCLE START
ON
HOLD
OFF
TEACH PENDANT ENABLED
FAULT
FAULT RESET
FAULT HOLD STEP
ÎÎÎ
BUSY RUNNING MAN ENBL PROD MODE
JOINT XYZ TOOL OFF
ÎÎ ÎÎ
PURGE COMPLETE
PURGE ENABLE
ÎÎ ÎÎ ÎÎÎ ÏÏ ÏÏ PURGE FAULT
ON
Î Î ÏÏ ÏÏ
REMOTE
REMOTE LOCAL
BRAKE ENABLE ON
PREVIOUS KEY
NEXT KEY
PORT
HOUR METER OFF
ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ EMERGCY STOP
(FAULT) RESET KEY
BMON>
5 After the BMON> prompt appears on the teach pendant screen, release the PREV and NEXT keys.
10. BOARD ADJUSTMENTS AND CALIBRATIONS
10–9
MARO2P10203703E
6 Turn on the controller. You will see a screen similar to the following. *** BOOT MONITOR for R-J2 CONTROLLER *** Version 4.22P(OIE) 01-JAN-199x F-ROM/D-RAM/C-MOS : TP Version : Current TIME : Slot 0 1 D E BMON> COLD
ID 9B AF 6A 8A
FC 1 1 0 0 CTRL
8.0/8.0/2 MB I 01-JAN-199x 22:52:53 OP 0 0 0 0
R-J2 Main CPU R4600 Sub-CPU V4.20 MCARD I/F AB/Ether I/F
INIT
NOLOAD
BMON> COLD
7 Press F1, COLD, and press ENTER.
BMON> START
8 Press F5, START, and press ENTER.
START
optional optional optional
>
On the operator panel or operator box, the ON button will be illuminated, indicating robot power is on. On the teach pendant screen, you will see a screen similar to the following.
UTILITIES Hints
JOINT 10 % PaintTool (TM) V4.30-x
Copyright 1997, FANUC Robotics North America, Inc. All Rights Reserved [TYPE ] HELP
10. BOARD ADJUSTMENTS AND CALIBRATIONS MARO2P10203703E
10–10
10.4
The following procedures are applicable to all P-200 robot systems including those on a pedestal, rail or with an opener. In the case of a P-200 robot and opener, both units must be properly purged before the controller can be turned on.
POWER ON SEQUENCE
Procedure 10–4 Step
Powering on the Robot Systems 1 With the main disconnect ON, you should observe: Purge complete LED is off. Purge enable pushbutton (purging) lamp is off. ON pushbutton lamp is off. Purge fault LED is on 2 Push and hold the PURGE ENABLE pushbutton. You should observe Purge solenoid engages when minimum pressure requirements are met. Purge fault LED turn off. Purging lamp (behind purge enable pushbutton) lights. At this point you can release the purge enable pushbutton, no change should occur. 3 At the end of the 5 minute purge, the pushbutton purging lamp will turn off and the purge complete LED will turn on. Also, the purge solenoid will shut off. 4 If this procedure does not work, go to Chapter 4 Troubleshooting.
10. BOARD ADJUSTMENTS AND CALIBRATIONS
10–11
MARO2P10203703E
10.5
Use this procedure for complete controller shutdown including purge circuitry.
CONTROLLER SHUTDOWN
Procedure 10–5 Step
Controller Shutdown Procedure 1 Push the E-stop push button. 2 Push the controller “OFF” pushbutton. 3 Pull the Main Disconnect switch.
10.6
For servo lockout use the following procedure:
SERVO LOCKOUT
Procedure 10–6 Step
Servo Lockout Procedure 1 Push the E-stop push button. 2 Open the servo lockout disconnect switch. 3 Lockout switch
Page2
11 CONNECTIONS
11
CONNECTIONS
MARO2P10203703E
11–1
This section includes the connections and specifications for modular I/O units. It also contains diagrams for the cables connecting the R-J2 to the P-200 robot and noise reduction guidelines.
Topics In This Chapter
Page
Noise Reduction Guidelines
Excessive noise might cause errors in the controller. . . . . . . . . . . . . . . . . . . . . . . . 11–1
Modular I/O Outputs
Connections and specifications for modular I/O outputs. . . . . . . . . . . . . . . . . . . . . Output Module AOD32A, Non-isolated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Modules AOD08C and AOD08D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Modules AOD16C and AOD16D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Module AOD32C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Module AOD32D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Modules AOA05E and AOA08E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Module AOA12F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Modules AOR08G and AOR16G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Module ADA02A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ethernet Remote Printed Circuit Board Diagnostics
Two general styles of the Ethernet Remote printed circuit board are available. . 11–11
Modular I/O Inputs
This section describes the connections and specifications for modular I/O units. 11–12 Input Module AID32B, Non-isolated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–12 Input Modules AID16C and AID16D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–13
Analog Input Module
This section describes the connections and specifications for analog input module AAD04A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–14 Analog Input Module AAD04A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–14
11.1 NOISE REDUCTION GUIDELINES
11–2 11–2 11–3 11–4 11–5 11–6 11–7 11–8 11–9 11–10
Excessive noise might cause errors in the controller. Wiring guidelines for eliminating these conditions include routing I/O wiring well away from any conductors connected to the pulse coder and other internal control wiring. I/O wiring must not occupy the same wireways as the internal control wiring. Where possible avoid parallel runs of I/O and internal control wiring. Cross internal control wiring with I/O wiring at right angles. A minimum separation of 100 mm is recommended. Provide all I/O wiring with a separate power supply. Do not use controller internal voltages such as +5VDC or 24VDC for I/O. Insure that common conductors for power supplies are not shared. Use separate commons for each power supply used for I/O. Insure that all coils for electromechanical devices such as relays, contactors, pneumatic solenoids, etc. are equipped with suppression devices. For DC circuits, diode suppressors are recommended and for AC circuits the suppressors should be a combination of a MOV with a resistor/capacitor network.
11. CONNECTIONS MARO2P10203703E
11–2
11.2
This section describes the connections and specifications for modular I/O outputs.
MODULAR I/O OUTPUTS
Table 11–1.
Output Module AOD32A, Non-isolated
Item
AOD32A
Points/module
32 points
Points/common
8 points/common
Sink/source current
Sink current type
Rated load voltage
5 ~ 24VDC +20% –15%
Maximum load current
0.3A (however 2A/common)
Maximum voltage drop when ON
0.24V (load current 0.8)
Maximum leak current when OFF
0.1 mA
Response Time
OFF ON
Max. 1 ms
ON OFF
Max. 1 ms
Output display
Not provided
External connection
Connector (HONDA TSUSIN MR-50RMA)
Terminal connection and circuitry O : output circuit +5~+24 Internal Circuit
L : load
+ –
+ –
CM L L L L L L L L
+24A A0 A1 A2 A3 A4 A5 A6 A7 CMA
17 16 32 48 15 31 47 30 46 49,50
O O O O O O O O
L L L L L L L L
+24B B0 B1 B2 B3 B4 B5 B6 B7 CMB
13 12 28 44 11 27 43 10 42 29,45
O O O O O O O O
+ –
+ –
L L L L L L L L
+24C C0 C1 C2 C3 C4 C5 D6 D7 CMC
08 07 24 39 06 23 38 22 37 40,41
O O O O O O O O
L L L L L L L L
+24D D0 D1 D2 D3 D4 D5 D6 D7 CMD
04 03 20 35 02 19 34 01 33 21,36
O O O O O O O O
11. CONNECTIONS
11–3
MARO2P10203703E
Table 11–2. Item
Output Modules AOD08C and AOD08D
AOD08C
AOD08D
Points/module
8 points
8 points
Points/common
8 points/common
8 points/common
Sink/source current
Sink current type
Source current type
Rated load voltage
12 ~ 24VDC +20% –15%
12 ~ 24VDC +20% –15%
Maximum load current
2A (however 4A/fuse)
2A (however 4A/fuse)
Limit of load
—
Refer to load derating curve
Maximum voltage drop when ON
0.8V (load current 0.4)
1.2V (load current 0.6)
Maximum leak current when OFF
0.1mA
0.1mA
Response Time
OFF ON
Max. 2 ms
ON OFF
Max. 2 ms
This is the value from input to output in the module. The actual value is determined by adding it to the scanning time depending on each system.
Max. 2 ms Max. 2 ms
This is the value from input to output in the module. The actual value is determined by adding it to the scanning time depending on each system.
Output display
LED display
LED display
External connection
Terminal block connector (20 terminal, M3.5 screw terminal)
Terminal block connector (20 terminal, M3.5 screw terminal)
Fuse
5A, 1 piece for each output A0-A3 and A4-A7
5A, 1 piece for each output A0-A3 and A4-A7
Terminal connection and circuitry
Fuses 1 load L
2
load
3 A0
4
O
L
3 A0
5 L
A1
6
O
L
A1
L
8
A2
O
L
A2
O
L
+
A3
11 L
A4
12
A5
–
O
L
A4
14
A6
O
L
A5
16
A7
O
10
O
12
O
14
O
16
O
15 O
L
A6
17 L
8
13
15 L
O
11
13 L
6
9 10
A3
O
7
9
+ –
4 5
7 L
Fuses
1 2
17 18
O
L
19
A7
18
O
19 20
20
Fuses O : output circuit
O : output circuit
2
2 Internal Circuit
20
Internal Circuit
LED
20
LED
11. CONNECTIONS MARO2P10203703E
11–4 Table 11–3. Item
Output Modules AOD16C and AOD16D
AOD16C
AOD16D
Points/module
16 points
16 points
Points/common
8 points/common
8 points/common
Sink/source current
Sink current type
Source current type
Rated load voltage
12 ~ 24VDC +20% –15%
12 ~ 24VDC +20% –15%
Maximum load current
0.5A (however 2A/common)
0.5A (however 2A/common)
Maximum voltage drop when ON
0.7V (load current 1.4)
0.7V (load current 1.4)
Maximum leak current when OFF
0.1mA
0.1mA
Response Time
OFF ON
Max. 2 ms
ON OFF
Max. 2 ms
This is the value from input to output in the module. The actual value is determined by adding it to the scanning time depending on each system.
Max. 2 ms Max. 2 ms
This is the value from input to output in the module. The actual value is determined by adding it to the scanning time depending on each system.
Output display
LED display
LED display
External connection
Terminal block connector (20 terminal, M3.5 screw terminal)
Terminal block connector (20 terminal, M3.5 screw terminal)
Terminal connection and circuitry
L
: load
L
: load
1
+ –
L
A0
L L
L
A1 A2 A3
L
A4
L
7
L
A5 A6
L
A7
9
1 2
3 4 5 6 8
O O O O
+
O O O O
–
L
A0
L L L
A1 A2 A3
L L L L
A4 7
A7
9
L +
12 14 15
L
L L L
B5 B6 B7
17
6
O O O O
10
16 18 19
O O O
L L L L L L L L
+
O O O
–
O O
B0 B1 B2
12 13 14
B3 B4
15
B5 B6 B7
17
20
O O O
16
O O O
18
O O
19 20
O : output circuit
O : output circuit
1
1 Internal Circuit
10
O O
11
13
B3 B4
L
–
B0 B1 B2
4
8
10
L
O O
5
A5 A6
11 L
2 3
Internal Circuit
LED
10
LED
11. CONNECTIONS
11–5
MARO2P10203703E
Table 11–4.
Output Module AOD32C
Item
AOD32C
Points/module
32 points
Points/common
8 points/common
Sink/source current
Sink current type
Rated load voltage
12 ~ 24VDC +20% –15%
Maximum load current
0.3A (however 2A/common)
Maximum voltage drop when ON
0.24V (load current 0.8)
Maximum leak current when OFF
0.1mA
Response Time
OFF ON
Max. 2 ms
ON OFF
Max. 2 ms
This is the value from input to output in the module. The actual value is determined by adding it to the scanning time depending on each system system.
Output display
Not provided
External connection
Connector (HONDA TSUSIN MR-50RMA)
Terminal connection and circuitry
O : output circuit
+24
Internal Circuit
L
CM
: load +24A
+ –
+ –
L L L L L L L L
L L L L L L L L
A0 A1 A2 A3 A4 A5 A6 A7 CMA
+24B B0 B1 B2 B3 B4 B5 B6 B7 CMB
17 16 32 48 15 31 47 30 46 49,50
13 12 28 44 11 27 43 10 42 29,45
O O O O O O O O
O O O O O O O O
+ –
L L L L L L L L
+24C C0 C1 C2 C3 C4 C5 C6 C7 CMC
08 07 24 39 06 23 38 22
L L L L L L L L
+24D D0 D1 D2 D3 D4 D5 D6 D7 CMD
04 03 20 35 02 19 34 01
Note: For the common (CMA, CMB CMC, CMD) make sure to use both.
37 40,41
33 21,36
O O O O O O O O
O O O O O O O O
11. CONNECTIONS MARO2P10203703E
11–6 Table 11–5.
Output Module AOD32D
Item
AOD32D
Points/module
32 points
Points/common
8 points/common
Sink/source current
Source current type
Rated load voltage
12 ~ 24VDC +20% –15%
Maximum load current
0.3A (however 2A/common)
Maximum voltage drop when ON
0.24V (load current 0.8)
Maximum leak current when OFF
0.1mA
Response Time
OFF ON
Max. 2 ms
ON OFF
Max. 2 ms
This is the value from input to output in the module. The actual value is determined by adding it to the scanning time depending on each system.
Output display
Not provided
External connection
Connector (HONDA TSUSIN MR-50RMA)
Terminal connection and circuitry
O : output circuit
L
–
+ –
Internal Circuit
0
: load CMA
+
CM
L L L L L L L L
L L L L L L L L
A0 A1 A2 A3 A4 A5 A6 A7 0A
CMB B0 B1 B2 B3 B4 B5 B6 B7 0B
49,50 16 32 48 15 31 47 30 46 1B
29,45 12 28 44 11 27 43 10 42 14
O O O O O O O O
O O O O O O O O
+ –
+ –
L L L L L L L L
CMC C0 C1 C2 C3 C4 C5 C6 C7 0C
40,41 07 24 39 06 23 38 22
L L L L L L L L
CMD D0 D1 D2 D3 D4 D5 D6 D7 0D
21,36 03 20 35 02 19 34 01
37 09
33 05
Note: For the common (CMA, CMB CMC, CMD) make sure to use both.
O O O O O O O O
O O O O O O O O
11. CONNECTIONS
11–7
MARO2P10203703E
Table 11–6. Item
Output Modules AOA05E and AOA08E
AOA05E
AOA08E
Points/module
5 points
8 points
Points/common
1 point/common
4 points/common
Rated load voltage
100 ~ 230VAC 15%, 47 ~ 63Hz
100 ~ 230VAC 15%, 47 ~ 63Hz
Maximum load current
2A (however 5A/module)
1A (however 2A/common)
Maximum in rush current
25A (1 period)
10A (1 period)
Limit of load
Refer to load derating curve
—
Maximum voltage drop when ON
1.5Vrms
1.5Vrms
Maximum leak current when OFF
3.0mA (115VAC), 6.0mA (230VAC)
3.0mA (115VAC), 6.0mA (230VAC)
Response Time
OFF ON
Max. 1 ms
ON OFF
Half of the load frequency or less
This is the value from input to output in the module module. The actual value is determined by adding it to the scanning time depending on each system.
This is the value from input to output in the module module. The actual value is determined by adding it to the scanning time depending on each system.
Max. 1 ms Half of the load frequency or less
Output display
LED display
LED display
External connection
Terminal block connector (20 terminals, M3.5 screw terminal)
Terminal block connector (20 terminals, M3.5 screw terminal)
Fuse
3.2A, 1 piece for each output A0 ~ A4
3.2A, 1 piece for each output A0 ~ A3 and A4~ A7
Terminal connection and circuitry
1
1 L
2 O
3 L
A0
A0
L
4
A1
5 L
6 A1
A2
O L
8
A3
L
A4
L
A5
14
O
16
O
15
O L
16
A6
17
17 L
18 19
A7
20
O
18 19
O
Fuse 20
load O
O
12 13
14
A4
O Fuse
11
12
15
L
O
10 O
13
A3
6
8
10
L
O
9
11 A2
4
7
9
L
O
5
7 L
2 3
load O
: output circuit
: output circuit
2
LED 4
LED 10 20
11. CONNECTIONS MARO2P10203703E
11–8 Table 11–7.
Output Module AOA12F
Item
AOA12F
Points/module
12 points
Points/common
6 points/common
Rated load voltage
100 ~ 115VDC 15% 47 ~ 63Hz
Maximum load current
0.5A/point (however 2A/common)
Maximum in rush current
5A (1 period)
Limit of load
Refer to load derating curve
Maximum voltage drop when ON
1.5Vrms
Maximum leak current when OFF
1.5mA (115 VAC)
Response Time
OFF ON
Max. 1 ms
ON OFF
Half of the load frequency or less
This is the value from input to output in the module. The actual value is determined by adding it to the scanning time depending on each system.
Output display
LED display
External connection
Terminal block connector (20 terminal, M3.5 screw terminal)
Fuse
3.2A, 1 piece for each output A0 ~ A5 and B0 ~ B5
Terminal connection and circuitry
L
: load 1
L
A0
L L L
A1 A2 A3
3
L
A4
5
L
A5
O 2
O
4
O O O
6 7 8 9
O O O Fuse
10 L L L L L L
B0 B1 B2 B3 B4
O
11 12
O O
14
O O
13 15
B5
16 17 18
O O O
19 20
Fuse
O : output circuit
LED 9 19
NOTE: Each output signal group (A0–A5 and B0–B5) contains six output signals. However, each group must have an entire group of eight signals assigned to it. For example, A0–A5 might be occupied by digital outputs 1 through 6 and B0–B5 might be occupied by digital outputs 9 through 14. Digital outputs 7 and 8 and digital outputs 15 and 16 are unusuable.
11. CONNECTIONS
11–9
MARO2P10203703E
Table 11–8. Item
Output Modules AOR08G and AOR16G AOR08G
AOR16G
Points/module
8 points
8 points
Points/common
1 point/common
4 points/common
Maximum load
30VDC/250VAC, 4A (resistance load)
30VDC/250VAC, 2A (resistance load)
Minimum load
5VDC, 10mA
1A (however 2A/common)
Maximum current
—
4A/common
Limit of load
Refer to load derating curve
Refer to load derating curve
Response Time OFF ON
Max. 15ms
ON OFF
Max. 15ms
This is the value from input to output in the module. The actual value is determined by adding it to the scanning time depending on each system.
This is the value from input to output in the module. The actual value is determined by adding it to the scanning time depending on each system.
Max. 15ms
Max. 15ms
Output display
LED display
LED display
External connection
Terminal block connector (20 terminals, M3.5 screw terminal)
Terminal block connector (20 terminals, M3.5 screw terminal)
Relay life
Mechanical
Min. 20,000,000 times
Min. 20,000,000 times
Electrical
Min. 100,000 times (resistance load)
Min. 100,000 times (resistance load)
Terminal connection and circuitry
v
1 v L
A0
3
L
A1
5
L
A2
7
L
A3
9
v v
L
A0 A1 A2 A3
3
4
L L L L L L L
A4
7
A5 A6 A7
9
8 10 12 L
A4
13
L
A5
15
L
A6
17
L
A7
19
v
14
v
18 20
v : Direct current power or alternating current power
8 10 11
L L L L
BO B1 B2 B3
13
L L L L
B4
17
B5 B6 B7
19
12 14 15
v
16
v
4 5 6
v
11 v
2
v
6
v
1
2
v
16 18 20
: Direct current power or alternating current power
11. CONNECTIONS MARO2P10203703E
11–10 Table 11–9.
Output Module ADA02A ADA02A
Item Number of output channels
2 channels/module
Digital input
12-bit binary (2’s complement representation)
Analog output
–10VDC ~ +10VDC (external load resistance: 10K or more) selectable 0mADC ~ + 20mADC (external load resistance: 400 or less) usable
Input/output correspondence
Digital Input
Analog Output
+2000 +1000 0 –1000 –2000
+10V +5V or +20mA 0V or 0mA –5V –10V
Resolution
5mV or 20 A
Comprehensive accuracy
Voltage output 0.5% (for the full scale) Current output 1% (for the full scale)
Converting time
1ms or less. The converting time is the one only inside the module. The actual response time is added a scan time that is determined by the system.
Isolation
Photocopier isolation (between output signal and base). However, non-isolation between output channels.
External connection
At removable terminal block (20 terminals, M3.5 screw terminals)
Number of occupied output points
82
ADA02A
V0+ Channel 0 D/A converter
Voltage output
Load
2
10K ohms or more
Voltage V0– 4 amp. Current amp.
6
10+ 8
10– 10
V1+ Channel 1 D/A converter
12
Voltage V1– 14 amp. Current 16 amp. 10+
Current output
18
10– 20
(Note 1) Use a 2–core twisted shielded cable as the connection cable. (Note 2) Ground the cable shield on the load side
Load 400 ohms or less
11. CONNECTIONS
11–11
MARO2P10203703E
11.3
Figure 11–1 shows both the ER-1 and ER-2 R-J2 Allen-Bradley Remote I/O (ABRIO) printed circuit boards. For more detailed information on the types and styles of the Ethernet Remote Printed Circuit Board, see Section 1.11, Table 3–13, and Table 3–14 which list the functions of the alarm LEDs.
ETHERNET REMOTE PRINTED CIRCUIT BOARD DIAGNOSTICS
Figure 11–1. ER-1 and ER-2 Printed Circuit Board LEDs
ER-1
ER-2
1 23 4
Alarm LEDs
A-B
Alarm LEDs
11. CONNECTIONS MARO2P10203703E
11–12
11.4
This section describes the connections and specifications for modular I/O units.
MODULAR I/O INPUTS
Table 11–10.
Input Module AID32B, Non-isolated AID32B
Item Points/module
32 points
Points/common
16 points/common
Sink/source current
Both directions
Input voltage
24 VDC +10% –20%
Input current
7.5mA (average)
ON voltage current
Min. 18 VDC min. 6 mA
OFF voltage current
Max. 6VDC max. 1.5 mA
Respo OFF ON nse ON OFF Time
Max. 2 ms
Input display
Not provided
External connection
Connector (HONDA TSUSIN MR-50RMA)
This is the value from input to output in the module. The actual value is determined by adding it to the scanning time depending on each system. system
Max. 2 ms
Terminal connection and circuitry
: input circuit CM Internal Circuit CMA A0 A1 A2 A3 A4 A5 A6 A7 B0 B1 B2 B3 B4 B5 B6 B7
29,45 49,50 16 32 48 15 31 47 30 46 12 28 44 11 27 43 10 42 13,17 ––+24V 14,18 ––GND
CMC C0 C1 C2 C3 C4 C5 C6 D7 D0 D1 D2 D3 D4 D5 D6 D7
21,36 40,41 07 24 39 06 23 38 22 37 03 20 35 02 19 34 01 33 04,08 ––+24V 05,09 ––GND
+24V or GND can be selected for input common as above figure. Note: Make sure to connect all common (CMA, CMC) pins.
11. CONNECTIONS
11–13
MARO2P10203703E
Table 11–11. Item
Input Modules AID16C and AID16D
AID16C
AID16D
Points/module
16 points
16 points
Points/common
16 points/common
16 points/common
Sink/source current
Source current type
Sink current type
Input voltage
24VDC +10% –20%
24 VDC +10% –20%
Input current
7.5 mA (average)
7.5 mA (average)
ON voltage current
Min. 15VDC min. 4 mA
Min. 15 VDC min. 4 mA
OFF voltage current
Max. 5VDC max. 1.5 mA
Max. 5VDC max. 1.5 mA
Response Time
OFF ON
Max. 20ms
ON OFF
Max. 20ms
This is the value from input to output in the module. The actual value is determined by adding it to the scanning time depending on each system.
Max. 20ms Max. 20ms
This is the value from input to output in the module. The actual value is determined by adding it to the scanning time depending on each system.
Input display
LED display
LED display
External connection
Terminal block connector (20 terminals, M3.5 screw terminal)
Terminal block connector (20 terminals, M3.5 screw terminal)
Terminal connection and circuitry
(C)
(D)
+
–
–
+
1
A0 A1 A2 A3 A4 A5 A6 A7 B0 B1 B2 B3 B4 B5 B6 B7
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
FOR AID16C : input circuit 1
LED
FOR AID16D : input circuit LED 1
11. CONNECTIONS MARO2P10203703E
11–14
11.5
This section describes the connections and specifications for analog input module AAD04A.
ANALOG INPUT MODULE
Table 11–12.
Analog Input Module AAD04A
Item
AAD04A
Number of input channels
4 channels/module
Analog input
–10VDC to +10VDC (input resistance 4.7M) –20mADC to +20mADC (input resistance: 250 selectable
Digital output
12-bit binary (complementary representation of “2”)
Input/output correspondence
Analog Input
Digital Output
+10V +5V or +20mA 0V or 0mA –5V or –20mA –10V
+2000 +1000 0 –1000 –2000
Resolution
5mV or 20 A
Total precision
Voltage input 0.5% (for the full scale) Current input 1% (for the full scale) Maximum 2ms. NOTE: Actual response speed is determined by adding the scanning time depending on each system to this conversion time. 15V 30mA
Conversionary time Maximum input voltage/current Insulation External connection Number of occupied output points
Photocopier insulation (between output signal and base). However, non-insulation between output channels. At removable terminal block (20 terminals, M3.5 screw terminals) 82
10+
1 2
11+ Voltage input
V0+
3 V1+
Voltage supply
4
V0– 5
V1– 6
COM0 COM1 8
7 FG0
MULTI PROCESSOR
9 FG1
Current input Current supply
10 12+ 11 250 13+ 12 V2+ 13 V3+ 14 V2– 15 V3– 16 COM2 17 COM3 18 FG2 19 FG3 20
(Note 1) Though the example above shows the connection of channels 0 and 2, it is just the same with the channel 1 (I1+, V1+, V1–, COM1 and FG1) and the channel 3 (I3+, V3+, V3–, COM3 and FG3). (Note 2) Either voltage input or current input can be specified for each channel. When current input is specified, make sure to short–circuit in + and Vn+. (Note 3) Use shielded cables of twisted pair for connecting.
Page15
12 SCHEMATICS
12
MARO2P10203703E
Topics In This Chapter Schematics
SCHEMATICS 12–1
Page
The following section includes separate print sets for the P-200 robot. Each print set includes the R-J2 controller schematic with R-J2 internal cable connector pinouts and an overview of the C-size cabinet with component locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–1
12. SCHEMATICS
12–2 NOTES
MARO2P10203703E
12. SCHEMATICS
12–3
MARO2P10203703E
Figure 12–1. R-J2 P-200 Controller Total Circuit Diagram USER TRANSFORMER (OPTION) TF2 (SEE SHEET 4) (REFER TO 002) IN CASE OF CIRCUIT BREAKER
A1 SERVO POWER CONTROL (220 VAC)
A2 MULTI–TAP TRANSFORMER TF1 (SEE SHEET 4)
L1 INPUT VOLTAGE REFER TO PAGE 002
F2 F1
F1
L2
F2
1
2
3
4
5
6
SERVO POWER (210 VAC)
L3 F3
G
FUSE UNIT FL1 FL2
F4
FL3
100 VAC
F5
13
14
41
23
24
42
DISCONNECT SWITCH
43 220 VAC
IN CASE OF DISCONNECT SWITCH
44 51
THERMOSTAT
ST FAN UNIT
M
M
FOR OVERHEAT
52
M AC 200V
PSU SEE SHEET 8CP1
BACK PLANE
E–STOP PCB
CP2 JRV1
JNPO CP3
JRF2
SEE SHEET 10
JS1
CP5
MAIN CPU SEE SHEET 9
JRV1
JRF2
CRF1
CRM9
JS2
CRM11
JS3
CRM15
JS4
CRM16
JS5
CRR20
JS6
CRR21
CRR15
CRR22
CRR5
SERVO POWER
REFER TO SHEETS 2 , 3 AND 4
SURGE ABSORBER UNIT
OVERHEAT (TF1)
PWM SIGNALS TO AMPLIFIERS ESTOP SIGNAL
ROBOT CONNECTIONS
CRM10 JRA5
JD1A
PULSE CODER (J1–J6)
BKP4 BKM4
JF21
AMPLIFIER CONNECTIONS
CRS1 JD17 JRM3
OPERATOR PANEL
PURGE CONTROL BRAKE RELEASE
CNIN
UNIT
CNPG
CNPG
JRM10 CNCA
AUX AXES BD JNA
JV1
FRA1 SEE SHEETS FRA2 13, 14 & 15 BKP1 BKM1 200A BKP2 200B BRD1 BKM2 BRDC BKP3 BRD2 BKM3 BKP4 BKM4 OT SVON2 SVON SVONC SVON1 EES1 EES2
PDIO
CRS1 SEE SHEETS 16, 17 & 18 PORT1
CNOP
PORT2
ISB CRS1
TEACH PENDANT
CRS2 MOTOR BRAKE (J1–J9)
EMGIN1 EMGIN2
EE-3287-500-001
12. SCHEMATICS
12–4 NOTES
MARO2P10203703E
12. SCHEMATICS
12–5
MARO2P10203703E
Figure 12–2. R-J2 P-200 Controller Total Circuit Diagram (Multi-Tap Transformer Details)
IN CASE OF CIRCUIT BREAKER
L1
MULTI–TAP TRANSFORMER TF1 EE–0989–550 F1
1 575 L1 2 550 3 500 4 480 5 460 6 415/240 7 380/220
x
AC POWER SUPPLY
A1 A2 1
2
30A F2
3
4
30A F3
5
6
F4
13
14
7.5A F5
23
24
SERVO POWER CONTROL (220VAC)
SERVO POWER (210 VAC)
30A L2 220/240 380/415 460/480 500/550 575 +10% –15% @ SELECTED VOLTAGE
x
L3
x
50/60Hz
8 OV 9 575 L2 10 550 11 500 12 480 13 460 14 415/240 15 380/220 16 OV 17 575 L3 18 550 19 500 20 480 21 460 22 415/240 23 380/220
ST1
100 VAC
7.5A
43 220 VAC
44
24 OV
G
51
IN CASE OF DISCONNECT SWITCH FUSE UNIT FL1 FL2 FL3 DISCONNECT SWITCH
THERMOSTAT FOR OVERHEAT
52
ST2
USER TRANSFORMER (OPTION) TF2 A80L–0001–0520 575 550 500 480 460 440 415 380 240 220
SPECIFICATION OF TF1 CAPACITY 7.5KVA F2 20A
COM F1 10A
115V L1 L1 L2 L2
SPECIFICATION A80L–0026–0010#A
F1,F2,F3 30A
F4,F5 7.5A
115 VAC TO OUTLET UNIT
9.6A
* CONNECTION TO TF1 * BREAKER, FUSE SIZE INPUT VOLTAGE 220 240 380 415 460 480 500 550 575
CIRCUIT BREAKER
LEAKAGE BREAKER
DISCONNECT SWITCH FL1 FL2 FL3
50A
50A
50A
30A
30A
30A
20A
20A
20A
POWER SUPPLY VOLTAGE 220 240 380 415 440 460 480 500 550 575
CONNECTION OF PRIMARY TAP L1 L2 L3 JUMPER 16–23 7 8–15 15 23 6 8–14 16–22 14 22 7 15 23 6
14
22
5 4 3 2 1
13 12 11 10 9
21 20 19 18 17
CONNECTING STYLE 24–7 24–6
DELTA
STAR 8–16
16–24
EE-3287-500-006
12. SCHEMATICS
12–6 NOTES
MARO2P10203703E
12. SCHEMATICS
12–7
MARO2P10203703E
Figure 12–3. R-J2 P-200 Controller Total Circuit Diagram (Amplifier Configurations)
AMP DIP SWITCH SETTINGS ALL CASES 1 – ON 2 – OFF 3 – ON 4 – ON
4 3 2 1 ON
AC 200V (CP3)
SERVO POWER OVER HEAT TF1
AMP 1 A06B–6089–H209
AMP 2 A06B–6089–H209
AMP 3 A06B–6089–H101
AMP 4 A06B–6089–H106
L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3
L1 L2 L3 L1C T1 L2C TH1 TH2 RC UL RI VL RE WL T1 PE CX3 UM VM CX4 4 WM 3 2 PE 1
L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3
L1 L2 L3 L1C T1 L2C TH1 TH2 RC U RI V RE T1 W CX3 PE
CX4
UL VL WL PE T1 UM VM 4 3 WM 2 1 PE ON
JS1B
PWM CABLE (JS1–JS6) E–STOP SIGNAL
JS4
J4 J1
J5 J3
CX4
ON
JS2B
JS1B
JS1
JS2B
JS5
U V W T1 PE
J6
CX4
4 3 2 1 ON
JS1B
JS3
AXES # P–200 6 AXES CONTROL MOTOR TYPE
AMP SPECIFICATION
SERVO POWER OVER HEAT TF1
MOTOR POWER (J1–J6) TO ROBOT
JS2
AMP 1 A06B–6089–H209
AMP 2 A06B–6089–H209
AMP 3 A06B–6089–H209
AMP 4 A06B–6089–H106
L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3
L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3
L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3
L1 L2 L3 L1C T1 L2C TH1 TH2 RC U RI V RE T1 W CX3 PE
CX4
JS1B
PWM CABLE (JS1–JS6, JV7) E–STOP SIGNAL
JS4
JS2B
JS1
J4 J1
CX4
JS1B
JS5
JS2B
JS3
P–200 (7) AXES CONTROL
J5 J3
CX4
JS1B
JS6
UL VL WL PE T1 UM VM 4 3 WM 2 1 PE ON JS2B
JV7
J6 J7
CX4
AMP
1 MCCOFF3
2/3000
0.5/3000
AMP1
AMP2 SVU2–12/80 L(12A)= J5 M(80A)= J3 A06B–6089–H209
AMP3
2
13 14 15 16 17 18 19 20 21 22 23
3 MCCOFF4
CX4 (X–KEY) (E–STOP CONTROL)
# P–200 7 AXES CONTROL AMP SPECIFICATION
AMP4
SVU1–12 J6
SVU1–130 J2
A06B–6089–H101
A06B–6089–H106
2 ESP
3 +24V
J1
6/3000
L1C L2C TH1 TH2 RC RI RE [UL] [VL] [WL] [ ]
1 2 3 4 5 6 7 8 9 10 11 12
L1(R) L2(S) L3(T) (100A) (100B) RL2 RL3 U[UM] V[VM] W[WM]
J2
J3
J4, J5
J6
J7
22/3000
12/3000
2/3000
0.5/3000
12/3000
AMP1 SVU2–12/80 L(12A)=J4 M(80A)=J1 A06B–6089–H209
AMP2 SVU2–12/80 L(12A)=J5 M(80A)=J3 A06B–6089–H209
AMP3 SVU2–12/80 L(12A)=J6 M(80A)=J7 A06B–6089–H209
AMP4 SVU1–130 J2 A06B–6089–H106
J2
4 3 2 1 ON
4 3 2 1 ON
JS1B
JS2
22/3000
T1 (TERMINAL BLOCK)
AXES # P–200 7 AXES CONTROL MOTOR TYPE
UL VL WL T1 PE UM VM 4 3 WM 2 1 PE ON
J6
CX3 (Y–KEY) (MCC CONTROL)
P–200 (6) AXES CONTROL
UL VL WL PE T1 UM VM 4 3 WM 2 1 PE ON
J4, J5
4 3 2 1 ON
1
AC 200V (CP3)
J3
12/3000
J2
JS1B
JS6
J2
SVU2–12/80 L(12A)= J4 M(80A)= J1 A06B–6089–H209
AMP
# P–200 6 AXES CONTROL
J1
6/3000
MOTOR POWER (J1–J7) TO ROBOT
AMP DIP SWITCH SETTINGS ALL CASES 1 – ON 2 – OFF 3 – ON 4 – ON
EE-3287-500-002
12. SCHEMATICS
12–8 NOTES
MARO2P10203703E
12. SCHEMATICS
12–9
MARO2P10203703E
Figure 12–4. R-J2 P-200 Controller Total Circuit Diagram (Amplifier Configurations) AMP DIP SWITCH SETTINGS ALL CASES 1 – ON 2 – OFF 3 – ON 4 – ON
4 3 2 1 ON AC 200V (CP3)
SERVO POWER OVER HEAT TF1
L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3 T1 CX4
4 3 2 1 ON
JS1B
PWM CABLE (JS1–JS6 .J7–J9) E–STOP SIGNAL
UL VL WL PE UM VM WM PE
J4
AMP 2 A06B–6089–H209
AMP 3 A06B–6089–H101
L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3 T1
L1 L2 L3 L1C T1 L2C TH1 TH2 RC U RI V RE T1 W CX3 PE
CX4 J1
JS2B
4 3 2 1 ON
JS1B
UL VL WL PE UM VM WM PE
J5
CX4 J3
JS2B
AMP 4 A06B–6089–H106
J6
4 3 2 1 ON
JS1B
# P–200 6+2 (DOOR OPENER) AXES CONTROL MOTOR SPEC. P–200 6+2 (HOOD–DECK) AXES CONTROL MOTOR SPEC.
AMP 5 SEE CHART
L1 L2 L3 L1C T1 L2C TH1 TH2 J2 RC U RI RE T1 V W CX3 PE
L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3
CX4
CX4
4 3 2 1 ON
AMP
UL VL WL PE T1 UM VM 4 3 WM 2 1 PE
ON
JS1B
JS1B
J7
J8
P–200 6+2 (DOOR OPENER) AXES CONTROL AMP SPECIFICATION P–200 6+2 (HOOD–DECK) AXES CONTROL AMP SPECIFICATION
OVER HEAT TF1
JS4
JS1
JS5
JS3
JV7
JS2
JS6
JV8
AMP 3 A06B–6089–H209
L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3
L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3
L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3
4 3 2 1 ON
JS1B
JS4
UL VL WL PE T1 UM VM WM PE JS2B
JS1
J4
CX4 J1
4 3 2 1 ON
JS1B
JS5
J5 UL VL WL T1 PE UM VM WM PE J3 JS2B
JS3
P–200 7+2 AXES CONTROL
CX4
UL VL WL T1 PE UM VM 4 3 WM 2 1 PE
ON
JS1B
JS6
JS2B
JV7
AMP 4 A06B–6089–H106
J6
L1 L2 L3 L1C T1 L2C TH1 TH2 RC UL RI RE VL T1 WL CX3 PE
MOTOR POWER (J1–J9) TO ROBOT
1 MCCOFF3
CX4 J7 JS1B
JS2
4 3 2 1 ON
J2
CX4
JS1B
JV8
AMP
UL VL WL PE T1 UM 4 VM 3 2 WM 1 PE ON
#
P–200 7+2 (DOOR OPENER) MOTOR SPEC. P–200 7+2 (HOOD–DECK) MOTOR SPEC.
AMP 5 SEE CHART L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3
J7
J8
12/3000
2/3000
0.5/3000
2/3000
2/3000
6/3000
22/3000
12/3000
2/3000
0.5/3000
6/3000
6/3000
AMP2
SVU2–12/80 L(12A)=J4 M(80A)=J1 A06B–6089–H209 SVU2–12/80 L(12A)=J4 M(80A)=J1 A06B–6089–H209
SVU2–12/80 L(12A)=J5 M(80A)=J3 A06B–6089–H209 SVU2–12/80 L(12A)=J5 M(80A)=J3 A06B–6089–H209
AMP3
AMP4
AMP5
SVU1–130 J2
SVU1–12 J6 A06B–6089–H101 SVU1–12 J6 A06B–6089–H101
SVU2–12/12 L(12A)=J7 M(12A)=J8 A06B–6089–H106 A06B–6089–H201 SVU2–80/80 SVU1–130 L(80A)=J7 J2 M(80A)=J8 A06B–6089–H106 A06B–6089–H208 T1
(TERMINAL BLOCK)
AXES AMP 2 A06B–6089–H209
J6
22/3000
13 14 15 16 17 18 19 20 21 22 23
2
3 MCCOFF4
CX4 (X–KEY) (E–STOP CONTROL)
AMP 1 A06B–6089–H209
J4,J5
6/3000
CX3 (Y–KEY) (MCC CONTROL)
CX4
PWM CABLE (JS1–JS6 .J7–J9) E–STOP SIGNAL
J3
JS2B
1
SERVO POWER
J2
AMP1
#
P–200 6+2 AXES CONTROL
AC 200V (CP3)
J1
AXES
AMP 1 A06B–6089–H209
#
P–200 7+2 (DOOR OPENER) AXES CONTROL J8 AMP SPECIFICATION P–200 7+2 (HOOD–DECK) J9 AXES CONTROL AMP SPECIFICATION
2 ESP
3 +24V
J1
J2
J3
1 2 3 4 5 6 7 8 9 10 11 12
L1C L2C TH1 TH2 RC RI RE [UL] [VL] [WL] [ ]
J4,J5
J6
6/3000
22/3000
12/3000
2/3000
0.5/3000
6/3000
22/3000
12/3000
2/3000
0.5/3000
AMP1
AMP2
AMP3
L1(R) L2(S) L3(T) (100A) (100B) RL2 RL3 U[VM] V[VM] W[WM]
J7
J9
J8
12/3000 2/3000
2/3000
6/3000
6/3000
12/3000
AMP4
AMP5
SVU2–12/80 L(12A)=J4 M(80A)=J1 A06B–6089–H209
SVU2–12/80 SVU2–12/80 SVU2–12/12 SVU1–130 L(12A)= J5 L(12A)=J6 A06B–6089–H201 J2 L(12A)= J8 M(80A)= J7 M(80A)=J3 M(80A)= J9 A06B–6089–H209 A06B–6089–H209 A06B–6089–H106 A06B–6089–H208 SVU2–12/80 SVU2–12/80 SVU2–12/80 SVU1–130 SVU2–80/80 L(12A)= J5 L(12A)=J6 L(12A)=J4 J2 L(12A)= J8 M(80A)= J7 M(80A)=J3 M(80A)=J1 M(80A)= J9 A06B–6089–H209 A06B–6089–H209 A06B–6089–H209 A06B–6089–H106
JS2B
JV9
MOTOR POWER (J1–J9) TO ROBOT
4 3 2 1 ON
AMP DIP SWITCH SETTINGS ALL CASES 1 – ON 2 – OFF 3 – ON 4 – ON
P–200 R–J2
EE-3287-500-003
12. SCHEMATICS
12–10 NOTES
MARO2P10203703E
12. SCHEMATICS
12–11
MARO2P10203703E
Figure 12–5. R-J2 P-200 Controller Total Circuit Diagram (Amplifier Configurations)
SIDE CABINET AC 200V (CP3)
AMP 1 A06B–6089–H209 L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3 T1
SERVO POWER OVER HEAT TF1
CX4
JS1B
PWM CABLES (JS1–JS6 .J7–J9) E–STOP SIGNAL
JS4
4 3 2 1 ON
UL VL WL PE UM VM WM PE
AMP 2 A06B–6089–H209 L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3 T1
J4
4 3 2 1 ON
CX4 J1
JS2B
JS1B
JS1
UL VL WL PE UM VM WM PE
AMP 3 A06B–6089–H209 L1 L2 L3 L1C T1 L2C TH1 TH2 RC J6 UL RI VL RE T1 WL CX3 PE UM 4 VM CX4 3 2 WM 1 PE J7 ON
J5
J3
JS2B
JS5
AMP 4 A06B–6089–H106
JS1B
JS3
JS6
L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE T1 CX3 CX4
JS2B
JV7
U V W PE
AMP 6 A06B–6089–H208
AMP 5 A06B–6089–H105 L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3
J2
CX4
4 3 2 1 ON
JS1B
T1
UL VL W PE
L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3
J8
CX4
4 3 2 1 ON
JS1B
JS2
JS1B
JV8
JV9
4 3 2 1 ON
J9 UL VL WL T1 PE UM VM 4 3 2 WM 1 PE J10 ON
T1 (TERMINAL BLOCK)
JS2B
JV10
MOTOR POWER (J1–J10) TO ROBOT & OPENER
P–200 7+3 AXES CONTROL
AXIS
#
P–200 & P–10 OPENER MOTOR TYPE
J1
J2
J3
6/3000 22/3000 12/3000
J4,J5
2/3000
J6
J7
0.5/3000 2/3000
J8
OPENER J9 J10
6/3000 6/3000 6/3000
AMP
#
AMPLIFIER SPECIFICATION
AMP1 SVU2–12/80 L(12A)=J4 M(80A)=J1 A06B–6089–H209
AMP2
AMP3
SVU2–12/80 SVU2–12/80 L(12A)=J5 L(12A)=J6 M(80A)=J7 M(80A)=J3 A06B–6089–H209 A06B–6089–H209
AMP4 SVU1–130 J2 A06B–6089–H106
AMP DIP SWITCH SETTINGS ALL CASES 1 – ON 2 – OFF 3 – ON 4 – ON
13 14 15 16 17 18 19 20 21 22 23
L1C L2C TH1 TH2 RC RI RE [UL] [VL] [WL] [ ]
1 2 3 4 5 6 7 8 9 10 11 12
L1(R) L2(S) L3(T) (100A) (100B) RL2 RL3 U[VM] V[VM] W[WM]
OPENER SIDE CABINET AMP5 AMP6 SVU2–80/80 SVU1–80 L(80A)=J9 J8 (RAIL) M(80A)=J10 A06B–6089–H105 A06B–6089–H208
CX3 (Y–KEY) (MCC CONTROL) 1 MCCOFF3
2
3 MCCOFF4
CX4 (X–KEY) (E–STOP CONTROL) 1
2 ESP
3 +24V
EE-3287-500-004
12. SCHEMATICS
12–12 NOTES
MARO2P10203703E
12. SCHEMATICS
12–13
MARO2P10203703E
Figure 12–6. R-J2 P-200 Controller Total Circuit Diagram (AMP PWM Signal Connections) E–STOP PCB JS1
JS1
JS2
JS2
JS3
JS3
JS4
JS4
JS5
JS5
REFER TO PWM SIGNAL CONNECTION TABLE
PWM SIGNAL CONNECTION
AMP 1
AMP 2
P–200 6 AXES CONTROL
JS1B=JS4 JS2B=JS1
JS1B=JS5 JS2B=JS3
JS1B=JS6
JS1B=JS2
P–200 7 AXES CONTROL
JS1B=JS4 JS2B=JS1
JS1B=JS5 JS2B=JS3
JS1B=JS6 JS2B=JV7
JS1B=JS2
P–200 6+2 AXES CONTROL
JS1B=JS4 JS2B=JS1
JS1B=JS5 JS2B=JS3
JS1B=JS6
JS1B=JS2
JS1B=JV7 JS2B=JV8
P–200 7+2 AXES CONTROL
JS1B=JS4 JS2B=JS1
JS1B=JS5 JS2B=JS3
JS1B=JS6 JS2B=JV7
JS1B=JS2
JS1B=JV8 JS2B=JV9
P–200 7+3 AXES CONTROL
JS1B=JS4 JS2B=JS1
JS1B=JS5 JS2B=JS3
JS1B=JS6 JS2B=JV7
JS1B=JS2
JS6
JS6
JRV1
PWM SIGNAL CONNECTION TABLE
J1–J6
AMP 3
AMP 4
AMP 5
AMP 6
JS1B=JV8
JS1B=JV9 JS2B=JV10
MAIN CPU PCB JRA5
JRV1
J1–J6
BACK PLANE
AUX AXIS PCB JV7 JV8
JV8
JV9
JV9
JV10 JNA
JV7
JV11 JV12 JV13 JV14 JV15
JV10
REFER TO PWM SIGNAL CONNECTION TABLE
JS1B/JS2B JS1–JS6 (SERVO CONTROL)
JS1–JS6 (DUMMY CONNECTOR) A250–2361–0001
JV1–JV10 (SERVO CONTROL)
1
IR
11
IS
1
IR
11
IS
1
11
2
GNDR
12
GNDS
2
GNDR
12
GNDS
2
12
3
*PWMA
13
*ENBL
3
*PWMA
13
*PWMD
3
13
4
0V
14
0V
4
0V
14
0V
4
14
5
*PWMC
15
5
*PWMB
15
*PWME
5
15
6
0V
16
6
0V
16
0V
6
16
7
*PWME
17
7
*PWMC
17
7
17
8
0V
18
8
0V
18
9
*DRDY
19
0V
9
10
*MCON
20
0V
10
*PWMF 0V
19 *MCON
20
*DRDY
8 JMPR
18
9
*DRDY
19
10
*MCON
20
JV16
EE-3287-500-007
12. SCHEMATICS
12–14 NOTES
MARO2P10203703E
12. SCHEMATICS
12–15
MARO2P10203703E
Figure 12–7. R-J2 P-200 Controller Total Circuit Diagram (Power Supply Connections)
FAN
CA39A
CP1
POWER SUPPLY A16B–1212–0871 CP1
CP4
2
3
B1
B2
B3
B1
B2
R
S
G
AL
FA
FB
BAT+
BAT–
A1
A2
A3
ON
OFF
COM
200–240 VAC INPUT
CP2
200–240 VAC OUTPUT
CP3
200–240 VAC OUTPUT
CP2 1
2
3
R1
S1
G1
JNPO CP4
POWER ON/OFF ALARM
CP5
+24 VDC OUTPUT
CP5 B1
B2
+24V
0V
1
2
3
B1
R2
S2
G2
+24E
B2 0V
B3
CP8
SPECIFICATION OF FUSE
BACK PLANE 3–SLOT A20B–2001–0670 5–SLOT A20B–2001–0990
BATTERY
+24 VDC OUTPUT
B3
CP6
CP3 CP6
CP8
1
NAME
FUSE
VOLTAGE
F1
7.5A
200V
F3
5A
+24V
F4
5A
+24E
POWER SUPPLY UNIT
EE-3287-500-008
12. SCHEMATICS
12–16 NOTES
MARO2P10203703E
12. SCHEMATICS
12–17
MARO2P10203703E
Figure 12–8. R-J2 P-200 Controller Total Circuit Diagram (CPU Connector Details) JD1B (I/O LINK) FAN
JRF2 (ROBOT FEEDBACK) A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18
CA39A
BATTERY UNIT FOR MAINTENANCE
MAIN CPU A16B–3200–0040VBAT
SERVO AMPLIFIER
JRV1
JRF2
ROBOT FEEDBACK
JF21
LINE TRACKING
JRA5
JRM10
TO OPERATION BOX
BACK PLANE 3–SLOT A20B–2001–0670 5–SLOT A20B–2001–0990
JRY4 (FOR TEST) JD1B
I/O LINK
JD17
RS–232C/485 INTERFACE
JRM3
TO OPERATION BOX
CRS1
TO TEACH PENDANT RDI/RDO
CRM10
CRS1 (TEACH PENDANT) 01 02 03 04 05 06 07
TXTP RXTP EMGDM
+24V +24V
08 09 10 11 12 13
EMGB1 EMGB2 EMGTP
14 15 16 17 18 19 20
TXTP RXTP EMGEN 0V 0V
CRM10 RDI/RDO 14 15 16 17 18 19 20
RDO1 RDO2 RDO3 RDO4 RDO5 RDO6 +24E
08 09 10 11 12 13
RDI7 RDI8 RDI9 HBK RDO7 RDO8
01 02 03 04 05 06 07
RDI1 RDI2 RDI3 RDI4 RDI5 RDI6 0V
(OPTION)
A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31 A32 A33 A34 A35 A36 A37 A38 A39 A40 A41 A42 A43 A44 A45 A46 A47 A48 A49 A50
PD6 0V PRQ6 0V PD5 0V PRQ5 0V PD4 0V PRQ4 0V PD3 0V PRQ3 0V PD2 0V PRQ2 0V PD1 0V PRQ1 0V 0V 0V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V 0V 0V +24E +24E OTRST SVON RDICOM
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 B50
PD6 0V PRQ6 0V PD5 0V PRQ5 0V PD4 0V PRQ4 0V PD3 0V PRQ3 0V PD2 0V PRQ2 0V PD1 0V PRQ1 0V 0V 0V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V 0V 0V +24E 0V OTREL ROT HBK HBKREL
JRV1 (SERVO AMPLIFIER) A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31 A32 A33 A34 A35 A36 A37 A38 A39 A40 A41 A42 A43 A44 A45 A46 A47 A48 A49 A50
IS6 IR6 IS5 IR5 IS4 IR4 IS3 IR3 IS2 IR2 IS1 IR1 ENBL6 PWME6 PWMC6 PWMA6 ENBL5 PWME5 PWMC5 PWMA5 ENBL4 PWME4 PWMC4 PWMA4 ENBL3 PWME3 PWMC3 PWMA3 ENBL2 PWME2 PWMC2 PWMA2 ENBL1 PWME1 PWMC1 PWMA1 MCON DRDY 0V 0V +15V +15V 0V 0V –15V –15V 0V 0V BRKON BRKALM
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 B50
GNDS6 GNDR6 GNDS5 GNDR5 GNDS4 GNDR4 GNDS3 GNDR3 GNDS2 GNDR2 GNDS1 GNDR1 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +24V +24V +24V +24V
1 2 3 4 5 6 7 8 9 10
RXSLC RXSLC TXSLC TXSLC
+5V
11 12 13 14 15 16 17 18 19 20
0V 0V 0V 0V 0V 0V
VBAT (BATTERY)
+5V
1 2
+5V
EXVBAT 0V
JF17 (RS–232C/485) 1 2 3 4 5 6 7 8 9 10
RXDB 0V DSRBC 0V CTSB 0V RX485B RX485B +24E
11 12 13 14 15 16 17 18 19 20
TXDB 0V DTRB 0V RTSB 0V TX485B TX485B +24E
JF21 (LINE TRACKING) 1 2 3 4 5 6 7 8 9 10
PA PA PB PB PZ PZ REQ +5V
11 12 13 14 15 16 17 18 19 20
0V 0V 0V +5V +5V
JRM3 (PDI/PDO) 1 2 3 4 5 6 7 8 9 10
PDI1 0V PDI2 PDI3 PDI4 PDI5 PDI6 PDI7 TPOFF +24V
11 12 13 14 15 16 17 18 19 20
JRM10 (OPERATION BOX) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0V RTS1 0V DTR1 0V TXD1 0V RTSA 0V DTRA 0V TXDA TXTP TXTP TX485A TX485A ON OFF COM OPEMG EXEMG EMGDM EMGEM TPEMG SVON
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
0V CTS1 0V DSR1 0V RXD1 0V CISA 0V DSRA 0V RXDA RXTP RXTP RX485A RX485A 0V 0V +24V +24V +24V +24V +24V EMGB1 EMGB2
0V PDO1 PDO2 PDO3 PDO4 PDO5 PDO6 PDO7 +24V PDO8
EE-3287-500-009
12. SCHEMATICS
12–18
MARO2P10203703E
12. SCHEMATICS
12–19
MARO2P10203703E
Figure 12–9. R-J2 P-200 Controller Total Circuit Diagram (ESTOP Connection Details)
JRF2 (ROBOT FEEDBACK) A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31 A32 A33 A34 A35 A36 A37 A38 A39 A40 A41 A42 A43 A44 A45 A46 A47 A48 A49 A50
PD6 0V PRQ6 0V PD5 0V PRQ5 0V PD4 0V PRQ4 0V PD3 0V PRQ3 0V PD2 0V PRQ2 0V PD1 0V PRQ1 0V 0V 0V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V 0V 0V +24E +24E * OTRST SVON RDICOM
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 B50
* PD6 0V * PRQ6 0V * PD5 0V * PRQ5 0V * PD4 0V * PRQ4 0V * PD3 0V * PRQ3 0V * PD2 0V * PRQ2 0V * PD1 0V * PRQ1 0V 0V 0V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V 0V 0V +24E 0V * OTREL * ROT * HBK * HBKREL
JRV1 (SERVO CONTROL) A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31 A32 A33 A34 A35 A36 A37 A38 A39 A40 A41 A42 A43 A44 A45 A46 A47 A48 A49 A50
* * * * * * * * * * * * * * * * * * * * * * * *
IS6 IR6 IS5 IR5 IS4 IR4 IS3 IR3 IS2 IR2 IS1 IR1 ENBL6 PWME6 PWMC6 PWMA6 ENBL5 PWME5 PWMC5 PWMA5 ENBL4 PWME4 PWMC4 PWMA4 ENBL3 PWME3 PWMC3 PWMA3 ENBL2 PWME2 PWMC2 PWMA2 ENBL1 PWME1 PWMC1 PWMA1
* MCON * DRDY 0V 0V +15V +15V 0V 0V –15V –15V 0V 0V * BRKON * BRKALM
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 B50
E–STOP PCB GNDS6 GNDR6 GNDS5 GNDR5 GNDS4 GNDR4 GNDS3 GNDR3 GNDS2 GNDR2 GNDS1 GNDR1 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +24V +24V +24V +24V
SERVO CONTROL
JRV1
CRF1
TO ROBOT (FEEDBACK)
COM (RDI COM) ROBOT FEEDBACK
JRF2
E–STOP CONTROL
CRM9
DOOR INTERLOCK
CRM15
B A A=PULLDOWN B=PULLUP HBK (HANDBROKEN)
JS1 JS2 JS3 SERVO CONTROL
AUX BRAKE CONTROL
CRM16
E–STOP CONTROL 100VAC INPUT FOR BRAKE POWER MCC CONTROL
A B A=NO HBKN B=HBKN USED
JS4 JS5
CRR20
JS6
CRR21
CRM11
ROBOT OVERTRAVEL
CRR15
CRR5
MOTOR BRAKE POWER
TB4
CRR22
100VAC OUTPUT
CRR5 CRM9 (E–STOP CONTROL) 3
2
CRR21 (BRAKE POWER)
1
MCCON
SVOUT
3
2
1
DIL2
DIL1
1
* BRKON4
* BRKON3
A3
A2
A1
200T
200S
200R
B3
B2
B1
AC3
AC2
AC1
1 2 3 4 5 6 7 8 9 10
2C
3C
BKP3
BKP3 3B
100B
100A
BKM1
BKM2
BKM2
1A
2A
3A
BKP1
BKP2
BKP2
2
1
100OUT2
100OUT1
IR GNDR * PWMA 0V * PWMC 0V * PWME 0V * DRDY * MCON
1C BKP3
2B
JS1–JS6 (SERVO CONTROL)
CRR20 (EMG CONTROL)
BKM3
1B
CRM16 (AUX BRAKE CONTROL) 2
3D
BKM3
1
CRR22 (100VAC OUT) 3
2D
BKM3
2
CRM15 (DOOR INTERLOCK) 3
1D
11 12 13 14 15 16 17 18 19 20
IS GNDS * ENBL 0V
0V 0V
CRM11 (ROBOT OVERTRAVEL) 3
CRF1 (PULSE CODER INTERFACE) 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
SPDJ5 * SPDJ5 SPRQJ5 * SPRQJ5 SPDJ6 * SPDJ6 SPRQJ6 * SPRQJ6 +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V
19 20 21 22 23 24 25 26 27 28 29 30 31 32
* * * *
SPDJ3 SPDJ3 SPRQJ3 SPRQJ3 SPDJ4 SPDJ4 SPRQJ4 SPRQJ4 0V 0V 0V +5V +5V +5V
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18
2
1
* ROTIN
+24E
CRR15 (MCC CONTROL)
SPDJ1 * SPDJ1 SPRQJ1 * SPRQJ1 SPDJ2 * SPDJ2 SPRQJ2 * SPRQJ2 0V 0V 0V 0V 0V 0V 0V 0V 0V
3
2
1
200B
200A
MCCB
MCCA
0V
EE-3287-500-10
12. SCHEMATICS
12–20 NOTES
MARO2P10203703E
12. SCHEMATICS
12–21
MARO2P10203703E
Figure 12–10. R-J2 P-200 Controller Total Circuit Diagram (Optional Process I/O Connections)
PROCESS I/O CR2A MAIN CPU A16B–3200–0040
CR2B
JD1A
JD4A
CR2B
JD4B
CR2B
TYPE OF PROCESS I/O (SINK TYPE) CA CB DA
SDI/SDO
SPECIFICATION A16B–2201–0470 A16B–2201–0472 A16B–2201–0480
CRM2A CRM2B O O O O O O
CRM2C CRM2D CRM4A CRM4B CRW1 X X X X O X X X X X O O O O X
CRW2 O X X
CR2B CR2B CRW1
TO WELD MACHINE (A/D, D/A, WDI, WDO)
CRW2
TO ANALOG INTERFACE (A/D) I/O LINK SLAVE
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18
*IMSTP *HOLD *SFSPD CSTOPI FAULT RESET START HOME ENBL RSR1/PNS1 RSR2/PNS2 RSR3/PNS3 RSR4/PNS4 RSR5/PNS5 RSR6/PNS6 RSR7/PNS7 RSR8/PNS8 0V 0V
SDI03 SDI04 SDI05 SDI06 SDI07 SDI08 SDI09 SDI10 SDI11 SDI12 SDI13 SDI14 SDI15 SDI16 SDI17 SDI18 0V 0V
CRM2A (SDI/SDO) 19 20 21 22 23 24 25 26 27 28 29 30 31 32
ACK3/SN03 ACK4/SN04 ACK5/SN05 ACK6/SN06 COM–A4 ACK7/SN07 ACK8/SN08 SNACK RESERVED COM–A5 PNSTROBE PROD START SDI01 SDI02
CRM2B (SDI/SDO) 19 20 21 22 23 24 25 26 27 28 29 30 31 32
SDO13 SDO14 SDO15 SDO16 COM–B4 SDO17 SDO18 SDO19 SDO20 COM–B5 SDI19 SDI20 SDI21 SDI22
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
CMDENBL SYSRDY PROGRUN PAUSED COM–A1 HELD FAULT ATPERCH TPENBL COM–A2 BATALM BUSY ACK1/SN01 ACK2/SN02 COM–A3 +24E +24E
SDO01 SDO02 SDO03 SDO04 COM–B1 SDO05 SDO06 SDO07 SDO08 COM–B2 SDO09 SDO10 SDO11 SDO12 COM–B3 +24E +24E
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18
SDI23 SDI24 SDI25 SDI26 SDI27 SDI28 SDI29 SDI30 SDI31 SDI32 SDI33 SDI34 SDI35 SDI36 SDI37 SDI38 0V 0V
SDI43 SDI44 SDI45 SDI46 SDI47 SDI48 SDI49 SDI50 SDI51 SDI52 SDI53 SDI54 SDI55 SDI56 SDI57 SDI58 0V 0V
CRM2C (SDI/SDO) 19 20 21 22 23 24 25 26 27 28 29 30 31 32
SDO33 SDO34 SDO35 SDO36 COM–C4 SDO37 SDO38 SDO39 SDO40 COM–C5 SDI39 SDI40 SDI41 SDI42
CRM2D (SDI/SDO) 19 20 21 22 23 24 25 26 27 28 29 30 31 32
SDO53 SDO54 SDO55 SDO56 COM–D4 SDO57 SDO58 SDO59 SDO60 COM–D5 SDI59 SDI60 SDI61 SDI62
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
SDO21 SDO22 SDO23 SDO24 COM–C1 SDO25 SDO26 SDO27 SDO28 COM–C2 SDO29 SDO30 SDO31 SDO32 COM–C3 +24E +24E
CRM4A (SDI/SDO) 01 02 03 04 05 06 07
SDI63 SDI64 SDI65 SDI66 SDI67 SDI68 SDI69
08 09 10 11 12 13
SDO65 SDO66 SDO67 SDO68 COM–E2 SDI70
14 15 16 17 18 19 20
SDO61 SDO62 SDO63 SDO64 COM–E1 +24E 0V
14 15 16 17 18 19 20
SDO69 SDO70 SDO71 SDO72 COM–F1 +24E 0V
SDO41 SDO42 SDO43 SDO44 COM–D1 SDO45 SDO46 SDO47 SDO48 COM–D2 SDO49 SDO50 SDO51 SDO52 COM–D3 +24E +24E
01 02 03 04 05 06 07
08 09 10 11 12 13
ADCH6 COMAD6
14 15 16 17 18 19 20
ADCH3 COMAD3 ADCH3 COMAD4 ADCH5 COMAD5
CRM4B (SDI/SDO) 01 02 03 04 05 06 07
SDI71 SDI72 SDI73 SDI74 SDI75 SDI76 SDI77
08 09 10 11 12 13
SDO73 SDO74 SDO75 SDO76 COM–F2 SDI78
CRW1 (WELD INTERFACE OPTION) 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
CRW2 (A/D INTERFACE OPTION)
01 02 03 04 05 06 07 08 09 10 11 12
DACH1 CAMDA1 DACH2 CAMDA2 WDI1 WDI2 WDI3 WDI4 WDI5 WDI6 WDI7 WDI8
13 14 15 16 17 18 19 20 21 22
ADCH1 COMAD1 ADCH2 COMAD2
0V 0V 0V 0V
23 24 25 26 27 28 29 30 31 32 33 34
WDO1 WDO2 WDO3 WDO4 WDO5 WDO6 WDO7 WDO8 WDI+ WDI– +24E +24E
JD4A, B (RS–422/SLC) 1 2 3 4 5 6 7 8 9 10
RX *RX TX *TX
*ENBL +15V +5V +24V
11 12 13 14 15 16 17 18 19 20
0V 0V 0V 0V 0V 0V –15V +5V +24V +5V
NOTE: THE PROCESS I/O IS NOT NORMALLY USED WITH P–200 ROBOTS
EE-3287-500-011
12. SCHEMATICS
12–22 NOTES
MARO2P10203703E
12. SCHEMATICS
12–23
MARO2P10203703E
Figure 12–11. R-J2 P-200 Controller Total Circuit Diagram (Optional I/O Connections)
I/O UNIT MODEL A POWER SUPPLY A16B–1212–0870
MODULAR I/O 5–SLOT BASE UNIT A03B–0807–J002 10–SLOT BASE UNIT A03B–0807–J001
CP6
CP32
MODULAR I/O INTERFACE MODULE A03B–0807–J011
JD1A/JD1B
CP32 1
+24V
2
0V
1 2 3 4 5 6 7 8 9 10
3
MODULAR I/O
JD1B JD1A
MAIN CPU A16B–3200–0040
JD2
RX RX TX TX
+5V
11 12 13 14 15 16 17 18 19 20
JD2 0V 0V 0V 0V
+5V +5V
1 2 3 4 5 6 7 8 9 10
S1 S1 S2 S2 S3 S3 S4 S4 ID1
11 12 13 14 15 16 17 18 19 20
S5 S5 S6 S6 0V 0V ID2 ID3
JD1A
I/O UNIT MODEL B
BASIC UNIT
POWER SUPPLY A16B–1212–0870
FG S– S+ 0V 24V
I/O UNIT MODEL B INTERFACE UNIT A03B–0808–C001
CP6 24V 0V
JD1B JD1A
MAIN CPU A16B–3200–0040 JD1A
EXPANSION UNIT
24V 0V S1+ S1– FG S2+ S2– FG S3+ S3– FG S4+ S4– FG
TO BASIC UNIT 2–4
TO BASIC UNIT 2
TO BASIC UNIT 3
TO BASIC UNIT 4
I/O LINK SLAVE
JD1A/JD1B 1 2 3 4 5 6 7 8 9 10
RX RX TX TX
+5V
11 12 13 14 15 16 17 18 19 20
0V 0V 0V 0V
+5V +5V
EE-3287-500-012
12. SCHEMATICS
12–24 NOTES
MARO2P10203703E
12. SCHEMATICS
12–25
MARO2P10203703E
Figure 12–12. R-J2 P-200 Controller Total Circuit Diagram (Purge Circuitry)
PAINT BOOTH
ISB UNIT CRS1
OPERATOR PANEL
FG
CRS1
I.S. TEACH PENDANT
CRS2 ISG
I.S. GND
PORT1 PDIO
PORT2
CNOP
CNPG EMGIN1 EMGIN2
PURGE AND I.S. CIRCUITS
PANEL I/F
PC BD PURGE/BRAKE BD CNPG RELAY BARRIER
BRAKE CONTROL
PC BD CNCA
IDEC IBRC
PC BD CNIN
SEE SHEET 14 & 15
MAIN CPU JRV1
CRM10
RDI/RDO
FIRE ALARM
JD1A JRF2
JF21
JRM3
CRS1
JRM10
JD17
200A 200B OFF1 PC BD OFF2 FASTON BRD1 TERMINAL BRDC BRD2
E–STOP PCB JRV1
CRF1 E–STOP SIGNAL
JRF2
FRA1 FRA2 BKP1 BKM1 BKP2 BKM2 BKP3 PC BD BKM3 TB BKP4 BKM4 SVON2 SVONC SVON1 EES1 EES2
24PG OPG SVON PGTB ROT PGC1 PURGE COMPLETE PGC2
CRM9 CRM11
I.S. G
CRR20 CRR21
I.S. GND
FG
PSA1 PSA2 PSB1 PSB2 FSA1 FSA2 FSB1 FSB2 OT11 OT12 OT21 ISTB OT22 OT31 OT32 OT41 OT42 OT51 OT52 HBK1 HBK2 TP1 TP2 EOAT1 EOAT2
ISB1–3 ISB1–4 ISB2–3 ISB2–4 ISB3–3 ISB3–4 ISB4–1 ISB4–2 ISB5–1 ISB UNITS ISB5–2 ISB6–1 ISB6–2 ISB6–4 ISB7–1 ISB7–2 ISB8–1 ISB8–2 ISB9–4 ISB9–6
CRR22 CRR5 BKP4 BKM4 REFER TO
PAGE 003–006 AMP ESP (CX4) 100VAC (TF1) 200VAC (TF1)
BATTERY UNIT 1+ 1– 2+ 2– 3 3– 4+ 4– 5 5– 6+ 6– +6V ISG
CNCA (RDI/RDO) 01 02 03 04 05 06 07 08 09 10 11 12
RDI9
RDI1 RDI6
13 14 15 16 17 18 19 20 21 22
RDI3 RDI4 RDI7 * HBK RDI2 RDI8
0V
PRESSURE SWITCH FLOW SWITCH
RDI5
23 24 25 26 27 28 29 30 31 32 33 34
RDO1 RDO2 RDO3 RDO4 RDO5 RDO6 RDO7 RDO8
RDI1: BKRL (BRAKE RELEASE DETECT) RDI2: EOAT (END OF ARM TOOLING)
+24E
CNPG 01 02 03 04 05 06 07
TPDSC
3 6 9 12
BKP2 BKM3 100 OUT1 EMG2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
PSA1 PSA2 PSB1 PSB2 FSA1 FSA2 FSB1 FSB2 OT11 OT12 OT21 OT22 OT31 OT32 OT41 OT42 OT51 OT52 HBK1 HBK2 TP1 TP2 EOAT1 EOAT2
PGCP PGFLT PG TPDSC2 PGEN1
08 09 10 11 12 13
PGEN2
0V 0V 0V
14 15 16 17 18 19 20
OFF1 OFF2 BKRL1 BKRL2
CNIN (BRAKE CONTROL) HAND BROKEN TEACH PENDANT DISCONNECT SWITCH END OF ARM TOOLING
2 5 8 11
ISTB POWER TO P–200 PURGE SOLENOID POWER TO P–10 PURGE SOLENOID (OPTION) P–200 BYPASS SW I/P POWER I/P SIGNAL FLOW SENSOR POWER AND SIGNAL TRIGGER #1 SIGNAL TRIGGER #2 SIGNAL (OPTION) P–10 MAGNET SENSOR DC–DC PULSE CODER POWER CONVERTER 24V TO +5V BRAKE POWER (J1–J9) BKP1,BKM1=J1,J2,J3 BKP2,BKM2=J4,J5,J6 BKP3,BKM3,BKP4,BKM4=J7,J8,J9
PULSE CODER BATTERY
23 24
BKM1 BKP3 100B EMG1
TB 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
FRA1 FRA2 BKP1 BKM1 BKP2 BKM2 BKP3 BKM3 BKP4 BKM4 SVON2 SVONC SVON1 PG1 PG2 EES1 EES2 SOL1 SOL2
1 4 7 10
BKP1 BKM2 100A 100 OUT2
FASTON FG +24V 0V +24V 0V OFF1 OFF2 BRD1 BRDC BRD2 200A 200B R S
EE-3287-500-13
12. SCHEMATICS
12–26 NOTES
MARO2P10203703E
12. SCHEMATICS
12–27
MARO2P10203703E
Figure 12–13. R-J2 P-200 Controller Total Circuit Diagram (Purge Wiring Diagram) PURGE CONTROL PCB A16B–1310–0601 PARTIAL SCHEMATIC (SEE SHEET 12) TPDSC1
CNPG 1
PS
2
PGCP
3
PGFLT
4
PG
R1:0
R3:0 PURGE CR3 FAULT R4:0 CR2A TR1 R5:0
5 6
PGEN1
7
3
FS1A
8
CR1A 4
FS1B
3 2 KA5
OFF2
15 16
BKRL2
17
CR2A
0V
TR1 (PURGE 0V COMPLETE)
0V
SH1A
+24P 7 8
CR1B 0V
CR2B0V
(PURGING)
8
BKRL1
6
CR2A
CR3
+24E
CR7B
11
EOAT
CR5B
12
CR5A CR6
C1 33OuF
14
CR6
15
CR7A
A3
P3
ROT SWITCH
C3
N3 P4
HBK SWITCH
C4
N4
A5
P5 TPDSC SWITCH
C5
N5
A6 C6 220VAC 0V
N6
FG G
8
RDI8
20
RDI7 22
+24E RDI1 (BKRL) RDI5
34
23
04
RDI3
15
RDI4
16
CNCR 15
RDI6
6
17
RDI7
17
RDO1
23
CR5A
1 STAHL ISB1 9001/01–252–100–14 + 3 4 2 +3 1 ISB2 * SEE NOTE 4 2 8 ISB9 P&F SENSOR 7 9 S1 I X II 1 11 LEAD X II S2 I 2 BROKEN S3 I X 10 II 3 12 14 +24V KFD2-SR2-Ex1.W.LB USED WITH 7+3 VERSION 15
0V 25 0V 120VAC FROM CONVEYOR
DELTRON
R17
R18 FRA1
200A 200B R S G FG +24P
+24P 0V
TB 1
FIRE ALARM
FRA2 2 TERM 8–10 ON SHEET 12 CR4 11
SVON2
12
SVONC
CR4
13
CR1B
14
SVON1 PG1
15
PG2
(PURGE COMPLETE) CR5B
EES1 16 EES2 17
0V
+24P
CR2B
D7 0V
5–FSA1 6–FSA2
18
SOL1
19
SOL2
FS VIA PURGE CBL
FSB1 FSB2 OT1–1
OT’S NOT USED
OT5–2 19–HBK1 FROM PURGE CABLE 20–HBK2
3 3
0V
PGTB 1 2 3 4 5 6
5 KA6 ISB1–3 P–200 PURGE SOL 6 ISB1–4 OPENER PURGE SOLENOID
24PG 0PG SVON *ROT PGC1 PGC2
FROM P–10 OR P–15 SENSOR VIA P–10 OR P–15 PURGE CABLE S1 = I FOR OPEN SW = DE-ENERGIZED S2 = II FOR LEAD BREAKAGE ON 10-11-12 S3 = I FOR NAMUR INPUT
24V POWER SUPPLY
+24 24V OVP R16
KA6 0V 4 2
PSB1 PSB2
0V
RLA 24
13
1
1–PSA1 PS VIA 1–PSA2 PURGE CBL
TP1 TP2 23 EOAT1 24 EOAT2
P6 EOAT SWITCH
21
RDI2
CNIN 11 12
N2
RDI3 20
19
0V
P2
FLOW SWITCH
C2
19
RDI5
0V
CNCA 18
A2
18
RDI4
TO OP EMG1 PANEL EMG2
RDI8 +24E
17
CR7B CR7B
N1
A4
9
CR5A
R7 100
1 0V
BKRA
16
BRD1 BRDC BRD2
TO IDEC 24V P.S. A20B–1000–0472
+24P
*HBK
CR8
OFF1 OFF2
TPDSC2
10
13 +24E
SVON
PRESSURE SWITCH
C1 KA5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
P1
0V CR1A CR1A
OFF1
*HBK
0V
ISTB
A1
PS1A TPDSC1
CR4 5
CR1A
11 12 13 CR1B 14
0V
0V
IDEC IBRC 6062RFM RELAY BARRIER
2
R6:0
TPDSC2
PGEN2
CNIS 1
* BARRIER NOTE:
EE–3112–600
7 S1 I X II 8 II S2 I X TO 10 X II S3 I SYS 11 ISB3 P&F ISRR 14+24 KFD2-SR2-Ex1.W.LB 15 7 II S1 I X TO 8 II S2 I X SYS 10 X II S3 I 11 ISB10 14+24 P&F ISRR KFD2-SR2-Ex1.W.LB 15 7 ISB4 P&F FROM P-200 I/O 8 9 + ISB5 FROM P-200 I/O 10 P&F BARRIER 7 +24 8 8 7 ISB6 TO P-200 I/O SIG 5 P&F BARRIER 6 8+ ISB7 P&F BARRIER FROM P-200 I/O 7 8+ P&F BARRIER ISB8 FROM P-200 I/O 7 SEE APPLICATION PACKAGE FOR WIRING DETAILS
1 2 3
ISB3–1 P–200 BYPASS SW
1 2 3
EOAT–5 P–10 OR P–15 BYPASS SWITCH
ISB3–3 FROM PURGE CABLE
EOAT–6 FROM PURGE CABLE I/P POWER VIA PURGE CABLE I/P SIGNAL VIA PURGE CABLE
+1 2 +1 2
ISB4–1 ISB4–2 ISB5–1 ISB5–2
+ 1 2 + 4 3 +1 2 +1 2
ISB6–1 24V POWER FLOW METER ISB6–2 0V VIA PURGE CABLE ISB6–4 SIGNAL
FOR P-200-6 OR -7 THIS BARRIER NOT MOUNTED FOR P-200 +2 VERSIONS THIS BARRIER IS STAHL 9001/01-280-165-10 FOR P-200 +3 (P-10, P-15) THIS BARRIER IS STAHL 9001/01-252-100-14 TRIGGER, I/P, FLOWMETER PROCESS PKG EE-3287-510 DUAL TRIGGER, I/P,
FLOWMETER PROCESS ISB7–1 TRIGGER ONE SIGNAL PKG EE-3287-511 ISB7–2 VIA PURGE CABLE ISB8–1 TRIGGER TWO SIGNAL ISB8–2 VIA PURGE CABLE NOTE: SEE PROCESS PACKAGES FOR BARRIER TYPES
EE-3287-500-014
12. SCHEMATICS
12–28 NOTES
MARO2P10203703E
12. SCHEMATICS
12–29
MARO2P10203703E
Figure 12–14. R-J2 P-200 Controller Total Circuit Diagram (Purge Board Details)
PURGE CONTROL PCB A16B–1310–0601
BRAKE RELEASE
CNPG 16
BKRL1
CNPG (TO PANEL)
CNIS 8
SH1A
01 02 03 04 05 06 07
+24E 9
17 BKRL2 CNIN 11
CR5A
EMG1 EMG2
12
CR5B
EES1
16 17
CR5B
R7 100
EES2 CR8
CR6
01 02 03 04 05 06 07 08 09
CR7B
CR7A
BRDC BRD2
CR7B
BKP1
0V
TB 3
BKP1
2
4
BKM1
BKP2
3
5
BKP2
BKM2
4
6
BKM2
BKP3
5
7
BKP3 J4, J5
6
8
BKM3
100OUT1
9
9
BKP4
10
BKM4
100OUT2
10
CR8
FROM XFMR 100B
8
CR7A CR7A
DS1
D4 CR7B
D5
D6
PS1A TPDSC1 FS1A FS1B SVON TPDSC2 +24P BKRA BKRB
OFF1 OFF2 BKRL1 BKRL2
10 11 12 13 14 15 16
*HBK EOAT RDI8 +24E
FG
17 18 19 20 21 22 23 24 25
RDI5 RDI3 RDI4 RDI7 RLA 0V
J6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
LED
ISTB 01 02
FRA1 FRA2 BKP1 BKM1 BKP2 BKM2 BKP3 BKM3 BKP4 BKM4 SVON2 SVONC SVON1 PG1 PG2 EES1 EES2 SOL1 SOL2
+24V
03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20
21
CNCA (TO MAIN CPU)
J3, J7
BKM3
7
0V 0V 0V
TB 14 15 16 17 18 19 20
J1, J2
BKM1
100A
PGEN2
CNIS (TO IBRC)
CR7B
CNIN 1
PGCP PGFLT PG TPDSC2 PGEN1
08 09 10 11 12 13
C1 33OuF BRD1
CR5A CR6
TPDSC1
01 02 03 04 05 06 07 08 09 10 11 12
RDI1
13 14 15 16 17 18 19 20 21 22
RDI5 RDI3 RDI4 RDI7 *HBK RDI2 RDI8
21 22 23 24
PGTB 23 24 25 26 27 28 29 30 31 32 33 34
RDO1
01 02 03 04 05 06
PSA1 PSA2 PSB1 PSB2 FSA1 FSA2 FSB1 FSB2 OT11 OT12 OT21 OT22 OT31 OT32 OT41 OT42 OT51 OT52 HBK1 HBK2 TP1 TP2 EOAT1 EOAT2
24PG OPG SVON *ROT PGC1 PGC2
CNIN (BRAKE)
+24E
3 BKP2 6 BKM3 9 100OUT1 12 EMG2
2 BKM1 5 BKP3 8 100B 11 EMG1
1 BKP1 4 BKM2 7 100A 10 100OUT2
EE-3287-500-015
12. SCHEMATICS
12–30 NOTES
MARO2P10203703E
12. SCHEMATICS
12–31
MARO2P10203703E
Figure 12–15. R-J2 P-200 Controller Total Circuit Diagram (ESTOP Wiring Detail) JRM10
+24V
CNOP
OPERATOR PANEL
+24V
(12)
(CRS1)
DEAD–MAN
(3)
R–J2 MAIN CPU
(16) (10)
ENABLE/ DISABLE
(11) KA1 EXEMG
KA2
PANEL E–STOP
ISB I.S. TEACH PENDANT
RV 0V
0V
+24V
0V
EMERGENCY CIRCUIT
CNPG
PURGE BOARD CR5 24V CR7
TPEMG
RV
OPEMG
RV 0V
KA4
0V
+24V
0V SVON
FENCE1 FENCE2 E–STOP1 E–STOP2 EMGIN1 EMGIN2 SVON1 SVON2 EMGOUT1 EMGOUTC EMGOUT2
EES1
11 12
(TBOP1)
OPTIONAL EXT ESTOP
ROBOT MECHANICAL UNIT
EES2 CR8
FROM XFMR
RV 0V
CR5 CR6 CR5
CNIN
PULSE CODER
100A CR7 100B CR7
(TBOP1)
BK1 – BK4
BRAKE
MOTOR
RV. RECEIVER FOR DI JRV1
JRV1
AXES CONTROL *BRAKON#1 * BRKALM
RV
JRF2
+24E HBKREL ROT OTREL
RV
OTRST RDICOM
DRDY EMERGENCY STOP PWMA/C/E, ENBL IS,GRDS,IR,GNDR MCON BRK1 +24E BRKON#1 BRKALM PD1–6/ PD1–6 PREQ1–6/ PREQ1–6 +5V,0V +24E HBKREL ROT OTREL OTRST +24E B RDICOM A
*BRAKON#2
CONTROL PCB
JS1 JS2 JS3 JS4 JS5 JS6
LOGIC FOR AMPLIFIER
+24E
0V OTREL ROT
ROTIN DIL1
0V
0V
0V
SVOUT BRKON#4 BRKON#3 BRK3
CRM15 DOOR INTERLOCK
CX4
+24V
SVU +24V
SVU CX4
+24V
RL–OT/HBK DIL2
0V
BRKON#2 SVON CRM16
CRM11
HBKREL
BRK2 +24E
0V
TO MOTOR PULSE CODER (I/F IS SAME AS R–J)
CRF1
MCCON RL–EMG
+24E
ESP
OPTION EE-3287-401 1
CX3
MCCOFF3
CX3
MCCOFF3
CONTROL CIRCUIT
2 MCCOFF4
0V
ESP
CONTROL CIRCUIT MCCOFF4
CRM9 CRR22
BRK1–3 100A
100A
POWER TRANSFORMER
BRK4
CRR21 100B
BRK5–7 100B
200R 200S 200T AC POWER INPUT
0V
BRAKE CONTROL CIRCUIT
200R 200S 200T AC1 AC2 AC3 CRR15
DC POWER SUPPLY ON/OFF CONTROL
200A 200B
CRR5
CRR20
CRR15
MCC
EE-3287-500-016
12. SCHEMATICS
12–32 NOTES
MARO2P10203703E
12. SCHEMATICS
12–33
MARO2P10203703E
Figure 12–16. R-J2 P-200 Controller Total Circuit Diagram (OP Panel Details)
OPERATOR PANEL FROM MAIN CPU (JRM3)
OPERATOR PANEL (CNOP) TXTP * TXTP RXTP * RXTP
(1) (2) (3) (4) +24V 0V
TXD1 RXD1 RTS1 CTS1 DSR1 DTR1 +24V (NOTE 1) 0V +24V: CNOP–19, 27 28, 37, 38 (NOTE 2) 0V: CNOP–11, 13, 15, 17, 20, 29, 31, 39, 41, 43, 45, 47,49 TXDA RXDA RTSA CTSA DSRA DTRA
(1) (14) (2) (15) (6,7) (17,19) (1)
(18) (16) (14) (12) (32) (30) (NOTE 1) (NOTE 2)
+24V
0V
(2) (3) (4) (5) (6) (20) (25) (7) (1)
+24V 0V
TXD1 RXD1 RTS1 CTS1 DSR1 DTR1 +24V 0V FG
(CRT3) (12) (13) (14) (15) (16) (17) (18) (20) (1) (3) (4) (5) (6) (7) (8)
+24V LED1: REMOTE SW4: C–START SW6: HOLD LED2: F–RESET LED1: BATTERY
(NOT USED) (NOT USED) LED3: TP ENABLE (NOT USED) F–RESET REMOTE HOLD USER PB1 (PGEN) (USER PB 2) (ON) CY START SW1: ON
RS–232–C 0V
(9)
TPOFF
(10,19) +24V (2,11)
+24V 0V
(CNPG) PGCP PGFLT PG
LED4 LED5 SW7
BKRL1 BKRL2 PGEN1 PGEN2 TPDSC1 TPDSC2
SW8
0V
SW7 +24V
(50) (48) (46) (44) (42) (40)
(2) (3) (4) (5) (6) (20) (25) (7) (1)
+24V 0V
TX485A *TX485A RX485A *RX485A
(CRS1) TXTP *TXTP RXTP TO TEACH PENDANT *RXTP +24V 0V FG (PORT1)
PDIO
PDO1 PDO2 PDO3 PDO4 PDO5 PDO6 PDO7 PDO8 PDI1 PDI2 PDI3 PDI4 PDI5 PDI6 PDI7
(14) (15) (16) (17)
(36) (35) (34) (33)
(PORT2) TXD1 RXD1 RTS1 CTS1 RS–232–C DSR1 DTR1 +24V 0V FG TX485A * TX485A RX485A * RX485A
FROM MAIN CPU EMGDM EMGEN EMGB1 EMGB2
(JRM10) (5) (6) (7) (8) KA1 +24V
0V
KA2
KA3
(12) (3) (16) (10) (11) (6,7) (18)
0V
FENCE1 FENCE2 ESTOP1 ESTOP2 TPEMG OPEMG
(10) (24)
(26)
SVON
(25)
0V
(TBOP1)
EMGIN1 EMGIN2 SVON1 SVON2
KA4
FG EXEMG
(CRS1)
+24V
EMGOUT1 EMGOUTC EMGOUT2 +24V 0V
(1) (2) (3)
TO BRAKE/PURGE BD
(TBOP1)
(CNHM) HM1
HOUR METER 1 2 3
4
SW1: ON ON COM OFF
EXON1 EXCOM EXOFF1
(21) (22) (23) SW2: OFF
(TBOP2)
(CNPG) OFF1 OFF2
EE-3287-500-017
12. SCHEMATICS
12–34 NOTES
MARO2P10203703E
12. SCHEMATICS
12–35
MARO2P10203703E
Figure 12–17. R-J2 P-200 Controller Total Circuit Diagram (Operator Panel) JRM10 (MAIN CPU I/F) HONDA PCR50 MALE 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
0V CTS1 0V DSR1 0V RXD1 0V CTSA 0V DSRA 0V RXDA RXTP RXTP TX485A RX485A 0V 0V +24V +24V +24V +24V +24V EMGB1 EMGB2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0V RTS1 0V DTR1 0V TXD1 0V RTSA 0V DTRA 0V TXDA TXTP TXTP RX485A TX485A ON OFF COM OPEMG EXEMG EMGDM EMGEN TPEMG SVON
RX485A RX485 TX485A TX485 24V 24V 0V DTRA 0V DSRA 0V CTSA 0V RTSA 0V RXDA 0V TXDA
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
19 20 21 22 23 24 25 26 27 28 29 30 31 32
REMOTE C–START HOLD FAULT BATTERY
= = = = = = =
PDI1
0V PDO1 PDO2 PDO3 PDO4 PDO5 PDO6 PDO7 +24V PDO8
1 2 3 4 5 6 7 8 9 10
PDO1 PDO2 PDO3 PDO4 PDO5 PDO6 PDO7
= FAULT = REMOTE = HOLD = PGEN = ON = C–START =
PDI1 PDI2 PDI3 PDI4 PDI5 PDI6 PDI7
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
FG TXD1 RXD1 RTS1 CTS1 DSR1 0V
01 02 03 04 05 06 07 08 09 10 11 12 13
TXTP TXTP RXTP RXTP EMGDM EMGEN EMGB1 EMGB2 TPEMG 0V CTS1 0V RTS1 0V RXD1 0V TXD1
PDI1 0V PDI2 PDI3 PDI4 PDI5 PDI6
08 09 10 11 12 13
PDI7 TPOFF +24V 0V PDO1 PDO2
01 02 03 04 05 06 07
EMON EMCOM EMOFF EMGIN1 EMGIN2 FENCE1 FENCE2
01 02 03 04 05 06 07
01 02 03 04 05 06 07 08 09 10 11 12 13
DTR1
+24V
PORT2 (RS–232–C: PORT–2) D–SUB 25P FEMALE
FG TXDA RXDA RTSA CTSA DSRA 0V
14 15 16 17 18 19 20
PDO3 PDO4 PDO5 PDO6 PDO7 +24V PDO8
SVON1 SVON2 ESTOP1 ESTOP2 EMGOUT1 EMGOUTC EMGOUT2
01 02 03 04 05 06 07
TXTP RXTP EMGDM
+24T +24T
08 09 10 11 12 13
EMGB1 EMGB2 EMGTP
14 15 16 17 18 19 20
14 15 16 17 18 19 20 21 22 23 24 25
DTRA
+24V
THIS CONNECTOR IS OPTION THIS CONNECTOR IS MOUNTED ON INTERNAL SIDE OF THE BOX
CRS1 (F) (TEACH PENDANT)
TBOP2 TERMINAL
TBOP1 TERMINAL
14 15 16 17 18 19 20 21 22 23 24 25
THIS CONNECTOR IS MOUNTED ON EXTERNAL SIDE OF THE BOX
PDIO(M) PANEL I/O 01 02 03 04 05 06 07
0V PDI2 PDI3 PDI4 PDI5 PDI6 PDI7 TPOFF +24V
1 2
24V 0V ON COM OFF OPEMG SVON EXEMG 24V 24V 0V DTR1 0V DSR1
JRM3 (MAIN CPU I/F) HONDA PCR–E20 MALE 11 12 13 14 15 16 17 18 19 20
PORT1 (RS–232–C: PORT–1) D–SUB 25P FEMALE
CNOP OPERATOR PANEL I/F (M)
CNPG (F) (PURGE I/F) TXTP RXTP EMGEN 0V 0V
01 02 03 04 05 06 07
TPDSC1 PGCP PGFLT PG TPDSC2 PGEN1
08 09 10 11 12 13
PGEN2
0V 0V 0V
14 15 16 17 18 19 20
OFF1 OFF2 BKRL1 BKRL2
CNHM HOUR METER 01 02 03
24V 0V SVON
OPERATOR PANEL
EE-3287-500-018
12. SCHEMATICS
12–36 NOTES
MARO2P10203703E
12. SCHEMATICS
12–37
MARO2P10203703E
Figure 12–18. R-J2 Controller P-200 Amplifier Configurations
P–155/P–200 CONVERSION
BOM EE–3287–500–001
SYSTEM R–J2
AMP1
AMP # PURGE CONTROL UNIT
SVU2–12/80 L(12A)= J4 M(80A)= J1 A06B–6089–H209
P–200 6 AXES CONTROL AMP SPEC.
CONTACT SIGNAL TRANSDUCER AMP 1 ON
AMP 2 ON
AMP 3 ON
OFF
OFF
OFF
FANUC AC SERVO AMPLIFIER C series
FANUC AC SERVO AMPLIFIER C series
FANUC AC SERVO AMPLIFIER C series
AMP2 SVU2–12/80 L(12A)= J5 M(80A)= J3 A06B–6089–H209
AMP3
AMP4
SVU1–12 J6
SVU1–130 J2
A06B–6089–H101
A06B–6089–H106
BOM EE–3287–500–002 DISCONNECT
I/O RACK
P–200 6+2 (DOOR OPENER) AXES CONTROL AMP SPEC.
EMG BOARD
AMP2
SVU2–12/80 SVU2–12/80 L(12A)=J4 L(12A)=J5 M(80A)=J1 M(80A)=J3 A06B–6089–H209 A06B–6089–H209
BOM EE–3287–500–003 AMP #
1”W X 4”H DUCT
ISB UNIT
AMP1
AMP # P–200 7 AXES CONTROL AMP SPEC.
AMP1
SVU2–12/80 L(12A)=J4 M(80A)=J1 A06B–6089–H209
AMP2
AMP3
AMP4
SVU2–12/80 SVU1–130 L(12A)=J6 J2 M(80A)=J7 A06B–6089–H209 A06B–6089–H106
AMP3
AMP4
SVU2–12/80 SVU1–12 SVU1–130 J2 L(12A)=J5 J6 M(80A)=J3 A06B–6089–H209 A06B–6089–H101 A06B–6089–H106
AMP5 SVU2–12/12 L(12A)=J7 M(12A)=J8 A06B–6089–H201
1 0
FANUC AC SERVO AMPLIFIERS
BATTERY PACK AMP 4 GRN/YEL 14 AWG.
MAIN PSU CPU
OPT
AMP 5
P–200 6+2 (HOOD–DECK) AXES CONTROL AMP SPEC.
AMP1
AMP2
AMP3
AMP4
SVU2–12/80 SVU2–12/80 SVU1–12 SVU1–130 L(12A)=J4 L(12A)=J5 J6 J2 M(80A)=J1 M(80A)=J3 A06B–6089–H209 A06B–6089–H209 A06B–6089–H101 A06B–6089–H106
AMP5 SVU2–80/80 L(80A)=J7 M(80A)=J8 A06B–6089–H208
STATUS
8
TO ISB GND BAR
BOM EE–3287–500–004 AMP #
BOM EE–3287–500–005 AMP # 1 1/2 ”W X 4”H DUCT
P–200 7+2 (DOOR OPENER) AXES CONTROL AMP SPEC.
AMP1
AMP2
AMP3
SVU2–12/80 L(12A)=J4 M(80A)=J1
SVU2–12/80 SVU2–12/80 L(12A)= J5 L(12A)=J6 M(80A)= J7 M(80A)=J3 A06B–6089–H209 A06B–6089–H209 A06B–6089–H209
AMP4 SVU1–130 J2
AMP5 SVU2–12/12 L(12A)= J8 M(80A)= J9
A06B–6089–H106 A06B–6089–H201
BOM EE–3287–500–006 AMP # USER TRANS.
CONTROLLER DOOR INSIDE VIEW
CONTROLLER FRONT VIEW
P–200 R–J2 ILLUSTRATED
P–200 7+2 (HOOD–DECK) AXES CONTROL AMP SPEC.
AMP1 SVU2–12/80
AMP2 SVU2–12/80
AMP3 SVU2–12/80
AMP4 SVU1–130
AMP5 SVU2–80/80
L(12A)=J6 J2 L(12A)= J8 L(12A)=J4 L(12A)= J5 M(80A)= J7 M(80A)=J1 M(80A)=J3 M(80A)= J9 A06B–6089–H209 A06B–6089–H209 A06B–6089–H209 A06B–6089–H106 A06B–6089–H208
CONTROLLER W/DOOR REMOVED
EE-3287-500-019
12. SCHEMATICS
12–38 NOTES
MARO2P10203703E
12. SCHEMATICS
12–39
MARO2P10203703E
Figure 12–19. R-J2 Robot Controller Cabinet Layout
PURGE CONTROL UNIT OVP DELTRON W112A 24V @ 1.2A ISB3ISB4 ISB5 ISB7 ISB9 ISB6 ISB8
AMP 5
AMP 6 AMP 1
AMP 2
CONTACT SIGNAL TRANSDUCER
AMP 3
ON
ON
ON
ON
ON
OFF
OFF
OFF
OFF
OFF
FANUC AC SERVO AMPLIFIER
FANUC AC SERVO AMPLIFIER
FANUC AC SERVO AMPLIFIER C series
FANUC AC SERVO AMPLIFIER C series
FANUC AC SERVO AMPLIFIER C series
DISCONNECT
I/O RACK
BOM EE–3287–500–007 1”W X 4”H DUCT EMG BOARD
AMP
1 MAINPSU CPU
0 FANUC AC SERVO AMPLIFIER
AMP 4
OPT
#
P–200 7+3 (OPENER) AXES CONTROL AMP SPEC.
AMP1 SVU2–12/80 L(12A)=J4 M(80A)=J1 A06B–6089–H209
AMP2
AMP3
AMP4
OPENER SIDE CABINET AMP5 AMP6
SVU2–12/80 L(12A)=J5 M(80A)=J3
SVU2–12/80 L(12A)=J6 M(80A)=J7
SVU1–130 J2
SVU1–80 J8 (RAIL)
SVU2–80/80 L(12A)=J9 M(12A)=J10
A06B–6089–H209
A06B–6089–H209
A06B–6089–H106
A06B–6089–H105
A06B–6089–H208
STATUS
8
1 1/2 ”W X 4”H DUCT
USER TRANS.
CONTROLLER WITH SIDE CABINET SHOWN WITH DOOR REMOVED
EE-3287-500-020
12. SCHEMATICS
12–40 NOTES
MARO2P10203703E
12. SCHEMATICS
12–41
MARO2P10203703E
Figure 12–20. P-200 R-J2 Controller FM Retrofit Package Cabinet Layout
CABINET LAYOUT 1 WARNING PURGE TIMER SET AT 5 MINUTES MODIFICATION WILL VOID FACTORY MUTUAL RESEARCH CORPORATION APPROVAL
SYSTEM R–J2 PURGE CONTROL UNIT
CONTACT SIGNAL TRANSDUCER ON
ON
ON
OFF
OFF
OFF
FANUC AC SERVO AMPLIFIER C series
FANUC AC SERVO AMPLIFIER C series
FANUC AC SERVO AMPLIFIER C series
DISCONNECT I.S. GND NOTE
I/O RACK AMP 1
AMP 2
AMP 3 1”W X 4”H DUCT EMG BOARD
ISB UNIT 1
MAINPSU CPU
0
OPT
3
FOR CONNECTION TO: CLASS I, II & III DIV. 1 GRP. C,D,E,F & G HAZ. LOC.
PER DWG.
EE–3287–550
STAMP NUMBER AS SHOWN
FANUC AC SERVO AMPLIFIER
BATTERY PACK
2000 SOUTH ADAMS RD. AUBURN HILLS, MI 48326
AMP 4
2 STATUS
8 GRN/YEL 14 AWG.
Factory Mutual System Approved
TO ISB GND BAR 1 1/2 ”W X 4”H DUCT 3
MODEL P–200 R–J2 MADE IN USA SERIAL NO. XXXX ASSEMBLY NO.EO–3287–XXX
SEE MECHANICAL ASSEMBLY FOR TAG NUMBER. VIEW LOCATED IN CIRCLE ”A” NOTE: ATTACH ALL TAGS WITH PERMANENT TYPE FOAM TAPE OR DRIVE RIVETS.
”A” 2 USER TRANS.
PLACE LABEL OVER ADJUSTMENT SCREW ON PURGE TIMER AFTER MFG. PURGE TESTING.
CONTROLLER DOOR INSIDE VIEW
CONTROLLER FRONT VIEW
CONTROLLER W/DOOR REMOVED
P–200 R–J2 ILLUSTRATED EE–3287–575
12. SCHEMATICS
12–42 NOTES
MARO2P10203703E
12. SCHEMATICS
12–43
MARO2P10203703E
Figure 12–21. P-200 R-J2 Robot Control Drawing Purge and Intrinsic Wiring sheet 1 DELTRON W112A
NON–HAZARDOUS LOCATION (250 VAC MAXIMUM)
120VAC 24VDC FROM POWER CONVEYOR SUPPLY
OPERATOR PANEL
INTRINSIC SAFETY BARRIER STAHL 9001/01–252–100–14
EE–3112–600 24V
24V
3 4
1 2
OVP UNIT
PANEL I/F
EMGIN1 EMGIN2
PURGE CIRCUITS CNPG
SOL1 SOL2
BRAKE CONTROL
CNIN FROM I/O
MAIN CPU RDI/RDO
CRM10
24V I/P SIG 24V
24V TO ACCUFLOW SIG
CNCA
HAZARDOUS LOCATION CLASS I, II & III DIVISION 1 GROUPS C D E F & G
ISB1
IS GND
3 4
1 2 CNPG
ISB2 OPTIONAL IS GND 7 4 8 ISB3 6 9 10 KHD2–SR–EX1.2S.P 11+24 P&F 12 7ISB4KFD2–SD–EX1.36 + 1 2 8 9 + +1 P&F 10 ISB5 7 +24 KHD2–CD–1.P32 2 8 8 +1 P&F 2 ISB6 Z787 7 +4 5 3 6
+1 2
A2 FLOW SWITCH
C2 CRR5 A3
ROBOT OVERTRAVEL SWITCH
C3 A4
SERVO TRANSFORMER
HAND BROKEN
C4
FOR PAINT R–J TYPE
A5
220V (43) 220 VAC
C5
220V (44)
P2 N2 P3 N3 P4 N4 P5
MISC. SWITCH (RDI2)
P6
A6 C6
AC S
0V G
3.) I.S. GROUND CONNECTION SHALL BE PER NEC(NFPA 70) SECTION 504–50 AND ANSI/ISA RP 12.6
HAND BRKN
ROBOT WIRE HARNESS SOLENOID CABLE EE–3287–323–001 EE–3287–348–001 M1 M4 SOL SOL PURGE
I.S. BATTERY PACK
I.S. GND
I/S GROUND
1
PRES. SW CABLE EE–3044–345–001 PS1 PS1
P1
TP DISCONNECT SWITCH
0V
+V
TRIGGER 2
O1 O4
M1 M4
N5
+24P
NOTES: 1.)ACCEPTABLE I.S. BATTERY PACKS: A05B–2363–C040 EE–3185–551
TRIGGER 1
IDEC IBRC6062R
CRR22
CNIS
FLOW METER
ISB6–1 ISB6–2 ISB6–4
8+ ISB8 Z728 P&F 7
BKP4 BKM4
UNIT
ISB5–2
FROM I/O
CRR21
R
I/P
ISB8–1 ISB8–2
N1
EE–3287–328–001 CBL
ISB4–1 ISB4–2 ISB5–1
FROM I/O
PRESSURE SWITCH
EE–3185–356–001 BYPASS SWITCH
N4
P1 P4
ISB7–1 ISB7–2
C1
2.) ALTERNATE I.S. BATTERY PACKS: A05B–2072–C181 A05B–2047–C182 SHALL BE USED PER EG–00127–SECTION VI
N1 ISB3–4 ISB3–6
+1 2
A1
+24VDC PSU
CONNECTION CABLE EE–3287–117–XXX
8+ ISB7 Z728 P&F 7
E–STOP PCB
FIRE ALARM
NOTICE NO REVISIONS WITHOUT PRIOR APPROVAL FROM FACTORY MUTUAL (FM)
FLOW SW CABLE EE–3044–340–001 FS1 FS1
M1 M4 ISTB 1 PSA1 2 PSA2 3 PSB1 4 PSB2 5 FSA1 6 FSA2 7 FSB1 8 FSB2 9 OT11 10 OT12 11 OT21 12 OT22 13 OT31 14 OT32 15 OT41 16 OT42 17 OT51 18 OT52 19 HBK1 20 HBK2 21 TP1 22 TP2 23 EOAT1 24 EOAT2
S1 S4
SOLENOID VALVE ROBOT PRESSURE SWITCH ROBOT FLOW SWITCH
EE–3287–324–001 BATT BATT ENCODER
I.S. GND X6 FOR PEDESTAL CABLE ROBOT PURGED CAVITY X7 FOR RAIL EE–3066–115–00X OPTIONAL CATRAC CABLE OPTIONAL DOOR OPENER DEVICE (FMRC APPROVED) MODEL Q–DRQ AK1AK2EE–3066–215–00XAK3 AK4 EE–3066–323–001 OPENER SOLENOID
AJ3
AJ4
AH1 AH2
AH3
AH4
AE1 AE2
AE3
AE4
AJ1 AJ2
EE–3066–322–001 OPENER PRESS SWITCH
EE–3066–321–001 OPENER FLOW SWITCH
EE–3066–316–001 ENCODER
I.S. GND
X2
N6
+ P–200 R–J2 MODELS
6 +
F1 F2 F3 F4 F5
ISB UNIT A05B–2308–C370
TO CRS1 (MAIN CPU)
MODEL
P–200–6–J2
MODEL
P–200–7–J2
MODEL
P–200–6+2–J2
MODEL
P–200–7+2–J2
MODEL
P–200–7+3–J2
I/S TEACH PENDANT A05B–2308–C300 FRAME GND.
EE-3287-550-001
12. SCHEMATICS
12–44 NOTES
MARO2P10203703E
12. SCHEMATICS
12–45
MARO2P10203703E
Figure 12–22. P-200 R-J2 Robot Control Drawing Purge and Intrinsic Wiring sheet 2
NON–HAZARDOUS LOCATION (250 VAC MAXIMUM)
DELTRON W112A
24V 24VDC POWER SUPPLY
120VAC FROM CONVEYOR
OPERATOR PANEL
INTRINSIC SAFETY BARRIER STAHL 9001/01–252–100–14
EE–3112–600 24V OVP UNIT
PURGE CIRCUITS
PANEL I/F
EMGIN1 EMGIN2
CNPG
3 4
SOL2 BRAKE CONTROL
CNIN
FROM I/O
24V I/P SIG 24V
MAIN CPU RDI/RDO
CRM10
TO ACCUFLOW CNCA
24V SIG
FROM I/O FROM I/O
E–STOP PCB
A1 C1
CRR21
7 4 8 6 9 ISB3 10 11+24 KHD2–SR–EX1.2S.P P&F 12 +1 7 8 ISB4 KFD2–SD–EX1.362 9 + +1 10 ISB5 2 P&F 7 +24 KHD2–CD–1.P32 8 +1 8 P&F 2 7 ISB6 Z787 5 +4 6 3 8 + ISB7 Z728 P&F + 1 7 2 8 + ISB8 Z728 P&F + 1 7 2
PRESSURE SWITCH
C2
FLOW SWITCH
CRR5 BKP4 BKM4
A3 C3
CNIS
ROBOT OVERTRAVEL SWITCH
A4 SERVO TRANSFORMER C4
FOR PAINT R–J TYPE
A5
220V (43) 220V (44)
220 VAC C5
HAND BROKEN
TP DISCONNECT SWITCH
P2 N2 P3 N3 P4 N4 P5 N5
+24P A6 0V C6
ISB3–6
MISC. SWITCH (RDI2)
P6
N4
P1
P4
EE–3185–356–001 BYPASS SWITCH EE–3287–328–001 CBL I/P UNIT
ISB4–1 ISB4–2 ISB5–1 ISB5–2
FLOW METER
ISB6–1 ISB6–2 ISB6–4
TRIGGER 1 TRIGGER 2
ISB7–1 ISB7–2 ISB8–1 ISB8–2
O1 O4
HAND BRKN ROBOT WIRE HARNESS SOLENOID CABLE EE–3287–323–001 EE–3287–348–001 M1 M4 PURGE SOL SOL SOLENOID VALVE PRES. SW CABLE EE–3044–345–001 M1 M4 PS1 PS1 ROBOT PRESSURE SWITCH FLOW SW CABLE EE–3044–340–001 M1 M4 FS1 FS1 ROBOT FLOW SWITCH
P1 N1
N1
ISB3–4
IZUMI IBRC6062R
A2
CRR22
CONNECTION CABLE EE–3287–117–XXX
ISB2 OPTIONAL
IS GND
SOL1
HAZARDOUS LOCATION CLASS I, II & III DIVISION 1 GROUPS C D E F & G
ISB1
IS GND 1 2
CNPG
NOTICE NO REVISIONS WITHOUT PRIOR APPROVAL FROM FACTORY MUTUAL (FM)
3 4
1 2
ISTB 1 PSA1 2 PSA2 3 PSB1 4 PSB2 5 FSA1 6 FSA2 7 FSB1 8 FSB2 9 OT11 10 OT12 11 OT21 12 OT22 13 OT31 14 OT32 15 OT41 16 OT42 17 OT51 18 OT52 19 HBK1 20 HBK2 21 TP1 22 TP2 23EOAT1 24EOAT2
BATT BATT S1 S4 EE–3287–324–001 ENCODER I.S. GND X6 FOR PEDESTAL CABLE ROBOT PURGED CAVITY X7 FOR RAIL EE–3067–115–00X OPTIONAL HOOD/DECK OPENER DEVICE OPTIONAL CATRAC CABLE (FMRC APPROVED) MODEL Q–HDQ AK3 AK4 AK1AK2 EE–3067–215–00X EE–3066–323–001 OPENER SOLENOID AJ1
AJ2
AJ3
AH1 AH2
AH3
AE1 AE2
AE3
AJ4
EE–3066–322–001
AH4
EE–3066–321–001
OPENER PRESS SWITCH OPENER FLOW SWITCH
EE–3066–316–001 AE4 ENCODER EE–3067–317–001OT OT
N6
OT OT
X2 OT OT
I.S. GND
NOTES: FIRE ALARM
1.) ACCEPTABLE I.S. BATTERY PACKS: A05B–2363–C040 EE–3185–551
+24VDC PSU
R
+V AC
S
0V G
2.) ALTERNATE I.S. BATTERY PACKS: A05B–2072–C181 A05B–2047–C182 SHALL BE USED PER EG–00127–SECTION VI
I.S. BATTERY PACK
1
+ P–200 R–J2 MODELS
6
+ F1F2F3F4F5
I.S. GND
3.) I.S. GROUND CONNECTION SHALL BE PER NEC(NFPA 70) SECTION 504–50 I/S AND ANSI/ISA RP 12.6
ISB UNIT A05B–2308–C370
MODEL
P–200–6–J2
MODEL
P–200–7–J2
MODEL
P–200–6+2–J2
MODEL
P–200–7+2–J2
MODEL
P–200–7+3–J2
TITLE:
GROUND
TO CRS1 (MAIN CPU)
I/S TEACH PENDANT A05B–2308–C300 FRAME GND.
EE-3287-550-002
12. SCHEMATICS
12–46 NOTES
MARO2P10203703E
12. SCHEMATICS
12–47
MARO2P10203703E
Figure 12–23. P-200 R-J2 Control Drawing Purge and Intrinsic Wiring Sheet 3 NON–HAZARDOUS LOCATION (250 VAC MAXIMUM)
DELTRON W112A
24V 24VDC 120VAC POWER FROM CONVEYOR SUPPLY
OPERATOR PANEL
INTRINSIC SAFETY BARRIER STAHL 9001/01–252–100–14
EE–3112–600 24V
3 4
1 2
OVP UNIT
IS GND
PANEL I/F
EMGIN1 EMGIN2
PURGE CIRCUITS CNPG
3 4
ISB2 OPTIONAL 7 4 8 ISB3 6 9 10 KHD2–SR–EX1.2S.P 11+24 P&F 12 7 ISB4 KFD2–SD–EX1.36 + 1 8 2 9 + +1 P&F 10 ISB5 2 7 +24 KHD2–CD–1.P32 8 8 +1 P&F 7 2 ISB6 5 +4 Z787 3 6 8 + ISB7 Z728 P&F +1 7 2 8+ +1 7 2 ISB8 Z728 P&F 8 +4 7 P&F 9 6 11 +24V 12 ISB9 KHD2–SR–EX1.P
SOL1
24V I/P FROM I/O SIG 24V
CNIN
MAIN CPU RDI/RDO
CRM10
TO ACCUFLOW24V SIG
CNCA
FROM I/O FROM I/O TO I/O +24V
E–STOP PCB
IDEC IBRC6062R
A1
PRESSURE SWITCH
C1 CRR21
A2 FLOW SWITCH
CRR22 C2
CRR5 BKP4 BKM4
A3 CNIS
ROBOT OVERTRAVEL SWITCH
C3 A4
SERVO TRANSFORMER FOR PAINT R–J2 TYPE
HAND BROKEN
C4 A5
220V (43) 220V (44)
220 VAC
C5
+24P
+V
NOTES: 1.)ACCEPTABLE I.S. BATTERY PACKS: A05B–2363–C040 EE–3185–551 2.) ALTERNATE I.S. BATTERY PACKS: A05B–2072–C181 A05B–2047–C182 SHALL BE USED PER EG–00127–SECTION VI
R S
AC
0V
3.) I.S. GROUND CONNECTION SHALL BE
G
PER NEC(NFPA 70) SECTION 504–50 AND ANSI/ISA RP 12.6
ISB3–4 ISB3–6
N1 N4 EE–3185–356–001 BYPASS SWITCH P1 P4
N1 P2 N2 P3 N3 P4 N4
MISC. SWITCH (RDI2)
P6
I/P UNIT
ISB4–1 ISB4–2 ISB5–1 ISB5–2
FLOW METER
ISB6–1 ISB6–2 ISB6–4
TRIGGER 1 TRIGGER 2
ISB7–1 ISB7–2 ISB8–1 ISB8–2
O1 O4 ROBOT WIRE HARNESS SOLENOID CABLE EE–3287–323–001 EE–3287–348–001 M1 M4 PURGE SOL SOL
N5
ISTB 1 PSA1 2 PSA2 3 PSB1 4 PSB2 5 FSA1 6 FSA2 7 FSB1 8 FSB2 9 OT11 10 OT12 11 OT21 12 OT22 13 OT31 14 OT32 15 OT41 16 OT42 17 OT51 18 OT52 19 HBK1 20 HBK2 21 TP1 22 TP2 23 EOAT1 24 EOAT2
M1 M4
M1 M4
FLOW SW CABLE SWITCH EE–3044–340–001 FS1 FS1 ROBOT FLOW SWITCH
S1 S4
EE–3287–324–001 BATT BATT ENCODER
I.S. GND
ROBOT PURGED CAVITY
EE–3186–115–1XX AG1 AK1
X6 FOR PEDESTAL X7 FOR RAIL
OPTIONAL P–10 DOOR OPENER DEVICE AG4
DOOR SENSOR
AK4 OPENER SOLENOID
AJ1
AJ4
AH1
AH4
OPENER PRESS SWITCH OPENER FLOW SWITCH
AL1 AM1 AN1 N6
ENCODER
X3
1+ P–200 R–J2 MODELS 6 + F1 F2 F3 F4 F5
I.S. GND I/S GROUND
HAND BRKN
SOLENOID VALVE
PRES. SW CABLE EE–3044–345–001 PS1 ROBOT PS1
I.S. GND
I.S. BATTERY PACK
EE–3287–328–001 CBL
PRESSURE
P5
C6
+24VDC PSU
CONNECTION CABLE EE–3287–117–XXX
P1
TP DISCONNECT SWITCH
A6
0V
FIRE ALARM
HAZARDOUS LOCATION CLASS I, II & III DIVISION 1 GROUPS C D E F & G
IS GND
SOL2 BRAKE CONTROL
APPROVAL FROM FACTORY MUTUAL (FM)
ISB1
1 2
CNPG
NOTICE NO REVISIONS WITHOUT PRIOR
ISB UNIT A05B–2308–C370
TO CRS1 (MAIN CPU)
MODEL MODEL MODEL MODEL MODEL
P–200–6–J2 P–200–7–J2 P–200–6+2–J2 P–200–7+2–J2 P–200–7+3–J2
I/S TEACH PENDANT A05B–2308–C300 FRAME GND.
EE-3287-550-003
12. SCHEMATICS
12–48 NOTES
MARO2P10203703E
12. SCHEMATICS
12–49
MARO2P10203703E
Figure 12–24. P-200 R-J2 Pedestal North American Purge, No PGS (Seal Off Req’d) Cable Layout 6 AXIS ROBOT HARNESS AND CABLE LAYOUT BATTERY IN CONTROLLER UPPER LEVEL BILL OF MATERIAL EE–3287–301–011 ROBOT ARM
CONNECTION CABLE SETS W/O PG UPPER LEVEL BOMS EE–3287–100– 005 EE–3287–100– 010 EE–3287–100– 015 EE–3287–100– 025
R–J2 CONTROLLER AMP 1 AMP 2 AMP 3
(L) (L) (L)
AXIS 4 AXIS 5 AXIS 6
4 4 4
PURGE BD (BK) BRAKES
T–14107
6
5M 10M 15M 25M
EE–3287–100– 035 35M EE–3287–100– 045 45M EE–3287–100– 055 55M
SEAL OFFS USED WITH NA PEDESTAL (NO PG FITTINGS)
A1 A4
MOTOR 13.5MM EE–3287–111–005 EE–3287–111–010 EE–3287–111–015 EE–3287–111–025 EE–3287–111–035 EE–3287–111–045 EE–3287–111–055
PULSE BAT MODEL a 0.5 POWER BRK
B1 B4
AXIS 6 A06B–0113–B078/0008
C1 C4 CRF1
AUX AXIS BD
T–14685
JF7
PURGE UNIT PGTB
24PG, 0PG 3
CABLE CLAMP SHIELD TO CHASSIS GROUND
AXIS 5
A06B–0373–B175
D1 D4
PULSE 19.8MM EE–3287–113–005 EE–3287–113–010 EE–3287–113–015 EE–3287–113–025 EE–3287–113–035 EE–3287–113–045 EE–3287–113–055
E1
PULSE BAT MODEL a 2/3000 POWER BRK
EE–3287–322–001 AXIS 4, 5 & 6 PWR & PULSE HARNESS
AXIS 4
EE–3044–401
EMG BD
PULSE BAT MODEL a 2/3000 POWER BRK
OUTER ARM GROUND
F1
A06B–0373–B175
PULSE & BATT MODELa 12/3000 POWER & BRK
INNER ARM GROUND
AXIS 3
A06B–0143–B175/0008
DC/DC CONVERTER H1 H4 AMP 1
(M)
AXIS 1
AMP 4
(M)
AXIS 2
PURGE BD (BK)
4
T–14379
12
BRAKES
4
MOTOR 21.0MM EE–3287–110– 005 EE–3287–110– 010 EE–3287–110– 015 EE–3287–110– 025 EE–3287–110– 035 EE–3287–110– 045 EE–3287–110– 055
J1 J4
PULSE & BATT MODEL a 22/3000 POWER & BRK
TURRET GROUND
AXIS 2
PULSE & BATT MODEL a 6/3000 POWER & BRK AXIS 1 A06B–0128–B175
EE–3287–321–001 AXIS 1, 2 & 3 PWR & PULSE HARNESS K1 K4
AMP 2
AXIS 3
8
NOT USED
T–14379
8
PURGE BD (BK) BRAKES
4
GND 6.9MM EE–3287–116–005 EE–3287–116–010 EE–3287–116–015 EE–3287–116–017 EE–3287–116–035 EE–3287–116–045 EE–3287–116–055
CONTROLLER GROUND TO ISTB
FS/PS
TO ISB1
SOL
TO ISB3
BYPASS
TO ISB4 TO ISB5 TO ISB6
I/P POWER I/P SIG FLOW MTR
TO ISB7
TRIG 1
TO ISB8
TRIG 2
TO ISTB
HBK BATTERY BATTERY BATTERY BATTERY
4 2 2 2
CONNECT SHIELD TO IS GND
3 2 I.S. GND
L1
SOL1 M1 M4 N1
BYPASS
O1 T–14685
2
2
MOTOR 21.0MM EE–3287–112–005 EE–3287–112–010 EE–3287–112–015 EE–3287–112–025 EE–3287–112–035 EE–3287–112–045 EE–3287–112–055
INTRINSIC 20.5MM EE–3287–117–005 EE–3287–117–010 EE–3287–117–015 EE–3287–117–017 EE–3287–117–035 EE–3287–117–045 EE–3287–117–055 EE–3287–117–030 EE–3287–117–033
P1
OPTIONAL BYPASS SW EE–3185–356–001
EE–3287–323–001 INTRINSIC DEVICE HARNESS
EE–3287–348–001
PS1
EE–3044–345–001
FS1
EE–3287–340–001
GROUNDING OF NON–IS SHIELDED CABLE AT CONTROLLER ENTRANCE
SOL1 PS1
50MM
FS1
GND CLAMP
P4
S1
S4
EE–3287–324–001 INTRINSIC BATTERY HARNESS AXIS 1–6 OPTIONAL
HND BROKEN
PG11 I/P
2 2 2
CABLE SHIELD
CABLE
R1
2 2
A06B–0148–B675
EE–3287–328–001 PG29
TRIG TRIG2 FLOW
I/P PROPORTIONAIR TRIGGER TRIGGER FLOW METER
EE-3287-001
12. SCHEMATICS
12–50 NOTES
MARO2P10203703E
12. SCHEMATICS
12–51
MARO2P10203703E
Figure 12–25. P-200 R-J2 Rail Robot North American Purge, PGS For Penetration Plate Cable Layout 7 AXIS ROBOT HARNESS AND CABLE LAYOUT BATTERY IN CONTROLLER, NA PURGE UPPER LEVEL BILL OF MATERIAL EE–3287–302–011 ROBOT ARM
CONNECTION CABLE SETS W/ (2) PG UPPER LEVEL BOMS EE–3287–102–105 5M EE–3287–102–110 10M EE–3287–102–115 15M EE–3287–102–125 25M EE–3287–102–135 35M EE–3287–102–145 45M EE–3287–102–155 55M
R–J2 CONTROLLER
AMP 1 AMP 2 AMP 3
(L) (L) (L)
AXIS 4 AXIS 5 AXIS 6
4 4 4
BRAKES
PURGE BD (BK)
T–14107
6
A1 A4
MOTOR 13.5MM EE–3287–111–105 EE–3287–111–110 EE–3287–111–115 EE–3287–111–125 EE–3287–111–135 EE–3287–111–145 EE–3287–111–155
PULSE BAT MODEL a 0.5 POWER BRK AXIS 6 A06B–0113–B078/0008
B1 B4 PG 29
OUTER ARM GROUND
PULSE BAT MODEL a 2 /3000 POWER BRK AXIS 5 A06B–0373–B175
C1 C4 T–14685
JF7
AUX AXIS BD
CABLE CLAMP SHIELD TO CHASSIS GROUND
24PG, 0PG PURGE BD PGTB
3
PULSE 19.8MM EE–3287–113–105 EE–3287–113–110 EE–3287–113–115 EE–3287–113–125 EE–3287–113–135 EE–3287–113–145 EE–3287–113–155
D1 D4 EE–3287–322–001 AXIS 4, 5 & 6 PWR & PULSE HARNESS
E1 PG 29
PULSE BAT MODEL a 2 /3000 POWER BRK AXIS 4 A06B–0373–B175
EE–3044–401
CRF1
EMG BD
F1
PULSE & BATT MODEL a 12/3000 POWER & BRK
INNER ARM GROUND
AXIS 3
A06B–0143–B175/0008
DC/DC CONVERTER H1 H4 AMP 1
(M)
AXIS 1
AMP 4
(M)
AXIS 2
PURGE BD (BK)
BRAKES
8
T–14379
8 4
MOTOR 21.0MM EE–3287–110–105 EE–3287–110 –110 EE–3287–110 –115 EE–3287–110 –125 EE–3287–110 –135 EE–3287–110 –145 EE–3287–110 –155
J1 J4
PULSE & BATT MODEL a 22 /3000 POWER & BRK AXIS 2 A06B–0148–B675
TURRET GROUND
PG 29
PULSE & BATT MODEL a 6 /3000 POWER & BRK
EE–3287–321–001 AXIS 1, 2 & 3 PWR & PULSE HARNESS K1 K4
AMP 2
(M)
AXIS 3
AMP 3
(M)
AXIS 7
PURGE UNIT
BRAKES
8
T–14379
8 4
AXIS 1
21.0MM MOTOR EE–3287–112 –105 EE–3287–112 –110 EE–3287–112 –115 EE–3287–112 –125 EE–3287–112 –135 EE–3287–112 –145 EE–3287–112 –155
PG 29 EE–3185–316–001
PULSE & BATT MODEL a 12 /3000 POWER & BK
EE–3287–339–001
AXIS 7 CONTROLLER GROUND
TO ISTB
FS/PS
TO ISB1
SOL
TO ISB3
BYPASS
TO ISB4
I/P POWER
TO ISB5
I/P SIG
TO ISB6
FLOW MTR
TO ISB7
TRIG 1
TO ISB8
TRIG 2
TO ISTB
HBK BATTERY BATTERY BATTERY BATTERY
GND 6.9MM EE–3287–116 –105 EE–3287–116 –110 EE–3287–116 –115 EE–3287–116 –125 EE–3287–116 –135 EE–3287–116 –145 EE–3287–116 –155
4 2 2 2
CONNECT SHIELD TO IS GND
2 3 2 2
I.S. GND
A06B–0143–B175/0008
PG 9 SOL1 M1
M4
N1
BYPASS
O1 T–14685
A06B–0128–B175
L1
INTRINSIC 20.5MM EE–3287–117– 005 EE–3287–117– 010 EE–3287–117– 015 EE–3287–117– 017 EE–3287–117– 035 EE–3287–117– 045 EE–3287–117– 055 EE–3287–117– 030 EE–3287–117– 033
P1 PG29
R1 S1
OPTIONAL BYPASS SW EE–3185–356–001
EE–3287–323–001 INTRINSIC DEVICE HARNESS
EE–3287–348–0001
PS1
EE–3044–345–001
FS1
EE–3287–340–001
SOL1 PS1 FS1
P4 R4 S4
EE–3185–344–001 EE–3287–324–001 INTRINSIC BATTERY HARNESS AXIS 1–6
2
OPTIONAL
2
HND BROKEN
PG11 I/P
2 2 2
NON–HAZARDOUS
HAZARDOUS
EE–3287–328–001 PG29
TRIG TRIG2 FLOW
I/P PROPORTIONAIR TRIGGER TRIGGER FLOW METER
EE-3287-002
12. SCHEMATICS
12–52 NOTES
MARO2P10203703E
12. SCHEMATICS
12–53
MARO2P10203703E
Figure 12–26. P-200 R-J2 Pedestal Robot PTB Purge, PGS For Penetration Plate Cable Layout CONNECTION CABLE SETS W/ 2 PG UPPER LEVEL BOMS
AMP 1 (L) AMP 2 (L) AMP 3 (L)
AXIS 4 AXIS 5 AXIS 6
4 4 4
PURGE BD (BK) BRAKES
EMG BD
T–14107
6
CRF1
AUX AXIS BD
T–14685
JF7
24PG, 0PG
PURGE UNIT PGTB
3
CLAMP SHIELD TO CHASSIS GROUND
5M 10M 15M 25M 35M 45M 55M
BOOTH WALL A1 A4
MOTOR 13.5MM EE–3287–111–105 EE–3287–111–110 EE–3287–111–115 EE–3287–111–125 EE–3287–111–135 EE–3287–111–145 EE–3287–111–155
PULSE BAT MODELa 0.5 POWER BRK AXIS 6 A06B–0113–B078/0008
B1 B4 PG29
EE–3185–601
PULSE 19.8MM EE–3287–113–105 EE–3287–113–110 EE–3287–113–115 EE–3287–113–125 EE–3287–113–135 EE–3287–113–145 EE–3287–113–155
PG29
C1
C3
EE–3185–602 C4
D1
D3
D4
E1
F1
PULSE BAT MODEL a 2 POWER BRK AXIS 5 A06B–0373–B175
OUTER ARM GROUND
PULSE BAT MODEL a 2 POWER BRK AXIS 4 A06B–0373–B175
EE–3287–322–001 AXIS 4, 5 & 6 PWR & PULSE HARNESS EE–3044–401
EE–3287–102 –105 EE–3287–102 –110 EE–3287–102 –115 EE–3287–102 –125 EE–3287–102 –135 EE–3287–102 –145 EE–3287–102 –155
R–J2 CONTROLLER
6 AXIS ROBOT HARNESS AND CABLE LAYOUT BATTERY IN CONTROLLER, PTB PURGE UPPER LEVEL BILL OF MATERIAL EE–3287–303–011 ROBOT ARM
PULSE & BATT MODELa 12 POWER & BRK
INNER ARM GROUND
AXIS 3
A06B–0143–B175/0008
DC/DC CONVERTER H1 H4 AMP 1 (M)
AXIS 1
AMP 4 (M)
AXIS 2
4
T–14379
12
PURGE BD (BK) BRAKES
4
MOTOR 21.0MM EE–3287–110 –105 EE–3287–110 –110 EE–3287–110 –115 EE–3287–110 –125 EE–3287–110 –135 EE–3287–110 –145 EE–3287–110 –155
J1 J4
PULSE & BATT MODELa 22 POWER & BRK AXIS 2 A06B–0148–B675
TURRET GROUND
PG29
PULSE & BATT MODELa 6 POWER & BRK
EE–3287–321–001 AXIS 1, 2 & 3 PWR & PULSE HARNESS K1 K4
AMP 2 (M)
AXIS 3
AMP 3 (M)
AXIS 7
8
T–14379
8
PURGE BD (BK) BRAKES
4
MOTOR 21.0MM EE–3287–112 –105 EE–3287–112 –110 EE–3287–112 –115 EE–3287–112 –125 EE–3287–112 –135 EE–3287–112 –145 EE–3287–112 –155
AXIS 1
L1
A06B–0128–B175
PG29
GROUNDING OF NON–IS SHIELDED CABLE AT CONTROLLER ENTRANCE GND 6.9MM EE–3287–116 –105 EE–3287–116 –110 EE–3287–116 –115 EE–3287–116 –125 EE–3287–116 –135 EE–3287–116 –145 EE–3287–116 –155
CONTROLLER GROUND TO ISTB
FS/PS
TO ISB1
SOL
TO ISB3
BYPASS
TO ISB4 TO ISB5
I/P POWER I/P SIG
TO ISB6 FLOW MTR TO ISB7
TRIG 1
TO ISB8
TRIG 2
TO ISTB
HBK BATTERY BATTERY BATTERY BATTERY
4 2 2 2
CONNECT SHIELD TO IS GND
2 3 2 2
I.S. GND
PG9
SOL1 M1 M4 N1 BYPASS O1
T–14685
INTRINSIC 20.5MM EE–3287–117– 005 EE–3287–117– 010 EE–3287–117–015 EE–3287–117–017 EE–3287–117–035 EE–3287–117–045 EE–3287–117–055 EE–3287–117–030 EE–3287–117–033
P1 PG29
OPTIONAL BYPASS SW EE–3185–356–001
EE–3287–323–001 INTRINSIC DEVICE HARNESS
EE–3287–348–001
SOL1
PS1
PRES. CONTROL UNIT
EE–3044–341–001 FS1
CABLE SHIELD
P4
R1 S1
S4
EE–3287–324–001 INTRINSIC BATTERY HARNESS AXIS 1–6 OPTIONAL
HND BROKEN
PG11
2
I/P
2
2
GND CLAMP CABLE
2
2
50MM
SOLENOID
NON–HAZARDOUS
HAZARDOUS
EE–3287–328–001
PG29
TRIG TRIG2 FLOW
I/P PROPORTIONAIR TRIGGER TRIGGER FLOW METER
EE-3287-003
12. SCHEMATICS
12–54 NOTES
MARO2P10203703E
12. SCHEMATICS
12–55
MARO2P10203703E
Figure 12–27. P-200 R-J2 Rail Robot PTB Purge, PGS For Penetration Plate
AXIS 4 AXIS 5 AXIS 6
4 4 4
PURGE BD (BK) BRAKES
EMG BD
T–14107
6
CRF1
AUX AXIS BD
T–14685
JF7 CLAMP SHIELD TO CHASSIS GROUND
24PG, 0PG 3
PURGE UNIT PGTB
ROBOT ARM
A1 A4
MOTOR 13.5MM EE–3287–111–105 EE–3287–111–110 EE–3287–111–115 EE–3287–111–125 EE–3287–111–135 EE–3287–111–145 EE–3287–111–155
PULSE BAT MODEL a 0.5 POWER BRK AXIS 6 A06B–0113–B078/0008
B1 B4 PG 29
PULSE 19.8MM EE–3287–113 –105 EE–3287–113 –110 EE–3287–113 –115 EE–3287–113 –125 EE–3287–113 –135 EE–3287–113 –145 EE–3287–113 –155
PG 29
C1
C3
D1
D3
E1
E3
EE–3185–601 EE–3185–602 EE–3185–603 C4 D4 E4
OUTER ARM GROUND
F1
PULSE BAT MODEL a 2 POWER BRK AXIS 5 A06B–0373–B175
EE–3287–322–001 AXIS 4, 5 & 6 PWR & PULSE HARNESS
EE–3044–401
R–J2 CONTROLLER
AMP 1 (L) AMP 2 (L) AMP 3 (L)
7 AXIS ROBOT HARNESS AND CABLE LAYOUT BATTERY IN CONTROLLER, PTB PURGE UPPER LEVEL BILL OF MATERIAL EE–3287–304–011
CONNECTION CABLE SETS W/ (2) PG UPPER LEVEL BOMS EE–3287–102–105 5M EE–3287–102–110 10M EE–3287–102–115 15M EE–3287–102–125 25M EE–3287–102–135 35M EE–3287–102–145 45M EE–3287–102–155 55M
PULSE BAT MODEL a 2 POWER BRK AXIS 4 A06B–0373–B175
PULSE & BATT MODEL a 12 POWER & BRK
INNER ARM GROUND
AXIS 3 A06B–0143–B175/0008
DC/DC CONVERTER H1 H4 AMP 1 (M)
AXIS 1
AMP 4
AXIS 2
PURGE BD (BK) BRAKES
8
T–14379
8 4
MOTOR 21.0MM EE–3287–110–105 EE–3287–110–110 EE–3287–110–115 EE–3287–110–125 EE–3287–110–135 EE–3287–110–145 EE–3287–110–155
J1 J4
PULSE & BATT MODELa 22 POWER & BRK AXIS 2 A06B–0148–B675
TURRET GROUND
PG 29
PULSE & BATT MODELa 6 POWER & BRK AXIS 1 A06B–0128–B175
EE–3287–321–001 AXIS 1, 2 & 3 PWR & PULSE HARNESS K1 K4
AMP 2 (M)
AXIS 3
AMP 3 (M)
AXIS 7
8
T–14379
8
PURGE BD (BK) BRAKES
4
MOTOR 21.0MM EE–3287–112 –105 EE–3287–112–110 EE–3287–112–115 EE–3287–112–125 EE–3287–112–135 EE–3287–112–145 EE–3287–112 –155
L1 PG 29 EE–3185–316–001
PULSE & BATT MODELa 12 POWER & BK
EE–3287–339–001
GROUNDING OF NON–IS SHIELDED CABLE AT CONTROLLER ENTRANCE
AXIS 7 A06B–0143–B175/0008 GND 6.9MM EE–3287–116 –105 EE–3287–116 –110 EE–3287–116 –115 EE–3287–116 –125 EE–3287–116–135 EE–3287–116–145 EE–3287–116–155
CONTROLLER GROUND TO ISTB
FS/PS
TO ISB1
SOL
TO ISB3
BYPASS
TO ISB4 I/P POWER TO ISB5
I/P SIG
TO ISB6 FLOW MTR TO ISB7
TRIG 1
TO ISB8
TRIG 2
TO ISTB
HBK BATTERY BATTERY BATTERY BATTERY
4 2 2 2
CONNECT SHIELD TO IS GND
2 3 2 2
I.S. GND
50MM PG 9
SOL M1 M4 N1 BYPASS O1
T–14685
INTRINSIC 20.5MM EE–3287–117– 005 EE–3287–117–010 EE–3287–117–015 EE–3287–117–017 EE–3287–117–035 EE–3287–117–045 EE–3287–117–055 EE–3287–117–030 EE–3287–117–033
P1 PG 29
R1
OPTIONAL BYPASS SW EE–3185–356–001
EE–3287–323–001 INTRINSIC DEVICE HARNESS
EE–3287–348–001
SOL1
EE–3044–341–001
CABLE SHIELD
CABLE
FS–810 DRUCKWACHTER
FS1
P4 R4
S1 S4
E–3185–344–001 EE–3287–324–001 INTRINSIC BATTERY HARNESS AXIS 1–6
2
OPTIONAL
HND BROKEN
PG11
2
I/P
2
EE–3287–328–001
2 2
GND CLAMP
SOLENOID
PS1
NON–HAZARDOUS
HAZARDOUS PG29
TRIG TRIG2 FLOW
I/P PROPORTIONAIR TRIGGER TRIGGER FLOW METER
EE-3287-004
12. SCHEMATICS
12–56 NOTES
MARO2P10203703E
12. SCHEMATICS
12–57
MARO2P10203703E
Figure 12–28. P-200 Controller Basic Process Option I/P Flow and Trigger TYPICAL INTRINSICALLY SAFE CABLE ROUTING SHIELD CONNECTS TO INTRINSICALLY SAFE GROUND EE–3287–117–XXX
NOTICE NO REVISIONS WITHOUT PRIOR APPROVAL FROM FACTORY MUTUAL (FM)
1
2
3
4
8
P–10 MAGNET
2ND TRIGGER
TRIGGER Z728
Z787 FLOW
I/P KFD2–CD–EX1.32
I/P POWER P&F KFD2–SD–EX1.36
DELTRON W112A
BYPASS LS
EE–3112–600
24V @ 1.2A
EE–3112–600–001
ISTB TERMINAL STRIP
ISB2 ISB1 ISB4
1’’
SEE DETAIL 1
6 7 INTRINSICALLY SAFE GROUND CONNECTION
IS GND P–200 CONTROLLER BACKPANEL
SOLENOID
ISB3
OVP
SOLENOID
PS
ISB5 ISB6 ISB7 ISB8 ISB9
IDEC IBRC
NOTES: FOR CABLE WIRING, SEE EE–3287–500 FOR CONTROLS WIRING, SEE EE–3287–500 AND APPLICATION PACKAGE
UPPER LEFT CORNER
MAINTAIN 50MM SPACING I.S. WIRING AND ALL OTHER CIRCUITS, INCL EE–3112–600 DETAIL 1
9
ZENER BARRIERS MOUNTED ON INSULATING BLOCK
EE–3287–510
12. SCHEMATICS
12–58 NOTES
MARO2P10203703E
12. SCHEMATICS
12–59
MARO2P10203703E
Figure 12–29. P-200 Controller Process Option Basic Option With Second Trigger
TYPICAL INTRINSICALLY SAFE CABLE ROUTING
NOTICE NO REVISIONS WITHOUT PRIOR APPROVAL FROM FACTORY MUTUAL (FM)
SHIELD CONNECTS TO INTRINSICALLY SAFE GROUND EE–3287–117–XXX
1
2
3
4
4
8
P–10 MAGNET
2ND TRIGGER
TRIGGER Z728
Z787 FLOW
ISB2
1’’
6
ISB4
ISB5
ISB1
ISB6 ISB7 ISB8 ISB9
SEE DETAIL 1
7
SOLENOID
ISB3
INTRINSICALLY SAFE GROUND CONNECTION
P–200 CONTROLLER BACKPANEL UPPER LEFT CORNER
IS GND
SOLENOID
I/P POWER P&F KFD2–SD–EX1.36 I/P KFD2–CD–EX1.32
DELTRON W112A
EE–3112–600
24V @ 1.2A
BYPASS LS
EE–3112–600–001
ISTB TERMINAL STRIP
IDEC IBRC
NOTES: FOR CABLE WIRING, SEE EE–3287–500 FOR CONTROLS WIRING, SEE EE–3287–500 AND APPLICATION PACKAGE MAINTAIN 50MM SPACING I.S. WIRING AND ALL OTHER CIRCUITS, INCL EE–3112–600
DETAIL 1
9
ZENER BARRIERS MOUNTED ON INSULATING BLOCK
EE–3287–511
12. SCHEMATICS
12–60 NOTES
MARO2P10203703E
12. SCHEMATICS
12–61
MARO2P10203703E
Figure 12–30. P-200 Controller Bypass Option TYPICAL INTRINSICALLY SAFE CABLE ROUTING SHIELD CONNECTS TO INTRINSICALLY SAFE GROUND
NOTICE NO REVISIONS WITHOUT PRIOR APPROVAL FROM FACTORY MUTUAL (FM)
EE–3287–117–XXX
2
3
4
1
P–10 MAGNET
Z728 TRIGGER
2ND TRIGGER
Z787 FLOW
I/P
I/P POWER
BYPASS LS KHD2–SR–EX1.P
DELTRON W112A
EE–3112–600
24V @ 1.2A
EE–3112–600–001
ISTB TERMINAL STRIP
ISB2
ISB1
OVP
SOLENOID
PS
SEE DETAIL 1
1’’
5
SOLENOID
ISB3
IDEC IBRC
INTRINSICALLY SAFE GROUND CONNECTION
IS GND
P–200 CONTROLLER BACKPANEL
NOTES: FOR CABLE WIRING, SEE EE–3287–500
UPPER LEFT CORNER
FOR CONTROLS WIRING, SEE EE–3287–500 AND APPLICATION PACKAGE MAINTAIN 50MM SPACING I.S. WIRING AND ALL OTHER CIRCUITS, INCL EE–3112–600 DETAIL 1
9
ZENER BARRIERS MOUNTED ON INSULATING BLOCK
EE–3287–512
12. SCHEMATICS
12–62 NOTES
MARO2P10203703E
12. SCHEMATICS
12–63
MARO2P10203703E
Figure 12–31. AccuFlow Counter Input Board
IC2
LS279 24V
+24V
A CLK D
5V
+5V
INTERFACE
47UF 25V 24V
24v 5V
SENSOR INTF
R1 3.3K + SIG
D1 1
6
5V R2 2.2K
1N4148
JP1
10K R3
C3 0.01UF
2
5
3
4
1
IC2
JP2
LS04
C
14 15 16 3 IC1 2 2 1/2 13 1 LS221 8
OPTO1 MOC5007 ( OR H11L1 )
PHOENIX MSTBA2.5/7–G W/ MATE MVSTBW2.5/7–ST
9 8 10 IC26 LS08
4
2 D IC2 4 3S Q 6 1 5 R A IC2 IC3 LS279 LS04 A
5V
0V
0V
– SIG
3
(25) 0.1UF BYPASS C5–C30
C2 0V
6 S Q7 D IC3 A 12 11 5 R IC26 13 LS08
5V
10UF 50V
C1 POWER SUPPLY
9 IC2 8 5V
16 3 5 A>B IC9 6 A=B LS85 7 AInput To Pilot Trigger Line Air Supply “T”
Air Input To Pilot Section
I/P Tranducer Assembly
Output To Gun Regulator Solenoid Trigger Valve
Quick Exhaust Gauge Port Plug Air Input To Regulator
Electrical Input
Quick Exhaust
Solenoid Trigger Valve Override Button
TRIGGER VALVE/REGULATOR ASSEMBLY EO-3150-122-000
12. SCHEMATICS
12–66 NOTES
MARO2P10203703E
12. SCHEMATICS
12–67
MARO2P10203703E
Figure 12–33. Color Changer 24 Color Moduclean
Paint Line Connection To Gun Transducer/Sensor
Purge Air And Solvent Connections
Paint Value Pilot Out Flowmeter
Paint Supply In Paint Supply Out
COLOR CHANGER 24 COLOR MODUCLEAN EO–3150–123–000
12. SCHEMATICS
12–68 NOTES
MARO2P10203703E
12. SCHEMATICS
12–69
MARO2P10203703E
Figure 12–34. Upper Gun Control Lines
Paint Line To Gun
UPPER GUN CONTROL LINES EO-3150-127-000
12. SCHEMATICS
12–70 NOTES
MARO2P10203703E
12. SCHEMATICS
12–71
MARO2P10203703E
Figure 12–35. Color Changer Lines 24 Color Pedestal
SEE NOTE 1
PS2 – [3/8 OD.] PS4 – [3/8 OD.] PS6 – [3/8 OD.] PS8 – [3/8 OD.] PS10 – [3/8 OD.] PS12 – [3/8 OD.] PS14 – [3/8 OD.] PS16 – [3/8 OD.] PS18 – [3/8 OD.] PS20 – [3/8 OD.] PS22 – [3/8 OD.] PS24 – [3/8 OD.] PR2 – [5/16 OD.] PR4 – [5/16 OD.] PR6 – [5/16 OD.] PR8 – [5/16 OD.] PR10 – [5/16 OD.] PR12 – [5/16 OD.] PR14 – [5/16 OD.] PR16 – [5/16 OD.] PR18 – [5/16 OD.] PR20 – [5/16 OD.] PR22 – [5/16 OD.] PR24 – [5/16 OD.] CP2 – [5/32 OD.] CP4 – [5/32 OD.] CP6 – [5/32 OD.] CP8 – [5/32 OD.] CP10 – [5/32 OD.] CP12 – [5/32 OD.] CP14 – [5/32 OD.] CP16 – [5/32 OD.] CP18 – [5/32 OD.] CP20 – [5/32 OD.] CP22 – [5/32 OD.] CP24 – [5/32 OD.]
TO PPCE
BOOTH WALL
TERMINATE INSIDE OF PAINT DROP BOX
ROBOT INTERFACE
TERMINATE INSIDE OF PAINT DROP BOX
COLOR CHANGER ASM. 24 COLOR CP6 COLOR PILOT 6 PR4 PAINT RETURN 4 PS2 PAINT SUPPLY 2
PAP – [5/32 OD.] CCAS – [3/8 OD.] CCSS – [3/8 OD.] PSP – [5/32 OD.] CP23 – [5/32 OD.] CP21 – [5/32 OD.] CP19 – [5/32 OD.] CP17 – [5/32 OD.] CP15 – [5/32 OD.] CP13 – [5/32 OD.] CP11 – [5/32 OD.] CP9 – [5/32 OD.] CP7 – [5/32 OD.] CP5 – [5/32 OD.] CP3 – [5/32 OD.] CP1 – [5/32 OD.] PS23 – [3/8 OD.] PS21 – [3/8 OD.] PS19 – [3/8 OD.] PS17 – [3/8 OD.] PS15 – [3/8 OD.] PS13 – [3/8 OD.] PS11 – [3/8 OD.] PS9 – [3/8 OD.] PS7 – [3/8 OD.] PS5 – [3/8 OD.] PS3 – [3/8 OD.] PS1 – [3/8 OD.] PR23 – [5/16 OD.] PR21 – [5/16 OD.] PR19 – [5/16 OD.] PR17 – [5/16 OD.] PR15 – [5/16 OD.] PR13 – [5/16 OD.] PR11 – [5/16 OD.] PR9 – [5/16 OD.] PR7 – [5/16 OD.] PR5 – [5/16 OD.] PR3 – [5/16 OD.] PR1 – [5/16 OD.]
PS1 PAINT SUPPLY 1 PR3 PAINT RETURN 3
CP5 COLOR PILOT 5
PLACE IN CABLE CARRIER BEFORE CLAMP
P–200
ROBOT INTERFACE
TERMINATE INSIDE OF PAINT DROP BOX
P–200
COLOR CHANGER LINES 24 COLOR PEDESTAL 000A EO3150–128– 000B
12. SCHEMATICS
12–72 NOTES
MARO2P10203703E
12. SCHEMATICS
12–73
MARO2P10203703E
Figure 12–36. Lower Gun Control Lines Pedestal
24 COLOR EO–3150–121–012 REF 12 COLOR EO–3150–129–001 REF 8 COLOR EO–3150–220–001 REF 4 COLOR EO–3150–221–001 REF
CLAMP
RP – [1/2 OD.] FA – [1/2 OD.]
AA – [1/2 OD.]
PD – [1/4 OD.]
Quick Exhaust
TERMINATE AT DUMP – [1/2 OD.] SOLVENT RECOVERY
BOOTH WALL
PTS – [3/8 OD.]
NOTE: MARK BOTH ENDS OF TUBING WITH LABLE SHOWN
TERMINATE AT EO–3150–122–000 TRIGGER VALVE/ REGULATOR ASM.
E-Stat Junction Box On Robot Base
ESTAT – [5/16 OD.]
Low Voltage E-Stat Cable To Cascade Amplifier On Gun
GROUND – [1/4 OD.] PT – [5/16 OD.] PR – [5/16 OD.] FM – [5/16 OD.] WW – [5/16 OD.]
TERMINATE AT EO–3150–122–000 TERMINATE AT 24 COLOR – EO–3150–123–000 TERMINATE AT EO–3150–127–000
EO3150–222–000A EO3150–222–000B
ERN/ECN E60586 E60586
L2 REV L1 L3 C 7.3 M [24 FT] 7.0 M [23 FT] 8.0 M [26 FT] C 15.3 M [50 FT] 15.0 M [44 FT] 16.1 M [53 FT]
LOWER GUN CONTROL LINES PEDESTAL
000A EO3150–222– 000B
12. SCHEMATICS
12–74 NOTES
MARO2P10203703E
12. SCHEMATICS
12–75
MARO2P10203703E
Figure 12–37. Lower Gun Control Lines Rail
AREA FOR PLACEMENT OF INLINE UNION
1:1 Ratio Boosters EO–3150–223–001 MOUNT OPPOSITE OF CABLE CARRIER
24 COLOR EO–3150–121–012 REF 12 COLOR EO–3150–129–001 REF 8 COLOR EO–3150–220–001 REF 4 COLOR EO–3150–221–001 REF RP – [1/2 OD.] FAS – [1/2 OD.]
FAS – [3/8 OD.]
FAP – [1/4 OD.] AAS – [1/2 OD.]
AAS – [3/8 OD.]
AAP – [1/4 OD.] MOUNT TO CABLE CARRIER
PD – [1/4 OD.] DUMP – [1/2 OD.] PTS – [3/8 OD.]
BOOTH WALL
TERMINATE AT SOLVENT RECOVERY PTS – [3/8 OD.]
TERMINATE AT EO–3150–122–000 TRIGGER VALVE/ REGULATOR ASM. CLAMP
ESTAT – [5/16 OD.] GROUND – [1/4 OD.]
AIR VALVE TO SHUTOFF
PT – [5/16 OD.] PR – [5/16 OD.] FM – [5/16 OD.] WW – [5/16 OD.]
PT – [5/16 OD.] PR – [5/16 OD.] FM – [5/16 OD.] WW – [5/16 OD.]
TERMINATE AT EO–3150–122–000
TERMINATE AT 24 COLOR – EO–3150–123–000 TERMINATE AT EO–3150–127–00012 COLOR – EO–3150–124–000 8 COLOR – EO–3150–125–000 4 COLOR – EO–3150–126–000
NOTE: MARK BOTH ENDS OF TUBING WITH LABLE SHOWN.
LOWER GUN CONTROL LINES RAIL EO3150–223–000A 000B
12. SCHEMATICS
12–76 NOTES
MARO2P10203703E
12. SCHEMATICS
12–77
MARO2P10203703E
Figure 12–38. Color Changer Rail 4 Color Lines
SEE NOTE 1 4.0 METERS [13.0 FT]
PS2 PS4
PS2 – [3/8 OD.] PS4 – [3/8 OD.]
TERMINATE INSIDE OF PAINT DROP BOX COLOR CHANGER ASM. 4 COLOR PR2 PR4
BOOTH WALL
TO PPCE
PR2 – [5/16 OD.] PR4 – [5/16 OD.]
CP2 CP4
CP2 – [5/32 OD.] CP4 – [5/32 OD.]
PAP CCAS TERMINATE INSIDE OFCCSS PAINT DROP BOX PSP
PAP – [5/32 OD.] CCAS – [3/8 OD.] CCSS – [3/8 OD.] PSP – [5/32 OD.]
CP3 CP1
CP3 – [5/32 OD.] CP1 – [5/32 OD.]
CP4 COLOR PILOT 4 PR2 PAINT RETURN 2 PS2 PAINT SUPPLY 2
PS1 PAINT SUPPLY 1 PR1 PAINT RETURN 1 CP3 COLOR PILOT 3
PS3 PS1
PS3 – [3/8 OD.] PS1 – [3/8 OD.]
PR3 PR1
PR3 – [5/16 OD.] PR1 – [5/16 OD.]
PLACE IN CABLE CARRIER BEFORE CLAMP
TERMINATE INSIDE OF PAINT DROP BOX
P–200 AREA FOR PLACEMENT OF INLINE UNIONS STAGER UNIONS THRU BRACKET
P–200
COLOR CHANGER LINES 4 COLOR RAIL EO3150–227–000A 000B
12. SCHEMATICS
12–78 NOTES
MARO2P10203703E
12. SCHEMATICS
12–79
MARO2P10203703E
Figure 12–39. FANUC R-J2 P-200 Single Stage Purge Paint Process Control With Connector Option 120VAC FROM CELL CONTROL PANEL (14 AWG YELLOW)
NEUTRAL FROM CELL CONTROL PANEL (14 AWG YELLOW)
8228
8200 (REF. NE–2000–411) (TERMINAL STRIP T2)
8201 RC 82011 [47]
8202
IPCBL–21 (REF)
8203
8204CR/SUPPRESSOR A1 A2 13 14
82011
8204
8229
14132 RC [3]
I/O POWER ENABLE (8222,SP,SP,SP)
8205
+24VDC
8209
0VDC
FROM CP6 CONNECTOR ON CPU POWER SUPPLY
CP6–1
8231 8232 8233
8236 8237
CP6–2
8238
8210
CP32–1 INSERT INTO FANUC I/O RACK CP32–2 RACK INTERFACE 82091 82092 8239 8211 0VDC +24VDC MODULE 16 AWG BLUE 16 AWG BLUE 8240 8212 RC 82091 82092 RC [04] [07] +5VDC JD1A PORT 8241 8213 ON INTERFACE MODULE 82141 .58214F CUT END OF CABLE AND TIE AMP 82142 THE FOLLOWING TOGETHER
8214
XGMF–09989
8215
[11]
AT FUSE TERMINAL: PINK/2 BLACK DOTS YELLOW/2 BLACK DOTS PINK/1 BLACK DOT
[11]
8232F 1 AMP [15]
82292 82321 8232SOL 82292 RC PP PP [15] PPCBL–1 PPCBL–2 [14]
ROBOT MAIN AIR SUPPLY VALVE (FIRE VALVE)
8243 8244
8217
8245
8218
8246
8219
8247
8220 8221
(5)
8222 (9)
8248 82091 I/O POWER ENABLE 8204CR 82231
+5VDC +24VDC
FLOWMETER INTERFACE MODULE
0VDC
82092
8249 8250
8252
8225
8253
8226
8254
TO LINE 8300
LEGEND RC TERMINAL IN ROBOT CONTROLLER PP TERMINAL IN PAINT PROCESS VALVE PANEL TERMINAL IN REMOTE EQUIPMENT DEVICE OUTSIDE THIS ENCLOSURE
8251
8224
82231 +24VDC
NOTES: 1. DC WIRES TO BE 16 AWG BLUE–TYPICAL. 2. NUMBERS IN BRACKETS [ ] ARE TERMINALS ON TERMINAL STRIP T1, UNLESS OTHERWISE NOTED.
8242
8216
8227
ON POWER INPUT UNIT (PIU)
8235
8207
8223
82291
0VDC
8234
8206
8208
FROM SPADE CONNECTORS
8230
IPCBL–6 (REF) 14132
+24F
INTERNAL DC WIRE TO BE 16 AWG BLUE–TYPICAL
82092 0VDC
TO LINE 8300
8255
FANUC R-J2 P-200 SINGLE STAGE PURGE PAINT PROCESS CONTROL WITH CONNECTOR OPTION NE–2200–47A SHT. 82
12. SCHEMATICS
12–80 NOTES
MARO2P10203703E
12. SCHEMATICS
12–81
MARO2P10203703E
Figure 12–40. FANUC R-J2 P-200 Single Stage Purge Paint Process Control With Connector Option
8300
FROM LINE 8227 FROM LINE 8327 82231 82092 +24VDC 8328 0VDC
FROM LINE 8227 82231 +24VDC
8301
8329
8302
8330
8303 8304 8305 8306
DC OUTPUT MODULE AOD16D SLOT 1
8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325
8332
1
8333 RED BLACK SOLENOID SOLENOID PIGTAIL–TYP. PIGTAIL–TYP.
11
2
83082
[16] [16] 8309F
PPCBL–3
[17] [17] 8310F 83101 [18] [18] 8311F 83111
PP 83092 PP
PPCBL–4 PPCBL–5
PP 83112
6
[19] [19] 8312F 83121
PPCBL–6
7
[20] [20] 8313F 83131
PP 83122 PP
PPCBL–7
83132
8
[21] [21] 8314F 83141
PPCBL–8
PP 83142
[22]
PPCBL–9
4 5
9
83081 83091
[22]
83102
PP
8308SOL
82092
APPLICATOR CLEANER PP SOLVENT PILOT (ACSP) 8309SOL PPCBL–10 APPLICATOR CLEANER (ACAP) AIR PILOT 8310SOL PURGE SOLVENT PILOT (PSP) 8311SOL PURGE AIR PILOT (PAP) 8312SOL PILOT DUMP (PD)
8336 8337 8338 8339 8340
SPARE
TO LINE 8411
SPARE SPARE
12 SPARE
13 SPARE
14 SPARE
15 SPARE
16 SPARE
17 SPARE
18 SPARE
19 SPARE
10
8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352
20
8353
1
SUPPLIED AS PART OF ROBOT PRODUCT REF. EE–3287–550
11
EE–3287–328–001 LOCATED INTRINSIC CABLE IN P–200 EE–3287–117–XXX ROBOT ARM
2 3
83361
8336F .5 AMP
ISB7 8
[23]
8336SOL ISB7–1
[23]
WHT P1
7
4
1 2
ISB7–2
GRN
PILOT TRIGGER (PT) SPARE
I.S. GROUND SPARE
5
82231 TO LINE 8328
82092 TO LINE 8328
NOTES: 1. NUMBERS IN BRACKETS [ ] ARE TERMINALS ON TERMINAL STRIP T1.
SPARE
6 SPARE
7 SPARE
8 SPARE
9 SPARE
12 SPARE
13 SPARE
14 SPARE
LEGEND RC TERMINAL IN ROBOT CONTROLLER PP TERMINAL IN PAINT PROCESS VALVE PANEL TERMINAL IN REMOTE EQUIPMENT DEVICE OUTSIDE THIS ENCLOSURE
15 SPARE
16 SPARE
17 SPARE
18 SPARE
19 SPARE
10 20
8354
8326 8327
DC OUTPUT MODULE AOD16D SLOT 2
8335
8308F
3
8334
ALL FUSES .5 AMP
8307 8308
8331
FROM LINE 8327 82092 0VDC
8355
82231 TO LINE 8400
82092 TO LINE 8400
FANUC R-J2 P-200 SINGLE STAGE PURGE PAINT PROCESS CONTROL WITH CONNECTOR OPTION NE–2200–47A SHT. 83
12. SCHEMATICS
12–82 NOTES
MARO2P10203703E
12. SCHEMATICS
12–83
MARO2P10203703E
Figure 12–41. FANUC R-J2 P-200 Single Stage Purge Paint Process Control With Connector Option
8400 8401 8402
NOTES: 1. TERMINATE THE SHIELD DRAIN WIRES AT TERMINALS 6 AND 16 ON THE ANALOG OUTPUT MODULE. AT THE TRANSDUCER END OF THE CABLE CUT THE DRAIN WIRE SHORT AND TAPE OR SHRINK WRAP.
8403 8404 8405 8406 8407
SUPPLIED AS PART OF ROBOT PRODUCT REF. EE–3287–550
8408
FROM LINE 8355 82231 82092 0VDC
+24VDC
ISB5
8409
7
8410
8
8411 8412 8413 8414 8415 8416 8417 8418 8419 8420
6(FG) 8
FLOW COMMAND
84061
(+) 10 18
ATOMIZING AIR
SHIELD
CLEAR 84071
(–) (+) 20 (–)
BLACK
CABLE C1 INTERNAL TO THIS PANEL
3. NOTE THAT CARD OUTPUTS ARE NOT ISOLATED, THEY SHARE A COMMON RETURN LINE THAT IS TIED TO 0VDC (OF THE 24VDC SUPPLY).
EE–3287–328–001 JUMPER
ANALOG OUTPUT MODULE ADA02A BELDEN CABLE SLOT 3 #8761–TYPICAL
SHEILD 1 RC [25] 84061 RC [26] 84071 RC [27]
9
1
10
2
ISB5–1 P1 ISB5–2
LOCATED IN P–200 ROBOT ARM 8403XDUCER 4–20 ma I/P PAINT PRESSURE TRANSDUCER
4. ALL WIRING NOT ACCOMPLISHED BY BELDEN CABLE #8761 OR TRANSDUCER PIGTAIL TO BE 16 AWG BLUE WIRE.
P1 ISB4 ISB4–1 1 7
P1
I.S. GROUND
INTRINSIC CABLE #EE–3287–117–XXX
2. (FG) TERMINALS 6 AND 16 ARE TIED TOGETHER INTERNALLY AT THE MODULE AND ARE BROUGHT TO ”FRAME GROUND” USING THE GROUND WIRE TERMINATED AT THE GROUND BAR.
P1
ISB4–2 2
5. TRANSDUCERS ARE SUPPLIED WITH 72” LONG PIGTAIL (RED/WHT, RED, GREEN, RED/YEL, AND RED/BLU CONDUCTORS).
8
6. NUMBERS IN BRACKETS [ ] ARE TERMINALS ON TERMINAL STRIP T1, UNLESS OTHERWISE NOTED.
I.S. GROUND 16(FG)
82092
82231
TO LINE 8500
LEGEND
8421
RC TERMINAL IN ROBOT CONTROLLER
8422
TERMINAL IN REMOTE EQUIPMENT
8423
DEVICE OUTSIDE THIS ENCLOSURE
8424 8425 8426 8427
FANUC R-J2 P-200 SINGLE STAGE PURGE PAINT PROCESS CONTROL WITH CONNECTOR OPTION SHT.84 NE–2200–47A
12. SCHEMATICS
12–84 NOTES
MARO2P10203703E
12. SCHEMATICS
12–85
MARO2P10203703E
Figure 12–42. Flow Meter Interface Circuitry FANUC R-J2 P-200 Single Stage Purge Paint Process Control With Connector Option ACCUFLOW COUNTER INPUT/ DC INPUT MODULE CONNECTIONS 8700 8701
SPARE SLOT SLOT 9
8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719
DC INPUT MODULE AID32B1 SLOT 10
DC INPUT MODULEFLOWMETER SIGNAL DESCRIPTION CONTACT–INPUT INTERFACE (SEE NOTE 2) CONTACT NUMBER 1 1–D6 PULSE COUNTER BIT 14 2 2–D3 PULSE COUNTER BIT 11 3 3–D0 PULSE COUNTER BIT 8 4 SPARE 4 5 SPARE 5 6 6–C3 PULSE COUNTER BIT 3 7 7–C0 PULSE COUNTER BIT 0 SPARE 8 8 SPARE 9 9 10 10–B6 PULSE PERIOD BIT 13 11 11–B3 PULSE PERIOD BIT 10 12–B0 12 PULSE PERIOD BIT 7 SPARE 13 13 SPARE 14 14 15 PULSE PERIOD BIT 2 15–A3 16 16–A0 NEW DATA AVAILABLE SPARE 17 17 SPARE 18 18 PULSE COUNTER BIT 12 19 19–D4 PULSE COUNTER BIT 9 20 20–D1 +24VDC 21 21 22 22–C6 PULSE COUNTER BIT 6 23 23–C4 PULSE COUNTER BIT 4 24 24–C1 PULSE COUNTER BIT 1 25 25 SPARE 26 26 SPARE 27 27–B4 PULSE PERIOD BIT 11 28 28–B1 PULSE PERIOD BIT 8 29 29 +24VDC 30 30–A6 PULSE PERIOD BIT 5 31–A4 31 PULSE PERIOD BIT 3 32 32–A1 PULSE PERIOD BIT 0 33 PULSE COUNTER BIT 15 33–D7 34 PULSE COUNTER BIT 13 34–D5 35 PULSE COUNTER BIT 10 35–D2 +24VDC 36 36 37 PULSE COUNTER BIT 7 37–C7 38–C5 38 PULSE COUNTER BIT 5 39 PULSE COUNTER BIT 2 39–C2 +24VDC 40 40 +24VDC 41 41 42 PULSE PERIOD BIT 14 42–B7 43 PULSE PERIOD BIT 12 43–B5 44 44–B2 PULSE PERIOD BIT 9 +24VDC 45 45 46 46–A7 PULSE PERIOD BIT 6 47 47–A5 PULSE PERIOD BIT 4 48 48–A2 PULSE PERIOD BIT 1 +24VDC 49 49 +24VDC 50 50
FLOWMETER INTERFACE MODULE +24V +5V 0V +24V
JUMPER
0V +SIG –SIG
POWER INPUT TO ACCUFLOW COUNTER INPUT PRINTED CIRCUIT BOARD (SEE SHEET 02 FOR CONNECTIONS) SUPPLIED AS PART OF ROBOT PRODUCT REF. EE–3287–550 FLOW METER LOCATED IN P–200 ROBOT ARM
ISB6 87091 BLACK 87101 WHITE
8
1 ISB6–1
87111 RED
5
ALPHA CABLE #5163C 18 AWG 3 CONDUCTOR
I.S. GROUND
A
+24V
B
0V
C
+SIG
NOTES:
P1 7
2 ISB6–2 P1 4 ISB6–4 P1
1. TERMINALS 3 AND 7 ON THE
INTRINSICALLY SAFE BARRIER (ISB) ARE TIED TOGETHER THROUGH THE ISB BUSS BAR.
EE–3287328–001 INTRINSIC CABLE #EE–3287–117–XXX
RC
LEGEND TERMINAL IN ROBOT CONTROLLER
PP TERMINAL IN PAINT PROCESS
VALVE PANEL TERMINAL IN REMOTE EQUIPMENT DEVICE OUTSIDE THIS ENCLOSURE
REFERENCE ONLY FLOWMETER INTERFACE CABLE–40 CM LONG #EE–1063–201–001
8720 8721 8722 8723 8724 8725 8726 8727
REFERENCE ONLY HONDA #MR–50LWF XGMF–00782
REFERENCE ONLY HONDA #MR–50LWM XGMF–00788
HONDA #MR–50RMA CONNECTOR
HONDA #MR–50RFA CONNECTOR
FLOW METERINTERFACE CIRCUITRY FANUC R-J2 P-200 SINGLE STAGE PURGE PAINT PROCESS CONTROL WITH CONNECTOR OPTION SHT. 087 NE–2200–47A
12. SCHEMATICS
12–86 NOTES
MARO2P10203703E
12. SCHEMATICS
12–87
MARO2P10203703E
Figure 12–43. I/O Rack Layout FANUC R-J2 P-200 Single Stage Purge Paint Control With Connector Option
82142 82091 +5VDC +24VDC
[11] 8214F .5 AMP [11]
PCB
JD1
82092 0VDC
FLOWMETER INTERFACE MODULE
82142
MAIN CPU
+5VDC FROM #XGMF–09989 CABLE PLUGGED INTO JD1A PORT +24VDC, 0VDC FROM CP5 CONNECTOR ON CPU POWER SUPPLY CABLES/WIRING BY FANUC WIRE AS SHOWN ON SHEET 082 In Robot Controller Converts Frequency Input To 32 bit Output
82141 RACK COMMUNICATION CABLE–1 METER
SLOT NUMBER 1
2
3
4
5
6
7
8
9
10
A O D 1 6 D
A O D 1 6 D
A D A 0 2 A
A D A 0 2 A
R E S E V E D
R E S E V E D
A O D 1 6 D
A O D 1 6 D
R E S E V E D
A I D 3 2 B 1
JD1A JD1B
CP32
A I F 0 1 A
RACK POWER CABLE
32 Bit Input Module Read Interface Module Output
Channel 1 = 200-100 Transducer Counts to 4-20 mA Conversion For I/P Transducer In P-200 Outer Arm
+24VDC, 0VDC FROM SPADE CONNECTORS ON POWER INPUT UNIT CABLE/WIRING BY FANUC WIRE AS SHOWN ON SHEET 082 82091 +24VDC
82092 0VDC
82291 +24VDC
82292 0VDC
TO MAIN AIR SUPPLY SOLENOID AS SHOWN ON SHEET 082
CP6 MAIN CPU PSU MODULE
POWER INPUT UNIT (PIU)
I/O RACK LAYOUT FANUC R-J2 P-200 SINGLE STAGE PURGE PAINT PROCESS CONTROL WITH CONNECTOR OPTION SHT. 089 NE–2200–47A
12. SCHEMATICS
12–88 40 NOTES
MARO2P10203703E
Index
13 CABLES
13
MARO2P10203703E
Topics In This Chapter Cables
CABLES 13–1
Page
The following section includes separate print cable sets for the P-200 robot. . . . 13–1
13. CABLES
13–2 NOTES
MARO2P10203703E
13. CABLES
13–3
MARO2P10203703E
Figure 13–1. P-200 Purge/Battery/Paint Connection Cable REV LEV.
65.0’’ 4.0’’
CABLE VERSION
A A A A A A A
0
8.0’’ MTW, 12’’ LONG BLACK, 20 AWG. MTW, 12’’ LONG
11
EE–3287–117–005 EE–3287–117–010 EE–3287–117–015 EE–3287–117–025 EE–3287–117–035 EE–3287–117–045 EE–3287–117–055
DIM (IN – MM)
295 492 689 1083 1476 1870 2264
IN IN IN IN IN IN IN
PG
7500 12500 17500 27500 37500 47500 57500
MM MM MM MM MM MM MM
REV LEV.
NO NO NO NO NO NO NO
A A A A A A A
CABLE VERSION
DIM (IN – MM)
EE–3287–117–105 EE–3287–117–110 EE–3287–117–115 EE–3287–117–125 EE–3287–117–135 EE–3287–117–145 EE–3287–117–155
295 492 689 1083 1476 1870 2264
IN IN IN IN IN IN IN
PG
7500 MM 12500 MM 17500 MM 27500 MM 37500 MM 47500 MM 57500 MM
YES YES YES YES YES YES YES
SEE NOTE 5
LABEL
A
IS GND
15
M1
14
1’’ TYP 1–PSA1 2–PSA2
WIRE COLOR/ NUMBER WHITE–1 BLUE–2 WHITE–3 ORANGE–4 WHITE–5 GREEN–6 WHITE–7 BROWN–8 WHITE–9 GRAY–10 RED–11 BLUE–12 RED–13 ORANGE–14 RED–15 GREEN–16 RED–17 BROWN–18 RED–19 GRAY–20 BLACK–21 BLUE–22 BLACK–23 ORANGE–24
TWIST WIRE TAG PAIR ISTB CONNECT POINT NO. 1 – PSA1 2 – PSA2 5 – FSA1 6 – FSA2 ISB1–3 ISB1–4 ISB3–4 ISB3–6 ISB4–1 ISB4–2 ISB5–1 ISB5–2 ISB6–1 ISB6–2 ISB6–4 SPARE ISB7–1 ISB7–2 ISB8–1 ISB8–2 19 – HBK1 20 – HBK2 SPARE SPARE
1 2 3 4 5 6 7 8 9 10 11 12
SIGNAL NAME PS1–P PS1–N FS1–P FS1–N PSOL–1 PSOL–2 BYPASS–1 BYPASS–2 I/P 24V + I/P 0V I/P + SIG I/P – SIG FLOW 24V FLOW 0V FLOW + SIG SPARE TRIG + SIG TRIG – SIG TRIG2 + SIG TRIG2 – SIG HND BRK + HND BRK – SPARE SPARE
320’’
5–FSA1 6–FSA2 ISB1–3 ISB1–4 ISB3–4 ISB3–6 ISB4–1 ISB4–2 ISB5–1 ISB5–2
24’’ 1
2
5 6
TYP. 10
ISB7–1
9
ISB7–2 ISB8–1
SEE DETAIL 3A 10
12
SPARE
TYP.
0V–1
BLACK–25 GREEN–26 BLACK–27 BROWN–28 BLACK–29 GRAY–30 YELLOW–31 BLUE–32
6V–1 0V–1 6V–2 0V–2 6V–3 0V–3 6V–4 0V–4
CONNECTION
POINT
7
8
TYP.
17
4
3
6
O1
11
TWO PLACES IF REQUIRED
INTRINSIC REV. EE–3287–117–XXX MFG. NAME
11
SPARE
1
4.0’’ TYP.
10
ISB8–2
12
SEE NOTE 1 SEE NOTE 4
8
SEE NOTE 3 DETAIL 3B
SEE NOTE 5
TYP.
ISB6–4
9 POS SOC
N1
7
SPARE
N1
3
SEE DETAIL 3B 10
8.0’’
TWIST PAIR NO.
5
4
4
6V–1
WIRE TAG
15 POS SOC
M1
16
WIRE COLOR/ NUMBER
4
3
ISB6–2
20–HBK2
3
2
ISB6–1
19–HBK1
SEE NOTE 5
BLACK SHIELD WIRE 20 AWG
4 POS SOC
O1
INTRINSIC REV. EE–3287–117–XXX MFG. NAME
P1
2 CABLE SPECIFICATION 16PR #20 AWG CABLE HYPALON JACKET MAX. CABLE O.D. = 20.5mm (0.805” MAX.) P/N=T–14685
4.0’’ TYP
3
6.0’’ TYP
15 POS SOC
P1
3
TUBING OVER BRAID TYP.
4
4
6 R1
6V–2
4 POS SOC
R1
0V–2
2
0V–3
14
3
1 2 3 4 5 6 7 8 9
WHITE–7 BROWN–8
1 2 3 4
YELLOW–31 16 BLUE–32 SHIELD 20 AWG KEY
BATTERY PACK
18
13
TYP
TYP
3. TYP. TERMINATION OF SHIELD TO SHIELD AND SHIELD TO CONDUCTOR. CONDUCTORS SOLDERED CONNECTION SHIELD BETWEEN SHIELDS SLEEVING BULK CABLE
3.0’’ TYP.
1.0’’ TYP.
DETAIL ”A”
1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBERIN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. 2. DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL LENGTH DIMENSIONS + 1/2 IN.
(2) WIRES PER CONTACT
BRAIDED SHIELD SHRINK TUBING
ASSEMBLY NOTES:
DETAIL ”B”
HND BRK+ HND BRK–
6 7 8 9 10
I/P 24V + I/P 0V I/P + SIG I/P – SIG FLOW 24V FLOW 0V FLOW +SIG SPARE TRIG + SIG TRIG – SIG TRIG2 +SIG TRIG2 –SIG
KEY SHIELD 20 AWG
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
BLACK–25 GREEN–26 BLACK–27 BROWN–28 BLACK–29 GRAY–30 JUMPER JUMPER JUMPER JUMPER JUMPER JUMPER SHIELD KEY
6V–4 0V–4
13 14 15
6V–1 0V–1 6V–2 0V–2 6V–3 0V–3 6V–4 0V–4 6V–5 0V–5 6V–6 0V–6
20 AWG
SHIELD CONDUCTOR 20 AWG BLACK TYP SOLDERED CONNECTION BULK CABLE
CONDUCTORS
S1
5
NOTE: PINS 7 THRU 12 NOT SHOWN
SPARE SPARE
BLACK–21 11 BLUE–22 KEY SHIELD 20 AWG
1 2 3 4
15 POS SOC
S1
SHIELD 20 AWG BLACK–23 12 ORANGE–24 KEY
WHITE–9 GRAY–10 RED–11 BLUE–12 RED–13 ORANGE–14 RED–15 GREEN–16 RED–17 BROWN–18 RED–19 GRAY–20
PS1–P PS1–N FS1–P FS1–N PSOL–1 PSOL–2 20 AWG
BYPASS–1 BYPASS–2
4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4
0V–4
SIGNAL NAME
WHITE–1 1 BLUE–2 WHITE–3 2 ORANGE–4 WHITE–5 3 GREEN–6 NUMBERD SHIELD PSOL–2 KEY
6V–4
15
TWISTED PAIR NUMBER
WIRE COLOR
1 2 3 4 5 6 13 14 15
6V–3
13
16
SOC/ PIN NO.
BRAIDED SHIELD SLEEVE TUBING
FOR INTRINSIC CABLE MARKING: APPLY 4” OF BLUE SHRINK TUBING UNDER CABLE I.D. LABELS AND ALSO AT 22’ INTERVALS AS REQ’D. 5. FOR CABLE EE–3287–117–105 ONLY, USE 200’’ FOR LEFT PG LOCATION
4.
EE-3278-117-005
13. CABLES
13–4 NOTES
MARO2P10203703E
13. CABLES
13–5
MARO2P10203703E
Figure 13–2. P-200 R-J2 Paint Control Robot Arm Cable Dual Trigger
REV LEV. A
CABLE VERSION EE–3287–328–001
DIM (IN – MM) 174 IN
PG
4420 MM YES
0
A
16’’
46’’
WIRE COLOR/ NUMBER
11 4
12 PIN #
WIRE COLOR/ NUMBER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
WHITE BLACK WHITE BROWN WHITE RED WHITE ORANGE WHITE BLUE WHITE YELLOW KEY
TWIST PAIR NO. 1 2 3 4 5 6
TUBING
SIGNAL NAME I/P 24V I/P 0V I/P + SIG I/P – SIG FLOW 24V FLOW 0V FLOW + SIG SPARE TRIG + SIG TRIG – SIG TRIG2 +SIG TRIG2 –SIG
6 1 4 2
I/P
2 3’’ TYP
3
13
7
TYP. 8
9
10
5
1
SEE NOTE 1 SEE NOTE 4
4.0’’ TYP
4.0’’ TYP. P4 INTRINSIC EE–3287–328–XXX MFG. NAME REV.
6.0’’ TYP
15 PIN
SHIELD STOPS HERE
ASSEMBLY NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. 2.
DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL LENGTH DIMENSIONS + 1/2 IN.
3. TYP. TERMINATION OF SHIELD TO SHIELD AND SHIELD TO CONDUCTOR. SHIELD CONDUCTOR 20 AWG BLACK SOLDERED CONNECTION
WHITE BLUE
5
WIRE COLOR/ NUMBER
1 2
SIGNAL NAME I/P 24V I/P 0V I/P + SIG I/P – SIG
TWIST PIN PAIR NUMBER NO. 1 2
5
SIGNAL NAME TRIG + SIG TRIG – SIG
TWIST PIN NUMBER PAIR NO.
WHITE YELLOW
TRIG2
CABLE SPECIFICATION 9 PR #20 AWG CABLE HYPALON JACKET MAX. CABLE O.D. = 17.4mm (0.685” MAX.) P/N=T–11762
SEE NOTE 3
WIRE COLOR/ NUMBER
TRIG
INTRINSIC REV. EE–3287–328–XXX MFG. NAME REV.
SHIELD
CUT OF SPARE SPARES: WHITE GREEN 7 WHITE VIOLET 8 WHITE 9 GRAY
WHITE BLACK WHITE BROWN
TWIST PIN PAIR NUMBER NO.
1 2
6
SIGNAL NAME TRIG2 +SIG TRIG2 –SIG
6
FLOW
6’’
WIRE COLOR/ NUMBER WHITE RED WHITE ORANGE
TWIST PIN PAIR NUMBER NO. A B C
3 4
SIGNAL NAME FLOW 24V FLOW 0V FLOW + SIG SPARE
CUT OFF SPARE ORANGE WIRE
CUT OFF SPARE PAIRS: WHITE PAIR 7 GREEN WHITE PAIR 8 VIOLET WHITE PAIR 9 GRAY
BULK CABLE CONDUCTORS
BRAIDED SHIELD SLEEVE TUBING
4. FOR INTRINSIC CABLE MARKING:APPLY 4” OF BLUE SHRINK TUBING UNDER CABLE I.D. LABELS AND ALSO AT 22’ INTERVALS AS REQ’D.
EE-3287-328-001
13. CABLES
13–6 NOTES
MARO2P10203703E
13. CABLES
13–7
MARO2P10203703E
Figure 13–3. P-200 I/P Cable
REV
CABLE VERSION
A DIM
A
EE–3287–334–001
288 IN 7315MM
24 FT
A
EE–3287–334–002
600 IN 15240MM
50 FT
SUPERSEDED BY EE-3287-328-001
0
A
5 6’’
1’’ TYP WIRE COLOR/ NUMBER
WIRE TAG
BLK GREEN WHITE RED
0V –SIG +SIG 24V
SIGNAL NAME I/P 0V I/P –SIG I/P +SIG I/P 24V
24V 0V +SIG –SIG
4
2
3
1
TYP
3’’ TYP
TUBING OVER CABLE
12’’ 3’’
I/P EE–3287–334–00X MANUF REV
I/P EE–3287–334–00X MANUF REV
SEE NOTE 1
SHIELD (TO I.S. GND)
PIN #
WIRE COLOR/ NUMBER
1 2 3 4 5 6
BLK GREEN
I/P 0V I/P – SIG
WHITE
I/P + SIG
RED
I/P 24V
SIGNAL NAME
ASSEMBLY NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL.
2.
DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL LENGTH DIMENSIONS + 1/2 IN.
EE-3287-334-001 and 002
13. CABLES
13–8 NOTES
MARO2P10203703E
13. CABLES
13–9
MARO2P10203703E
Figure 13–4. P-200 Trigger Cable
REV
CABLE VERSION
A DIM
A
EE–3287–335–001
288 IN 7315MM
24 FT
A
EE–3287–335–002
600 IN 15240MM
50 FT
SUPERSEDED BY EE-3287-328-001
0
A
5
4
TYP WIRE COLOR RED BLK WHITE
WIRE TAG +SIG –SIG GND
SIGNAL NAME TRIG +SIG TRIG –SIG GND
3’’
0.5’’ +SIG –SIG GND
2
3
1
TYP 12’’
TUBING OVER CABLE
2’’ TYP TRIG EE–3287–335–00X MANUF REV
TRIG EE–3287–335–00X MANUF REV
SHIELD (TO I.S. GND)
PIN #
WIRE COLOR
SIGNAL NAME
1 2 3
RED BLK WHITE
TRIG + SIG TRIG – SIG GND
ASSEMBLY NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL.
2.
DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL LENGTH DIMENSIONS + 1/2 IN.
EE-3287-335-001 and 002
13. CABLES
13–10 NOTES
MARO2P10203703E
13. CABLES
13–11
MARO2P10203703E
Figure 13–5. P-200 Flow Detector Signal
REV
CABLE VERSION
A DIM
A
EE–3287–336–001
288 IN 7315MM
24 FT
A
EE–3287–336–002
600 IN 15240MM
50 FT
SUPERSEDED BY EE-3287-328-001
A
A
5 3’’ 0.5’’ WIRE COLOR RED BLACK WHITE
WIRE TAG 24V 0V +SIG
24V 0V
FLOW 24V FLOW 0V FLOW +SIG
+SIG
2
4 2’’
1 3
TUBING OVER CABLE 3’’ FLOW EE–3287–336–001 MANUF REV
FLOW EE–3287–336–00X MANUF REV
SHIELD (TO I.S. GND)
12’’ FLOW
PIN NUMBER A B C
WIRE COLOR RED BLACK WHITE
SIGNAL NAME FLOW 24V FLOW 0V FLOW + SIG
ASSEMBLY NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL.
2.
DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL LENGTH DIMENSIONS + 1/2 IN.
EE-3287-336-001 and 002
13. CABLES
13–12 NOTES
MARO2P10203703E
13. CABLES
13–13
MARO2P10203703E
Figure 13–6. Axes 1 and 2 Power Connection Cable
WIRE COLOR/ NUMBER BLUE/17 BLUE/18 BLUE/19 BLUE/20
WIRE TAG
SIGNAL NAME
BKP1
BKP1 BKM1 BKP1 BKM1
1BKP 1BKM 2BKP 2BKM
BKP1
BKM1 A
SEE NOTE 3 320’’ 24’’
BKM1
CONNECTOR LABEL
SOC/ PIN NO. 1 2 3
WIRE COLOR/ NUMBER
WIRE TAG
RED/1 WHITE/2 BLACK/3 GRN/YEL/4
1U 1V 1W 1G
RED/5 WHITE/6 BLACK/7 GRN/YEL/8
2U 2V 2W 2G
RED/9 RED/13 WHITE/10 WHITE/14 BLACK/11 BLACK/15 GRN/YEL/12 GRN/YEL/16
2U
1U
4
1V
5
AXIS 1 & 2 PWR/BRK H1
1W 1G
8 2U 2V 2W 2G
MOTOR REV. EE–3287–110–XXX MFG. NAME
MOTOR REV. EE–3287–110–XXX MFG. NAME
2U
16–#14 & 4–#18 AWG CONDUCTORS HYPALON JACKET MAX CABLE O.D.= 21.0 MM (0.825”) P/N=T–14379
2G
2W 2G
THIS GROUP HAS TWO WIRES PER TERMINAL
12 POS SOC
1” TYP 1” TYP.
6” TYP
12 POS SOC
RED/5 WHITE/6
2U 2V 2W
BLACK/7 GRN/YEL/8
NOT USED RED/9 WHITE/10 BLACK/11
4 AXIS 2 PWR/BRK J1
1W
1 3
PS95437–110–155
BLACK/3 GRN/YEL/4
11
2
AXIS 2 POWER/BRK J1
CABLE SPECIFICATION
2W
PS95437–110–155
1U
12
10
5
SIGNAL NAME
RED/1 WHITE/2
BLUE/17 BLUE/18 KEY PLUG
9
AXIS 1 POWER/BRK H1
2V
2V
6 7
WIRE COLOR/ NUMBER
GRN/YEL/12 RED/13
1V 1G
2G 1BKP 1BKM
2U 2V 2W 2G 2U
7
WHITE/14 BLACK/15
2W
8
GRN/YEL/16
2G
9 11
BLUE/19 BLUE/20 NOT USED
12
KEY PLUG
6
10
18 AWG
2V
2BKP
18 AWG
2BKM
ASSEMBLY NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. 2.
DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL LENGTH DIMENSIONS + / – 1/2 IN
3. FOR CABLE EE–3287–110–105, USE 200’’ FOR LEFT PG LOCATION
EE-3287-110-005
13. CABLES
13–14 NOTES
MARO2P10203703E
13. CABLES
13–15
MARO2P10203703E
Figure 13–7. Axes 4, 5, and 6 Motor Connection Cable
REV LEV.
0
DIM (IN – MM)
CABLE VERSION
PG
REV LEV.
CABLE VERSION
DIM (IN – MM)
PG
A
EE–3287–111–005
295
IN
7500
MM
NO
B
EE–3287–111–105
295
IN
7500
MM
YES
A
EE–3287–111–010
492
IN 12500
MM
NO
B
EE–3287–111–110
492
IN 12500
MM
YES
A
EE–3287–111–015
689
IN 17500
MM
NO
B
EE–3287–111–115
689
IN 17500
MM
YES
A
EE–3287–111–025
1083 IN 27500
MM
NO
B
EE–3287–111–125
1083 IN 27500
MM
YES
A
EE–3287–111–035
1476 IN 37500
MM
NO
B
EE–3287–111–135
1476 IN 37500
MM
YES
A
EE–3287–111–045
1870 IN 47500
MM
NO
B
EE–3287–111–145
1870 IN 47500
MM
YES
A
EE–3287–111–055
2264 IN 57500
MM
NO
B
EE–3287–111–155
2264 IN 57500
MM
YES
75’’ WIRE COLOR BLACK BLACK BLACK BLACK BLACK BLACK
5 6 11 12 17 18
WIRE TAG
SIGNAL NAME
BKP3 BKM3 BKP3 BKM3 BKP4 BKM4
4BKP 4BKM 5BKP 5BKM 6BKP 6BKM
BKP3 BKM3 BKP3 BKM3
A
BKP4 BKM4
SEE NOTE 4 320’’ CONNECTOR LABEL
24’’ 1’’ TYP AXIS NUMBER AXIS 4
AXIS 5
AXIS 6
WIRE COLOR BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK
1 2 3 4 7 8 9 10 13 14 15 16
WIRE TAG 4U 4V 4W 4G 5U 5V 5W 5G 6U 6V 6W 6G
4U 4V 4W
AXIS 4 & 5 POWER/BRK A1
4G
15 POS SOC
5U 5V 5W
MOTOR REV. EE–3287–111–XXX MFG. NAME
MOTOR REV. EE–3287–111–XXX MFG. NAME
AXIS 4 & 5 PWR/BRAKE A1
5G
CABLE SPECIFICATION 18C #18 AWG CABLE HYPALON JACKET MAX CABLE O.D.=13.5 MM (0.530”) P/N=T–14107
6U 6V 6W 6G
1’’ TYP 1’’TYP
ASSEMBLY NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. 2.
9 POS SOC
AXIS 6 POWER/BRK B1
6’’ TYP EXTRACTION TOOL: AMP #455822–2
AXIS 6 PWR/BRAKE B1
SOC/ PIN NO.
WIRE COLOR
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9
BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK KEY KEY
1 2 3 4 5 6 7 8 9 10 11 12
4U 4V 4W 4G 4BKP 4BKM 5U 5V 5W 5G 5BKP 5BKM
BLACK BLACK BLACK BLACK BLACK BLACK
13 14 15 16 17 18
6U 6V 6W 6G 6BKP 6BKM
SIGNAL NAME
KEY
DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL LENGTH DIMENSIONS + / – 1/2 IN
3. BUILD UP CABLE DIA. WITH 1/32 X 2” EPDM STRIP MATERIAL FOR PROPER PG FITTING DIA. A SMALL AMOUNT OF ADHESIVE SHOULD BE USED TO SECURE EPDM STRIP PRIOR TO APPLICATION OF SHRINK TUBING. RETAIN EPDM STRIP MAT’L WITH 6” OF SHRINK TUBING. 4. FOR CABLE EE–3287–111–105, USE 200’’ AS LEFT PG LOCATION
EE-3287-111-005 Through 155
13. CABLES
13–16 NOTES
MARO2P10203703E
13. CABLES
13–17
MARO2P10203703E
Figure 13–8. Axes 3 and 7 Power Connection Cable
REV LEV.
0
CABLE VERSION
DIM (IN – MM) MM
PG
REV LEV.
NO
B
EE–3287–112–105
295
IN
7500
MM
YES
CABLE VERSION
DIM (IN – MM)
PG
A
EE–3287–112–005
295 IN
7500
A
EE–3287–112–010
492 IN
12500 MM
NO
B
EE–3287–112–110
492
IN 12500
MM
YES
A
EE–3287–112–015
689 IN
17500 MM
NO
B
EE–3287–112–115
689
IN 17500
MM
YES
A
EE–3287–112–025
1083 IN 27500 MM
NO
B
EE–3287–112–125
1083
IN 27500
MM
YES
A
EE–3287–112–035
1476 IN 37500 MM
NO
B
EE–3287–112–135
1476
IN 37500
MM
YES
A
EE–3287–112–045
1870 IN 47500 MM
NO
B
EE–3287–112–145
1870 IN 47500
MM
YES
A
EE–3287–112–055
2264 IN 57500
NO
B
EE–3287–112–155
2264 IN 57500
MM
YES
MM
SEE NOTE 3
75’’ WIRE COLOR/ NUMBER BLUE/17 BLUE/18 BLUE/19 BLUE/20
WIRE TAG
SIGNAL NAME
BKP2 BKM2 BKP2 BKM2
3BKP 3BKM 7BKP 7BKM
BKP2 BKM2 BKP2 BKM2
A
CONNECTOR LABEL
SEE NOTE 3 320’’
1
1’’ TYP WIRE COLOR/ NUMBER RED/1 WHITE/2 BLACK/3 GRN/YEL/4 RED/5 WHITE/6 BLACK/7 GRN/YEL/8 RED/9 WHITE/10 BLACK/11
WIRE TAG
3G 3U
2 3
3U
4
3V
AXIS 3 PWR/BRK K1
3G 3U
3G 7U 7V
RED/13 WHITE/14 BLACK/15
7V 7W
GRN/YEL/16
7G
5 6 7 8
3V
AXIS 3 POWER/BRK K1
3W
12 POS SOC
MOTOR REV. EE–3287–112–XXX MFG. NAME
7U 7V 7W
CABLE SPECIFICATION 16–#14 & 4–#18 AWG CONDUCTORS HYPALON JACKET MAX CABLE O.D.= 21.0 MM (0.825”) P/N=T–14379 1’’ TYP
7G 7U 7V 7W 7G
1’’TYP 6’’ TYP
1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. 2.
RED/5 WHITE/6
3U
BLACK/7 GRN/YEL/8
3W
RED/9 WHITE/10 BLACK/11
5 6 7 8
ASSEMBLY NOTES:
3W
KEY PLUG
4 AXIS 7 PWR/BRK L1
BLACK/3 GRN/YEL/4
1 3
12 POS SOC
3U
11
2
AXIS 7 POWER/BRK L1
9
GRN/YEL/12 RED/13 WHITE/14 BLACK/15 GRN/YEL/16 KEY PLUG
10
NOT USED
11
BLUE/19 BLUE/20
12
SIGNAL NAME
RED/1 WHITE/2
12
10 MOTOR REV. EE–3287–112–XXX MFG. NAME
WIRE COLOR/ NUMBER
BLUE/17 BLUE/18 KEY PLUG
9
3G
3V 3W
7W 7G 7U
GRN/YEL/12
24’’
3W
3U 3V 3W
SOC/ PIN NO.
3V 3G 3V 3G 3BKP 3BKM
18 AWG
7U 7V 7W 7G 7U 7V 7W 7G
7BKP
18 AWG
7BKM
DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL LENGTH DIMENSIONS + / – 1/2 IN
3. FOR CABLE EE–3287–112–105, USE 200’’ FOR LEFT PG LOCATION
EE-3287-112-005 Through 155
13. CABLES
13–18 NOTES
MARO2P10203703E
13. CABLES
13–19
MARO2P10203703E
Figure 13–9. EE-3287-113-005 through 155 Pulse Cable
13. CABLES
13–20 NOTES
MARO2P10203703E
13. CABLES
13–21
MARO2P10203703E
Figure 13–10.
P-200 R-J2 Purge/Battery Connection Cable
REV LEV.
0 65.0’’ 4.0’’
8.0’’
IS GND
CABLE VERSION
DIM (IN – MM)
PG
REV LEV.
CABLE VERSION
DIM (IN – MM)
PG
A
EE–3287–115–005
295
IN
7500
MM
NO
B
EE–3287–115–105
295
IN
7500
MM
YES
A
EE–3287–115–010
492
IN
12500
MM
NO
B
EE–3287–115–110
492
IN
12500
MM
YES
A
EE–3287–115–015
689
IN
17500
MM
NO
B
EE–3287–115–115
689
IN
17500
MM
YES
A
EE–3287–115–025
1083
IN
27500
MM
NO
B
EE–3287–115–125
1083
IN
27500
MM
YES
A
EE–3287–115–035
1476
IN
37500
MM
NO
B
EE–3287–115–135
1476
IN
37500
MM
YES
A
EE–3287–115–045
1870
IN
47500
MM
NO
B
EE–3287–115–145
1870
IN
47500
MM
YES
A
EE–3287–115–055
2264
IN
57500
MM
NO
B
EE–3287–115–155
2264
IN
57500
MM
YES
SEE NOTE 6
CONNECTOR LABEL A
SEE NOTE 6 320’’
1’’ TYP 1–PSA1
WIRE COLOR/ NUMBER WHITE–1 BLUE–2 WHITE–3 ORANGE–4 WHITE–5 GREEN–6 WHITE–7 BROWN–8 WHITE–9 GRAY–10 RED–11 BLUE–12 RED–13 ORANGE–14 RED–15 GREEN–16
TWIST WIRE TAG PAIR ISTB NO. CONNECT POINT 1 – PSA1 1 2 – PSA2 5 – FSA1 2 6 – FSA2 ISB1 – 3 3 ISB1 – 4 GND 4 GND GND 5 GND GND 6 GND GND 7 GND PARK–P 8 PARK–N
SIGNAL NAME PS1–P PS1–N FS1–P FS1–N PSOL–1 PSOL–2 OT1–P OT1–N OT2–P OT2–N OT3–P OT3–N XOTP XOTN CRASHP CRASHN
24’’
2–PSA2
M1
5–FSA1 6–FSA2
ISB1–3
ISB1–4
15 POS SOC
M1
GND GND GND GND GND
TIE–WRAP SPARES
GND GND
4.0’’ TYP. INTRINSIC REV. EE–3287–115–XXX MFG. NAME
PARK–P PARK–N
9 POS SOC
N1
GND
N1
INTRINSIC REV. EE–3287–115–XXX MFG. NAME
R1
8.0’’ 6V–1
WIRE COLOR/ NUMBER RED–17 BROWN–18 RED–19 GRAY–20 BLACK–21 BLUE–22 BLACK–23 ORANGE–24 BLACK–25 GREEN–26 BLACK–27 BROWN–28 BLACK–29 GRAY–30
WIRE TAG 6V–1 0V–1 6V–2 0V–2 6V–3 0V–3 6V–4 0V–4 6V–5 0V–5 6V–6 0V–6 6V–7 0V–7
TWIST PAIR NO. 9 9 10 10 11 11 12 12 13 13 14 14 15 15
CONNECTION POINT
6V–2 0V–2 6V–3
4.0’’ TYP
6.0’’ TYP
4 POS SOC
R1
S1
0V–3
BATTERY PACK
6V–4
15 POS SOC
S1
0V–4 6V–5 0V–5
3.0’’ TYP.
ASSEMBLY NOTES:
6V–6 0V–6 6V–7
CUT SPARE WIRES AT STRIP BACK PR–16 YELLOW–31 & BLUE–32
CABLE SPECIFICATION 16PR #20 AWG CABLE HYPALON JACKET MAX. CABLE O.D. = 20.5mm (0.805” MAX.) P/N=T–14685
0V–1
0V–7
1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. 2.
1.0’’ TYP.
SOC/ PIN NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 1 2 3 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
WIRE SIGNAL TWISTED PAIR NAME NUMBER COLOR PS1–P 1 PS1–N FS1–P 2 FS1–N PSOL–1 3 PSOL–2 OT1–P 4 OT1–N OT2–P 5 OT2–N OT3–P 6 OT3–N SHIELD PSOL–2N KEY SHIELD 18 AWG XOT–P 7 XOT–N CRASH–P 8 CRASH–N SHIELD 18 AWG SHIELD 18 AWG
WHITE–1 BLUE–2 WHITE–3 ORANGE–4 WHITE–5 GREEN–6 WHITE–7 BROWN–8 WHITE–9 GRAY–10 RED–11 BLUE–12
18 AWG RED–13 ORANGE–14 RED–15 GREEN–16
KEY 6V–7 0V–7 SHIELD KEY 6V–1 0V–1 6V–2 0V–2 6V–3 0V–3 6V–4 0V–4 6V–5 0V–5 6V–6 0V–6 SHIELD
15
BLACK–29 GRAY–30
18 AWG 9 10 11 12 13 14 18 AWG
RED–17 BROWN–18 RED–19 GRAY–20 BLACK–21 BLUE–22 BLACK–23 ORANGE–24
BLACK–25 GREEN–26 BLACK–27 BROWN–28
KEY
CUT SPARE WIRES AT STRIP BACK PR–16 YELLOW–31 & BLUE–32
EXTRACTION TOOL: AMP # 455822–2
DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL LENGTH DIMENSIONS + 1/2 IN.
3. TYP. TERMINATION OF SHIELD TO SHIELD AND SHIELD TO CONDUCTOR.
CONDUCTORS SHIELD SLEEVING DETAIL ”A”
SOLDERED CONNECTION BETWEEN SHIELDS BULK CABLE
BRAIDED SHIELD SHRINK TUBING DETAIL ”B”
SHIELD CONDUCTOR 18 AWG BLACK (2) SOLDERED CONNECTION BULK CABLE
CONDUCTORS
4. FOR INTRINSIC CABLE MARKING: APPLY 4” OF BLUE SHRINK TUBING UNDER CABLE I.D. LABELS AND ALSO AT 22’ INTERVALS AS REQ’D. 5. BUILD UP CABLE DIA. WITH 1/32 X 2” EPDM STRIP MATERIAL FOR PROPER PG FITTING DIA. A SMALL AMOUNT OF ADHESIVE SHOULD BE USED TO SECURE EPDM STRIP PRIOR TO APPLICATION OF SHRINK TUBING. RETAIN EPDM STRIP MAT’L WITH 2” OF BLUE SHRINK TUBING. 6. FOR CABLE EE–3287–115–105, USE 200’’ FOR LEFT PG LOCATION
BRAIDED SHIELD SLEEVE TUBING
EE-3287-115-005 through 155
13. CABLES
13–22 NOTES
MARO2P10203703E
13. CABLES
13–23
MARO2P10203703E
Figure 13–11.
P-200 Robot Ground Cable
REV LEV.
CABLE VERSION
DIM (IN – MM)
PG
REV LEV.
CABLE VERSION
DIM (IN – MM)
PG
A
EE–3287–116–005
295
IN
7500
MM
NO
B
EE–3287–116–105
295
IN
7500
MM
YES
A
EE–3287–116–010
492
IN
12500
MM
NO
B
EE–3287–116–110
492
IN
12500
MM
YES
A
EE–3287–116–015
688
IN
17500
MM
NO
B
EE–3287–116–115
688
IN
17500
MM
YES
A
EE–3287–116–025
1083
IN
27500
MM
NO
B
EE–3287–116–125
1083
IN
27500
MM
YES
A
EE–3287–116–035
1476
IN
37500
MM
NO
B
EE–3287–116–135
1476
IN
37500
MM
YES
A
EE–3287–116–045
1870
IN
47500
MM
NO
B
EE–3287–116–145
1870
IN
47500
MM
YES
A
EE–3287–116–055
2264
IN
57500
MM
NO
B
EE–3287–116–155
2264
IN
57500
MM
YES
SEE NOTE 4
SEE NOTE 4 320’’ 24’’
GROUND REV. EE–3287–116–XXX MFG. NAME
GROUND REV. EE–3287–116–XXX MFG. NAME
1” TYP. CABLE SPECIFICATION #8 AWG TINNED COPPER GRN W/2 CO–EXTRUDED YELLOW STRIPS MAXCABLE O.D.=6.9 MM (0.27 ”) P/N=#XP0845168–165 NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. 2. REF. ENGINEERING GUIDELINE EG–00084 FOR CABLE FABRICATION SPECIFICATIONS. 3. SEE LENGTH CHART FOR CABLE VERSION REVISION LEVEL. DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL DIMENSIONS +/– 0.5’’ 4. FOR CABLE EE–3287–116–105, USE 200’’ FOR LEFT PG LOCATION
EE-3287-116-005 through 155
13. CABLES
13–24 NOTES
MARO2P10203703E
13. CABLES
13–25
MARO2P10203703E
Figure 13–12. Axes 1, 2, and 3 Power and Pulse Harness
CONNECTOR LABEL
C4
PIN NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
11’’ TWISTED PAIR #
WIRE TYPE & COLOR
BRAIDED SHIELD
SLEEVE TYPE
2 POS SOC
4 5 6 7
6 TWISTED PAIRS 20 AWG 41/36 TINNED COPPER BLACK PVC INS
2 POS SOC
CONN 2
2 POS SOC
CONN 3 NO SHIELD CONNECTION AT THESE CONNECTORS
8
EXTRACTION TOOL: AMP #455822–2 9 (2) 18 AWG WIRES CONNECTED TO THE BRAID
EXTRACTION TOOL: AMP #455822–2 22’’
PWR–1
J4 PWR–2
K4 PWR–3
1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
SIGNAL NAME 1U 1V 1W 1G 2U 2V 2W 2G 1BKP 1BKM
WIRE COLOR BLACK1 BLACK2 BLACK3 GRN/YEL4 BLACK5 BLACK6 BLACK7 GRN/YEL8 BLACK9 BLACK10
2U 2V 2W 2G 2U 2V 2W 2G 2BKP 2BKM
KEY PLUG BLACK11 BLACK12 BLACK13 GRN/YEL14 BLACK15 BLACK16 BLACK17 BLACK18 BLACK19 BLACK20 KEY PLUG
3U 3V 3W 3G 3U 3V 3W 3G 3BKP 3BKM
BLACK21 BLACK22 BLACK23 GRN/YEL24 BLACK 25 BLACK 26 BLACK 27 GRN/YEL28 BLACK 29 BLACK 30
SLEEVE TYPE
BLACK EXPANDO
CONDUCTOR SIZE 16 AWG 16 AWG 16 AWG 16 AWG 16 AWG 16 AWG 16 AWG 16 AWG 18 AWG 18 AWG
23’’ 24’’
BLACK EXPANDO
BLACK EXPANDO
A
SEC. E–E PULSE 3 ENCODER CONNECTOR
GUIDE KEY CABLE RUN
SEC. D–D AXIS 2 POWER CONNECTOR 24–10S
150’’
SIGNAL NAME
PWR–3
A B C D
3U 3V 3W 3G
BRK–3
A B
3BKP 3BKM
PULSE–3
A D F G J N S R
3D 3*D 3RQ 3*RQ 5V 0V 0VA 6VA SHIELD
PULSE–3 2 PIN
E
SHIELDED
1 2
6VA 0VA
A B C D E F G
2U 2U 2V 2V 2W 2W 2G
BRK–2
A B
2BKP 2BKM
PULSE–2
A D F G J N S R
2D 2*D 2RQ 2*RQ 5V 0V 0VA 6VA SHIELD
BATT–2
1 2
6VA 0VA
PWR–1
A B C D
1U 1V 1W 1G
BRK–1
A B
1BKP 1BKM
PULSE–1
A D F G J N S R
1D 1*D 1RQ 1*RQ 5V 0V 0VA 6VA SHIELD
1 2
6VA 0VA
E
6” LG BRANCH
BATT–3
PWR–2
120’’ GROUND 2 GROUND 1
0’’
45’’
40’’
GROUND 1
113’’
95’’ PWR/PULSE 1–3 EE–3287–321–001 MFG NAME REV
23’’ 24’’
12 POS
D 113’’ BRK–2
H4
PWR 1&2
PIN
C
EXPANDO OVER CONDUCTORS
CABLE RUN
22’’
B A
10SL–3
12 POS
2 PIN
BATT–2
23’’ PIN
115’’
PWR–1
K4
18–10S
B
EXPANDO OVER CONDUCTORS
PWR–3
A
18–10
CABLE RUN
24’’
A
113’’
GUIDE KEY
TYPICAL FOR POWER AND BRAKE
SEC. B–B AXIS 1 POWER CONNECTOR
113’’
B
115’’
BRK–1 FRONT VIEW OF SOCKETS
TYP
GUIDE KEY CABLE RUN
C
EXPANDO OVER SHIELD OVER CONDUCTORS TYPICAL FOR PULSE 113’’
20–29SW
ASSEMBLY NOTES:
2 PIN
SHIELDED
10SL–3S TYP BATT–1
BATT–1
6” LG BRANCH
C 115’’
PULSE–1
SEC. A–A PULSE 1 AND PULSE 2 ENCODER CONNECTOR
WIRE COLOR COND. QTY. & SIZE OR PAIR # BLK 21 & 25 BLK 22 & 26 BLK 23 & 27 G/Y 24 & 28
(1) 18 AWG (1) 18 AWG
8
TWISTED PAIRS 20 AWG 19/ 32 600V BLACK PTFE INS
3
SHIELDED 20 AWG PTFE BLACK WIRE JUMPERS
BLK 5 & 11 BLACK 15
BLACK 17 G/Y 8,14,18
(2) 16 AWG (1) 16 AWG (2) 16 AWG (1) 16 AWG (2) 18 AWG (1) 18 AWG (3) 16 AWG
BLACK 19 BLACK 20
(1) 18 AWG (1) 18 AWG
BLK 6 &12 BLACK 16 BLK 7 & 13
TWISTED PAIRS 20 AWG 19/ 32 600V BLACK PTFE INS
6 7 2
SLEEVE TYPE
(2) 16 AWG (2) 16 AWG (2) 16 AWG (2) 16 AWG
BLACK 29 BLACK 30
9
BRAIDED SHIELD
SHIELDED 20 AWG PTFE BLACK WIRE JUMPERS
BLACK EXPANDO
36 AWG TINNED COPPER BRAID
BLACK EXPANDO
36 AWG TINNED COPPER BRAID
20–29S
SHIELDED
BRK 1 ,2 & 3 BRAKE CONNECTOR
22’’
115’’
PULSE–2
SEC. C–C
J4
PWR–2
D
115’’
113’’
GUIDE KEY 23’’ 24’’
12 POS
115’’
PWR–2
TYPICAL 3 PLACES
POWER WIRE = 16 AWG 19/ 29 600V UL1199 PTFE W/BLK OR GRN/YEL INS. BRAKE WIRE = 18 AWG 19/ 30 600V UL1199 PTFE W/BLK INS.
1. ALL LENGTH DIMENSIONS + 1/2 IN. 2. SPECIFIC WIRE, LABELS, SHIELD AND SLEEVE MATERIAL NOT CALLED OUT ON BOM. 3. HARNESS ASS’Y. LABEL TO BE ATTACHED AS SHOWN WITH ALL INFORMATION INDICATED.
20–29S POTTED BACKSHELL SEE NOTE 5
BATT–3
SPLIT POINTS COVER W/TAPE WRAP CONNECT SHIELDS SEE NOTE 4B
PIN
16 AWG 16 AWG 16 AWG 16 AWG 16 AWG 16 AWG 16 AWG 16 AWG 18 AWG 18 AWG
SOC/PIN NO.
10SL–3S
148’’ 130’’
GUIDE KEY
C4
15 PIN
22’’ 16 AWG 16 AWG 16 AWG 16 AWG 16 AWG 16 AWG 16 AWG 16 AWG 18 AWG 18 AWG
CONNECTOR LABEL
150’’
148’’
20–29SW
D
H4
PIN NO.
CABLE RUN
C
CONNECTOR LABEL
22–22S
4’’
11’’
11’’ BLACK EXPANDO
F BACKSHELL
BRK–3
10’’ 36 AWG TINNED COPPER BRAID
POTTED
F 22–22S
CONN 1 10’’
1D 1*D 1RQ 1*RQ 2D 2*D 2RQ 2*RQ 3D 3*D 3RQ 3*RQ SHIELD SHIELD
B
C
0V SIGNAL NAME
150’’
SEC. F – F AXIS 3 POWER CONNECTOR
10’’
3 2
148’’
GUIDE KEY
EXPANDO OVER SHIELD OVER CONDUCTORS
CONN 3
150’’
PWR–3
B
5V
CABLE RUN
A
0V
BLACK EXPANDO
148 GROUND 2
B
1
36 AWG TINNED COPPER BRAID
FRONT VIEW OF SOCKETS
F
2
3 TWISTED PAIRS 20 AWG 19 /32 600V BLACK PTFF INS
SHELL/KEY ASSEMBLY POSITION
D
2
SLEEVE TYPE
A
5V
BRAIDED SHIELD
G
1
0V
WIRE TYPE & COLOR
C
5V 1
2 CONN 2
TWISTED PAIR #
E
1
SIGNAL NAME
D
CONN 1
SOCKET NO.
EXPANDO OVER SHIELD OVER CONDUCTORS
CONNECTOR LABEL
A
BLK1 BLK2 BLK3 GRN/YEL4
(1) 16 AWG (1) 16 AWG (1) 16 AWG (1) 16 AWG
BLACK 9 BLACK 10
(1) 18 AWG (1) 18 AWG
4
TWISTED PAIRS 20 AWG 19/ 32 600V BLACK PTFE INS
5 1
SHIELDED 20 AWG PTFE BLACK WIRE JUMPERS
BLACK EXPANDO
36 AWG TINNED COPPER BRAID
20–29S TYP POTTED BACKSHELL SEE NOTE 5
A
4. TERMINATION OF SHIELD TO CONDUCTOR & SHIELD TO SHIELD SHIELD CONDUCTOR 18 AWG BLACK SOLDERED CONNECTION COVER W/SHRINK TUBING SLEEVING CONDUCTORS
CONDUCTORS SHIELD SLEEVING
SOLDERED CONNECTION BETWEEN SHIELDS
5. HEIGHT OF POTTED CONNECTORS
SLEEVING 1.75’’ MAX
BRAIDED SHIELD SLEEVE TUBING
DETAIL ”A”
BRAIDED SHIELD
DETAIL ”B”
TAPE WRAP TRUNK TO LEGS
EE-3287-321-001
13. CABLES
13–26 NOTES
MARO2P10203703E
13. CABLES
13–27
MARO2P10203703E
Figure 13–13. Axes 4, 5, and 6 Power Harness
5V
1
2 0V
2 1
5V
CONN 6
36 AWG TINNED COPPER BRAID
2 POS SOC
0V
2 POS SOC
D4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
TWISTED WIRE TYPE BRAIDED PAIR # & COLOR SHIELD
4D 4*D 4RQ 4*RQ 5D 5*D 5RQ 5*RQ 6D 6*D 6RQ 6*RQ
SLEEVE DESCRIP
6 7 8
6 TWISTED PAIRS 20 AWG 19/ 32 UL1199 600V BLACK PTFE
36 AWG TINNED COPPER BRAID
2 POS SOC
1’’ CONN 6
BLACK EXPANDO
12’’ 13’’
15 POS PIN
CONNECTOR LABEL
14’’ CONNECT SHIELD SEE NOTE 4
1
BLACK
1
4U
2
BLACK
2
4V
3
BLACK
3
4W
4
BLACK
4
5
BLACK
5
4G
WIRE TYPE & COLOR
6
BLACK
6
BLACK
7
5U
8
BLACK
8
5V
9
BLACK
9
5W
GRN/YEL
10
BLACK
10
5G
11
BLACK
11
5BKP
12
BLACK
12
5BKM
13’’
14’’ A4
GRN/YEL
7
4BKM
12’’ 15 POS PIN
18 AWG 19/30 UL1199 600V BLACK PTFE
4BKP
SLEEVE DESCRIP
BLACK EXPANDO
12’’ 9 POS PIN
13’’
EXPANDO OVER CONDUCTORS
A4
SIGNAL NAME
PULSE 5
PULSE 5
6’’ LG BRANCH BATT 5
2 PIN BATT 5
CONNECTOR LABEL
PIN NO. A1 A2 A3 B3 A4 B4 A5 A6 B6 1 2
204’’
202’’
PULSE 6
(2) 18AWG WIRES CONNECTED TO THE BRAID
SOC/ PIN CONDUCTOR NUMBER NO.
1 8 5 6 12 13 14 10 N/C 1 2
202’’
30’’
CONNECTOR LABEL
PIN NO.
TYP 5MM
D4
9
SHIELD SHIELD
2 PIN
4’’
4 5
BATT 4
6’’ LG BRANCH
CONN 5
0’’
SIGNAL NAME
PULSE 4
BATT 4
1’’
PULSE 4
204’’
202’’
CONN 4
0’’
CONNECTORSOC/ PIN LABEL NO.
1 8 5 6 12 13 14 10 N/C 1 2
GROUND
GROUND WIRE #8 AWG 168/30 TINNED COPPER FLEXIBLE POLYETHYLENE JACKET GREEN WITH TWO CO–EXTRUDED YELLOW STRIPES 180 APART BRAND REX #XP0845168–165
BLACK EXPANDO
3 2
PIN NO.
CONNECTOR LABEL
210’’
EXPANDO OVER SHIELD OVER CONDUCTORS
1 0V
3 TWISTED PAIRS 20 AWG 19/ 32 UL1199 600V BLACK PTFE
SLEEVE DESCRIP
35’’
SPLIT POINTS SPLICE SHIELDS APPLY TAPE WRAP SEE NOTE 4
PULSE 6
6’’ LG BRANCH
165’’
BATT 6
2 PIN
PWR/PULSE 4–6 EE–3287–322–001 MFG NAME REV
130’’
BATT 6
24’’ LENGTH OUTSIDE HARNESS
14’’ B4
13
EXPANDO OVER CONDUCTORS
5V
1 2
CONN 5
TWISTED WIRE TYPE BRAIDED PAIR # & COLOR SHIELD
GROUND
CONN 4
SIGNAL NAME
EXPANDO OVER SHIELD OVER CONDUCTORS
CONNECTORSOC/ PIN LABEL NO.
DISCARD RETAINING SCREWS SUPPLIED WITH BACKSHELL AND REPLACE WITH ITEM 13. USE O–RING ITEM 14 AS RETAINER FOR CONNECTOR MTG SCREWS (INTERNAL TO SHELL). NOTE: SCREW THREAD SHOULD NOT EXCEED 5mm BEYOND CONNECTOR FACE.
CONNECTOR LABEL
TYP 17–PLACES 202’’
PWR 4
204’’
PWR 5
PWR 5
14 15
KEY
202’’
EXTRACTION TOOL: AMP 455822–2
204’’
PWR 6 PWR 6
CONNECTOR LABEL
B4
SOC/ PIN CONDUCTOR NUMBER NO.
SIGNAL NAME
1
BLACK
13
6U
2
BLACK
14
6V
3
BLACK
15
4
BLACK
16
5
BLACK
17
6BKP
6
BLACK
18
6BKM
7
KEY
8
KEY
9
WIRE TYPE & COLOR
4RQ
4*RQ 4D 4*D 6VA 0VA SHIELD 6VA 0VA
SIGNAL NAME 0V 5V 5RQ
5*RQ 5D 5*D 6VA 0VA SHIELD 6VA 0VA
SIGNAL NAME 0V 5V 6RQ
6*RQ 6D 6*D 6VA 0VA SHIELD 6VA 0VA
SLEEVE DESCRIP
GRN/YEL
TWISTED PAIR #
3 PAIRS 20 AWG 19/ 32 UL1199 600V PTFE
1 5 4
BRAIDED SHIELD
SLEEVE TYPE
36 AWG TINNED COPPER BRAID
BLACK EXPANDO
BRAIDED SHIELD
SLEEVE TYPE
36 AWG TINNED COPPER BRAID
BLACK EXPANDO
BRAIDED SHIELD
SLEEVE TYPE
36 AWG TINNED COPPER BRAID
BLACK EXPANDO
SHIELDED 20 AWG PTFE BLACK WIRE JUMPERS
TWISTED PAIR #
WIRE TYPE & COLOR 3 PAIRS 20 AWG 19/ 32 UL1199 600V PTFE
2 7 6
SHIELDED 20 AWG PTFE BLACK WIRE JUMPERS
TWISTED PAIR #
WIRE TYPE & COLOR 3 PAIRS 20 AWG 19/ 32 UL1199 600V PTFE
3 9 8
SHIELDED 20 AWG PTFE BLACK WIRE JUMPERS
BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
18 AWG TINNED PTFE
EXPANDO
WIRE TYPE & COLOR
CONDUCTOR SOC/ NUMBER PIN NO.
BLACK
6W 6G
0V 5V
1 2 3 4 5 6 1 2 3 4 5 6 A1 A2 A3 B1 B2 B3
202’’ PWR 4
SIGNAL NAME
SIGNAL NAME 4U 4V 4W 4G 4BKP 4BKM 5U 5V 5W 5G 5BKP 5BKM 6U 6V 6W 6G 6BKP 6BKM
WIRE TYPE & COLOR BLACK BLACK BLACK GRN/YEL BLACK BLACK BLACK BLACK BLACK GRN/YEL BLACK BLACK BLACK BLACK BLACK GRN/YEL BLACK BLACK
SLEEVE TYPE
BLACK EXPANDO
19/30 COPPER
TERMINATION OF SHIELD TO CONDUCTOR AND SHIELD TO SHIELD
18 AWG 19/30 UL1199 600V BLACK PTFE
SHIELD CONDUCTOR 14 AWG BLACK SOLDERED CONNECTION COVER W/SHRINK TUBING SLEEVING
CONDUCTORS
BRAIDED SHIELD SLEEVE TUBING
DETAIL ”A”
CONDUCTORS SHIELD SLEEVING
SOLDERED CONNECTION BETWEEN SHIELDS SLEEVING
BRAIDED SHIELD
TAPE WRAP ,TRUNK TO LEGS
DETAIL ”B”
EE-3287-322-001
13. CABLES
13–28 NOTES
MARO2P10203703E
13. CABLES
13–29
MARO2P10203703E
Figure 13–14.
Purge Control Cable
EE-3287-323-001
13. CABLES
13–30 NOTES
MARO2P10203703E
13. CABLES
13–31
MARO2P10203703E
Figure 13–15. Six Axis Battery Harness
202’’ 204’’ TAPE WRAPPED SPLIT POINT SHIELDS SPLICED SEE DET 4B
BATT AXIS 4
CONNECTOR LABEL
SOC
BATT
202’’ 204’’
160’’
BATT
202’’ 204’’
TAPE WRAPPED SPLIT POINT SHIELDS SPLICED SEE DET 4B
15 PIN MINI 0’’
1’’
3’’
5’’
S4
BATT
CONNECTOR LABEL
S4
PIN NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
SIGNAL NAME 6V–1 0V–1 6V–2 0V–2 6V–3 0V–3 6V–4 0V–4 6V–5 0V–5 6V–6 0V–6 SHIELD
1 2 3
4 5
BRAIDED SHIELD
2 POS SOC
CONNECTOR LABEL
TWISTED PAIRS 20 AWG 19/ 32 UL 1199 600V PTFE BLACK
BATT AXIS 3
AXIS 1
140’’ 2 POS SOC
BATT AXIS 2
TYP. END POINT OF SHIELD & SLEEVE SHIELD STOPS BEFORE SLEEVE.
6
EXTRACTION TOOL: AMP # 455822–2 36 AWG TINNED COPPER BRAID
6V–5
2
0V–5
1
6V–6
2
0V–6
3 PAIRS 20 AWG 19/ 32 UL 1199 600V PTFE BLACK
36 AWG TINNED COPPER BRAID
105’’ BATT AXIS 2
BATT
WIRE TYPE & COLOR
1
BRAIDED SHIELD
6
AXIS 6
TYP. END POINT OF SHIELD/JACKET
SEE NOTE 4, DETAIL A FOR SHIELD CONNECTION
TWISTED PAIR NUMBER
0V–4
WIRE TYPE & COLOR
EXTRACTION TOOL: AMP # 455822–2
80’’
INTRINSICALLY SAFE
EE–3287–324–001 REV –– MANUF
2
SOC
105’’
TYP 7 PLACES 0
6V–4
5
AXIS 5
BATT AXIS 6
2 POS SOC
1
TWISTED PAIR NUMBER
SOC
BLUE EXPANDO OVER BRAID SHIELD OVER CONDUCTORS, TYP.
BATT AXIS 1
SIGNAL NAME
4
AXIS 4
BATT AXIS 5
SOC/ PIN NO.
SOC/ PIN NO.
SIGNAL NAME
1
6V–1
2
0V–1
1
1
6V–2
2
0V–2
1
6V–3
2
0V–3
2
BATT AXIS 3
TWISTED PAIR NUMBER
WIRE TYPE & COLOR
BRAIDED SHIELD
3 PAIRS 20 AWG 19/ 32 UL 1199 600V PTFE BLACK
36 AWG TINNED COPPER BRAID
3
6 18AWG BLK
TERMINATION OF SHIELD TO CONDUCTOR AND SHIELD TO SHIELD SHIELD CONDUCTOR 14 AWG BLACK SOLDERED CONNECTION COVER W/SHRINK TUBING SLEEVING
CONDUCTORS
BRAIDED SHIELD SLEEVE TUBING DETAIL ”A”
SOLDERED CONNECTION BETWEEN SHIELDS
CONDUCTORS SHIELD SLEEVING
SLEEVING
BRAIDED SHIELD DETAIL ”B”
TAPE WRAP TRUNK TO LEGS
EE-3287-324-001
13. CABLES
13–32 NOTES
MARO2P10203703E
13. CABLES
13–33
MARO2P10203703E
Figure 13–16. Purge Flow Switch Arm Cable
REV LEVEL
CABLE VERSION EE–3287–340–001
A
DIM. A 18 IN 457 MM
PG
NO
A
0 2’’ CONNECTOR LABEL FS1
PIN NO. 1 2
WIRE COLOR BLUE BLACK
SIGNAL NAME FS1/NO FS1/C
FLOW SWITCH
SLEEVE COLOR & MAT’L LT. BLUE EXPANDO
2 PIN
FS1 REV. EE–3287–340–001 MANUF. NAME
CUT OFF SPARE RED WIRE
1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. SEE LENGTH CHART FOR REV LEVEL DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION.
EE-3287-340-001
13. CABLES
13–34 NOTES
MARO2P10203703E
13. CABLES
13–35
MARO2P10203703E
Figure 13–17. Solenoid Cable
REV LEVEL B
CABLE VERSION
DIM. A 18 IN 457 MM
EE–3287–348–001
PG
CONNECTOR LABEL
PIN NO.
WIRE COLOR
SIGNAL NAME
RED BLACK
PSOL–1 PSOL–2
NO 1 2
SOL1
A
0 9” 2”
CONNECTOR LABEL
INTRINSICALLY SAFE
2 PIN
SOL1
SOL REV. EE–3287–348–XXX MFG. NAME
SOL1 SOL1
SOC/ PIN NO. 1 2 3
WIRE COLOR
SIGNAL NAME
RED BLACK NC
PSOL–1 PSOL–2
SEE NOTE 1 NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. SEE LENGTH CHART FOR REV LEVEL DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION.
EE-3287-348-001
13. CABLES
13–36 NOTES
MARO2P10203703E
13. CABLES
13–37
MARO2P10203703E
Figure 13–18. Purge Pressure Switch Cable
REV LEVEL
A
CABLE VERSION EE–3044–345–001
DIM. A
PG
18 IN 457 MM
NO
A 0
2’’ 9’’ PS1 N.O.
2’’ CONNECTOR LABEL
PIN NO.
WIRE COLOR
SIGNAL NAME
SLEEVE COLOR & MAT’L
PS1
1 2
RED BLACK
PS1–P PS1–N
BLUE PVC
INTRINSICALLY SAFE
2 PIN
PRES SW REV. EE–3044–345–XXX MFG. NAME
PS1
PS1 COM
CONNECTOR LABEL
WIRE COLOR
SIGNAL NAME
PS1 N.O.
RED
PS1–P
PS1 COM
BLACK
PS1–N
ASSEMBLY NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. 2.
SYMBOL DENOTES DIMENSIONS IN INCHES.
EE-3287-345-001
13. CABLES
13–38 NOTES
MARO2P10203703E
13. CABLES
13–39
MARO2P10203703E
Figure 13–19. R-J2 Robot Bypass Switch Arm Cable (Optional)
CABLE VERSION EE–3185–356–001
DIM. A
PG
60 IN 1524 MM
NO
A
0 CONNECTOR LABEL
BYPASS
PIN NO. 1 2 3 4 5 6 7 8 9
WIRE COLORS BLACK BLUE
SIGNAL NAME
SLEEVE COLOR & MAT’L
1’’
COM N.O. SHIELD AND BLACK EXPANDO
SHIELD
INTRINSICALLY SAFE
9 PIN
BYPASS
BYPASS REV. EE–3185–356–XXX
EE–3185–356–XXX MFG. NAME
3.00” RED
INTRINSICALLY SAFE
BYPASS REV.
3.00”
N.C.
BYPASS
MFG. NAME
3.00” SEE NOTE 1
3.00”
TYP. NO SHIELD CONNECTION AT THIS END
NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION.
R-J2 Robot Bypass Switch Arm Cable EE-3185-356-001
13. CABLES
13–40 NOTES
MARO2P10203703E
Page41
14 OPENERS AND OPTIONS
14
MARO2P10203703E
OPENERS AND OPTIONS 14–1
Topics In This Chapter
Page
Openers and Options
14–1 14–3 14–51 14–81
The following section includes schematics and cable drawings. . . . . . . . . . . . . . . P-10 door opener and P-15 hood and deck opener. . . . . . . . . . . . . . . . . . . . . Integral Pump Control (Option) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brake Release Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14. OPENERS AND OPTIONS
14–2 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS MARO2P10203703E
14–3 Figure 14–1. P-10 Door Opener Electrical Layout
UPPER LEVEL BOM DOOR OPENER INTERCONNECTION CABLES FOR US EE–3186–101–105 EE–3186–101–110 EE–3186–101–115 EE–3186–101–125 EE–3186–101–135 EE–3186–101–145 EE–3186–101–155
R–J2 CONTROLLER CONNECTIONS
DOOR OPENER ARM CABLES UPPER LEVEL BOM EE–3186–301–001
PURGED AXIS 3 CAVITY
OUTER ARM a6/3000
DC/DC EE–3044–401
A06B–0128–B175
PWR INPUT UNIT AXIS 2
EE–3044–401
INNER ARM a6/3000 A06B–0128–B175
MOTOR/BRAKE
JF9 INNER ARM JF10 OUTER ARM
PURGE CONTROL 24VPG 0V PG UNIT
3
SENSOR OUTPUT
ISRR
EOAT1 EOAT2
BYPASS OUTPUT
ISRR
EOAT5 EOAT6
PURGE CONTROL ISTB
3 4 7 8
PURGE BARRIER
6V BATTERY
0V
PSB1 PSB2 FSB1 FSB2 ISB2–3 ISB2–4
3 3
ENCODER SIGNALS (17.4 MM DIA) EE–3186–112–105 EE–3186–112–110 EE–3186–112–115 EE–3186–112–125 EE–3186–112–135 EE–3186–112–145 EE–3186–112–155
INTRINSICALLY SAFE (17.4 MM DIA) EE–3186–115–105 EE–3186–115–110 EE–3186–115–115 IS EE–3186–115–125 GND EE–3186–115–135 EE–3186–115–145 EE–3186–115–155 GROUND CABLE (6.8MM) EE–3287–116–105 EE–3287–116–110 EE–3287–116–115 EE–3287–116–125 EE–3287–116–135 EE–3287–116–145 EE–3287–116–155
NOTE: I.S. GROUND IS A SEPARATE INTRINSICALLY SAFE GROUND AT THE PURGE CONTROL UNIT
PG29
PULSE AD1 AD4
EE–3186–314–001
AE1 AE4
EE–3186–315–001
AF1 AF4
EE–3186–316–001
REFERENCE SOL VALVE SHOWN ON MECH BOM
BYPASS EE–3185–356–001
OUTER ARM
EE–3186–351–001
SOL2 PURGE VALVE
EE–3186–323–001 LINK
REFERENCE PRES SW SHOWN ON MECH BOM
PS2 SWITCH PRESSURE
FLOW SW ASSY
FS2 FLOW SWITCH
EE–3066–322–001
EE–3186–340–001
AN1 AN4
AUX AXIS BD
EE–3186–313–001
AM1AM4
6
JF8 RAIL
PG29
EE–3186–312–001
AL1 AL4
BKP BKM
AB1 AB4 AC1 AC4
EE–3186–319–001
AK1 AK4
MOTOR POWER (16.9 MM DIA.) EE–3186–111–105 EE–3186–111–110 EE–3186–111–115 EE–3186–111–125 EE–3186–111–135 EE–3186–111–145 EE–3186–111–155
4
EE–3186–311–001
AJ1 AJ4
4
AA1 AA4
AH1 AH4
4
AG1 AG4
AMP 5 AXIS 1 RAIL AMP 6 (L) L AXIS 2 INNER ARM TERMS AMP 6 (M) M AXIS 3 OUTER ARM TERMS PURGE BD
EE–3186–333–001 MAGNET SWITCH SEE NOTE 1
CRANK
INNER INTERNAL ARM GND WIRE EE–3158–316–001 GND WIRES (2) EE–3158–316–001 (2) EE–3158–316–002 AXIS 3 AXIS 2
PG29 AXIS 1
AXIS 1 RAIL a6/3000 A06B–0128–B675–0008
PG9
NOTES 1. CABLES EE–3186–319–001 AND EE–3186–333–001 NEED TO BE SOLDERED TO THE BREAKAWAY JOINT PINS AS SHOWN HERE SOLDER AND SOLDER AND COVER W/ SHRINK COVER W/ SHRINK EE-3186-319-001
2. SPARE SPRING CONTACT PART NUMBER HDWMO0000046590
EE-3186-333-001
EE-3186-001
14. OPENERS AND OPTIONS
14–4 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS MARO2P10203703E
14–5 Figure 14–2. P-10 Door Opener Euro Electrical Layout
UPPER LEVEL BOM DOOR OPENER INTERCONNECTION CABLES FOR US EE–3186–102–105 EE–3186–102–110 EE–3186–102–115 EE–3186–102–125 EE–3186–102–135 EE–3186–102–145 EE–3186–102–155
R–J2 CONTROLLER CONNECTIONS
DOOR OPENER ARM CABLES UPPER LEVEL BOM EE–3186–301–001
PURGED CAVITY
AXIS 3 OUTER ARM a6/3000 A06B–0128–B175
DC/DC EE–3044–401 PWR INPUT UNIT
AXIS 2 INNER ARM a6/3000 A06B–0128–B175 MOTOR/BRAKE
JF9 INNER ARM JF10 OUTER ARM
PURGE CONTROL 24VPG 0V PG UNIT
3
SENSOR OUTPUT
ISRR
EOAT1 EOAT2
BYPASS OUTPUT
ISRR
EOAT5 EOAT6
3 4 7 8
PSB1 PSB2 FSB1 FSB2
PURGE CONTROL ISTB
PURGE BARRIER
6V BATTERY
0V
ISB2–3 ISB2–4
3 3
ENCODER SIGNALS (17.4 MM DIA) EE–3186–112–105 EE–3186–112–110 EE–3186–112–115 EE–3186–112–125 EE–3186–112–135 EE–3186–112–145 EE–3186–112–155
PG29
PULSE AD1 AD4
EE–3186–314–001
AE1 AE4
EE–3186–315–001
AF1 AF4
EE–3186–316–001
REFERENCE SOL VALVE SHOWN ON MECH BOM JUMPER REMOVED HR2151 PRES & FLOW SWITCHES
INTRINSICALLY SAFE (17.4 MM DIA) EE–3186–115–105 EE–3186–115–110 EE–3186–115–115 IS EE–3186–115–125 GND EE–3186–115–135 EE–3186–115–145 EE–3186–115–155 GROUND CABLE (6.8MM) EE–3287–116–105 EE–3287–116–110 EE–3287–116–115 EE–3287–116–125 EE–3287–116–135 EE–3287–116–145 EE–3287–116–155
NOTE: I.S. GROUND IS A SEPARATE INTRINSICALLY SAFE GROUND AT THE PURGE CONTROL UNIT
BYPASS EE–3185–356–001
SOL2 PURGE VALVE PR
OUTER ARM
EE–3186–351–001
OP4 FL 5 6
EE–3186–348–001 EE–3186–340–001 4 5 6 7
7
LINK AN1 AN4
AUX AXIS BD
EE–3186–313–001
AM1AM4
6
JF8 RAIL
PG29
EE–3186–312–001
AL1 AL4
BKP BKM
AB1 AB4 AC1 AC4
EE–3186–319–001
AK1 AK4
MOTOR POWER (16.9 MM DIA.) EE–3186–121–105 EE–3186–121–110 EE–3186–121–115 EE–3186–121–125 EE–3186–121–135 EE–3186–121–145 EE–3186–121–155
4
EE–3186–311–001
AJ1 AJ4
4
AA1 AA4
AH1 AH4
4
AG1 AG4
AMP 5 AXIS 1 RAIL AMP 6 (L) L AXIS 2 INNER ARM TERMS AMP 6 (M) M AXIS 3 OUTER ARM TERMS PURGE BD
EE–3186–333–001 MAGNET SWITCH SEE NOTE 1
CRANK
INNER INTERNAL ARM GND WIRE EE–3158–316–001 GND WIRES (3) EE–3186–326–001 (1) EE–3186–326–002 AXIS 3 AXIS 2
PG29 AXIS 1 RAIL a6/3000 A06B–0128–B675–0008
PG9
NOTES 1. CABLES EE–3186–319–001 AND EE–3186–333–001 NEED TO BE SOLDERED TO THE BREAKAWAY JOINT PINS AS SHOWN HERE SOLDER AND SOLDER AND COVER W/ SHRINK COVER W/ SHRINK EE-3186-319-001
AXIS 1
2. SPARE SPRING CONTACT PART NUMBER HDWMO0000046590
EE-3186-333-001
EE-3186-002
14. OPENERS AND OPTIONS
14–6 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS MARO2P10203703E
14–7 Figure 14–3. P-200 Plus P-10 or P-15 Controller Bypass Package
TYPICAL INTRINSICALLY SAFE CABLE ROUTING SHIELD CONNECTS TO INTRINSICALLY SAFE GROUND
2
3
4
1
P–10 or P–15 PARTS SENSE
2ND TRIGGER
TRIGGER
FLOW
I/P
I/P POWER
P–10 or P–15 BYPASSLS KFD2–SR–Ex1.W.LB
W112A
BYPASS LS KFD2–SR–Ex1.W.LB
DELTRON
EE–3112–600
24V @ 1.2A
EE–3112–600–001
ISTB TERMINAL STRIP
ISB2 ISB1 ISB3 ISB10
1’’
5
SOLENOID
OVP
SOLENOID
PS
IDEC IBRC
INTRINSICALLY SAFE GROUND CONNECTION P–200 CONTROLLER BACKPANEL UPPER LEFT CORNER
IS GND NOTES: FOR CABLE WIRING, SEE EE–3287–500 FOR CONTROLS WIRING, SEE EE–3287–500 AND APPLICATION PACKAGE MAINTAIN 50MM SPACING I.S. WIRING AND ALL OTHER CIRCUITS, INCL EE–3112–600
EE-3287-513
14. OPENERS AND OPTIONS
14–8 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS MARO2P10203703E
14–9 Figure 14–4. P-10 or P-15 Power Connection Cable
REV LEV.
CABLE VERSION
DIM (IN – MM)
PG
C
EE–3186–111–105
295
IN
7500
MM
YES
C
EE–3186–111–110
492
IN
12500
MM
YES
C
EE–3186–111–115
689
IN
17500
MM
YES
C
EE–3186–111–125
1083
IN
27500
MM
YES
C
EE–3186–111–135
1476
IN
37500
MM
YES
C
EE–3186–111–145
1870
IN
47500
MM
YES
C
EE–3186–111–155
2264
IN
57500
MM
YES
SEE NOTE 3
A
CONNECTOR LABEL
0 CONTROLLER CONNECTING POINT BKP4
BKM4
WIRE COLOR/ NUMBER RED/1 BLACK/3 WHITE/2 WHITE/4
WIRE TAG
65’’
SIGNAL NAME
320’’ 16’’
TYP 3 PL
1BKP
BKP4
1BKM
BKP4
2BKP
BKM4
BKM4
2BKM
BKP4
RED/5
BKP4
3BKP
BKM4
GREEN/6
BKM4
3BKM
RED/1 WHITE/2
BKP4
RED/5
BKM4
GREEN/6
4
BLACK/3
10
WHITE/4
19’’ 11
5
6
1V
CONNECTOR LABEL 12 POS SOC
1W OPENER POWER
1G 2U L
OPENER POWER
EE–3186–111–XXX
EE–3186–111–XXX
MFG. NAME
MFG. NAME
REV
AB1
INNER
REV
2V L
12 POS SOC
2W L
CONTROLLER CONNECTING POINT AMPLIFIER 5
AMPLIFIER 6
AMPLIFIER 6
WIRE COLOR/ NUMBER RED/7 WHITE/8 BLACK/9 GREEN/10 RED/11 WHITE/12 BLACK/13 GREEN/14 RED/15 WHITE/16 BLACK/17 GREEN/18
WIRE TAG
SIGNAL NAME
1U
1U
1V 1W 1G
1V
2U
2V 2W 2G 3U 3V 3W 3G
TYP SEE NOTE 1
2G L 3U M
9
3V M
TYP
2
2U
L
2V
L
2W
L
2G
M
3U
M
3V
M
3W
M
3G
TYP
3
1
7
10 TYP
INNER AB1
AC1
OUTER
8
CABLE SPECIFICATION 12–#14 & 6–#18 AWG CONDUCTORS HYPALON JACKET 1’’TYP. MAX CABLE O.D.= 16.9 MM (0.665”) P/N=T–13038
1G L
TWO PLACES
3W M 3G M
1W
AA1
AA1
RAIL 1U
TYP
RAIL
6’’ TYP
1’’ TYP
12 POS SOC
CONNECTOR LABEL
OUTER AC1
ASSEMBLY NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. 2.
SOC/ PIN NO. 1 2 3 4 5 6 7 8 9 10 11 12
SOC/ PIN NO. 1 2 3 4 5 6 7 8 9 10 11 12
SOC/ PIN NO. 1 2 3 4 5 6 7 8 9 10 11 12
WIRE COLOR/ NUMBER
SIGNAL NAME
RED/7 WHITE/8 BLACK/9 GREEN/10
1U 1V 1W 1G
RED/1 WHITE/2
1BKP 1BKM
18 AWG
KEY PLUG
WIRE COLOR/ NUMBER RED/11 WHITE/12 BLACK/13 GREEN/14
BLACK/3 WHITE/4
SIGNAL NAME 2U 2V 2W 2G
2BKP 2BKM
18 AWG
KEY PLUG
WIRE COLOR/ NUMBER
SIGNAL NAME
RED/15 WHITE/16 BLACK/17 GREEN/18
3U 3V 3W 3G
RED/5 GREEN/6
3BKP 3BKM
18 AWG
DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL LENGTH DIMENSIONS + 1/2 IN.
3. FOR CABLE EE–3186–111–105, USE 200 INCHES FOR LEFT PG LOCATION.
EE-3186-111-105 thru 155
14. OPENERS AND OPTIONS
14–10 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS MARO2P10203703E
14–11 Figure 14–5. P-10 or P-15 European Shielded Power Connection Cable E60766
REV LEV.
CONTROLLER CONNECTING POINT
WIRE COLOR/ NUMBER BLUE/17
BKP4
BLUE/18
BKM4
BLUE/19 BLUE/20
SIGNAL NAME
WIRE TAG
1BKP
BKP4
1BKM
0
2BKP
BKM4
CABLE VERSION
DIM (IN – MM) 7500
A
EE–3186–121–105
295
IN
MM
YES
A
EE–3186–121–110
492
IN
12500
MM
YES
A
EE–3186–121–115
689
IN
17500
MM
YES
A
EE–3186–121–125
1083
IN
27500
MM
YES
A
EE–3186–121–135
1476
IN
37500
MM
YES
A
EE–3186–121–145
1870
IN
47500
MM
YES
A
EE–3186–121–155
2264
IN
57500
MM
YES
SEE NOTE 3
CONNECTOR LABEL
RED/13
BKP4
3BKP
BKM4
WHITE/14
BKM4
3BKM
108’’
AA1
320’’
65’’
16’’
BKP4 BKM4 BKP4 BKM4
TYP 3 PL 4
BLUE/17 BLUE/18 BLUE/19 BLUE/20
2’’
CONNECTOR LABEL
AA1
2’’
RAIL
1V OPENER POWER EE–3186–121–XXX MFG. NAME REV
OPENER POWER EE–3186–121–XXX MFG. NAMEREV
AB1
INNER INNER
2V L
12 POS SOC
2W L
AMPLIFIER 5
AMPLIFIER 6
AMPLIFIER 6
RED/1 WHITE/2 BLACK/3
3U M
SIGNAL NAME
1U
3V M
TYP
2
1U
GREEN/4
1V 1W 1G
RED/5 WHITE/6 BLACK/7 GREEN/8 RED/9 WHITE/10 BLACK/11 GREEN/12
2U
L
2U
2V 2W 2G 3U 3V 3W 3G
L
2V
L
2W
L
2G
M
3U
M
3V
M
3W
M
3G
TYP
3
1
AC1
OUTER
8 12 POS SOC
10 TYP
BLUE/18
1BKP 1BKM
18 AWG
KEY PLUG
6’’ TYP
1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. 2.
DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL LENGTH DIMENSIONS + 1/2 IN.
WIRE COLOR/ NUMBER
SIGNAL NAME 2U 2V 2W 2G
RED/5 WHITE/6 BLACK/7 GREEN/8
BLUE/19 BLUE/20
2BKP 2BKM
18 AWG
KEY PLUG
1’’ TYP
CONNECTOR LABEL
ASSEMBLY NOTES: CUT OFF BLACK/15 AND GREEN/16
7
CABLE SPECIFICATION 16–#14 & 4–#18 AWG CONDUCTORS SHIELDED W/HYPALON JACKET 1’’TYP. MAX CABLE O.D.= 16.9 MM (0.665”) P/N=T–14847
1V 1G
TWO PLACES
3W M 3G M
1W
AB1
TYP SEE NOTE 1 9
2G L
SOC/ PIN NO. 1 2 3 4 5 6 7 8 9 10 11 12
12 POS SOC
1G
WIRE TAG
BLUE/17
WHITE/14
2U L
WIRE COLOR/ NUMBER
GREEN/4
1U 1V 1W 1G
6
1W
CONTROLLER CONNECTING POINT
RED/1 WHITE/2 BLACK/3
SIGNAL NAME
RED/13
1U
TYP
5
WIRE COLOR/ NUMBER
10
19’’ 11
SOC/ PIN NO. 1 2 3 4 5 6 7 8 9 10 11 12
RAIL
A
2BKM
BKP4
PRODUCTION RELEASE11/96 BWBF
PG
OUTER AC1
SOC/ PIN NO. 1 2 3 4 5 6 7 8 9 10 11 12
WIRE COLOR/ NUMBER
SIGNAL NAME
RED/9 WHITE/10 BLACK/11 GREEN/12
3U 3V 3W 3G
RED/13
3BKP 3BKM
WHITE/14
18 AWG
CUT OFF BLACK/15 AND GREEN/16
3. FOR CABLE EE–3186–111–105, USE 200 INCHES FOR LEFT PG LOCATION.
EE-3186-121-105 thru 155
14. OPENERS AND OPTIONS
14–12 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS MARO2P10203703E
14–13 Figure 14–6. P-10 or P-15 Axis 1 Rail Power/Brake Cable
SEC. B–B REV LEVEL
CABLE VERSION
B
EE–3186–311–001
DIM. A
PG
60 IN 1524 mm
NO
A
CABLE RUN
B C
10SL–3S GUIDE KEY
A
0
10’’ 8
3.0”
9 LABEL
BRAKE AXIS 1
BRAKE AXIS 1
SOC/ PIN NO.
WIRE COLOR/ NUMBER
WIRE GAGE
SIGNAL NAME
A
BLK
18 AWG
1BKP
B
BLK
18 AWG
1BKM
C
2 SIGNAL NAME
1
BLK
14 AWG
2
BLK
14 AWG
1V
3
BLK
14 AWG
1W
4
GRN/YEL
14 AWG
1G
4
5
1U
B
3.0” 1’’
6
B 6
AA4 AXIS 1 PWR EE–3186–311–001 MANUF. REV.
12 POS PIN
5
AA4
3
7
POWER AXIS 1
LABEL
7
TYP.
8 9
BLK
18 AWG
1BKP
10
BLK
18 AWG
1BKM
1
11
HEAT SHRINK
2
10
POWER AXIS 1
11 12
KEY PLUG
A
SOC/ PIN NO.
WIRE COLOR/ NUMBER
WIRE GAGE
SIGNAL NAME
A
BLK
14 AWG
B
BLK
14 AWG
1V
C
BLK
14 AWG
1W
D
GRN/YEL
14 AWG
1G
1U
A
NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. 2. SEE LENGTH CHART FOR CABLE VERSION REVISION LEVEL. 3.
SEC. A–A 18–10S
DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION.TOL +/– 0.5’’
4.WIRE SPECIFICATION NOT SHOWN ON BOM 14 AWG PTFE TEFLON, UL1199 BLACK, FINE STRANDED 18 AWG PTFE TEFLON, UL1199 BLACK, FINE STRANDED
CABLE RUN
C
WIRE GAGE
B
WIRE COLOR
D
PIN NO.
A
LABEL
GUIDE KEY
EE-3186-311-001
14. OPENERS AND OPTIONS
14–14 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS MARO2P10203703E
14–15 Figure 14–7. P-10 or P-15 Axis 2 Inner Arm Power/Brake Cable
REV LEVEL
CABLE VERSION
B
EE–3186–312–001
DIM. A 24 IN 610 mm
PG
SEC. B–B
NO
C B
CABLE RUN
A
GUIDE KEY
0
A 10’’ 8
3.0”
9
BRAKE AXIS 2
LABEL
BRAKE AXIS 1
SOC/ PIN NO.
WIRE COLOR/ NUMBER
WIRE GAGE
SIGNAL NAME
A
BLK
18 AWG
2BKP
B
BLK
18 AWG
2BKM
C
2 3 WIRE COLOR
WIRE GAGE
BLK
14 AWG
2
BLK
14 AWG
2V
3
BLK
14 AWG
2W
14 AWG
2G
GRN/YEL
B 6
7
2U AB4 AXIS 2 PWR EE–3186–312–001 MANUF. REV.
12 POS PIN
POWER AXIS 2
LABEL
5 6
11
7 8 18 AWG
2BKP
10
BLK
18 AWG
2BKM
11
KEY PLUG
12
POWER AXIS 2
HEAT SHRINK
NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL.
A
WIRE SIGNAL GAGE NAME
A
BLK
14 AWG
B
BLK
14 AWG
2V
C
BLK
14 AWG
2W
14 AWG
2G
D BLK
9
2
1
WIRE COLOR/ NUMBER
GRN/YEL
2U
A
2. SEE LENGTH CHART FOR CABLE VERSION REVISION LEVEL. 3. 4.
DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. TOL +/– 0.5’’ WIRE SPECIFICATION NOT SHOWN ON BOM
SEC. A–A 20–15S
CABLE RUN
14 AWG PTFE TEFLON, UL1199 BLACK, FINE STRANDED 18 AWG PTFE TEFLON, UL1199 BLACK, FINE STRANDED
C
AB4
SOC/ PIN NO.
D
4
B
10
1’’
SIGNAL NAME
1
TYP.
3.0”
B
PIN NO.
5
A
LABEL
4
GUIDE KEY
EE-3186-312-001
14. OPENERS AND OPTIONS
14–16 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS MARO2P10203703E
14–17 Figure 14–8. P-10 or P-15 Axis 3 Outer Arm Power/Brake Cable
REV LEVEL
B
CABLE VERSION EE–3186–313–001
DIM. A 36 IN 914 mm
PG NO
SEC. B–B A B
CABLE RUN C
10SL–3S
GUIDE KEY 0
A 10’’ 8
3.0”
9
BRAKE AXIS 3
LABEL
WIRE GAGE
SIGNAL NAME
1
BLK
14 AWG
2
BLK
14 AWG
3V
3
BLK
14 AWG
3W
14 AWG
3G
4
GRN/YEL
3
5
B
3.0”
BRAKE AXIS 3
B
B
BLK BLK
SIGNAL NAME
18 AWG
3BKP
18 AWG
3BKM
C
3U
1.0’’
6 AC4 AXIS 3 PWR EE–3186–313–001 REV. MANUF.
12 POS PIN
5 6
7
POWER AXIS 3
7 8 18 AWG
3BKP
BLK
18 AWG
3BKM
11
KEY PLUG
12
KEY PLUG
11 NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL.
1
HEAT SHRINK
2 10 LABEL
TYP.
A
A
SOC/ PIN NO.
WIRE GAGE 14 AWG
C
BLK BLK BLK
D
GRN/YEL
A B
POWER AXIS 3
WIRE COLOR/ NUMBER
SIGNAL NAME 3U
14 AWG
3V
14 AWG
3W
14 AWG
3G
2. SEE LENGTH CHART FOR CABLE VERSION REVISION LEVEL. 3.
DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION.TOL. +/– 0.5’’
4. WIRE SPECIFICATION NOT SHOWN ON BOM 14 AWG PTFE TEFLON, UL1199 BLACK, FINE STRANDED
SEC. A–A 18–10S C
BLK
D
9 10
B
AC4
4
WIRE GAGE
A
LABEL
WIRE COLOR
WIRE COLOR/ NUMBER
A
2 PIN NO.
SOC/ PIN NO.
CABLE RUN
18 AWG PTFE TEFLON, UL1199 BLACK, FINE STRANDED GUIDE KEY
EE-3186-313-001
14. OPENERS AND OPTIONS
14–18 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS MARO2P10203703E
14–19 Figure 14–9. P-10 or P-15 Axis 1 Encoder Cable
SEC. A–A REV LEVEL
B
CABLE VERSION EE–3186–314–001
DIM. A
PG
74 IN 1879 MM
NO
CABLE RUN
20–29SW SHELL/KEY ASSEMBLY POSITION
0
CONNECTOR LABEL
PIN NO.
WIRE COLOR
1
WHITE
1D
2
ORANGE
1*D
SIGNAL NAME
14’’
PAIR NO.
3
4
1
3.0’’
5
3
AD4
1
1.0” TYP
4
6
20GA BLK
7
WHITE
8
YELLOW
SHIELD 1RQ 1*RQ
9 PIN
CONNECT SHIELDS TOGETHER
COVER WITH SHRINK
1.5’’ TYP
CONN1
PIN NO.
WIRE COLOR
SIGNAL NAME
1
WHITE
5V
2
GRAY
0V
PAIR NO.
2 POS SOC
CONN1
3
7
8
11
9
12
AD4
2
KEY
A
SEE NOTES 1&2
5
9
CONNECTOR LABEL
CABLE SPECIFICATION 3 PAIRS 20 AWG SHIELDED HYPALON JACKET MAX. CABLE OD = 0.365’’ (9.27MM) BRAND REX T–13981
13
15
3 FT LENGTH WHT/GRAY PAIR FROM ITEM 1 W/BRAID SHIELD & EXPANDO SLEEVE CABLE SPECIFICATION 1 PAIR 20 AWG SHIELDED 2 PVC JACKET MAX CABLE OD = 0.245’’(6.22MM) BRAND REX T–13103
10
SOC/ PIN NO.
1.0” TYP. AXIS 1 PULSE EE–3186–314–001 MFG. NAME REV.
TYP. CONNECTOR LABEL
PIN NO. 1
AL4
WIRE COLOR BROWN
2
BLACK
3
20GA BLK
4
SIGNAL NAME 6V–1 0V–1
PAIR NO. PAIR 1 CABLE 2
4 POS PIN 5
AL4
A 6
SHIELD
SHIELD FROM THIS LEG CONNECTED TO PIN 3
14
NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL.
A
A B C D E F G H J K L M N P R S T
WIRE COLOR/ NUMBER
SIGNAL NAME
TWIST PAIR NO.
WHITE
1D
1
ORANGE
1*D
1
WHITE YELLOW
1RQ 1*RQ
2
WHITE
5V
3
GRAY
0V
3
6V–1 0V–1
PAIR 1 CABLE 2
BROWN BLACK
SHIELDS NOT CONNECTED AT THIS END
DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. TOL +/– 0.5’’ 2. SEE LENGTH CHART FOR CABLE VERSION REVISION LEVEL. 3. TERMINATION OF SHIELD TO CONDUCTOR SHIELD CONDUCTOR 20 AWG BLACK SOLDERED CONNECTION
CONDUCTORS
BRAIDED SHIELD SHRINK TUBING DETAIL ”A”
EE-3186-314-001
14. OPENERS AND OPTIONS
14–20 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS MARO2P10203703E
14–21 Figure 14–10. P-10 or P-15 Axis 2 Pulse Cable
SEC. A–A REV LEVEL
CABLE VERSION
A
EE–3186–315–001
DIM. A 24 IN 610 MM
PG
CABLE RUN
NO
20–29SW SHELL/KEY ASSEMBLY POSITION
0 CUT OFF PAIR 3, WHITE/GRAY CONNECTOR LABEL
AE4
CONNECTOR LABEL CONN2
CONNECTOR LABEL AM4
PIN NO. 1 2 3 4 5 6 7 8 9 PIN NO. 1 2
PIN NO. 1 2 3 4
WIRE SIGNAL COLOR NAME 2D WHITE 2*D ORANGE KEY 20GA BLK SHIELD 2RQ WHITE 2*RQ YELLOW
3
4
5
A
1.0” TYP.
1
SEE NOTE 3 9 PIN
WIRE COLOR BROWN BLACK 20GA BLK
SIGNAL NAME 5V 0V
SIGNAL NAME 6V–2 0V–2 SHIELD
12 2
2
PAIR NO.
7
8
CABLE SPECIFICATION 2 1 PAIR 20 AWG W/SHIELD PVC JACKET MAX OD = 0.245’’ (6.22MM) BRAND REX T–13103
11 SEE NOTE 3
TYP. 4 POS PIN
1
CABLE SPECIFICATION 1 PAIR 20 AWG W/SHIELD PVC JACKET MAX OD = 0.245’’ (6.22MM) BRAND REX T–13103
5
9
10
1.0” TYP. SEE NOTE 4 AXIS 2 PULSE EE–3186–315–001 MFG. NAME REV.
CONN2
1
PAIR NO.
SEE NOTES 1&2
AE4
2 POS SOC WIRE COLOR BROWN BLACK
CABLE SPECIFICATION 1 3 PAIRS 20 AWG W/ SHIELD HYPALON JACKET MAX OD = 0.365”(9.27MM) BRAND REX T–13981
4’’
PAIR NO.
THIS SHIELD NOT CONNECTED
AM4
A
NOTES:
6
13
1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL.
A
SOC/ PIN NO. A B C D E F G H J K L M N P R S T
WIRE COLOR/ NUMBER WHITE
SIGNAL NAME 2D
TWIST PAIR NO. PR 1 CABLE 1
ORANGE
2*D
CABLE 1
PR 1
WHITE YELLOW
2RQ 2*RQ
CABLE 1
PR 2
BROWN
5V
CABLE 2
PR 1
BLACK
0V
CABLE 2
PR 1
BROWN BLACK
6V–2 0V–2
CABLE 3
PR 1
DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. 2. SEE LENGTH CHART FOR CABLE VERSION REVISION LEVEL. 3. TERMINATION OF SHIELD TO CONDUCTOR SHIELD CONDUCTOR 20 AWG BLACK SOLDERED CONNECTION
CONDUCTORS
BRAIDED SHIELD SHRINK TUBING DETAIL ”A”
4. AE4 AND CONN2 SHIELDS CONNECTED TO EACH OTHER, BUT NOT CONNECTED TO ANY PIN. THIRD SHIELD, AM4, NOT CONNECTED AT THIS END
EE-3186-315-001
14. OPENERS AND OPTIONS
14–22 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS MARO2P10203703E
14–23 Figure 14–11. P-10 or P-15 Axis 3 Pulse Coder Cable
SEC. A–A REV LEVEL
CABLE VERSION EE–3186–316–001
A
DIM. A 36 IN 914 MM
PG
CABLE RUN
NO
20–29SW SHELL/KEY ASSEMBLY POSITION
3 0
4 CUT OFF 3RD PAIR, WHITE/GRAY PIN SIGNAL CONNECTOR WIRE NO. NAME LABEL COLOR 1 3D WHITE 2 3*D ORANGE 3 4 5 AF4 6 20GA BLK SHIELD 7 3RQ WHITE 3*RQ 8 YELLOW 9
CONNECTOR LABEL CONN3
PIN NO. 1 2
WIRE COLOR BROWN BLACK
SIGNAL NAME 5V 0V
5
16’’
PAIR NO. 1
CABLE SPECIFICATION 3 PAIRS 20 AWG W/ SHIELD HYPALON JACKET 1 MAX OD = 0.365”(9.27MM) BRAND REX T–13981
12’’ 1.0” TYP.
AF4
9 PIN
CABLE SPECIFICATION
PVC JACKET MAX OD = 0.245’’ (6.22MM) BRAND REX T–13103
2 POS SOC
PAIR NO.
7
1
4 POS PIN
CONN3
8
2
11
AN4
WIRE SIGNAL COLOR NAME BROWN 6V–3 BLACK 0V–3 20GA BLK SHIELD
PAIR NO. 1
5
CABLE SPECIFICATION 1 PAIR 20 AWG W/SHIELD PVC JACKET MAX OD = 0.245’’ (6.22MM) BRAND REX T–13103
10
1.0” TYP. SEE NOTE 4 AXIS 3 PULSE EE–3186–316–001 MFG. NAME REV.
THIS SHIELD NOT CONNECTED
AN4
SEE NOTE 3
PIN NO. 1 2 3 4
9
2 1 PAIR 20 AWG W/SHIELD
TYP.
CONNECTOR LABEL
SEE NOTES 1&2 12
SEE NOTE 3
2
A
6
13
A
NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL.
A
SOC/ PIN NO. A B C D E F G H J K L M N P R S T
WIRE COLOR/ NUMBER
SIGNAL NAME
WHITE
3D
CABLE 1
PR 1
ORANGE
3*D
CABLE 1
PR 1
WHITE YELLOW
3RQ 3*RQ
CABLE 1
PR 2
BROWN
5V
CABLE 2
PR 1
BLACK
0V
CABLE 2
PR 1
6V–3 0V–3
CABLE 3
PR 1
BROWN BLACK
TWIST PAIR NO.
DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. TOL +/– 0.5” 2. SEE LENGTH CHART FOR CABLE VERSION REVISION LEVEL. 3. TERMINATION OF SHIELD TO CONDUCTOR SHIELD CONDUCTOR 20 AWG BLACK SOLDERED CONNECTION
CONDUCTORS
BRAIDED SHIELD SHRINK TUBING DETAIL ”A” 4. AF4 & CONN3 SHIELDS CONNECTED TO EACH OTHER BUT NOT CONNECTED TO ANY PIN AN4 SHIELD NOT CONNECTED THIS END
EE-3186-316-001
14. OPENERS AND OPTIONS
14–24 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS MARO2P10203703E
14–25 Figure 14–12. P-10 or P-15 Purge Flow Switch
REV LEVEL A
CABLE VERSION
DIM. A 24 IN 610 MM
EE–3186–340–001
PG NO
1 SEE NOTE 1
0
4
FS1
PIN NO. 1 2 3 4
WIRE COLOR BLUE BLACK
SIGNAL NAME FS1/NO FS1/C
SLEEVE COLOR & MAT’L LT. BLUE EXPANDO
A
EXPANDO OVER BRAIDED SHIELD
2’’ CONNECTOR LABEL
6
5
AH4 INTRINSICALLY SAFE EE–3186–340–001 MANUF. NAME REV.
4 PIN
SHIELD
FLOW SWITCH
CONNECT SHIELD WITH 20 AWG BLACK WIRE CUT OFF SPARE RED WIRE
2
3 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. SEE LENGTH CHART FOR REV LEVEL DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION.
EE-3186-340-001
14. OPENERS AND OPTIONS
14–26 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS MARO2P10203703E
14–27 Figure 14–13. P-10 or P-15 European Purge Connect Arm Cable
REV LEVEL
CABLE VERSION EE–3186–341–001
B
DIM. A 24 IN 610 MM
PG NO
A
0 CONNECTOR LABEL
PIN NO.
WIRE COLORS
SIGNAL NAME
1 2 3 4
BLACK1 BLACK2
PS1–P PS1–N
SLEEVE COLOR & MAT’L
3” TYP 4 PIN
BLUE EXPANDO
1.0”
AH1
4 5 6 7
INTRINSICALLY SAFE
EE–3186–341–00X REV. MFG. NAME
CONNECTOR LABEL
PIN NO. 1 2 3 4
WIRE COLORS BLACK3 BLACK4
SIGNAL NAME FS1–P FS1–N
SLEEVE COLOR & MAT’L BLUE EXPANDO
SEE NOTE 1
WIRE LABEL 4 5 6 7
SIGNAL NAME PS1–P PS1–N FS1–P FS1–N
AJ1
4 PIN
20 AWG WIRE SHIELD CONNECTION
SHIELD
WIRE SPEC: 20 AWG, 19/ 32, UL1199, 600V, PTFE INSULATION
WIRE COLOR/ NUMBER BLACK/1 BLACK/2 BLACK/3 BLACK/4
EXPANDO OVER BRAIDED SHIELD
3 4
8 1
2
SHIELD AND EXPANDO OVER WIRES
5
7 TYP
6 CRIMP FERRULE TO WIRE
NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. 2. SEE LENGTH CHART FOR CABLE VERSION REVISION LEVEL. 3. SPECIFIC CONDUCTOR PART NUMBER NOT CALLED OUT ON BILL OF MATERIALS WIRE SPEC: 20 AWG, 19/ 32, UL1199, 600V, PTFE INSULATION
EE-3186-341-001
14. OPENERS AND OPTIONS
14–28 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS MARO2P10203703E
14–29 Figure 14–14. P-10 or P-15 European Solenoid Cable
REV LEVEL
CABLE VERSION EE–3186–348–001
A
DIM. A 24 IN 610 MM
PG NO
A
0 CONNECTOR LABEL AK1
PIN NO.
WIRE COLOR
SIGNAL NAME
1 2 3 4
BROWN BLACK
PSOL–1 PSOL–2
9”
CONNECTOR LABEL
2” SHIELD
SOL1
SOC/ PIN NO. 1 2 3
WIRE COLOR
SIGNAL NAME
BROWN BLACK NC
PSOL–1 PSOL–2
INTRINSICALL Y SAFE
4 PIN
SOL REV. EE–3148–348–XXX MFG. NAME
AK1
SOL1
TUBING OVER DRAIN WIRE
2
3
7 5
6
SEE NOTE 1 NOTES:
1
7
4
BRAND REX T–13103 2 COND 20 AWG SHIELDED
1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBERIN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. SEE LENGTH CHART FOR REV LEVEL DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION.
EE-3186-341-001
14. OPENERS AND OPTIONS
14–30 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS MARO2P10203703E
14–31 Figure 14–15. P-10 or P-15 Sensor Splitout Cable
REV A
CABLE VERSION EE–3186–351–001
DIM. A
PG
8 IN 203 mm
NO
A
0
CONNECTOR LABEL 4
3
2
7 1.0 in.
AG4 SENSOR
1 2 3 4 5 6 7 8 9
BLUE–1 BLUE–2 BLUE–3 BLUE–4 BLUE–5 BLUE–6
SENSOR–1 SENSOR–2 EOAT–1 EOAT–2 BYPASS–1 BYPASS–2
4.0 in.
8
1 SENSOR
PIN NO.
WIRE COLORS
SIGNAL NAME
5
SENSOR
9 POS SOC
1 2 3 4 5 6 7 8 9
BLUE–1 BLUE–2 BLUE–3 BLUE–4
SENSOR–1 SENSOR–2 EOAT–1 EOAT–2
SHIELD
AG4 SENSOR
9 PIN
INTRINSICALLY SAFE
4
EE–3186–351–001 MANUF REV
5
6 CONNECTOR LABEL
PIN NO.
WIRE COLORS
SIGNAL NAME
SHIELD BYPASS
9 POS SOC BYPASS
1 2 3 4 5 6 7 8 9
BLUE–5 BLUE–6 KEY PIN KEY PIN SHIELD KEY PIN KEY PIN
BYPASS–1 BYPASS–2
EE-3186-351-001
14. OPENERS AND OPTIONS
14–32 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS MARO2P10203703E
14–33 Figure 14–16. P-10 or P-15 End of Arm Tool Cable
REV CABLE VERSION B
DIM. A 144 IN EE–3186–317–001 3658 MM
PG YES
0
A
48’’
8
CONNECTOR LABEL
PIN NO.
WIRE COLORS
SIGNAL NAME
BROWN BLACK
EOAT–1 EOAT–2
10
1
6
7
11
9
4
5
1’’
AG4
1 2 3 4 5 6 7 8 9
INTRINSICALLY SAFE
9 PIN
CONNECTOR LABEL
INTRINSICALLY SAFE
AG4 REV. EE–3186–317–XXX MFG. NAME
SENSOR REV. EE–3186–317–XXX MFG. NAME
3.00” APPLY LABEL OVER 3” OF BLUE SHRINK TUBING, TYP. BOTH ENDS
SEE NOTE 1
3.00” TYP.
WIRE COLORS
SIGNAL NAME
SENSOR
SENSOR 3.00”
PIN NO.
3.00”
1 2 3
BROWN BLACK SHIELD
EOAT–1 EOAT–2
SHIELD
2
3
CABLE SPECIFICATION ONE PAIR 20 AWG W/SHIELD HYPALON JACKET MAX. CABLE O.D. = 6.22mm (0.245in) BRAND REX T–13103 NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBERIN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL LENGTH DIMENSIONS +/– 0.5’’ 2. BUILD UP CABLE DIA. WITH 1/32 X 2” EPDM STRIP MATERIAL FOR PROPER PG FITTING DIA. A SMALL AMOUNT OF ADHESIVE SHOULD BE USED TO SECURE EPDM STRIP PRIOR TO APPLICATION OF SHRINK TUBING. RETAIN EPDM STRIP MAT’L WITH 2” OF BLUE SHRINK TUBING.
EE-3186-317-001
14. OPENERS AND OPTIONS
14–34 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS MARO2P10203703E
14–35 Figure 14–17. P-10 Magnet Sensor Breakaway Cable
REV CABLE VERSION A
DIM. A 144 IN EE–3186–319–001 3658 MM
PG YES
0
A 48’’
6
CONNECTOR LABEL
PIN NO.
WIRE COLORS
SIGNAL NAME
BROWN BLACK
EOAT–1 EOAT–2
8
1
4
5
7
1’’
AG4
1 2 3 4 5 6 7 8 9
INTRINSICALLY SAFE
INTRINSICALLY SAFE
SENSOR REV. EE–3186–319–XXX MFG. NAME
9 PIN 3.00”
SENSOR REV. EE–3186–319–XXX MFG. NAME
3.00” APPLY LABEL OVER 3” OF BLUE SHRINK TUBING, TYP. BOTH ENDS
SEE NOTE 1
3.00” TYP.
SENSOR
3.00”
2.0in. STRIP BACK OUTER SHEATH
SHIELD
2
3
CABLE SPECIFICATION TWO CONDUCTOR 20 AWG. CABLE BRAID SHIELD BROWN HYPALON JACKET MAX. CABLE O.D. = 6.68mm (0.263in) BELDEN #8402
NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBERIN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL LENGTH DIMENSIONS +/– 0.5’’ 2. BUILD UP CABLE DIA. WITH 1/32 X 2” EPDM STRIP MATERIAL FOR PROPER PG FITTING DIA. A SMALL AMOUNT OF ADHESIVE SHOULD BE USED TO SECURE EPDM STRIP PRIOR TO APPLICATION OF SHRINK TUBING. RETAIN EPDM STRIP MAT’L WITH 2” OF BLUE SHRINK TUBING.
EE-3186-319-001
14. OPENERS AND OPTIONS
14–36 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS MARO2P10203703E
14–37 Figure 14–18. P-10 or P-15 Solenoid Cable
REV LEVEL B
CABLE VERSION EE–3186–323–001
DIM. A 24 IN 610 MM
PG NO
A
0
CONNECTOR LABEL 9’’ CONNECTOR LABEL
AK4
PIN NO.
WIRE COLOR
SIGNAL NAME
1 2 3 4
BROWN BLACK
PSOL–1 PSOL–2
SHIELD
SOL1 2’’
4 PIN
4’’
AK4 INTRINSICALLY SAFE EE–3186–323–XXX MFG. NAME REV
AK4
SOC/ PIN NO.
WIRE COLOR
1 2 3
BROWN BLACK NC
SIGNAL NAME PSOL–1 PSOL–2
SOL1
CONNECT SHIELD W/ 20AWG BLACK
2
3
7 5
6
SEE NOTE 1
1
7
4
2 COND 20 AWG SHIELDED HYPAON JACKET B–R T–13103
NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. SEE LENGTH CHART FOR REV LEVEL DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. TOL +/– 0.5’’
EE-3186-323-001
14. OPENERS AND OPTIONS
14–38 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS MARO2P10203703E
14–39 Figure 14–19. Ground Cable M5 to M5 Stud
REVISION
CABLE VERSION
B B
EE–3186–326–001 EE–3186–326–002
DIM. A 10 IN 254 MM 16 IN 406 MM
(2) PLACES (2) PLACES
2
2 3
4
1
M5 STUD
M5 STUD EE–3186 –326–001 REV MANUF
0.5’’ 1.0in. TYP.
NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL DIMENSIONS +/– 0.5’’
EE-3186-326-001
14. OPENERS AND OPTIONS
14–40 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS MARO2P10203703E
14–41 Figure 14–20. P-10 Breakaway Magnet Sensor
REV
CABLE VERSION
DIM A
PG
A
EE–3186–333–001
24 IN NO 610 MM
0
A
2
3
1
2.0in. STRIP BACK OUTER SHEATH INTRINSICALLY SAFE
SENSOR EE–3186–333–001 MANUF REV APPLY LABEL OVER 3’’ OF BLUE SHRINK
NOTE: CABLE COMES WITH PROX SW
NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. TOL +/– 0.5’’
EE-3186-333-001
14. OPENERS AND OPTIONS
14–42 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS MARO2P10203703E
14–43 Figure 14–21. P-15 Hood/Deck Opener Electrical Layout Domestic Version
UPPER LEVEL BOM DOOR OPENER INTERCONNECTION CABLES FOR US
HOOD DECK OPENER ARM CABLES UPPER LEVEL BOM EE–3715–301–001
EE–3186–101–105 EE–3186–101–110 EE–3186–101–115 EE–3186–101–125 EE–3186–101–135 EE–3186–101–145 EE–3186–101–155
R–J2 CONTROLLER CONNECTIONS
PURGED CAVITY
AXIS 3 OUTER ARM a6/3000 A06B–0128–B175
DC/DC EE–3044–401 PWR INPUT UNIT
AXIS 2 INNER ARM a6/3000 A06B–0128–B175 MOTOR/BRAKE AA1 AA4 EE–3186–311–002
6
JF8 RAIL AUX AXIS BD
SENSOR OUTPUT
ISRR
EOAT1 EOAT2
BYPASS OUTPUT
ISRR
EOAT5 EOAT6
3 4 7 8
PSB1 PSB2 FSB1 FSB2
PURGE BARRIER
ISB2–3 ISB2–4
PURGE CONTROL ISTB
ENCODER SIGNALS (17.4 MM DIA)
JF9 INNER ARM JF10 OUTER ARM
PURGE CONTROL 24VPG 0V PG UNIT 220VAC
6V BATTERY 0V
3 3
PG29
EE–3186–112–105 EE–3186–112–110 EE–3186–112–115 EE–3186–112–125 EE–3186–112–135 EE–3186–112–145 EE–3186–112–155
3
PG29
EE–3186–312–001
AC1 AC4
EE–3186–313–001
PULSE AD1 AD4
EE–3186–314–002
AE1 AE4
EE–3186–315–001
AF1 AF4
EE–3186–316–001
REFERENCE SOL VALVE SHOWN ON MECH BOM REFERENCE PRES SW SHOWN ON MECH BOM FLOW SW ASSY
INTRINSICALLY SAFE (17.4 MM DIA) IS
GND
EE–3186–115–105 EE–3186–115–110 EE–3186–115–115 EE–3186–115–125 EE–3186–115–135 EE–3186–115–145 EE–3186–115–155
NOTE: I.S. GROUND IS A SEPARATE INTRINSICALLY SAFE GROUND AT THE PURGE CONTROL UNIT
PS2 SWITCH PRESSURE FS2 FLOW SWITCH
PG9
ARM OUTER
LINK EE–3186–351–001 EE–3186–323–001
EE–3066–322–001
EE–3186–340–001
CRANK
INNER INTERNAL ARM GND WIRE EE–3158–316–001 GND WIRES (1) EE–3186–326–004 (3) EE–3186–326–003 AXIS 3 AXIS 2
AXIS 1
PG29
GROUND CABLE (6.8MM) EE–3287–116–105 EE–3287–116–110 EE–3287–116–115 EE–3287–116–125 EE–3287–116–135 EE–3287–116–145 EE–3287–116–155
SOL2 PURGE VALVE
BYPASS EE–3185–356–001
AN1 AN4
4
AB1 AB4
AM1AM4
EE–3186–111–105 EE–3186–111–110 EE–3186–111–115 EE–3186–111–125 EE–3186–111–135 EE–3186–111–145 EE–3186–111–155
AL1 AL4
4
EE–3186–317–001
AK1 AK4
BKP BKM
MOTOR POWER (16.9 MM DIA.)
AJ1 AJ4
L TERMS M TERMS
AH1 AH4
4
EE–3186–331–001 MAGNET SWITCH
AG1 AG4
AMP 5 AXIS 1 RAIL AMP 6 (L) AXIS 2 INNER ARM AMP 6 (M) AXIS 3 OUTER ARM PURGE BD
EE–3044–401
AXIS 1 RAIL a6/3000 A06B–0128–B675–0008
P–15 HOOD/DECK OPENER ELECTRICAL LAYOUT DOMESTIC VERSION EE–3715–001
14. OPENERS AND OPTIONS
14–44 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS MARO2P10203703E
14–45 Figure 14–22. P-15 Hood/Deck Opener Electrical Layout European Version
UPPER LEVEL BOM DOOR OPENER INTERCONNECTION CABLES FOR US
HOOD/DECK OPENER ARM CABLES UPPER LEVEL BOM EE–3715–302–001
EE–3186–102–105 EE–3186–102–110 EE–3186–102–115 EE–3186–102–125 EE–3186–102–135 EE–3186–102–145 EE–3186–102–155
R–J2 CONTROLLER CONNECTIONS
PURGED CAVITY
AXIS 3 OUTER ARM a6/3000 A06B–0128–B175
DC/DC EE–3044–401
PWR INPUT UNIT
MOTOR/BRAKE
4
MOTOR POWER (16.9 MM DIA.)
AUX AXIS BD
INNER ARM
EE–3186–112–105 EE–3186–112–110 EE–3186–112–115 EE–3186–112–125 EE–3186–112–135 EE–3186–112–145 EE–3186–112–155
JF10 OUTER ARM
PURGE CONTROL UNIT
24VPG 0V PG
3
220VAC
SENSOR OUTPUT BYPASS OUTPUT
BYPASS EE–3185–356–001
PG29
AD1 AD4
EE–3186–314–002
AE1 AE4
EE–3186–315–001
AF1 AF4
EE–3186–316–001
REFERENCE SOL VALVE SHOWN ON MECH BOM
SOL2 PURGE VALVE
EOAT1 EOAT2
ISRR
EOAT5 EOAT6
3 4 7 8
PSB1 PSB2 FSB1 FSB2
PURGE BARRIER
ISB2–3 ISB2–4
6V BATTERY 0V
3 3
INTRINSICALLY SAFE (17.4 MM DIA) IS GND
EE–3186–115–105 EE–3186–115–110 EE–3186–115–115 EE–3186–115–125 EE–3186–115–135 EE–3186–115–145 EE–3186–115–155
BOOTH WALL NOTE: I.S. GROUND IS A SEPARATE INTRINSICALLY SAFE GROUND AT THE PURGE CONTROL UNIT
EE–3186–348–001
OP 4 FL 5 6 7
4 5 6 7
EE–3186–341–001
CRANK
INTERNAL INNER GND WIRE ARM EE–3158–316–001 GND WIRES (1) EE–3186–326–004 (3) EE–3186–326–003 AXIS 3 AXIS 2
PG29
GROUND CABLE (6.8MM) EE–3287–116–105 EE–3287–116–115 EE–3287–116–110 EE–3287–116–125 EE–3287–116–135 EE–3287–116–145 EE–3287–116–155
JUMPER REMOVED HR2151 PRES & FLOW SWITCHES
OUTER ARM
EE–3186–351–001
LINK PR
ISRR
PURGE CONTROL ISTB
EE–3186–313–001
PULSE
ENCODER SIGNALS (17.4 MM DIA)
JF9
AC1 AC4
EE–3186–317–001
AN1 AN4
JF8 RAIL
PG29
EE–3186–312–001
AM1AM4
EE–3186–121–105 EE–3186–121–110 EE–3186–121–115 EE–3186–121–125 EE–3186–121–135 EE–3186–121–145 EE–3186–121–155
6
EE–3186–311–002
AB1 AB4
AL1 AL4
PURGE BD
AA1 AA4
AK1 AK4
BKP BKM
MAGNET SWITCH
4
AJ1 AJ4
L TERMS M TERMS
EE–3186–331–001 EE–3044–401
AH1 AH4
AMP 6 (L) AXIS 2 INNER ARM AMP 6 (M) AXIS 3 OUTER ARM
AXIS 2 INNER ARM a6/3000 A06B–0128–B175
4
AG1 AG4
AMP 5 AXIS 1 RAIL
PG9
AXIS 1 RAIL a6/3000 A06B–0128–B675–0008
AXIS 1
P–15 HOOD/DECK OPENER ELECTRICAL LAYOUT EUROPEAN VERSION EE–3715–002
14. OPENERS AND OPTIONS
14–46 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS MARO2P10203703E
14–47 Figure 14–23. P-15 Opener End of Arm Tooling Cable
REV B
CABLE VERSION EE–3186–317–001
DIM. A 144 IN 3658 MM
PG YES
0
A 48’’
8
CONNECTOR LABEL
AG4
PIN NO. 1 2 3 4 5 6 7 8 9
WIRE COLORS
SIGNAL NAME
WHITE BLACK
EOAT–1 EOAT–2
10
6
1
7
9
11
4
5
1’’ INTRINSICALLY SAFE SENSOR REV. EE–3186–317–XXX MFG. NAME
INTRINSICALLY SAFE AG4 REV. EE–3186–317–XXX MFG. NAME
9 PIN 3.00”
3.00”
SEE NOTE 1
APPLY LABEL OVER 3” OF BLUE SHRINK TUBING, TYP. BOTH ENDS
SHIELD 2
3.00” TYP.
CONNECTOR LABEL
PIN NO.
WIRE COLORS
SIGNAL NAME
SENSOR
1 2 3
WHITE BLACK SHIELD
EOAT–1 EOAT–2
SENSOR
3.00”
3
NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL LENGTH DIMENSIONS +/– 0.5’’ 2. BUILD UP CABLE DIA. WITH 1/32 X 2” EPDM STRIP MATERIAL FOR PROPER PG FITTING DIA. A SMALL AMOUNT OF ADHESIVE SHOULD BE USED TO SECURE EPDM STRIP PRIOR TO APPLICATION OF SHRINK TUBING. RETAIN EPDM STRIP MAT’L WITH 2” OF BLUE SHRINK TUBING.
CABLE SPECIFICATION ONE PAIR 20 AWG W/SHIELD HYPALON JACKET MAX. CABLE O.D. = 6.68mm (0.263in) BELDEN #8402
OPENER END OF ARM TOOLING CABLE EE–3186–317–001
14. OPENERS AND OPTIONS
14–48 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS MARO2P10203703E
14–49 Figure 14–24. P-15 Part Present Proximity Cable
REV
CABLE VERSION
A
EE–3186–331–001
DIM A IN 24 610 MM
PG NO
0
A
2 PIN # 1 2 3
3
4
5
1
WIRE SIGNAL COLOR NAME BROWN + SIGNAL BLUE – SIGNAL UNUSED INTRINSICALLY SAFE SENSOR EE–3186–331–001 MANUF REV
APPLY LABEL OVER 3’’ OF BLUE SHRINK
NOTE: CABLE COMES WITH PROXIMITY SWITCH
NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. TOL +/– 0.5’’ PART PRESENT PROXIMITY CABLE EE–3186–331–001
14. OPENERS AND OPTIONS
14–50 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS
14–51
MARO2P10203703E
Figure 14–25. Integral Pump Control Drawing Index and System Index
ROBOT CONTROLLER (RC)
24VDC CONDUIT
VARIABLE RATIO 2K SINGLE STAGE PAINT PROCESS CONTROL
PAINT PROCESS VALVE PANEL
ANALOG CONDUIT
INTRINSIC CABLE NE–2000–977–XXX
ELECTROSTATIC POWER SUPPLY (E–STAT UNIT)
E–STAT CABLE CONDUIT JUNCTION BOX BOOTH WALL
P–200 PURGE CAVITY E–STAT CABLE CES2 (PARAFLEX)
NE–2000–977–003 EXPLOSIONPROOF JUNCTION BOX (ROBOT TURET)
SUPPLIED WITH COLLISION DETECTION UNIT
MAC VALVE P–200 ROBOT UPPER ARM
E–STAT CABLE CES3 (PARAFLEX)
PUMP REGULATOR BLOCK
COLLISION DETECT MOUNTING PLATE
WRIST PLATE GROUND
APPLICATOR
NE–2000–477
14. OPENERS AND OPTIONS
14–52 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS
14–53
MARO2P10203703E
Figure 14–26. Integral Pump Control I/O Rack Layout
MAIN CPU PCB
JD1
109
RACK COMMUNICATION CABLE–1 METER
SLOT NUMBER
JD1A A I F JD1B 0 1 A
1
2
3
4
5
A O D 1 6 D
A O D 1 6 D
A D A 0 2 A
A D A 0 2 A
R E S E V E D
CP32
6 A A D 0 4 A
7
8
9
10
A O D 1 6 D
A O D 1 6 D
R E S E V E D
R E S E V E D
109 109 109 109 109 109 109
RACK POWER CABLE +24VDC, 0VDC FROM SPADE CONNECTORS ON POWER INPUT UNIT CABLE/WIRING BY FANUC WIRE AS SHOWN ON SHEET 082
82091 82092 +24VDC 0VDC
82291 82292 +24VDC 0VDC
TO MAIN AIR SUPPLY SOLENOID AS SHOWN ON SHEET 082
109 109 CP6 MAIN CPU PSU MODULE
POWER INPUT UNIT (PIU)
I/O RACK LAYOUT NE–2000–477
14. OPENERS AND OPTIONS
14–54 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS
14–55
MARO2P10203703E
Figure 14–27. Integral Pump Control Controller Layout
TERMINAL STRIP T1
124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
FUSE
FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE
FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
SPARE SPARE SPARE 82091 (+24VDC) 82091 (+24VDC) SPARE 82092 (0VDC) 82092 (0VDC) 82092 (0VDC) 82092 (0VDC) 8214F (+5VDC) 82231 (+24VDC) 82231 (+24VDC) 82292 (0VDC) 8232F (+24VDC) 8308F (ACSP) 8309F (ACAP) 8310F (LPSP) 8311F (LPAP) 8312F (RS1P) 8313F (RS2P) 8314F (RPSP) 8315F (RAP) 8316F (RPBP) 8317F (RPDP) 8318F (HS1P) 8319F (HS2P) 8320F (HPSP) 8321F (HAP) 8322F (HPBP) 8323F (HPDP) 8336F (PT) 8344F (MHP) 8345F (MRP) 8346F (HP1) 8347F (HP2) 8348F (HP3) SPARE SHEILD 1 84121 (CLEAR) 84131 (BLACK) 84141 (CLEAR) 84151 (BLACK) SHEILD 2 SHEILD 3 84401 (CLEAR) 84411 (BLACK) 85121 (CLEAR) 85131 (BLACK) SHEILD 5 SPARE 8608F (CP1) 8609F (CP2) 8610F (CP3) 8611F (CP4) 8612F (CP5) 8613F (CP6) 8614F (CP7) 8615F (CP8) 8616F (CP9) 8617F (CP10) 8618F (CP11) 8619F (CP12) 8620F (CP13) 8621F (CP14) 8622F (CP15) 8623F (CP16) 8636F (CP17) 8637F (CP18) 8638F (CP19) 8639F (CP20) 8640F (CP21) 8641F (CP22) 8642F (CP23) 8643F (CP24)
8204CR
124 124 124 124
ANALOG INPUT CABLE ROUTING
124 PURGE CONTROL UNIT
CONTACT SIGNAL TRANSDUCER
MOUNT TERMINAL STRIP T1 TO SIDE WALL INSIDE OF ROBOT CONTROLLER.
DISCONNECT
AMP 1
AMP 2
AMP 3
COMM. SLOT SLOTSLOTSLOTSLOTSLOTSLOTSLOTSLOTSLOT MODULE 1 2 3 4 5 6 7 8 9 10
2” W X 4” H DUCT
CABLE ROUTING
EMG BOARD MAIN PSU CPU
AREA RESERVED FOR SYSTEM INTEGRATION
CABLE ROUTING
OPT
AMP 4
1 1/2 ”W X 4”H DUCT
TB2
CONTROLLER INTERIOR VIEW LEFT SIDE I/O POWER ENABLE
CONTROLLER W/DOOR REMOVED CONTROLLER LAYOUT NE–2000–477
14. OPENERS AND OPTIONS
14–56 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS
14–57
MARO2P10203703E
Figure 14–28. Top Hat Option Drawing Index and System Layout
2K PUMP CAVITY
PUMP PRESSURE CONTROL BLOCK
PUMP #1
2K PURGED CAVITY
RJ–2 ROBOT CONTROLLER
PUMP #2
UPPER ARM CAVITY PT VALVE
NEW PULSECODER & MOTOR POWER HARNESS NE–2000–996–401 100
NEW BATTERY CABLE NE–2000–977–004
CURRENT ROBOT DC/DC CONVERTER
100 ROBOT ARM
DUAL DC/DC CONVERTER MOUNTING BRACKET 100 NE–2000–396–103 ADDED JUMPER
100 EE–3044–403–001 ADDED DC/DC
MOTOR POWER CABLE NE–2000–996–005 THRU 055 (REF.)
ROBOT BASE PURGED CAVITY INTRINSIC CABLE NE–2000–977–005 THRU 055 (REF.)
DC/DC DC/DC
9 PIN
9 PIN
15 PIN AXIS 3
100 CONVERTER EE–3044–401
P/I TRANSDUCER AND TRIGGER CABLE NE–2000–977–003
PULSE CABLE NE–2000–996–205 THRU 255 (REF.)
4 PIN
100 15 PIN ROUTED THRU PROCESS CAT–TRACK
NE–2000–396
14. OPENERS AND OPTIONS
14–58 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS
14–59
MARO2P10203703E
Figure 14–29. Side Saddle Option Drawing Index and System Layout
UPPER ARM
RJ–2 ROBOT CONTROLLER
PT VALVE
DUAL DC/DC CONVERTER 100 MOUNTING BRACKET NE–2000–396–103 PILOT TRIGGER CABLE NE–2000–977–002
100
JUMPER EE–3044–403–001
100
ADDED DC/DC CONVERTER EE–3044–401
ROBOT DC/DC CONVERTER
DC/DC
ROBOT PURGED CAVITY 4 PIN
100
MOTOR POWER CABLE NE–2000–996–005 THRU 055 (REF.)
INTRINSIC CABLE NE–2000–977–005 THRU 055 (REF.)
DC/DC
100
ROUTED THRU PROCESS CAT–TRACK
PULSE CABLE NE–2000–996–205 THRU 255 (REF.)
9 PIN
9 PIN
15 PIN AXIS 3
15 PIN 4 PIN
P/I TRANSDUCER AND BATTERY CABLE NE–2000–977–001
MOTOR POWER & PULSECODER HARNESS NE–2000–996–400
100
VACULOCK HOSE PUMP PRESSURE CONTROL BLOCK
PUMP #1
PG 2K PURGED CAVITY
2K PUMP CAVITY
PUMP #2
NE–2000–397
14. OPENERS AND OPTIONS
14–60 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS
14–61
MARO2P10203703E
Figure 14–30. Top Hat and Side Saddle Option Drawing Index and System Layout
R–J2 ROBOT CONTROLLER
2K SYSTEM (INTRINSIC CABLE: NE–2000–977–005 THRU 055) CONTROL (POWER CABLE: NE–2000–996–005 THRU 155) REF. CABLES (PULSE CABLE: NE–2000–996–205–355)
B
ROBOT DC TO DC CONVERTER REF. P–200 PURGED CAVITY
DC/DC
DC TO DC CONVERTER JUMPER REF.
DC/DC
B ADDED DC TO DC CONVERTER REF.
B
2K TOP HAT ROBOT CABLES
MOTOR/ PULSE HARNESS: NE–2000–996–401 BATTERY CABLE: NE–2000–977–004 INTRINSIC PROCESS CABLE: NE–2000–977–003
or 2K SIDE SADDLE ROBOT CABLES
MOTOR/ PULSE HARNESS: NE–2000–996–400 BATTERY/INTRINSIC CABLE: NE–2000–977–001 TRIGGER CABLE: NE–2000–977–002
REFERENCE NE–2000–396
B REFERENCE NE–2000–398
2K PUMP ASSEMBLY
NE–2000–496 and
NE–2000–498
14. OPENERS AND OPTIONS
14–62 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS
14–63
MARO2P10203703E
Figure 14–31. Top Hat and Side Saddle Option Cable and Wiring Diagram
E–STOP PCB
IPC AMP 5
CRR20
CRX4 JS2B JS1B
CRR20 SIGNAL WIRE NAME COLOR BLUE1 ESP
+24V
AMP 1
CRX4 AMP 4 CRX4 SIGNAL PIN WIRE NAME # COLOR 1 2 BLUE2 ESP 3
D AMP 1 CRX4 SIGNAL PIN WIRE NAME # COLOR 1 2 BLUE2 ESP 3
CRX4
AMP 2
D AMP 2 CRX4 SIGNAL PIN WIRE NAME # COLOR 1 2 BLUE2 ESP 3
CRX4
AMP 3
D
CRX4
AMP 3 CRX4 SIGNAL PIN WIRE NAME # COLOR 1 2 BLUE2 ESP 3
24V INTERLOCK HARNESS #NE–2000–996–003 104
AXIS BOARD TO AMPLIFIER CABLE #XGMF–10064
AUX AXIS BOARD
104
JV13 JV14
BLUE2
AMP 5 (IPC) CRX4 SIGNAL PIN WIRE # COLOR NAME 1 2 BLUE2 ESP BLUE1 3 +24V
JF13 JF14
PIN # 1 2 3 4 5 6
AMP 4
FROM PUMP 2 MOTOR ENCODER FROM PUMP 1 MOTOR ENCODER 2K PUMP PULSE CABLE #NE–2000–996–2XX (REFERENCE ONLY)
NE–2000–496 and
NE–2000–498
14. OPENERS AND OPTIONS
14–64 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS
14–65
MARO2P10203703E
Figure 14–32. Top Hat and Side Saddle Option Purge and Intrinsic Wiring Control Drawing VARIABLE RATIO 2K PURGE AND INTRINSIC WIRING CONTROL DRAWING HAZARDOUS LOCATION CLASS I, II & III IDEC IBRC 6062RFM DIVISION 1 GROUPS C D E F & G RELAY BARRIER P1 PRESSURE SWITCH N1 ISTB
NON–HAZARDOUS LOCATION (250 VAC MAXIMUM) A1 C1 OPERATOR PANEL
A2
PURGE CIRCUITS
FLOW SWITCH
C2
PANEL I/F
CNPG EMGIN1 EMGIN2
CNPG
A3
BRAKE CONTROL
N3
A4
CNIN
MAIN CPU CRM10
P3
CNIS
CNCA
A5
+24P 0V
A6 SOL1
N4 P5
TP DISCONNECT SWITCH
C5 220 VAC
P4
HAND BROKEN
C4 RDI/RDO
N2
ROBOT OVERTRAVEL SWITCH
C3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
P2
N5 P6
MISC. SWITCH (RDI2)
C6
PSA1 PSA2 PSB1 PSB2 FSA1 FSA2 FSB1 FSB2 OT11 OT12 OT21 OT22 OT31 OT32 OT41 OT42 OT51 OT52 HBK1 HBK2 TP1 TP2 EOAT1 EOAT2
NOTICE NO REVISIONS WITHOUT PRIOR APPROVAL FROM FACTORY MUTUAL (FM)
CONNECTION CABLE NE–2000–977–XXX ROBOT PURGED CAVITY
ROBOT WIRE HARNESS EE–3287–323–001
PRES. SW CABLE EE–3044–345–001 PS1 PS1 ROBOT PRESSURE SWITCH FLOW SW CABLE EE–3044–340–001 FS1 FS1 ROBOT FLOW SWITCH SOLENOID CABLE EE–3287–348–001 SOL SOL PURGE SOLENOID VALVE
M1 M4
M1 M4
M1 M4
S1
EE–3287–324–001 BATT S4
BATT ENCODER
N6
R1
R1
N1
N4
O1
O4
NE–2000–977–001 BATT
EE–3185–356–001
3 4
1 2
P–200–6+2J2+2K / P–200–6–2KT P–200–6L+2J2+2K / P–200–6L–2KT P–200 SIDE SADDLE MOUNTED P–200 R–J2 MODELS CONTROLLER / ROBOT
X6 FOR ROBOT
P–200–6LJ2+2K / P–200–6L–2KS P–200–6+2J2+2K / P–200–6–2KS
X2 FOR ENCODER 2K PUMPS
P–200–6L+2J2+2K / P–200–6L–2KS
INTRINSIC SAFETY BARRIER ISB1 STAHL 9001/01–252–100–14 CRR21
P–200 R–J2 MODELS CONTROLLER / ROBOT P–200–6J2+2K / P–200–6–2KT P–200–6LJ2+2K / P–200–6L–2KT
P–200–6J2+2K / P–200–6–2KS BATT
SOL2
E–STOP PCB
P–200 TOP HAT MOUNTED
BYPASS SWITCH
I.S. GROUND
CRR22 CRR5 I.S. BATTERY PACK
BKP4 BKM4
1
6
+
+
I.S. GROUND
SERVO TRANSFORMER FOR PAINT R–J TYPE
DELTRON W112A
220V (43)
120VAC FROM CONVEYOR
220V (44)
24VDC POWER SUPPLY
FROM I/O
7 8
24V
8 7 5 6
TO I/O 24V TO I/O 24V TO I/O FIRE ALARM
24V TO I/O
+24VDC PSU
B
7 8 9 10 11 +24 12
EE–3112–600 24V 24V OVP UNIT
1 3
ISB3 KHD2–SR–EX1.2S.P P&F ISB7 P&F Z728
+ 1 2
ISB3–1 ISB3–3
HAND BRKN
P1
ISB7–1 ISB7–2
8533ISB P&F Z787
+ 1 2 +4 3
8533ISB–1 8533ISB–2 8533ISB–4
8 7 5 6
8538ISB P&F Z787
+ 1 2 +4 3
8538ISB–1 8538ISB–2 8538ISB–4
8 7 5 6
8543ISB P&F Z787
+ 1 2 +4 3
8543ISB–1 8543ISB–2 8543ISB–4
8 7 5 6
8548ISB P&F Z787
+ 1 2 +4 3
8548ISB–1 8548ISB–2 8548ISB–4
TRIGGER 1 PUMP #1 UNDER PRESSURE PUMP #1 OVER PRESSURE PUMP #2 UNDER PRESSURE PUMP #2 OVER PRESSURE
+V R AC S
I.S. GROUND
0V G
TO CRS1 (MAIN CPU)
ISB UNIT A05B–2308–C370 I.S. GROUND
FRAME GROUND
P4
NE–2000–977–002
NOTES: 1. ACCEPTABLE I.S. BATTERY PACKS: A05B–2363–C040 EE–3185–551 2. ALTERNATE I.S. BATTERY PACKS: A05B–2072–C181 A05B–2047–C182 SHALL BE USED PER EG–00127–SECTION VI 3. I.S. GROUND CONNECTION SHALL BE PER NEC(NFPA 70) SECTION 504–50 AND ANSI/ISA RP 12.6
NE–2000–977–001
F1F2F3 F4 F5
I/S TEACH PENDANT A05B–2308–C300 NE–2000–498–500 and NE–200–496–500
14. OPENERS AND OPTIONS
14–66 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS
14–67
MARO2P10203703E
Figure 14–33. Top Hat and Side Saddle Options Cable Layout Diagram 6 AXIS ROBOT HARNESS AND CABLE LAYOUT ROBOT ARM
R–J2 CONTROLLER AXIS 4 AXIS 5 AXIS 6
PURGE BD (BK) BRAKES
EMG BD
4 4 4
MOTOR 13.5MM EE–3287–111– 005 EE–3287–111–010 EE–3287–111–015 EE–3287–111–025 EE–3287–111–035 EE–3287–111–045 EE–3287–111–055
6
CRF1
C1
CABLE CLAMP SHIELD TO CHASSIS GROUND
PULSE BAT AXIS 6 POWER BRK
C4
D1 D4
PULSE 19.8MM EE–3287–113–005 EE–3287–113–010 EE–3287–113–015 EE–3287–113–025 EE–3287–113–035 EE–3287–113–045 EE–3287–113–055
AUX AXIS BD JF7
24PG, 0PG PURGE UNIT PGTB 3
A1 A4 B1 B4
OUTER ARM GROUND
E1
F1 F2 GROUNDING OF NON–IS SHIELDED CABLE AT CONTROLLER ENTRANCE
CONNECTION CABLE SETS UPPER LEVEL BOMS
50MM GND CLAMP
CABLE SHIELD
DC/DC CONVERTERS
INNER ARM GROUND
EE–3044–401
CABLE
F1
PULSE BAT AXIS 5 POWER BRK
PULSE BAT AXIS 4 POWER BRK
EE–3287–322–001 AXIS 4, 5 & 6 PWR & PULSE HARNESS
EE–3044–401
AMP 1 (L) AMP 2 (L) AMP 3 (M)
SEAL OFFS USED WITH NA PEDESTAL (NO PG FITTINGS)
TURRET GROUND
PULSE & BATT AXIS 3 POWER & BRK
PULSE & BATT AXIS 2 POWER & BRK
H1H4 AMP 1 (M) AMP 4 (M)
AXIS 1 AXIS 2
PURGE BD (BK) BRAKES
4
MOTOR 21.0MM EE–3287–110– 005 EE–3287–110– 010 EE–3287–110– 015 EE–3287–110– 025 EE–3287–110– 035 EE–3287–110– 045 EE–3287–110– 055
12 4
J1 J4
EE–3287–321–001 AXIS 1, 2 & 3 PWR & PULSE HARNESS
PULSE BAT PUMP 1 POWER BRK
K1 K4 AMP 2 (M)
AXIS 3
AMP 5 (L)
PUMP 1
AMP 5 (M)
PUMP 2
PURGE BD (BK) BRAKES
8
MOTOR 21.0MM NE–2000–996–005 NE–2000–996–010 NE–2000–996–015 NE–2000–996–025 NE–2000–996–035 NE–2000–996–045 NE–2000–996–055
4 4 4
AUX AXIS BD JF13 AUX AXIS BD JF14 CABLE CLAMP SHIELD TO CHASSIS GROUND
CONTROLLER GROUND
(SEE SHEET 004)
PULSE 17.4MM NE–2000–996–205 NE–2000–996–210 NE–2000–996–215 NE–2000–996–225 NE–2000–996–235 NE–2000–996–245 NE–2000–996–255
6.9MM GND EE–3287–116– 005 EE–3287–116– 010 EE–3287–116– 015 EE–3287–116– 025 EE–3287–116– 035 EE–3287–116– 045 EE–3287–116– 055 INTRINSIC 20.5MM NE–2000–977–005 NE–2000–977–010 B NE–2000–977–015 NE–2000–977–025 NE–2000–977–035 NE–2000–977–045 NE–2000–977–055
PULSE & BATT AXIS 1 POWER & BRK
2K1 2K1
NE–2000–401 PUMPS 1 & 2 PWR & PULSE HARNESS
5M
NE–2000–896–005
10M
NE–2000–896–010
15M
NE–2000–896–015
25M
NE–2000–896–025
35M
NE–2000–896–035
45M
NE–2000–896–045
55M
NE–2000–896–055
CONNECTION CABLE SETS UPPER LEVEL BOMS 5M
NE–2000–898–005
10M
NE–2000–898–010
15M
NE–2000–898–015
25M
NE–2000–898–025
35M
NE–2000–898–035
45M
NE–2000–898–045
55M
NE–2000–898–055
PULSE BAT PUMP 2 POWER BRK
2K2 2K2
R1 R1
S1 S4
NE–2000–977–004 INTRINSIC BATTERY HARNESS PUMPS 1 & 2
EE–3287–324–001 INTRINSIC BATTERY HARNESS AXIS 1–6 NE–2000–896–005 THRU –055 NE–2000–898–005 THRU –055
14. OPENERS AND OPTIONS
14–68 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS
14–69
MARO2P10203703E
Figure 14–34. Top Hat Option Intrinsic Connections
R–J2 ROBOT CONTROLLER
IDEC IBRC 6062RFM RELAY BARRIER
A1
P1
PRESSURE SWITCH
C1
N1
A2
P2
FLOW SWITCH
C2 A3
N2 P3
ROBOT OVERTRAVEL SWITCH
C3
N3
A4
P4
HAND BROKEN
C4 A5
N4 P5
TP DISCONNECT SWITCH
C5 A6
N5 P6
MISC. SWITCH (RDI2)
C6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
ISTB PSA1 PSA2 PSB1 PSB2 FSA1 FSA2 FSB1 FSB2 OT11 OT12 OT21 OT22 OT31 OT32 OT41 OT42 OT51 OT52 HBK1 HBK2 TP1 TP2 EOAT1 EOAT2
INTRINSIC CONNECTION CABLE NE–2000–977–XXX
NOTES:
ROBOT WIRE HARNESS ROBOT PURGED CAVITY EE–3287–323–001 PRES. SW CABLE EE–3044–345–001 M1 M4 PS1 PS1 ROBOT
1. SIGNAL NAMES IN THE PRODUCT CABLE EE–3287–323–001 WILL NOT MATCH SIGNAL NAMES ON THE INTRINSIC CABLE NE–2000–977–XXX OR THE PROCESS CABLE NE–2000–977–003.
PRESSURE SWITCH
M1 M4
FLOW SW CABLE EE–3044–340–001 FS1 FS1 ROBOT
M1 M4
SOLENOID CABLE EE–3287–348–001 SOL SOL PURGE
FLOW SWITCH
SOLENOID VALVE
S1
N6
S4
R1
R1
EE–3287–324–001 BATT
NE–2000–977–004 BATT
BATT ENCODER
X6 FOR ROBOT
ENCODER
X2 FOR 2K PUMPS
BATT
INTRINSIC SAFETY BARRIER ISB1 STAHL 9001/01–252–100–14 N1
N4
EE–3185–356–001
O1
O4
O1
3 4
1 2
BYPASS SWITCH
I.S. GROUND
I.S. BATTERY PACK
1
6
+
+
I.S. GROUND 7 1 8 ISB3 3 9 10 KHD2–SR–EX1.2S.P 11 +24 P&F 12 7 8 8 7 5 6
ISB7 P&F Z728
+ 1 2
ISB3–1 ISB3–3
O4 HAND BRKN
P1
ISB7–1 ISB7–2
8533ISB P&F Z787
+ 1 2 +4 3
8533ISB–1 8533ISB–2 8533ISB–4
8 7 5 6
8538ISB P&F Z787
+ 1 2 +4 3
8538ISB–1 8538ISB–2 8538ISB–4
8 7 5 6
8543ISB P&F Z787
+ 1 2 +4 3
8543ISB–1 8543ISB–2 8543ISB–4
8 7 5 6
8548ISB P&F Z787
+ 1 2 +4 3
8548ISB–1 8548ISB–2 8548ISB–4
P4
P4
P4 TRIGGER 1 PUMP #1 UNDER PRESSURE PUMP #1 OVER PRESSURE PUMP #2 UNDER PRESSURE PUMP #2 OVER PRESSURE
I.S. GROUND
C
NE–2000–977–003 ROBOT WIRE HARNESS EE–3287–323–001 (MUST BE REV. D) SEE NOTE 1.
NE–2000–896–005 THRU –055
14. OPENERS AND OPTIONS
14–70 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS
14–71
MARO2P10203703E
Figure 14–35. Side Saddle Option Intrinsic Connections
R–J2 ROBOT CONTROLLER IZUMI IBRC6062R
A1
P1
PRESSURE SWITCH
C1
N1
A2
P2
FLOW SWITCH
C2 A3
N2 P3
ROBOT OVERTRAVEL SWITCH
C3
N3
A4
P4
HAND BROKEN
C4 A5
N4 P5
TP DISCONNECT SWITCH
C5 A6
N5 P6
MISC. SWITCH (RDI2)
C6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
ISTB PSA1 PSA2 PSB1 PSB2 FSA1 FSA2 FSB1 FSB2 OT11 OT12 OT21 OT22 OT31 OT32 OT41 OT42 OT51 OT52 HBK1 HBK2 TP1 TP2 EOAT1 EOAT2
INTRINSIC CONNECTION CABLE NE–2000–977–XXX ROBOT PURGED CAVITY ROBOT WIRE HARNESS PRES. SW CABLE EE–3287–323–001 EE–3044–345–001 M1 M4 PS1 PS1 ROBOT PRESSURE SWITCH
M1 M4
FLOW SW CABLE EE–3044–340–001 FS1 FS1 ROBOT
M1 M4
SOLENOID CABLE EE–3287–348–001 SOL SOL PURGE
FLOW SWITCH
SOLENOID VALVE
S1
S4
EE–3287–324–001 BATT
BATT ENCODER
N6
R1
R1
NE–2000–977–001 BATT
BATT
ENCODER X2 FOR
2K PUMPS
INTRINSIC SAFETY BARRIER ISB1 STAHL 9001/01–252–100–14 N1
N4
O1
O4
P1
P4
EE–3185–356–001
3 4
1 2
X6 FOR ROBOT
BYPASS SWITCH
I.S. GROUND
I.S. BATTERY PACK
1
6
+
+
I.S. GROUND 7 1 8 9 ISB3 3 10 KHD2–SR–EX1.2S.P 11+24 P&F 12 ISB7 7 + 1 P&F Z728 8 2 8 + 1 8533ISB 7 2 5 +4 P&F Z787 6 3 8 + 1 8538ISB 7 2 5 +4 P&F Z787 6 3 8 + 1 8543ISB 7 2 5 +4 P&F Z787 6 3 8 + 1 8548ISB 7 2 5 +4 P&F Z787 6 3
ISB3–1 ISB3–3
HAND BRKN ISB7–1 ISB7–2
NE–2000–977–002 TRIGGER 1
8533ISB–1 8533ISB–2 8533ISB–4
PUMP #1 UNDER PRESSURE
8538ISB–1 8538ISB–2 8538ISB–4
PUMP #1 OVER PRESSURE
8543ISB–1 8543ISB–2 8543ISB–4
PUMP #2 UNDER PRESSURE
8548ISB–1 8548ISB–2 8548ISB–4
PUMP #2 OVER PRESSURE
I.S. GROUND
NE–2000–977–001
NE–2000–898–005 THRU –055
14. OPENERS AND OPTIONS
14–72 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS
14–73
MARO2P10203703E
Figure 14–36. Top Hat and Side Saddle Options Axis 3, Pumps 1 and 2 Motor Power Cable Reference
WIRE COLOR/ NUMBER BLUE/17 BLUE/18
WIRE TAG
SIGNAL NAME
BKP2 BKM2
3BKP 3BKM
BKP2 BKM2
CONNECTOR LABEL
3U 3V WIRE COLOR/ NUMBER
WIRE TAG
3W
RED/1 WHITE/2 BLACK/3 GRN/YEL/4 RED/5 WHITE/6 BLACK/7 GRN/YEL/8 RED/9 WHITE/10 BLACK/11 GRN/YEL/12 RED/13 WHITE/14 BLACK/15 GRN/YEL/16
3U 3V 3W 3G 3U 3V 3W 3G P1U P1V P1W P1G P2U P2V P2W P2G
3U
3G AXIS 3 PWR/BRK K1
3V
104
AXIS 3 POWER/BRK K1
3W 3G MOTOR REV. NE–2000–996–XXX MFG. NAME
P1U P1V P1W P1G P2U P2V P2W
12 POS SOC
MOTOR REV. NE–2000–996–XXX MFG. NAME
CABLE SPECIFICATION 16–#14 & 4–#18 AWG CONDUCTORS HYPALON JACKET MAX CABLE O.D.= 21.0 MM (0.825”) P/N=T–14379
PUMP #1 & #2 PWR 2K1
PUMP #1 & #2 POWER 2K1
9 POS SOC
SOC/ PIN NO. 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9
WIRE COLOR/ NUMBER RED/1 WHITE/2 BLACK/3 GRN/YEL/4 RED/5 WHITE/6 BLACK/7 GRN/YEL/8 BLUE/17 BLUE/18 KEY PLUG KEY PLUG RED/9 WHITE/10 BLACK/11 GRN/YEL/12
SIGNAL NAME
3BKM
RED/13 WHITE/14 BLACK/15 GRN/YEL/16
P2G
NE–2000–898–005THRU –055 NE–2000–896–005THRU –055
14. OPENERS AND OPTIONS
14–74 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS
14–75
MARO2P10203703E
Figure 14–37. Top Hat and Side Saddle Options Pumps 1 and 2 Pulse Cable Reference
CONN LABEL
JF13
PIN NO.
WIRE COLOR
SIGNAL NAME
PAIR NO.
1 2 3 4 5 6
WHITE BLACK
P1D P1*D
1 PIN PIN
WHITE BROWN
P1RQ P1*RQ
JF14
PIN NO.
WIRE COLOR
SIGNAL NAME
PAIR NO.
1 2 3 4 5 6
WHITE RED
P2D P2*D
3 PIN PIN
WHITE ORANGE
P2RQ P2*RQ
CONN LABEL
2 PIN PIN
CONN LABEL
105
JF13
4
PUMP 1+2 PULSE NE–2000–996–XXX MFG. NAME REV.
JF14
PUMP 1+2 PULSE NE–2000–996–XXX MFG. NAME REV.
CABLE SPECIFICATION CABLE O.D.=17.4MM (.685”) BLACK HYPALON JACKET P/N=T–11762 9 PAIR #20 AWG
2K2
9 POS SOC
2K2
PIN NO.
WIRE COLOR
SIGNAL NAME
1 2 3 4 5 6 7 8 9
WHITE BLACK WHITE BROWN WHITE RED WHITE ORANGE #18 BLK
P1D P1*D P1RQ P1*RQ P2D P2*D P2RQ P2*RQ SHIELD
PAIR NO. 1 2 3 4
PIN
NE–2000–898–005THRU –055 NE–2000–896–005THRU –055
14. OPENERS AND OPTIONS
14–76 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS
14–77
MARO2P10203703E
Figure 14–38. Top Hat and Side Saddle Options Intrinsic Cable Reference
IS GND
1–PSA1
1 2–PSA2 5–FSA1
WIRE WIRE TAG TWIST COLOR/ PAIR ISTB NUMBER CONN. POINT NO. WHITE–1 1 – PSA1 BLUE–2 2 – PSA2 WHITE–3 5 – FSA1 ORANGE–4 6 – FSA2 WHITE–5 ISB1–3 GREEN–6 ISB1–4 ISB3–1 WHITE–7 ISB3–3 BROWN–8 WHITE–9 8533ISB–1 GRAY–10 8533ISB–4 RED–11 8533ISB–2 BLUE–12 8538ISB–2 8538ISB–1 RED–13 ORANGE–14 8538ISB–4 8543ISB–1 RED–15 GREEN–16 8543ISB–4 RED–17 8543ISB–2 BROWN–18 8548ISB–2 8548ISB–1 RED–19 GRAY–20 8548ISB–4 BLACK–21 19 – HBK1 BLUE–22 20 – HBK2 BLACK–23 ISB7–1 ORANGE–24 ISB7–2
1 2 3 4 5 6 7 8 9 10 11 12
2 SIGNAL NAME PS1–P PS1–N FS1–P FS1–N PSOL–1 PSOL–2 BYPASS–1 BYPASS–2 P1US P1UR P1UG P1OG P1OS P1OR P2US P2UR P2UG P2OG P2OS P2OR HND BRK + HND BRK – TRIG +SIG TRIG –SIG
6–FSA2 ISB1–3
3 SOC/ LABEL PIN NO.
ISB1–4 ISB3–1
4 ISB3–3 8533ISB–1
M1
5 8533ISB–4
N1
1 2 5 8
WHITE–7 4 BROWN–8 SHIELD 20 AWG KEY
O1
1 2 3 4
BLACK–21 HND BRK+ 11 BLUE–22 HND BRK– KEY SHIELD 20 AWG
P1
WHITE–9 1 P1US 5 GRAY–10 2 P1UR RED–11 3 P1UG 6 BLUE–12 4 P1OG RED–13 5 P1OS 7 6 ORANGE–14 P1OR RED–15 7 P2US 8 GREEN–16 8 P2UR RED–17 9 P2UG 9 10 BROWN–18 P2OG RED–19 11 P2OS 10 12 GRAY–20 P2OR TRIG +SIG 13 BLACK–23 12 TRIG –SIG 14 ORANGE–24 SHIELD 20 AWG 15
R1
1 2 3 4
8538ISB–1
N1
9 POS SOC
8543ISB–1
8 8543ISB–4 8543ISB–2
106
9 8548ISB–2
O1
8548ISB–1
10 8548ISB–4
INTRINSIC REV. NE–2000–977–XXX MFG. NAME
INTRINSIC REV. NE–2000–977–XXX MFG. NAME
4 POS SOC
19–HBK1
11 20–HBK2 ISB7–1
12 ISB7–2
WIRE CONNECTIONTWIST COLOR/ PAIR POINT NUMBER NO. BLACK–25 13 GREEN–26 BLACK–27 BATTERY 14 BROWN–28 PACK BLACK–29 15 GRAY–30 YELLOW–31 BLUE–32
16
CABLE SPECIFICATION 16PR #20 AWG CABLE HYPALON JACKET MAX. CABLE O.D. = 20.5mm (0.805” MAX.) P/N=T–14685
P1
15 POS SOC
6V–1
WIRE TAG 6V–1 0V–1 6V–2 0V–2 6V–3 0V–3 6V–4 0V–4
0V–1 6V–2
R1
4 POS SOC
0V–2 6V–3 0V–3 6V–4 0V–4
S1
PS1–P PS1–N FS1–P FS1–N PSOL–1 PSOL–2
M1 6
7
SIGNAL NAME
WHITE–1 1 BLUE–2 WHITE–3 2 ORANGE–4 3 WHITE–5 NUMBERD GREEN–6 PSOL–2AME SHIELD 20 AWG KEY
8538ISB–2
8538ISB–4
TWISTED PAIR NUMBER
1 2 3 4 5 6 13 14
15 POS SOC
8533ISB–2
WIRE COLOR
15 POS SOC S1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
BYPASS–1 BYPASS–2
YELLOW–31 16 BLUE–32 SHIELD 20 AWG KEY
6V–4 0V–4
BLACK–25 GREEN–26 BLACK–27 BROWN–28 BLACK–29 GRAY–30
6V–1 0V–1 6V–2 0V–2 6V–3 0V–3
JUMP TO 1 JUMP TO 2 JUMP TO 3 JUMP TO 4 JUMP TO 5 JUMP TO 6 SHIELD KEY
13 14 15
6V–4 0V–4 6V–5 0V–5 6V–6 0V–6 20 AWG
NE–2000–898–005THRU –055
14. OPENERS AND OPTIONS
14–78 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS
14–79
MARO2P10203703E
Figure 14–39. Integral Pump Control Process Flow Diagram FANUC SERVO MOTOR & BAYSIDE GEAR
ENCLOSURE PURGE RETURN PURGE TO ROBOT
3CC/REV PUMP
FANUC SERVO MOTOR & BAYSIDE GEAR
HAZARDOUS LOCATION CLASS I, II & III DIVISION I GROUPS C D E F & G
3CC/REV PUMP
HPBP HARDENER PUMP BYPASS
SAMES BYPASS BLOCK 5/32” O.D.
RESIN PUMP BYPASS (RPBP)
0–100 PSI PRESS TRANS.
5/32” O.D.
RESIN INLET PILOT (IPTR)
0–500 PSI PRESS. TRANS. (TYP)
0–500 PSI PRESS. TRANS. (TYP)
0–100 PSI PRESS. TRANS.
FROM PPVP
GEAR PUMP ASSEMBLY FANUC #NO–2000–810
5/32” O.D.
HARDENER INLET PILOT (IPTH) HARDENER PUMP BYPASS (HPBP)
5/32” O.D.
AIR SUPPLY
SOLVENT SUPPLY
5/32” O.D.
MBAP
5/32” O.D. PILOT
AIR SUPPLY
5/32” O.D.
RS1P
3/8” O.D.
3/8” O.D.
5/32” O.D.
RAP
AIR SUPPLY 1/4” O.D.
SOLVENT SUPPLY
3/8” O.D.
3/8” O.D. 5/16” O.D.
3/8” O.D.
3/8” O.D.
MBRP CP2
MBSP
SOLVENT SUPPLY
5/32” O.D.
5/32” O.D.
RESIN SUPPLY
RESIN SUPPLY
RESIN RETURN
RESIN RETURN
CP1
5/32” O.D.
RESIN SUPPLY
5/32” O.D.
MBHP
HARDENER SUPPLY 5/16” O.D. TEFLON
5/16” O.D. TEFLON
3/8” O.D. 5/16” O.D.
5/16” O.D. FROM AIR SUPPLY 5/16” O.D. TEFLON
HAP 3/8” O.D.
HP1 3/8” O.D.
5/32” O.D.
AIR SUPPLY
5/32” O.D.
SOLVENT SUPPLY
5/32” O.D.
5/32” O.D.
HARDENER SUPPLY
SPARE
HS1P 3/8” O.D.
MIX TUBE SEE SYSTEM DRAWING FOR CORRECT QUANTITY OF VALVES & LOCATION
HP2
PAINT 5/16 O.D. TEFLON
APPLICATOR
5/16” O.D. TEFLON
COLOR VALVE ASSEMBLY
PT
SPRAY GUN
FANUC P–200 ROBOT INTERIOR OF OUTER ARM
14. OPENERS AND OPTIONS
14–80 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS
14–81
MARO2P10203703E
Figure 14–40. P-200 Brake Release Option Package
MOUNT SWITCHES AND RC’S ON ALTERED COVER PLATE MOUNT TERMINALS AND RELAY ON HEAT EXCHANGER
PURGE UNIT
BLU–17
AXIS 3
BKP2
BLUE–18
CABLE EE–3287–120–XXX
AXES 1 & 2
CABLE EE–3287–121–XXX
AXES 4,5,6
CABLE EE–3287–122–XXX
AXES 3 & 7
BKM2
AXIS 2
BLK–5 BLK–6 BLK–11 BLK–12 AXIS 6 NOT USED BLUE–17
BKM1
AXIS 5 BKP1
BKP3 BKM3 BKP3 BKM3
BKM1
BLU–19 BLU–20
BKM
BKP
BKP
BKM
BKP
BKM
BKM
BKP
BKM
BKP
BKP
OPENER CONNECTIONS BKM
ISB UNIT
BKP1
TO PURGE BRAKE BOARD
AXIS 4
AXIS 1
BLU–18
BKM2
BKP2
AXIS 7
BATTERY PACK
BLUE–20 BLUE–19
ROBOT CABLE CONNECTION
INSTALLATION OF CONTROLLER WIRING
EE–3287–516
14. OPENERS AND OPTIONS
14–82 NOTES
MARO2P10203703E
14. OPENERS AND OPTIONS
14–83
MARO2P10203703E
Figure 14–41.
LABEL
P-200 Brake Release Wiring Diagram
SEE EE–3287–516–001 FOR PLATE MODIFICATION DETAILS SWITCH 3
4
PURGE CONTROL PCB A16B–1310–0601
BRAKE RELEASE KEYSWITCH CNPG
RC NETWORK
SW 1 = P–200 1, 4, 5, 7 BKRL1
SW 2 = P–200 AXIS 2
SW4
SW3
SW2
14
51606 51605
51609 51608
51612 51611
51615 51614
RAIL 1
RELAY SOCKET
2
9
END END BARR ANC TERM SCR NUT WASH LABEL
EMG1 EMG2 EES1
5
6
7
8
9
12 51604
PURGE BD BRAKE TB 3 BKP1
51605
4
BKM1
51607
5
BKP2
51608
6
BKM2
51610
7
BKP3
51611
8
BKM3
51613
9
BKP4
51614
10 BKM4
51602
0V
FORK TERM
18 AWG WIRE BLUE
+24E
BKRL2
SW 4 = P–10
SW1
15
8
17
SW 3 = P–200 AXIS 3 LABEL
CNIS SH1A
16
CNIN 11
CR5A
12
24V CR7B
CR5B
51601
BRDC CR7B
16 CR5B R7 100
17 EES2 CR8
C1 33OuF
BRD2 51604
CR5A CR6
51605
51611
51608
OF SWITCHES
BKM
BKP
BKM
BKP
BKM
BKP
BKM
BKP
BKM
BKP
BKM
1 5
BKP
2 6
6
7
8
9
10 11 12
9
BKM1
24V
BKP2 BKM2
51615
51613
51612
BRDC 51603
BRD2
BKP4 BKM4 100OUT1
TERM
3 BKP
P–200 AXES 4 + 5
4 BKM
0V
CNIN 1
100OUT2
2 3
5
51607
4
6
51608
5
7
51610
6
8
51611 51613
9
9
P–200 AXIS 2 6 BKM
10
SW2 RC 7 BKP CR1
P–200 AXIS 3
51612 8 BKM
3
11 SW3 RC
51614
7
D4 DS1
D5
D6 CR1
CR7B
BOARD
4
CR7A 100B
51609
10 CR7A
100A
5 BKP
CR1 4
2
10
13
RC
TB 3
CR8
PURGE/BRAKE
9
1 BKP P–200 AXES 1 + 7 2 BKM
SW1
0V
51601
5
51610
– 13
4
51609
+ 14
3
51607
4
2
51606
10
51604
11
1
51606
51615
51614
12
51612 51603 51609 51602
51614
CR1 RELAY
51602
51606
CR7B
BKP1 BK TB
CR1
51605
CR7A
1
SEE SHT FOR CABLE HOOKUP 3 7
13 CR1
CR6
REAR VIEW
8
14
51603
8
9 BKP 51615
12
OPENER AXIS 1 10 BKM 11 BKP OPENER AXES 2 + 3 12 BKM SW4 RC
WIRING DIAGRAM
SCHEMATIC
EE–3287–516
14. OPENERS AND OPTIONS
14–84 NOTES
MARO2P10203703E
Page85
A TRANSPORTATION AND INSTALLATION
MARO2P10203703E
A
TRANSPORTATION AND INSTALLATION A–1 This appendix includes information on transporting and installing an R-J2 controller.
Topics In This Chapter
Page
Transportation
The controller is transported by a crane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–2
Installation
Installation and Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Installation Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Assembly During Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Adjustment and Checks at Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A–3 A–3 A–4 A–5
A. TRANSPORTATION AND INSTALLATION
A–2
A.1 TRANSPORTATION
MARO2P10203703E
The controller is transported by a crane. Attach a rope to the eye bolts at the top of the controller, as shown in Figure A–1. Figure A–1. Transportation
Î Î ÎÎÏ Ï Î Ï Ï Î
A. TRANSPORTATION AND INSTALLATION
A–3
MARO2P10203703E
A.2 INSTALLATION
A.2.1 Installation Area
When you install the controller, allow the space for maintenance as shown in Figure A–2. Figure A–2. Installation Area
Controller
Controller
Controller
A. TRANSPORTATION AND INSTALLATION
A–4
MARO2P10203703E
A.2.2 Assembly During Installation
Figure A–3. Assembly During Installation
Î Î
ÏÏÎ Î Î Ï ÎÎ ÎÎ Intrinsically safe teach pendant
ISB
Mechanical unit connection cables (5)
Peripheral device connection cable
Input power cable
A. TRANSPORTATION AND INSTALLATION
A–5
MARO2P10203703E
A.2.3 Adjustment and Checks at Installation Procedure A–1 Adjustment and Checks at Installation STEP ACTION 1
Visually check the inside and outside of the controller.
2
Verify that the screwed terminal is connected properly.
3
Check that the connectors and printed circuit boards are inserted correctly.
4
Check transformer tap setting.
5
Connect the controller unit and mechanical unit cables.
6
Turn the breaker or disconnect off and connect the input power cable.
7
Check the input power voltage.
8
Press the EMERGENCY STOP button on the operator panel and turn the power on. Check the output voltage.
9
Check the interface signals between the control unit and mechanical unit.
10
Check the parameters. If necessary, set them.
11
Release the EMERGENCY STOP button on the operator panel. Turn on the controller.
12
Check the movement along each axis in the manual jog mode.
13
Check the end effector interface signals.
14
Check the peripheral device control interface signals.
ITEM #
Q’TY SERVICE NOTES
A. TRANSPORTATION AND INSTALLATION
A–6
MARO2P10203703E
The physical characteristic of the C-Size R-J2 controller are provided in Table A–1. Table A–1.
Item
Physical Characteristics
Model
Specifications/Condition
Transformer
All models
Three-phase 220, 240, 380, 415, 460, 480, 500, 550, or 575 V +10% –15%, 50/60 +/–1 Hz
Input power source capacity
All models
7.5 kVA + 1.1 kVA for optional user transformer
Average power consumption
All models
3.5KW nominal – path dependent (During rapid acceleration, the unit will temporarily require two times the continuous rated power value.)
Permissible ambient temperature
All models
0 degrees C to 45 degrees C
Permissible ambient humidity
All models
75% RH or less, non-condensing, up to 95% RH for a limited period (within one month)
Surrounding gas
All models
No corrosive gas. When you use the robot in an environment with a high concentration of dust or coolant, consult with your FANUC Robotics sales representative.
Vibration
All models
0.5 G or less. When you use the robot in a location subject to serious vibration, consult with your FANUC Robotics sales representative.
Weight of control unit
C cabinet
About 300 kg (660 lbs)