R-J2 Controller P-200 Maintenance Manual

Share Embed Donate


Short Description

Download R-J2 Controller P-200 Maintenance Manual...

Description

FANUC Robotics SYSTEM R-J2 Controller P–10, P–15 and P–200 Electrical Maintenance Manual MARO2P10203704E REV B This publication contains proprietary information of FANUC Robotics North America, Inc. furnished for customer use only. No other uses are authorized without the express written permission of FANUC Robotics North America, Inc. FANUC Robotics North America, Inc. 3900 W. Hamlin Road Rochester Hills, Michigan 48309-3253

2

MARO2P10203704E REV B The descriptions and specifications contained in this manual were in effect at the time this manual was approved for printing. FANUC Robotics North America, Inc, hereinafter referred to as FANUC Robotics, reserves the right to discontinue models at any time or to change specifications or design without notice and without incurring obligations. FANUC Robotics manuals present descriptions, specifications, drawings, schematics, bills of material, parts, connections and/or procedures for installing, disassembling, connecting, operating and programming FANUC Robotics’ products and/or systems. Such systems consist of robots, extended axes, robot controllers, application software, the KAREL programming language, INSIGHT vision equipment, and special tools. FANUC Robotics recommends that only persons who have been trained in one or more approved FANUC Robotics Training Course(s) be permitted to install, operate, use, perform procedures on, repair, and/or maintain FANUC Robotics’ products and/or systems and their respective components. Approved training necessitates that the courses selected be relevant to the type of system installed and application performed at the customer site.

WARNING This equipment generates, uses, and can radiate radio frequency energy and if not installed and used in accordance with the instruction manual, may cause interference to radio communications. As temporarily permitted by regulation, it has not been tested for compliance with the limits for Class A computing devices pursuant to subpart J of Part 15 of FCC Rules, which are designed to provide reasonable protection against such interference. Operation of the equipment in a residential area is likely to cause interference, in which case the user, at his own expense, will be required to take whatever measure may be required to correct the interference.

FANUC Robotics conducts courses on its systems and products on a regularly scheduled basis at its headquarters in Rochester Hills, Michigan. For additional information contact FANUC Robotics North America, Inc. Training Department 3900 W. Hamlin Road Rochester Hills, Michigan 48309-3253 Tel: (248)377-7234 FAX: (248)377-7367 or (248)377-7362 web site: www.fanucrobotics.com Send your comments and suggestions about this manual to: [email protected]

MARO2P10203704E REV B

3

Copyright 2000 by FANUC Robotics North America, Inc. All Rights Reserved The information illustrated or contained herein is not to be reproduced, copied, translated into another language, or transmitted in whole or in part in any way without the prior written consent of FANUC Robotics North America, Inc. AccuStat , ArcTool , DispenseTool , FANUC LASER DRILL , KAREL , INSIGHT , INSIGHT II , PaintTool , PaintWorks , PalletTool , SOCKETS , SOFT PARTS SpotTool , TorchMate , and YagTool are Registered Trademarks of FANUC Robotics. FANUC Robotics reserves all proprietary rights, including but not limited to trademark and trade name rights, in the following names: AccuFlow ARC Mate ARC Mate Sr. IntelliTrak LaserTool MotionParts PaintWorks II PalletMate SureWeld TurboMove

Conventions Used in this Manual

This manual includes information essential to the safety of personnel, equipment, software, and data. This information is indicated by headings and boxes in the text.

WARNING Information appearing under WARNING concerns the protection of personnel. It is boxed and in bold type to set it apart from other text.

CAUTION Information appearing under CAUTION concerns the protection of equipment, software, and data. It is boxed to set it apart from other text.

NOTE Information appearing next to NOTE concerns related information or useful hints.

Issued United States Patents One or more of the following U.S. patents might be related to the FANUC Robotics products described in this manual. 3,906,323 4,274,802 4,289,441 4,299,529 4,336,926 4,348,623 4,359,815 4,366,423 4,374,349 4,396,973 4,396,975 4,396,987 4,406,576 4,415,965 4,416,577 4,430,923 4,431,366 4,458,188 4,462,748 4,465,424 4,466,769 4,475,160 4,479,673 4,479,754 4,481,568 4,482,289 4,482,968 4,484,855 4,488,242 4,488,746 4,489,821 4,492,301 4,495,453 4,502,830 4,504,771 4,530,062 4,530,636 4,538,639 4,540,212 4,542,471 4,543,639 4,544,971

4,549,276 4,549,846 4,552,506 4,554,497 4,556,361 4,557,660 4,562,551 4,575,666 4,576,537 4,591,944 4,603,286 4,626,756 4,628,778 4,630,567 4,637,773 4,638,143 4,639,878 4,647,753 4,647,827 4,650,952 4,652,203 4,653,975 4,659,279 4,659,280 4,663,730 4,672,287 4,679,297 4,680,518 4,697,979 4,698,777 4,700,118 4,700,314 4,701,686 4,702,665 4,706,000 4,706,001 4,706,003 4,707,647 4,708,175 4,708,580 4,712,972 4,723,207

4,727,303 4,728,247 4,728,872 4,732,526 4,742,207 4,742,611 4,750,858 4,753,128 4,754,392 4,771,222 4,773,523 4,773,813 4,774,674 4,775,787 4,776,247 4,777,783 4,780,045 4,780,703 4,782,713 4,785,155 4,796,005 4,805,477 4,807,486 4,812,836 4,813,844 4,815,011 4,815,190 4,816,728 4,816,733 4,816,734 4,827,203 4,827,782 4,828,094 4,829,454 4,829,840 4,831,235 4,835,362 4,836,048 4,837,487 4,842,474 4,851,754

4,852,024 4,852,114 4,855,657 4,857,700 4,859,139 4,859,845 4,866,238 4,873,476 4,877,973 4,892,457 4,892,992 4,894,594 4,894,596 4,894,908 4,899,095 4,902,362 4,903,539 4,904,911 4,904,915 4,906,121 4,906,814 4,907,467 4,908,559 4,908,734 4,908,738 4,916,375 4,916,636 4,920,248 4,922,436 4,931,617 4,931,711 4,934,504 4,942,539 4,943,759 4,953,992 4,956,594 4,956,765 4,965,500 4,967,125 4,969,109 4,969,722

4,969,795 4,970,370 4,970,448 4,972,080 4,972,735 4,973,895 4,974,229 4,975,920 4,979,127 4,979,128 4,984,175 4,984,745 4,988,934 4,990,729 5,004,968 5,006,035 5,008,832 5,008,834 5,012,173 5,013,988 5,034,618 5,051,676 5,055,754 5,057,756 5,057,995 5,060,533 5,063,281 5,063,295 5,065,337 5,066,847 5,066,902 5,075,534 5,085,619 5,093,552 5,094,311 5,099,707 5,105,136 5,107,716 5,111,019 5,111,709 5,115,690

iv

CUSTOMER FOCUS CENTER 1–800–47–ROBOT (1–800–477–6268) (International: 011–1–248–377–7159) SERVICE & REPAIR PRESS 1 Tel: 248–377–7159 / Fax: 248–377–7463 24 Hour Hot–Line  Technical  Service

Support Hot–Line

personnel dispatch

 After–hours

parts support (8:00 p.m. to 8:00 a.m.)

PARTS & PART REPAIR PRESS 2 Tel: 248–377–7278 / Fax: 248–377–7832 8:00 am to 8:00 pm / Mon – Fri  Parts

for down robots

 Replenishment  Warranty  Robot

part order

part replacement

TRAINING PRESS 3 Tel: 248–377–7234 / Fax: 248–377–7367 8:00 am to 5:00 pm / Mon – Fri  Training

class registration

 Consultation

for special training or on–site requests

MARKETING & SALES PRESS 4 Tel: 248–377–7000 / Fax: 248–377–7366 8:00 am to 5:00 pm / Mon – Fri  Marketing

 Application  New

Review

Robot Sales

 Systems

software and PACs

Information

Solution Sales

________________________

________________________

________________________

________________________

For best call results have:

For best call results have:

For best call results have:

For best call results have:

 Customer  Company

number (if known) name

 Customer  Company

number (if known) name

 Customer  Company

number (if known)

 Company

name

Company 

name address

 Your

name

 Your

name

 Your

name

 Your

name

 Your

phone & fax numbers

 Your

phone & fax numbers

 Your

phone & fax numbers

 Your

phone & fax numbers

 Part

name & number (if known)

 Your

shipping or billing address

 Description

 Robot  “F#”

& controller type

or serial number of robot

 Hour

meter reading (if available)

 Software

type and edition

 Any

error messages and LED displays (if applicable)

 Your

P.O., Credit Card, or Receiving # for warranty or down robot or preventive maintenance service orders

 “F#”

or serial number of robot, if available (req’d for warranty)

 P.O.,

Credit Card, or Receiving # for warranty, down units, or software

 Shipping  Reason

& billing addresses

for repair (any symptoms, error codes, or diagnostic LEDs that were identified)

 Types

of your need

of courses needed

 Special  Robot

Requirements and controller type

 Proposed  Number

Schedules of people attending

 Method

of payment (P.O., credit card, etc.)

*NOTE: A RETURN AUTHORIZATION (“RA”) FROM “PARTS” IS REQUIRED BEFORE SHIPPING ANY MATERIAL BACK TO FANUC ROBOTICS FOR PROPER RECEIVING & TRACKING. F# IS LOCATED ON THE ROBOT BASE OR OP. PANEL. Revised: 12/15/99

MXXXXXXXXXXXXXE REV X

3

Page4

UPDATES

UPDATES Updates–1

MARO2P10203704E

This section lists the update that has been made to the FANUC Robotics SYSTEM R–J2 Controller P–10, P–15 and P–200 Electrical Maintenance Manual in the following area: Page

Table 5–1 Fused Flange–Mounted Disconnect Switch, C–Size Controller

5–3

Figure A–1 Transportation

A–2

Figure 14–40 P–200 Brake Release Option Package

14–81

Fused Flange–Mounted Disconnect Switch, C–Size Controller The correct part number for the 50A fuse is XGMF–00382. The correct part number for the 30A fuse is XGMF–00160.

Transportation and Installation Addendum A When transporting a controller, an appropriate certified lifting strap should be used. The term rope is incorrect.

P–200 Brake Release Option Package, Figure 14–40 The correct terminations for the Axis 4 and 5 wires is as follows: Wire BKP3(Blk–5) and BKP3(Blk–11) BKM3(Blk–6) and BKM3(Blk–12)

Terminal Location BKP(Terminal 3) BKM(Terminal 4)

UPDATES Updates–2

MARO2P10203704E

UPDATES Updates–3

MARO2P10203704E

Figure 1–1. Main Disconnect Location MAIN DISCONNECT

Fuse Block

FL1 FL2 FL3

Table 1–1.

Fused Flange-Mounted Disconnect Switch, C-Size Cabinet

Fused Flange-Mounted Disconnect Switch Inputt Inp Voltage

Fuse Size

Part Number

220 240

50A

Fuse XGMF-00382 (A60L–0001-0042 #JG2-50)

380 416 460 480 500 550

30A

Fuse XGMF-00160 (A60L–0001-0042 #JG1-30)

575

20A

Fuse XGMF-04148 (A60L–0001-0042 #JG1-20)

UPDATES Updates–4

1.1 TRANSPORTATION

MARO2P10203704E

The controller is transported by a crane. Attach a lifting strap to the eye bolts at the top of the controller, as shown in Figure A–1. Figure A–1. Transportation

Î Î ÎÎÏ Ï Î Ï Ï Î

UPDATES Updates–5

MARO2P10203704E

Figure 2. P-200 Brake Release Option Package

MOUNT SWITCHES AND RC’S ON ALTERED COVER PLATE

MOUNT TERMINALS AND RELAY ON HEAT EXCHANGER

PURGE UNIT

ROBOT CABLE CONNECTION TO TERMINAL STRIP

BLUE–17 EE–3287–110–XXX

BLUE–18

AXES 1 & 2

BLUE 19

EE–3287–120–XXX

BLUE–20 2’’ BLUE 19

TO PURGE BRAKE BOARD

BLUE–20

EE–3287–112–XXX AXES 3 & 7

BLUE–17

EE–3287–122–XXX

BLUE–18 ISB UNIT 6’’

BLACK–5 BLACK–6 BLACK–11 BLACK–12

2 3/4 ’’

EE–3287–111–XXX

AXES 4,5,6

EE–3287–121–XXX

BLACK–17 BLACK–18 BATTERY PACK

1

1

2

2

3

3

4

4

5

6

7

8

9

10

BKP2

BKP1

BKM2

BKM1

BKP3

BKP3

BKM3

BKM3

BKP4

BKM4

BKP1

BKM1

BKP2

BKM2

NOTE: AXIS 6 WIRES CONNECTED EVEN IN UNITS WHERE AXIS 6 DOES NOT HAVE BRAKES

OPENER CONNECTIONS INSIDE VIEW 1

INSTALLATION IN C SIZE CONTROLLER

2

3

4

AXES

AXES

1&7

4&5

5

6

AXIS 6

7

8

AXIS 2

9

10

11

12

13

14

TERMINAL STRIP MOUNTED ON CONTROLLER DOOR HEAT EXCHANGER

AXIS 3

P–200 BRAKE RELEASE OPTION PACKAGE EE–3287–516

Page4

UPDATES

UPDATES

UPDATES –3

MARO2P10203704E

Figure 1. P-200 Brake Release Option Package

MOUNT SWITCHES AND RC’S ON ALTERED COVER PLATE

MOUNT TERMINALS AND RELAY ON HEAT EXCHANGER

PURGE UNIT

ROBOT CABLE CONNECTION TO TERMINAL STRIP

BLUE–17 EE–3287–110–XXX

BLUE–18

AXES 1 & 2

BLUE 19

EE–3287–120–XXX

BLUE–20 2’’ BLUE 19

TO PURGE BRAKE BOARD

BLUE–20

EE–3287–112–XXX AXES 3 & 7

BLUE–17

EE–3287–122–XXX

BLUE–18 ISB UNIT 6’’

BLACK–5 BLACK–6 BLACK–11 BLACK–12

2 3/4 ’’

EE–3287–111–XXX

AXES 4,5,6

EE–3287–121–XXX

BLACK–17 BLACK–18 BATTERY PACK

1

1

2

2

3

3

4

4

5

6

7

8

9

10

BKP2

BKP1

BKM2

BKM1

BKP3

BKP3

BKM3

BKM3

BKP4

BKM4

BKP1

BKM1

BKP2

BKM2

NOTE: AXIS 6 WIRES CONNECTED EVEN IN UNITS WHERE AXIS 6 DOES NOT HAVE BRAKES

OPENER CONNECTIONS INSIDE VIEW 1

INSTALLATION IN C SIZE CONTROLLER

2

3

4

AXES

AXES

1&7

4&5

5

6

AXIS 6

7

8

AXIS 2

9

10

11

12

13

14

TERMINAL STRIP MOUNTED ON CONTROLLER DOOR HEAT EXCHANGER

AXIS 3

P–200 BRAKE RELEASE OPTION PACKAGE EE–3287–516

UPDATES Updates–1

MARO2P10203704E

This section lists the update that has been made to the FANUC Robotics SYSTEM R–J2 Controller P–10, P–15 and P–200 Electrical Maintenance Manual in the following area: Page

Figure 14–40 P–200 Brake Release Option Package

14–81

P–200 Brake Release Option Package, Figure 14–40 The correct terminations for the Axis 4 and 5 wires are as follows: Wire BKP3(Blk–5) and BKP3(Blk–11) BKM3(Blk–6) and BKM3(Blk–12)

Terminal Location BKP(Terminal 3) BKM(Terminal 4)

UPDATES

Updates–2

MARO2P10203704E

Page2

UPDATES

UPDATES

UPDATES –1

MARO2P10203704E

NOTE: This page replaces page 12–43.

Figure 1–1. P-200 R-J2 Robot Control Drawing Purge and Intrinsic Wiring sheet 1 DELTRON W112A

NON–HAZARDOUS LOCATION (250 VAC MAXIMUM)

24V 120VAC 24VDC FROM POWER CONVEYOR SUPPLY

OPERATOR PANEL

INTRINSIC SAFETY BARRIER STAHL 9001/01–252–100–14

EE–3112–600 24V

3 4

1 2

OVP UNIT

PANEL I/F

EMGIN1 EMGIN2

PURGE CIRCUITS CNPG

SOL1 SOL2

BRAKE CONTROL

CNIN FROM I/O

MAIN CPU RDI/RDO

CRM10

24V I/P SIG 24V

24V TO ACCUFLOW SIG

CNCA

FROM I/O FROM I/O

E–STOP PCB

3 4

ISB2 OPTIONAL IS GND 7 4 8 ISB3 6 9 10 KHD2–SR–EX1.2S.P 11 +24 P&F 12 7ISB4KFD2–SD–EX1.36 + 1 2 8 9 + +1 P&F 10 ISB5 2 7 +24 KHD2–CD–1.P32 8 8 +1 P&F 2 ISB6 Z787 7 +4 5 3 6

FLOW SWITCH

C2 A3

ROBOT OVERTRAVEL SWITCH

C3 A4

SERVO TRANSFORMER

HAND BROKEN

C4 A5 220 VAC C5

220V (44)

A6 0V C6

NOTES: 1.)ACCEPTABLE I.S. BATTERY PACKS: A05B–2363–C040 EE–3185–551

+24VDC PSU

R

+V AC

S

0V G

2.) ALTERNATE I.S. BATTERY PACKS: A05B–2072–C181 A05B–2047–C182 SHALL BE USED PER EG–00127–SECTION VI 3.) I.S. GROUND CONNECTION SHALL BE PER NEC(NFPA 70) SECTION 504–50 AND ANSI/ISA RP 12.6

TRIGGER 1

ISB6–1 ISB6–2 ISB6–4

TRIGGER 2

O1 O4 HAND BRKN

ROBOT WIRE HARNESS SOLENOID CABLE EE–3287–323–001 EE–3287–348–001 M1 M4 SOL SOL PURGE

M1 M4

P2 N2 P3 N3 P4 N4

TP DISCONNECT SWITCH

P5

MISC. SWITCH (RDI2)

P6

I.S. BATTERY PACK

I.S. GND

I/S GROUND

1

PRES. SW CABLE EE–3044–345–001 PS1 PS1

P1

N5

+24P

FIRE ALARM

FLOW METER

IDEC IBRC6062R

CRR5

220V (43)

UNIT

ISB5–2

ISB8–1 ISB8–2

A2

FOR PAINT R–J TYPE

I/P

+1 2

N1

EE–3287–328–001 CBL

ISB4–1 ISB4–2 ISB5–1

8+ ISB8 Z728 P&F 7

PRESSURE SWITCH

EE–3185–356–001 BYPASS SWITCH

N4

P1 P4

+1 2

CRR22

CNIS

N1 ISB3–4 ISB3–6

ISB7–1 ISB7–2

C1

BKP4 BKM4

CONNECTION CABLE EE–3287–117–XXX

8+ ISB7 Z728 P&F 7

A1

CRR21

HAZARDOUS LOCATION CLASS I, II & III DIVISION 1 GROUPS C D E F & G

ISB1

IS GND 1 2

CNPG

NOTICE NO REVISIONS WITHOUT PRIOR APPROVAL FROM FACTORY MUTUAL (FM)

FLOW SW CABLE EE–3287–340–001 FS1 FS1

M1 M4 ISTB 1 PSA1 2 PSA2 3 PSB1 4 PSB2 5 FSA1 6 FSA2 7 FSB1 8 FSB2 9 OT11 10 OT12 11 OT21 12 OT22 13 OT31 14 OT32 15 OT41 16 OT42 17 OT51 18 OT52 19 HBK1 20 HBK2 21 TP1 22 TP2 23 EOAT1 24 EOAT2

S1 S4

SOLENOID VALVE ROBOT PRESSURE SWITCH ROBOT FLOW SWITCH

EE–3287–324–001 BATT BATT ENCODER

I.S. GND X6 FOR PEDESTAL CABLE ROBOT PURGED CAVITY X7 FOR RAIL EE–3066–115–00X OPTIONAL CATRAC CABLE OPTIONAL DOOR OPENER DEVICE (FMRC APPROVED) MODEL Q–DRQ AK1AK2EE–3066–215–00XAK3 AK4 EE–3066–323–001 OPENER SOLENOID

AJ1 AJ2

AJ3

EE–3066–322–001

AJ4

OPENER PRESS SWITCH

AH1 AH2

AH3

AH4

AE1 AE2

AE3

AE4

EE–3066–321–001 OPENER FLOW SWITCH

EE–3066–316–001 ENCODER

I.S. GND

X2

N6

+ P–200 R–J2 MODELS

6 +

F1 F2 F3 F4 F5

ISB UNIT A05B–2308–C370

TO CRS1 (MAIN CPU)

MODEL

P–200–6–J2

MODEL

P–200–7–J2

MODEL

P–200–6+2–J2

MODEL

P–200–7+2–J2

MODEL

P–200–7+3–J2

I/S TEACH PENDANT A05B–2308–C300 FRAME GND.

EE-3287-550-001

MARO2P10203703E

Preface

vii

Purpose of this Manual

The SYSTEM R-J2 Controller P-10, P-15 and P-200 Electrical Maintenance Manual provides specific information regarding FANUC Robotics electrical hardware. The information contained within the manual has been arranged so that it can answer specific questions quickly and accurately.

How to Use this Manual

Use this table to locate specific information in the manual. If you want to

Refer to

Find information about a specific topic

Table of Contents

Identify the components of the SYSTEM R-J2 controller

Chapter 1, Overview

Use diagnostic and controller initialization utilities

Chapter 2, Diagnostic Screens

View status information on teach pendant screens and using other indicators

Chapter 3, Lights, Indicators, and LEDs

Perform troubleshooting procedures and identify specific errors

Chapter 4, Troubleshooting

Look at fuse information or replace a fuse

Chapter 5, Replacing Fuses

Release the brakes

Chapter 6, Brakes

Turn outputs on or off and simulate inputs

Chapter 7, Controlling I/O

Master the robot

Chapter 8, Mastering

Replace controller components

Chapter 9, Replacing Components

Adjust switch settings and potentiometers on PCBs

Chapter 10, Board Adjustments and Calibrations

Find controller connection schematics and connector configurations

Chapter 11, Connections

Find complete schematics of the controller circuitry

Chapter 12, Schematics

Find wiring diagrams of the P-200 cables.

Chapter 13, Cables

Find wiring diagrams and schematics for the P-10 and P-15 openers, Integral Pump Control, and the Brake Release Option

Chapter 14, Openers and Options

Use controller transportation and installation information

Appendix A, Transportation and Installation

viii

Conventions Used in this Manual

PREFACE

MARO2P10203703E

This manual includes information essential to the safety of personnel, equipment, software, and data. This information is indicated by headings and boxes in the text.

WARNING Information appearing under WARNING concerns the protection of personnel. It is boxed and in bold type to set it apart from other text.

CAUTION Information appearing under CAUTION concerns the protection of equipment, software, and data. It is boxed to set it apart from other text.

NOTE Information appearing next to NOTE concerns related information or useful hints.

Page3

TABLE OF CONTENTS

MARO2P10203703E

Table of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ix vii xxv

Chapter 1 OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1–1

1.1 OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 BACKPLANE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 MAIN CPU PRINTED CIRCUIT BOARD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.1 Identifying Kinds of Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 SUB CPU PRINTED CIRCUIT BOARD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 AUX AXIS PRINTED CIRCUIT BOARD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6 POWER SUPPLY UNIT PRINTED CIRCUIT BOARD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.7 EMERGENCY STOP CONTROL PRINTED CIRCUIT BOARD . . . . . . . . . . . . . . . . . . . . . . 1.8 SERVO AMPLIFIERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.9 MULTI-TAP TRANSFORMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.10 INTERFACE DEVICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.10.1 Modular I/O Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.10.2 ABRIO and Genius I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.11 ETHERNET REMOTE PRINTED CIRCUIT BOARDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.12 USER TRANSFORMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.13 OPERATOR PANEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.14 TEACH PENDANT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.15 HEAT EXCHANGE AND FANS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.16 PURGE CONTROL UNIT A05B–2363–C020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.17 PURGE SYSTEM IBRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.18 PURGE UNIT POWER SUPPLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.19 PURGE INTRINSICALLY SAFE BARRIERS AND SIGNAL REPEATERS . . . . . . . . . . . . 1.20 BRAKE RELEASE (OPTION) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.21 P-10 DOOR OPENER P-15 HOOD AND DECK OPENER (OPTIONS) . . . . . . . . . . . . . . . . 1.22 INTEGRAL PUMP CONTROL (OPTION) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1–3 1–6 1–10 1–10 1–13 1–16 1–17 1–18 1–20 1–27 1–29 1–29 1–33 1–34 1–37 1–38 1–39 1–40 1–41 1–42 1–44 1–45 1–55 1–56 1–57

Chapter 2 DIAGNOSTIC SCREENS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2–1

2.1 SAFETY SIGNAL STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 VERSION IDENTIFICATION STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 MEMORY STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 POSITION STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 AXIS STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 ALARM LOG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7 I/O STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2–3 2–5 2–8 2–10 2–12 2–16 2–18

x

TABLE OF CONTENTS

MARO2P10203703E

Chapter 3 LIGHTS, INDICATORS, AND LEDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–1

3.1 TEACH PENDANT DIAGNOSTIC INDICATORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 OPERATOR PANEL AND CABINET LIGHTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 SERVO ON LIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 CIRCUIT BOARD DIAGNOSTIC LEDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.1 Power Supply Unit (PSU) Diagnostic LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.2 Main CPU Board Diagnostic LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.3 Sub CPU Board Diagnostic LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.4 Modular (Model A) I/O LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.5 Servo Amplifier Diagnostic LED (7-Segment Display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.6 Emergency Stop Control Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.7 Module Assembly # EE–3044–401 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.8 Contact Signal Transducer (IBRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.9 R-J2 Ethernet LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–2 3–3 3–4 3–5 3–7 3–8 3–10 3–13 3–14 3–16 3–18 3–19 3–20

Chapter 4 TROUBLESHOOTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4–1

4.1 POWER ON SEQUENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 CONTROLLER SHUTDOWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 SERVO LOCKOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 CLASS 1 FAULT TROUBLESHOOTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 CLASS 2 FAULTS TROUBLESHOOTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6 CLASS 3 FAULT TROUBLESHOOTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.1 SRVO-001 ER_SVAL1 Operator Panel E-Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.2 SRVO-002 ER_SVAL1 Teach Pendant E-stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.3 SRVO-003 ER_SVAL1 Deadman switch released . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.4 SRVO-004 ER_SVAL1 Fence open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.5 SRVO-005 ER_SVAL1 Robot Overtravel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.6 SRVO-006 ER_SVAL1 Hand Broken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.7 SRVO-007 ER_SVAL1 External Emergency Stops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.8 SRVO-011 ER_SVAL1 TP Released While Enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.9 SRVO-012 ER_SVAL1 Power Failure Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.10 SRVO-014 Fan Motor Abnormal (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.11 SRVO-015 ER_SVAL1 System Over Heat (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . 4.6.12 SRVO-019 ER_SVAL1 SVON input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.13 SRVO-020 ER_SVAL1 SRDY off (TP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.14 SRVO-021 ER_SVAL1 SRDY off (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.15 SRVO-022 ER_SVAL1 SRDY on (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.16 SRVO-023 ER_SVAL1 Stop Error Excess (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . .

4–3 4–4 4–4 4–5 4–21 4–23 4–24 4–25 4–26 4–27 4–28 4–30 4–32 4–34 4–34 4–34 4–35 4–36 4–36 4–37 4–40 4–40

MARO2P10203703E

4.6.17 4.6.18 4.6.19 4.6.20 4.6.21 4.6.22 4.6.23 4.6.24 4.6.25 4.6.26 4.6.27 4.6.28 4.6.29 4.6.30 4.6.31 4.6.32 4.6.33 4.6.34 4.6.35 4.6.36 4.6.37 4.6.38 4.6.39 4.6.40 4.6.41 4.6.42 4.6.43 4.6.44 4.6.45 4.6.46 4.6.47 4.6.48 4.6.49 4.6.50 4.6.51 4.6.52 4.6.53 4.6.54 4.6.55 4.6.56 4.6.57 4.6.58

TABLE OF CONTENTS

SRVO-024 ER_SVAL1 Move Error Excess (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . SRVO-026 ER_WARN Motor Speed Limit (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . SRVO-027 ER_WARN Robot Not Mastered (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . SRVO-033 ER_WARN Robot Not Calibrated (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . SRVO-035 ER_WARN Joint Speed Limit (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . SRVO-036 Imposition Time Over (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-037 ER_SVAL1 IMSTP Input (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-038 PULSE MISMATCH (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-042 ER_SVAL2 MCAL Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-043 ER_SVAL2 DCAL Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-044 ER_SVAL2 HVAL Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-045 ER_SVAL2 HCAL Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-046 ER_SVAL2 OVC Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-047 ER_SVAL2 LVAL Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-049 ER_SVAL1 OHAL1 Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-050 ER_SVAL1 CLALM Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-051 ER_SVAL2 CUER Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-053 ER_WARN Disturbance excess (Group:i Axis: J) . . . . . . . . . . . . . . . . . . . . . . . SRVO-054 ER_SVAL1 DSM memory error (DS:i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-061 ER_SVAL2 CKAL Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-062 ER_SVAL2 BZAL Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-063 ER_SVAL2 RCAL Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-064 ER_SVAL2 PHAL Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-065 ER_WARN BLAL Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-066 ER_SVAL2 CSAL Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-067 ER_SVAL2 OHAL2 Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-068 ER_SVAL2 DTERR Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-069 ER_SVAL2 CRCERR Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-070 ER_SVAL2 STBERR Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-071 ER_SVAL2 SPHAL Alarm (Group:i Axis:j) . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-072 ER_SVAL2 PMAL alarm (Group:%d Axis:%d) . . . . . . . . . . . . . . . . . . . . . . . . SRVO-073 ER_SVAL2 CMAL alarm (Group:%d Axis:%d) . . . . . . . . . . . . . . . . . . . . . . . . SRVO-074 ER_SVAL2 LDAL alarm (Group:%d Axis:%d) . . . . . . . . . . . . . . . . . . . . . . . . SRVO-075 ER_WARN Pulse not established (G:%d A:%d) . . . . . . . . . . . . . . . . . . . . . . . . SRVO-081 ER_WARN EROFL Alarm (Track encoder:n) . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-082 ER_WARN DAL Alarm (Track encoder:n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-083 ER_WARN CKAL Alarm (Track encoder:n) . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-084 ER_WARN BZAL Alarm (Track encoder:n) . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-085 ER_WARN RCAL Alarm (Track encoder:n) . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-086 ER_WARN PHAL Alarm (Track encoder:n) . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-087 ER_WARN BLAL Alarm (Track encoder:n) . . . . . . . . . . . . . . . . . . . . . . . . . . . SRVO-088 ER_WARN CSAL Alarm (Track encoder:n) . . . . . . . . . . . . . . . . . . . . . . . . . . .

xi 4–40 4–41 4–41 4–41 4–41 4–41 4–41 4–42 4–43 4–44 4–46 4–47 4–48 4–48 4–49 4–49 4–50 4–50 4–50 4–50 4–51 4–52 4–52 4–52 4–53 4–53 4–54 4–56 4–56 4–56 4–57 4–57 4–57 4–58 4–58 4–59 4–59 4–59 4–59 4–59 4–60 4–60

xii

TABLE OF CONTENTS

MARO2P10203703E

4.6.59 SRVO-089 ER_WARN OHAL2 Alarm (Track encoder:n) . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.60 SRVO-090 ER_WARN DTERR Alarm (Track encoder:n) . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.61 SRVO-091 ER_WARN CRCERR Alarm (Track encoder:n) . . . . . . . . . . . . . . . . . . . . . . . . 4.6.62 SRVO-092 ER_WARN STBERR Alarm (Track encoder:n) . . . . . . . . . . . . . . . . . . . . . . . . 4.6.63 SRVO-093 ER_WARN SPHAL Alarm (Track encoder:n) . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.64 SRVO-147 SERVO LVAL(DCLK) alarm (G:%d A:%d) . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.65 SRVO-163 ER_FATL DSM Hardware Mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.66 SRVO-164 ER_FATL DSM/Servo param mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.67 SRVO-165 ER_FATL Panel (SVON abnormal) E-Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.68 SRVO-166 ER_FATL TP (SVON abnormal) E-Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.69 SRVO-167 ER_FATL Deadman switch (SVON abnormal) . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.70 SRVO-168 ER_FATL External/SVON (SVON abnormal) E-Stop . . . . . . . . . . . . . . . . . . . 4.7 CLASS 4 FAULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7.1 Process Fault - Both Guns Do Not Trigger or Work Intermittently . . . . . . . . . . . . . . . . . . . . 4.7.2 Both Guns Will Not Shut Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7.3 Paint Gun Trigger Troubleshooting Procedure (Electrical) . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7.4 Process Fault - Transducer Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7.5 Process Fault - Flow Meter Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4–60 4–60 4–60 4–60 4–61 4–61 4–61 4–61 4–61 4–61 4–62 4–62 4–63 4–64 4–65 4–66 4–73 4–76

Chapter 5 REPLACING FUSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5–1

5.1 FUSED FLANGE-MOUNTED DISCONNECT FUSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 MULTI-TAP TRANSFORMER FUSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 POWER SUPPLY UNIT FUSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 SERVO AMPLIFIER FUSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 EMERGENCY STOP CONTROL PCB FUSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6 PURGE POWER SUPPLY FUSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7 MODULAR I/O (MODEL A) FUSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.8 SUB CPU PRINTED CIRCUIT BOARD FUSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5–2 5–4 5–5 5–6 5–7 5–8 5–9 5–12

Chapter 6 BRAKE RELEASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6–1

6.1 BRAKE RELEASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6–2

Chapter 7 CONTROLLING I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7–1

7.1 FORCING OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2 SIMULATING INPUTS AND OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3 SOP I/O STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7–2 7–4 7–5

MARO2P10203703E

TABLE OF CONTENTS

xiii

Chapter 8 MASTERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8–1

8.1 RESETTING ALARMS AND PREPARING FOR MASTERING . . . . . . . . . . . . . . . . . . . . . 8.2 STANDARD MASTERING FOR THE P-200 ROBOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3 SINGLE AXIS MASTERING FOR THE P-200 ROBOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4 STANDARD MASTERING FOR THE P-10 DOOR OPENER AND THE P-15 HOOD AND DECK OPENER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8–2 8–4 8–16 8–19

Chapter 9 REPLACING COMPONENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9–1

9.1 REPLACING R-J2 BATTERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2 REPLACING RELAYS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.1 Operator Control Panel Relays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.2 Emergency Stop Control Board (EMG) Printed Circuit Board Relay Replacement . . . . . . . 9.2.3 Purge Control PCB Relay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3 REPLACING A PRINTED CIRCUIT BOARD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3.1 Removal and Replacement of a Printed Circuit Board from the Backplane Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3.2 Replacing the Backplane Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.4 REPLACING A MODULE ON THE MAIN CPU OR AUX AXIS CONTROL PRINTED CIRCUIT BOARD REFER TO CHAPTER 1 FOR PART NUMBERS. . . . . . . . . 9.5 REPLACING AN I/O MODULE (MODEL A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.5.1 Replacing a Model A Interface Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.5.2 Replacing a Model A I/O Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.6 REPLACING THE MULTI-TAP TRANSFORMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.7 REPLACING A SERVO AMPLIFIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.8 REPLACING THE OPERATOR PANEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.9 REPLACING THE FAN MOTOR IN THE BACKPLANE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.10 REPLACING THE TEACH PENDANT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.11 REPLACING A SERIAL PULSE CODER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9–2 9–6 9–6 9–7 9–8 9–9 9–10 9–12 9–13 9–16 9–17 9–17 9–19 9–20 9–21 9–22 9–24 9–25

Chapter 10 BOARD ADJUSTMENTS AND CALIBRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10–1

10.1 I/P TRANSDUCER/ REGULATOR PERFORMANCE CHECK . . . . . . . . . . . . . . . . . . . . . . 10.2 MANUAL FLOW TEST (BEAKERING TEST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3 COLD START (START COLD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4 POWER ON SEQUENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.5 CONTROLLER SHUTDOWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.6 SERVO LOCKOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10–2 10–5 10–7 10–10 10–11 10–11

xiv

TABLE OF CONTENTS

MARO2P10203703E

Chapter 11 CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11–1

11.1 NOISE REDUCTION GUIDELINES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 MODULAR I/O OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3 ETHERNET REMOTE PRINTED CIRCUIT BOARD DIAGNOSTICS . . . . . . . . . . . . . . . . 11.4 MODULAR I/O INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.5 ANALOG INPUT MODULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11–1 11–2 11–11 11–12 11–14

Chapter 12 SCHEMATICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12–1

Chapter 13 CABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13–1

Chapter 14 OPENERS AND OPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14–1

Appendix A TRANSPORTATION AND INSTALLATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A–1

A.1 TRANSPORTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.2 INSTALLATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.2.1 Installation Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.2.2 Assembly During Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.2.3 Adjustment and Checks at Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A–2 A–3 A–3 A–4 A–5

List of Procedures Procedure 2–1 Procedure 2–2 Procedure 2–3 Procedure 2–4 Procedure 2–5 Procedure 2–6 Procedure 2–7 Procedure 4–1 Procedure 4–2 Procedure 4–3 Procedure 4–4 Procedure 4–5 Procedure 4–6 Procedure 4–7 Procedure 4–8 Procedure 4–9 Procedure 6–1 Procedure 7–1 Procedure 7–2 Procedure 7–3

Displaying Safety Signal Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Displaying the Version Identification Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Displaying Memory Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Displaying Position Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Displaying the Axis Status Pulse Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Displaying the Alarm Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Displaying I/O Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Troubleshooting Purge Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Controller Shutdown Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Servo Lockout Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Troubleshooting Turn-on Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Both Guns Do Not Trigger or Work Intermittently . . . . . . . . . . . . . . . . . . . . . . . . Both Guns Will Not Shut Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paint Gun Trigger Troubleshooting Procedure (Electrical) . . . . . . . . . . . . . . . . . . Transducer Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flow Meter Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brake Release Using the Operator Panel Switch . . . . . . . . . . . . . . . . . . . . . . . . . . Forcing Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Simulating and Unsimulating Inputs and Outputs . . . . . . . . . . . . . . . . . . . . . . . . . Displaying and Forcing SOP I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2–4 2–5 2–8 2–10 2–13 2–17 2–18 4–3 4–4 4–4 4–12 4–64 4–65 4–66 4–73 4–76 6–2 7–2 7–4 7–6

MARO2P10203703E

TABLE OF CONTENTS

xv

Procedure 8–1 Procedure 8–2 Procedure 8–3 Procedure 8–4

Preparing the Robot or Opener for Mastering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–2 Standard Mastering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–4 Mastering a Single Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–16 Standard Mastering for the P-10 Door Opener and the P-15 Hood and Deck Opener . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–19 Procedure 9–1 Replacing the PSU Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–2 Procedure 9–2 Replacing the SPC Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–3 Procedure 9–3 Replace PCMCIA Memory Card (Optional) Battery . . . . . . . . . . . . . . . . . . . . . . . 9–4 Procedure 9–4 Printed Circuit Board Removal and Replacement . . . . . . . . . . . . . . . . . . . . . . . . . 9–10 Procedure 9–5 Replacing Backplane Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–12 Procedure 9–6 Replacing a Module on the Main CPU or Aux Axis Control Printed Circuit Board 9–13 Procedure 9–7 Replacing the Base Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–16 Procedure 9–8 Replacing a Model A Interface Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–17 Procedure 9–9 Replacing a Model A I/O Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–17 Procedure 9–10 Replacing the Multi-Tap Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–19 Procedure 9–11 Replacing a Servo Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–20 Procedure 9–12 Replacing the Operator Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–21 Procedure 9–13 Fan Motor Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–22 Procedure 9–14 Replacing Internal Mounted Serial Pulse Coder . . . . . . . . . . . . . . . . . . . . . . . . . . 9–25 Procedure 9–15 Replacing an Externally Mounted Serial Pulse Coder . . . . . . . . . . . . . . . . . . . . . . 9–27 Procedure 10–1 Transducer/Regulator Performance Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–2 Procedure 10–2 Manual Flow Test (Beakering Test) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–5 Procedure 10–3 Performing a Cold Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–7 Procedure 10–4 Powering on the Robot Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–10 Procedure 10–5 Controller Shutdown Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–11 Procedure 10–6 Servo Lockout Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–11

List of Figures Figure 1–1. External View of the P-200 R-J2 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–2. Internal View of the P-200 R-J2 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–3. R-J2 C-Size Controller with Side Cabinet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–4. 2-Slot Backplane (A05B-2316-C107) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–5. 3-Slot Backplane (A05B-2316-C105) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–6. 5-Slot Backplane (A05B-2316-C111) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–7. Main CPU Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–8. Sub-CPU Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–9. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–10. Aux Axis Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–11. Power Supply Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–12. Emergency Stop Control Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–13. Servo Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–14. Servo Amplifier Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–15. Mounting Locations of Servo Amplifiers for the P-200 6 Axis Robot . . . . . . . . . . . Figure 1–16. Mounting Locations of Servo Amplifiers for the P-200 7 Axis Robot . . . . . . . . . . . Figure 1–17. Mounting Locations of Servo Amplifiers for the P-200 6+2 Robot . . . . . . . . . . . . .

1–3 1–4 1–5 1–7 1–8 1–9 1–12 1–14 1–15 1–16 1–17 1–19 1–21 1–22 1–22 1–23 1–23

xvi

TABLE OF CONTENTS

Figure 1–18. Figure 1–19. Figure 1–20. Figure 1–21. Figure 1–22. Figure 1–23. Figure 1–24. Figure 1–25. Figure 1–26. Figure 1–27. Figure 1–28. Figure 1–29. Figure 1–30. Figure 1–31. Figure 1–32. Figure 1–33. Figure 1–34. Figure 1–35. Figure 1–36.

MARO2P10203703E

Mounting Locations of Servo Amplifiers for the P-200 7+2 Robot . . . . . . . . . . . . . Mounting Locations of Servo Amplifiers for the P-200 7+3 Robot . . . . . . . . . . . . . Multi-Tap Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Modular I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ER-1 Ethernet Printed Circuit Boards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ER-2 Ethernet Printed Circuit Boards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . User Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operator Panel without Teach Panel Disconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . Teach Pendant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Heat Exchange System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purge Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Contact Signal Transducer (IBRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purge Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Intrinsic Safety Barrier Stahl 9001/01-252-100-14 . . . . . . . . . . . . . . . . . . . . . . . . . . Intrinsic Safety Barrier Pepperl + Fuchs KFD2-SR-Ex1.P and KFD2-SR2-Ex1.W . Intrinsic Safety Barrier Pepperl+Fuchs KFD2-SD-Ex1.36 . . . . . . . . . . . . . . . . . . . . Intrinsic Safety Barrier Pepperl+Fuchs KHD2-CD-1P32 and KFD2-CD-Ex1.32 . . . Intrinsic Safety Barrier Pepperl+Fuchs Z727 and Z787 . . . . . . . . . . . . . . . . . . . . . . . Intrinsic Safety Barrier Pepperl+Fuchs KFD2-SR-Ex1.2S.P and KFD2-SR-Ex1.W.LB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–37. C Size R-J2 Controller With Optional Brake Release Switches . . . . . . . . . . . . . . . . Figure 1–38. P-10 Door opener and P-15 Hood and Deck Opener . . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–39. Integral Pump Control Component Locator Diagram . . . . . . . . . . . . . . . . . . . . . . . . Figure 1–40. Top Hat and Side Saddle Mounted Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 2–1. Teach Pendant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 2–2. Alarm Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 3–1. Teach Pendant Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 3–2. Operator Panel LEDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 3–3. Servo Amp Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 3–4. Diagnostic LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 3–5. Power Supply Unit (PSU) Diagnostic LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 3–6. Main CPU Board Diagnostic LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 3–7. Sub CPU Board Diagnostic LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 3–8. Modular I/O LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 3–9. Servo Amplifier LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 3–10. Emergency Stop Control Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 3–11. Intrinsic Barrier Relay Control Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 3–12. Intrinsic Barrier Relay Control Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 3–13. ER-1 and ER-2 Printed Circuit Board LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 3–14. ER-2 Ethernet Printed Circuit Boards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 4–1. 24 Volt (24V) Power Distribution Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 4–2. 24 Volt (24E) Power Distribution Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1–24 1–24 1–28 1–29 1–35 1–36 1–37 1–38 1–39 1–40 1–41 1–43 1–44 1–48 1–49 1–49 1–50 1–50 1–51 1–55 1–56 1–58 1–59 2–2 2–16 3–2 3–3 3–4 3–6 3–7 3–8 3–10 3–13 3–14 3–16 3–18 3–19 3–20 3–21 4–19 4–20

MARO2P10203703E

TABLE OF CONTENTS

Figure 4–3. Servo Amplifier Switch Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 4–4. Connector and Terminal (T1) Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 4–5. Switch 3 and 4 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 4–6. Servo LED Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 4–7. Module Assembly # EE-3044-401 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 4–8. I/O Module LEDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 4–9. Interface Module PWR LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 4–10. Interface Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 4–11. Pin Out and Locator for Connector CP32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 4–12. Interface Module PWR LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 4–13. Intrinsic Safety Barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 4–14. Intrinsic Safety Barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 5–1. Main Disconnect Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 5–2. Replacing Transformer Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 5–3. Replacing a Fuse of the Power Supply Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 5–4. Replacing Fuses of Servo Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 5–5. Replacing Emergency Stop Control Board Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 5–6. Purge Power Supply Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 5–7. Interface Module AIF01A Fuse Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 5–8. Modular I/O Fuse Locations – AOA05E, ADA08E, and AOA12F . . . . . . . . . . . . . . . Figure 5–9. Modular I/O Fuse Locations – AOS08C and AOD08D . . . . . . . . . . . . . . . . . . . . . . . . Figure 5–10. Main CPU Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 6–1. Operator Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 6–2. C Size R-J2 Controller With Optional Brake Release Switches . . . . . . . . . . . . . . . . . Figure 8–1. Zero Degree Position of the P-200 Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 8–2. Axes 4, 5, and 6 1005 Wrist Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 8–3. Axes 4, 5, and 6 1005 Wrist Mastering Positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 8–4. Axes 4, 5, and 6 1405 Wrist Mastering Positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 8–5. Robot Pedestal Axis 1 1005/1405 Mastering Surface Location . . . . . . . . . . . . . . . . . . Figure 8–6. Axis 2 1005/1405 Mastering Surface Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 8–7. Axis 3 1005 Mastered Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 8–8. Axis 3 Mastering Position (1405 Wrist) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 8–9. Mastering Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 8–10. Axis 7 Mastering Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 8–11. Mastering Position of the P-200 robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 8–12. P-10 and P-15 Opener Mastering Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 8–13. P-10 and P-15 Axis One Mastering Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 8–14. P-10 and P-15 Axis Two Mastering Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 8–15. P-10 and P-15 Axis Three Mastered Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–1. Replacing the Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–2. Internal View of the P-200 R-J2 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–3. Replacing Memory Card Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xvii 4–38 4–39 4–45 4–45 4–55 4–67 4–68 4–69 4–70 4–70 4–71 4–72 5–3 5–4 5–5 5–6 5–7 5–8 5–9 5–10 5–11 5–12 6–2 6–3 8–4 8–5 8–6 8–7 8–8 8–9 8–10 8–11 8–12 8–13 8–16 8–20 8–21 8–22 8–23 9–2 9–4 9–5

xviii

TABLE OF CONTENTS

MARO2P10203703E

Figure 9–4. 3-Slot Backplane (A05B-2316-C105) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–5. Operator Control Panel Relay Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–6. EMG Printed Circuit Board Relay Locations for B-Size Cabinet . . . . . . . . . . . . . . . . Figure 9–7. Purge Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–8. Battery Transfer to Maintain CMOS RAM Memory . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–9. Replacing the Components on the Backplane Printed Circuit Board . . . . . . . . . . . . . . Figure 9–10. Replacing the Backplane Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–11. Moving the Latches on the End of the Module Socket . . . . . . . . . . . . . . . . . . . . . . . Figure 9–12. Installing a New Module at an Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–13. Pushing in the Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–14. Mounting Locations of the Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–15. Replacing the Base Unit of the Model A I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–16. Replacing a Model A I/O Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–17. Replacing the Multi-Tap Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–18. Replacing a Servo Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–19. Replacing the Operator Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–20. Replacing the Fan Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–21. Replacing the Teach Pendant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–22. Removing the Internally Mounted serial pulse coder . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9–23. Removing the Black Plastic Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 10–1. Emergency Stop Control Board Jumpers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 10–2. Teach Pendant and Operator Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 11–1. ER-1 and ER-2 Printed Circuit Board LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–1. R-J2 P-200 Controller Total Circuit Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–2. R-J2 P-200 Controller Total Circuit Diagram (Multi-Tap Transformer Details) . . . . Figure 12–3. R-J2 P-200 Controller Total Circuit Diagram (Amplifier Configurations) . . . . . . . . Figure 12–4. R-J2 P-200 Controller Total Circuit Diagram (Amplifier Configurations) . . . . . . . . Figure 12–5. R-J2 P-200 Controller Total Circuit Diagram (Amplifier Configurations) . . . . . . . . Figure 12–6. R-J2 P-200 Controller Total Circuit Diagram (AMP PWM Signal Connections) . . . Figure 12–7. R-J2 P-200 Controller Total Circuit Diagram (Power Supply Connections) . . . . . . . Figure 12–8. R-J2 P-200 Controller Total Circuit Diagram (CPU Connector Details) . . . . . . . . . Figure 12–9. R-J2 P-200 Controller Total Circuit Diagram (ESTOP Connection Details) . . . . . . . Figure 12–10. R-J2 P-200 Controller Total Circuit Diagram (Optional Process I/O Connections) Figure 12–11. R-J2 P-200 Controller Total Circuit Diagram (Optional I/O Connections) . . . . . . . Figure 12–12. R-J2 P-200 Controller Total Circuit Diagram (Purge Circuitry) . . . . . . . . . . . . . . . Figure 12–13. R-J2 P-200 Controller Total Circuit Diagram (Purge Wiring Diagram) . . . . . . . . . Figure 12–14. R-J2 P-200 Controller Total Circuit Diagram (Purge Board Details) . . . . . . . . . . . Figure 12–15. R-J2 P-200 Controller Total Circuit Diagram (ESTOP Wiring Detail) . . . . . . . . . . Figure 12–16. R-J2 P-200 Controller Total Circuit Diagram (OP Panel Details) . . . . . . . . . . . . . . Figure 12–17. R-J2 P-200 Controller Total Circuit Diagram (Operator Panel) . . . . . . . . . . . . . . . . Figure 12–18. R-J2 Controller P-200 Amplifier Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–19. R-J2 Robot Controller Cabinet Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9–5 9–6 9–7 9–8 9–9 9–11 9–12 9–13 9–14 9–14 9–15 9–16 9–18 9–19 9–20 9–21 9–23 9–24 9–26 9–27 10–4 10–8 11–11 12–3 12–5 12–7 12–9 12–11 12–13 12–15 12–17 12–19 12–21 12–23 12–25 12–27 12–29 12–31 12–33 12–35 12–37 12–39

MARO2P10203703E

TABLE OF CONTENTS

Figure 12–20. P-200 R-J2 Controller FM Retrofit Package Cabinet Layout . . . . . . . . . . . . . . . . . Figure 12–21. P-200 R-J2 Robot Control Drawing Purge and Intrinsic Wiring sheet 1 . . . . . . . . . Figure 12–22. P-200 R-J2 Robot Control Drawing Purge and Intrinsic Wiring sheet 2 . . . . . . . . . Figure 12–23. P-200 R-J2 Control Drawing Purge and Intrinsic Wiring Sheet 3 . . . . . . . . . . . . . . Figure 12–24. P-200 R-J2 Pedestal North American Purge, No PGS (Seal Off Req’d) Cable Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–25. P-200 R-J2 Rail Robot North American Purge, PGS For Penetration Plate Cable Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–26. P-200 R-J2 Pedestal Robot PTB Purge, PGS For Penetration Plate Cable Layout . Figure 12–27. P-200 R-J2 Rail Robot PTB Purge, PGS For Penetration Plate . . . . . . . . . . . . . . . . Figure 12–28. P-200 Controller Basic Process Option I/P Flow and Trigger . . . . . . . . . . . . . . . . . Figure 12–29. P-200 Controller Process Option Basic Option With Second Trigger . . . . . . . . . . . Figure 12–30. P-200 Controller Bypass Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–31. AccuFlow Counter Input Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–32. Trigger Valve/Regulator Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–33. Color Changer 24 Color Moduclean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–34. Upper Gun Control Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–35. Color Changer Lines 24 Color Pedestal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–36. Lower Gun Control Lines Pedestal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–37. Lower Gun Control Lines Rail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–38. Color Changer Rail 4 Color Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–39. FANUC R-J2 P-200 Single Stage Purge Paint Process Control With Connector Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–40. FANUC R-J2 P-200 Single Stage Purge Paint Process Control With Connector Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–41. FANUC R-J2 P-200 Single Stage Purge Paint Process Control With Connector Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–42. Flow Meter Interface Circuitry FANUC R-J2 P-200 Single Stage Purge Paint Process Control With Connector Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12–43. I/O Rack Layout FANUC R-J2 P-200 Single Stage Purge Paint Control With Connector Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–1. P-200 Purge/Battery/Paint Connection Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–2. P-200 R-J2 Paint Control Robot Arm Cable Dual Trigger . . . . . . . . . . . . . . . . . . . . . Figure 13–3. P-200 I/P Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–4. P-200 Trigger Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–5. P-200 Flow Detector Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–6. Axes 1 and 2 Power Connection Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–7. Axes 4, 5, and 6 Motor Connection Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–8. Axes 3 and 7 Power Connection Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–9. EE-3287-113-005 through 155 Pulse Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–10. P-200 R-J2 Purge/Battery Connection Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–11. P-200 Robot Ground Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–12. Axes 1, 2, and 3 Power and Pulse Harness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–13. Axes 4, 5, and 6 Power Harness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xix 12–41 12–43 12–45 12–47 12–49 12–51 12–53 12–55 12–57 12–59 12–61 12–63 12–65 12–67 12–69 12–71 12–73 12–75 12–77 12–79 12–81 12–83 12–85 12–87 13–3 13–5 13–7 13–9 13–11 13–13 13–15 13–17 13–19 13–21 13–23 13–25 13–27

xx

TABLE OF CONTENTS

MARO2P10203703E

Figure 13–14. Purge Control Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–15. Six Axis Battery Harness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–16. Purge Flow Switch Arm Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–17. Solenoid Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–18. Purge Pressure Switch Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13–19. R-J2 Robot Bypass Switch Arm Cable (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–1. P-10 Door Opener Electrical Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–2. P-10 Door Opener Euro Electrical Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–3. P-200 Plus P-10 or P-15 Controller Bypass Package . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–4. P-10 or P-15 Power Connection Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–5. P-10 or P-15 European Shielded Power Connection Cable . . . . . . . . . . . . . . . . . . . . Figure 14–6. P-10 or P-15 Axis 1 Rail Power/Brake Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–7. P-10 or P-15 Axis 2 Inner Arm Power/Brake Cable . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–8. P-10 or P-15 Axis 3 Outer Arm Power/Brake Cable . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–9. P-10 or P-15 Axis 1 Encoder Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–10. P-10 or P-15 Axis 2 Pulse Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–11. P-10 or P-15 Axis 3 Pulse Coder Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–12. P-10 or P-15 Purge Flow Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–13. P-10 or P-15 European Purge Connect Arm Cable . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–14. P-10 or P-15 European Solenoid Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–15. P-10 or P-15 Sensor Splitout Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–16. P-10 or P-15 End of Arm Tool Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–17. P-10 Magnet Sensor Breakaway Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–18. P-10 or P-15 Solenoid Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–19. Ground Cable M5 to M5 Stud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–20. P-10 Breakaway Magnet Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–21. P-15 Hood/Deck Opener Electrical Layout Domestic Version . . . . . . . . . . . . . . . . . Figure 14–22. P-15 Hood/Deck Opener Electrical Layout European Version . . . . . . . . . . . . . . . . . Figure 14–23. P-15 Opener End of Arm Tooling Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–24. P-15 Part Present Proximity Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–25. Integral Pump Control Drawing Index and System Index . . . . . . . . . . . . . . . . . . . . Figure 14–26. Integral Pump Control I/O Rack Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–27. Integral Pump Control Controller Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–28. Top Hat Option Drawing Index and System Layout . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–29. Side Saddle Option Drawing Index and System Layout . . . . . . . . . . . . . . . . . . . . . Figure 14–30. Top Hat and Side Saddle Option Drawing Index and System Layout . . . . . . . . . . . Figure 14–31. Top Hat and Side Saddle Option Cable and Wiring Diagram . . . . . . . . . . . . . . . . . Figure 14–32. Top Hat and Side Saddle Option Purge and Intrinsic Wiring Control Drawing . . . . Figure 14–33. Top Hat and Side Saddle Options Cable Layout Diagram . . . . . . . . . . . . . . . . . . . . Figure 14–34. Top Hat Option Intrinsic Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–35. Side Saddle Option Intrinsic Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–36. Top Hat and Side Saddle Options Axis 3, Pumps 1 and 2 Motor Power Cable Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13–29 13–31 13–33 13–35 13–37 13–39 14–3 14–5 14–7 14–9 14–11 14–13 14–15 14–17 14–19 14–21 14–23 14–25 14–27 14–29 14–31 14–33 14–35 14–37 14–39 14–41 14–43 14–45 14–47 14–49 14–51 14–53 14–55 14–57 14–59 14–61 14–63 14–65 14–67 14–69 14–71 14–73

MARO2P10203703E

TABLE OF CONTENTS

Figure 14–37. Top Hat and Side Saddle Options Pumps 1 and 2 Pulse Cable Reference . . . . . . . . Figure 14–38. Top Hat and Side Saddle Options Intrinsic Cable Reference . . . . . . . . . . . . . . . . . . Figure 14–39. Integral Pump Control Process Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–40. P-200 Brake Release Option Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14–41. P-200 Brake Release Wiring Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure A–1. Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure A–2. Installation Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure A–3. Assembly During Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xxi 14–75 14–77 14–79 14–81 14–83 A–2 A–3 A–4

List of Tables Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table

1–1. Main CPU Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2. Sub CPU Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3. Servo Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4. Dip Switch Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5. Multi-Tap Transformer Part Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–6. Selecting Transformer Taps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–7. Digital Input Module Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–8. Digital Output Module Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9. I/O Module Part Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–10. FANUC R-J2 Ethernet Remote Style Printed Circuit Board Part Numbers . . . . . . . 1–11. Purge Intrinsically Safety Barriers and Signal Repeaters . . . . . . . . . . . . . . . . . . . . . 1–12. Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1. Safety Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2. Version Identification Status Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3. Memory Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4. Axis Status Pulse Screen Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1. Teach Pendant Status Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2. Standard Operator Panel Status Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–3. Servo Amp On Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4. Troubleshooting Main CPU Board Diagnostic LEDs . . . . . . . . . . . . . . . . . . . . . . . . . 3–5. Troubleshooting Sub CPU Board STATUS LEDs (Green) . . . . . . . . . . . . . . . . . . . . . 3–6. Troubleshooting Sub CPU Board ALARM LEDs (Red) . . . . . . . . . . . . . . . . . . . . . . 3–7. Troubleshooting Sub CPU Board ALARM LEDs (Red) . . . . . . . . . . . . . . . . . . . . . . 3–8. Modular I/O LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–9. Servo Amplifier LED Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–10. Emergency Stop Control Printed Circuit Board LED Functions . . . . . . . . . . . . . . . 3–11. Modular I/O LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–12. Modular I/O LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–13. ER-1 Alarm LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–14. ER-2 Alarm LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1. Troubleshooting Procedure 1 (Initial Purge Troubleshooting Procedure) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1–12 1–14 1–25 1–26 1–27 1–28 1–31 1–31 1–32 1–34 1–45 1–51 2–3 2–5 2–8 2–12 3–2 3–3 3–4 3–9 3–11 3–12 3–12 3–13 3–15 3–17 3–18 3–19 3–22 3–22 4–6

xxii

TABLE OF CONTENTS

Table 4–2. Table 4–3. Table 4–4. Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table

MARO2P10203703E

Troubleshooting Procedure 2 (IBRC Troubleshooting Procedure) . . . . . . . . . . . . . . . Troubleshooting Procedure 3 (Non-Specific Purge Problems) . . . . . . . . . . . . . . . . . . Troubleshooting Procedure 4 (General Power Supply Troubleshooting) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–5. Troubleshooting Procedure 5 (Transformer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–6. Troubleshooting Procedure 6 (Power Supply Alarms) . . . . . . . . . . . . . . . . . . . . . . . . 4–7. Troubleshooting Procedure 7 (Power Supply Output) . . . . . . . . . . . . . . . . . . . . . . . . 4–8. Class 2 Faults Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–9. SRVO-001 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–10. SRVO-002 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–11. SRVO-003 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–12. SRVO-004 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–13. SRVO-005 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–14. SRVO-006 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–15. SRVO-006 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–16. SRVO-014 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–17. SRVO-015 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–18. SRVO-019 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–19. SRVO-020 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–20. SRVO-021 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–21. SRVO-022 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–22. SRVO-023 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–23. SRVO-038 Alarm Reset Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–24. SRVO-042 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–25. SRVO-043 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–26. SRVO-044 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–27. SRVO-045 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–28. SRVO-047 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–29. SRVO-049 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–30. SRVO-050 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–31. SRVO-051 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–32. SRVO-061 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–33. SRVO-062 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–34. SRVO-063 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–35. SRVO-064 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–36. SRVO-065 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–37. SRVO-066 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–38. SRVO-067 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–39. SRVO-068 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–40. SRVO-071 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–41. SRVO-072 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–42. SRVO-071 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4–9 4–10 4–13 4–15 4–17 4–19 4–21 4–24 4–25 4–26 4–27 4–28 4–31 4–32 4–34 4–35 4–36 4–36 4–37 4–40 4–40 4–42 4–43 4–44 4–46 4–47 4–48 4–49 4–49 4–50 4–50 4–51 4–52 4–52 4–52 4–53 4–53 4–55 4–56 4–57 4–57

MARO2P10203703E

Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table

TABLE OF CONTENTS

4–43. SRVO-071 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–44. SRVO-071 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–45. SRVO-081 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–46. SRVO-082 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1. Fused Flange-Mounted Disconnect Switch, C-Size Cabinet . . . . . . . . . . . . . . . . . . . 5–2. Multi-Tap Transformer Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–3. PSU Fuse Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–4. Servo Fuse Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–5. Emergency Stop Control Printed Circuit Board Fuses . . . . . . . . . . . . . . . . . . . . . . . . 5–6. Emergency Stop Control PCB Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–7. Emergency Stop Control PCB Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–8. Emergency Stop Control PCB Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–1. Standard Operator Panel Input Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–2. Standard Operator Panel Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–1. EMG Printed Circuit Board Relay Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–2. EMG Printed Circuit Board Relay Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–3. EMG Printed Circuit Board Relay Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–4. Teach Pendant Part Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–1. I/P Transducer/Regulator Performance Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–1. Output Module AOD32A, Non-isolated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–2. Output Modules AOD08C and AOD08D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–3. Output Modules AOD16C and AOD16D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–4. Output Module AOD32C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–5. Output Module AOD32D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–6. Output Modules AOA05E and AOA08E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–7. Output Module AOA12F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–8. Output Modules AOR08G and AOR16G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–9. Output Module ADA02A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–10. Input Module AID32B, Non-isolated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–11. Input Modules AID16C and AID16D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–12. Analog Input Module AAD04A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–1. Physical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xxiii 4–57 4–58 4–58 4–59 5–3 5–4 5–5 5–6 5–7 5–8 5–9 5–12 7–5 7–5 9–6 9–7 9–8 9–24 10–3 11–2 11–3 11–4 11–5 11–6 11–7 11–8 11–9 11–10 11–12 11–13 11–14 A–6

SAFETY

Page2

MARO2P10203703E

Safety

xxv

FANUC Robotics is not and does not represent itself as an expert in safety systems, safety equipment, or the specific safety aspects of your company and/or its work force. It is the responsibility of the owner, employer, or user to take all necessary steps to guarantee the safety of all personnel in the workplace. The appropriate level of safety for your application and installation can best be determined by safety system professionals. FANUC Robotics therefore, recommends that each customer consult with such professionals in order to provide a workplace that allows for the safe application, use, and operation of FANUC Robotic systems. According to the industry standard ANSI/RIA R15–06, the owner or user is advised to consult the standards to ensure compliance with its requests for Robotics System design, usability, operation, maintenance, and service. Additionally, as the owner, employer, or user of a robotic system, it is your responsibility to arrange for the training of the operator of a robot system to recognize and respond to known hazards associated with your robotic system and to be aware of the recommended operating procedures for your particular application and robot installation. FANUC Robotics therefore, recommends that all personnel who intend to operate, program, repair, or otherwise use the robotics system be trained in an approved FANUC Robotics training course and become familiar with the proper operation of the system. Persons responsible for programming the system-including the design, implementation, and debugging of application programs-must be familiar with the recommended programming procedures for your application and robot installation. The following guidelines are provided to emphasize the importance of safety in the workplace.

xxvi

SAFETY

MARO2P10203703E

CONSIDERING SAFETY FOR YOUR ROBOT INSTALLATION

Safety is essential whenever robots are used. Keep in mind the following factors with regard to safety:  The safety of people and equipment  Use of safety enhancing devices  Techniques for safe teaching and manual operation of the robot(s)  Techniques for safe automatic operation of the robot(s)  Regular scheduled inspection of the robot and workcell  Proper maintenance of the robot

Keeping People and Equipment Safe

The safety of people is always of primary importance in any situation. However, equipment must be kept safe, too. When prioritizing how to apply safety to your robotic system, consider the following:  People  External devices  Robot(s)  Tooling  Workpiece

Using Safety Enhancing Devices

Always give appropriate attention to the work area that surrounds the robot. The safety of the work area can be enhanced by the installation of some or all of the following devices:  Safety fences, barriers, or chains  Light curtains  Interlocks  Pressure mats  Floor markings  Warning lights  Mechanical stops  EMERGENCY STOP buttons  DEADMAN switches

Setting Up a Safe Workcell

A safe workcell is essential to protect people and equipment. Observe the following guidelines to ensure that the workcell is set up safely. These suggestions are intended to supplement and not replace existing federal, state, and local laws, regulations, and guidelines that pertain to safety.  Sponsor your personnel for training in approved FANUC Robotics training course(s) related to your application. Never permit untrained personnel to operate the robots.  Install a lockout device that uses an access code to prevent unauthorized persons from operating the robot.  Use anti-tie-down logic to prevent the operator from bypassing safety measures.  Arrange the workcell so the operator faces the workcell and can see what is going on inside the cell.

MARO2P10203703E

SAFETY

xxvii

 Clearly identify the work envelope of each robot in the system with floor markings, signs, and special barriers. The work envelope is the area defined by the maximum motion range of the robot, including any tooling attached to the wrist flange that extend this range.  Position all controllers outside the robot work envelope.  Never rely on software as the primary safety element.  Mount an adequate number of EMERGENCY STOP buttons or switches within easy reach of the operator and at critical points inside and around the outside of the workcell.  Install flashing lights and/or audible warning devices that activate whenever the robot is operating, that is, whenever power is applied to the servo drive system.  Wherever possible, install safety fences to protect against unauthorized entry by personnel into the work envelope.  Install special guarding that prevents the operator from reaching into restricted areas of the work envelope.  Use interlocks.  Use presence or proximity sensing devices such as light curtains, mats, and capacitance and vision systems to enhance safety.  Periodically check the safety joints or safety clutches that can be optionally installed between the robot wrist flange and tooling. If the tooling strikes an object, these devices dislodge, remove power from the system, and help to minimize damage to the tooling and robot.  Make sure all external devices are properly filtered, grounded, shielded, and suppressed to prevent hazardous motion due to the effects of electro-magnetic interference (EMI), radio frequency interference (RFI), and electro-static discharge (ESD).  Make provisions for power lockout/tagout at the controller.  Eliminate pinch points. Pinch points are areas where personnel could get trapped between a moving robot and other equipment.  Provide enough room inside the workcell to permit personnel to teach the robot and perform maintenance safely.  Program the robot to load and unload material safely.  If high voltage electrostatics are present, be sure to provide appropriate interlocks, warning, and beacons.  If materials are being applied at dangerously high pressure, provide electrical interlocks for lockout of material flow and pressure.

xxviii

Staying Safe While Teaching or Manually Operating the Robot

SAFETY

MARO2P10203703E

Advise all personnel who must teach the robot or otherwise manually operate the robot to observe the following rules:  Never wear watches, rings, neckties, scarves, or loose clothing that could get caught in moving machinery.  Know whether or not you are using an intrinsically safe teach pendant if you are working in a hazardous environment.  Before teaching, visually inspect the robot and work envelope to make sure that no potentially hazardous conditions exist. The work envelope is the area defined by the maximum motion range of the robot. These include tooling attached to the wrist flange that extends this range.  The area near the robot must be clean and free of oil, water, or debris. Immediately report unsafe working conditions to the supervisor or safety department.  FANUC Robotics recommends that no one enter the work envelope of a robot that is on, except for robot teaching operations. However, if you must enter the work envelope, be sure all safeguards are in place, check the teach pendant DEADMAN switch for proper operation, and place the robot in teach mode. Take the teach pendant with you, turn it on, and be prepared to release the DEADMAN switch. Only the person with the teach pendant should be in the work envelope. WARNING Never bypass, strap, or otherwise deactivate a safety device, such as a limit switch, for any operational convenience. Deactivating a safety device is known to have resulted in serious injury and death.  Know the path that can be used to escape from a moving robot; make sure the escape path is never blocked.  Isolate the robot from all remote control signals that can cause motion while data is being taught.  Test any program being run for the first time in the following manner: WARNING Stay outside the robot work envelope whenever a program is being run. Failure to do so can result in injury.

– Using a low motion speed, single step the program for at least one full cycle. – Using a low motion speed, test run the program continuously for at least one full cycle. – Using the programmed speed, test run the program continuously for at least one full cycle.  Make sure all personnel are outside the work envelope before running production.

MARO2P10203703E

Staying Safe During Automatic Operation

SAFETY

xxix

Advise all personnel who operate the robot during production to observe the following rules:  Make sure all safety provisions are present and active.  Know the entire workcell area. The workcell includes the robot and its work envelope, plus the area occupied by all external devices and other equipment with which the robot interacts.  Understand the complete task the robot is programmed to perform before initiating automatic operation.  Make sure all personnel are outside the work envelope before operating the robot.  Never enter or allow others to enter the work envelope during automatic operation of the robot.  Know the location and status of all switches, sensors, and control signals that could cause the robot to move.  Know where the EMERGENCY STOP buttons are located on both the robot control and external control devices. Be prepared to press these buttons in an emergency.  Never assume that a program is complete if the robot is not moving. The robot could be waiting for an input signal that will permit it to continue activity.  If the robot is running in a pattern, do not assume it will continue to run in the same pattern.  Never try to stop the robot, or break its motion, with your body. The only way to stop robot motion immediately is to press an EMERGENCY STOP button located on the controller panel, teach pendant, or emergency stop stations around the workcell.

Staying Safe During Inspection

When inspecting the robot, be sure to  Turn off power at the controller.  Lock out and tag out the power source at the controller according to the policies of your plant.  Turn off the compressed air source and relieve the air pressure.  If robot motion is not needed for inspecting the electrical circuits, press the EMERGENCY STOP button on the operator panel.  Never wear watches, rings, neckties, scarves, or loose clothing that could get caught in moving machinery.

xxx

SAFETY

MARO2P10203703E

 If power is needed to check the robot motion or electrical circuits, be prepared to press the EMERGENCY STOP button, in an emergency.  Be aware that when you remove a servomotor or brake, the associated robot arm will fall if it is not supported or resting on a hard stop. Support the arm on a solid support before you release the brake.

Staying Safe During Maintenance

When performing maintenance on your robot system, observe the following rules:  Never enter the work envelope while the robot or a program is in operation.  Before entering the work envelope, visually inspect the workcell to make sure no potentially hazardous conditions exist.  Never wear watches, rings, neckties, scarves, or loose clothing that could get caught in moving machinery.  Consider all or any overlapping work envelopes of adjoining robots when standing in a work envelope.  Test the teach pendant for proper operation before entering the work envelope.  If it is necessary for you to enter the robot work envelope while power is turned on, you must be sure that you are in control of the robot. Be sure to take the teach pendant with you, press the DEADMAN switch, and turn the teach pendant on. Be prepared to release the DEADMAN switch to turn off servo power to the robot immediately.  Whenever possible, perform maintenance with the power turned off. Before you open the controller front panel or enter the work envelope, turn off and lock out the 3-phase power source at the controller.  Be aware that when you remove a servomotor or brake, the associated robot arm will fall if it is not supported or resting on a hard stop. Support the arm on a solid support before you release the brake. WARNING Lethal voltage is present in the controller WHENEVER IT IS CONNECTED to a power source. Be extremely careful to avoid electrical shock. HIGH VOLTAGE IS PRESENT at the input side whenever the controller is connected to a power source. Turning the disconnect or circuit breaker to the OFF position removes power from the output side of the device only.  Release or block all stored energy. Before working on the pneumatic system, shut off the system air supply and purge the air lines.

MARO2P10203703E

SAFETY

xxxi

 Isolate the robot from all remote control signals. If maintenance must be done when the power is on, make sure the person inside the work envelope has sole control of the robot. The teach pendant must be held by this person.  Make sure personnel cannot get trapped between the moving robot and other equipment. Know the path that can be used to escape from a moving robot. Make sure the escape route is never blocked.  Use blocks, mechanical stops, and pins to prevent hazardous movement by the robot. Make sure that such devices do not create pinch points that could trap personnel.

WARNING Do not try to remove any mechanical component from the robot before thoroughly reading and understanding the procedures in the appropriate manual. Doing so can result in serious personal injury and component destruction.

 Be aware that when you remove a servomotor or brake, the associated robot arm will fall if it is not supported or resting on a hard stop. Support the arm on a solid support before you release the brake.  When replacing or installing components, make sure dirt and debris do not enter the system.  Use only specified parts for replacement. To avoid fires and damage to parts in the controller, never use nonspecified fuses.  Before restarting a robot, make sure no one is inside the work envelope; be sure that the robot and all external devices are operating normally.

xxxii

SAFETY

MARO2P10203703E

KEEPING MACHINE TOOLS AND EXTERNAL DEVICES SAFE

Certain programming and mechanical measures are useful in keeping the machine tools and other external devices safe. Some of these measures are outlined below. Make sure you know all associated measures for safe use of such devices.

Programming Safety Precautions

Implement the following programming safety measures to prevent damage to machine tools and other external devices.  Back-check limit switches in the workcell to make sure they do not fail.  Implement ‘‘failure routines” in programs that will provide appropriate robot actions if an external device or another robot in the workcell fails.  Use handshaking protocol to synchronize robot and external device operations.  Program the robot to check the condition of all external devices during an operating cycle.

Mechanical Safety Precautions

Implement the following mechanical safety measures to prevent damage to machine tools and other external devices.  Make sure the workcell is clean and free of oil, water, and debris.  Use software limits, limit switches, and mechanical hardstops to prevent undesired movement of the robot into the work area of machine tools and external devices.

MARO2P10203703E

SAFETY

xxxiii

KEEPING THE ROBOT SAFE

Observe the following operating and programming guidelines to prevent damage to the robot.

Operating Safety Precautions

The following measures are designed to prevent damage to the robot during operation.  Use a low override speed to increase your control over the robot when jogging the robot.  Visualize the movement the robot will make before you press the jog keys on the teach pendant.  Make sure the work envelope is clean and free of oil, water, or debris.  Use circuit breakers to guard against electrical overload.

Programming Safety Precautions

The following safety measures are designed to prevent damage to the robot during programming:  Establish interference zones to prevent collisions when two or more robots share a work area.  Make sure that the program ends with the robot near or at the home position.  Be aware of signals or other operations that could trigger operation of tooling resulting in personal injury or equipment damage.  In dispensing applications, be aware of all safety guidelines with respect to the dispensing materials. NOTE Any deviation from the methods and safety practices described in this manual must conform to the approved standards of your company. If you have questions, see your supervisor.

xxxiv

ADDITIONAL SAFETY CONSIDERATIONS FOR PAINT ROBOT INSTALLATIONS

SAFETY

MARO2P10203703E

Process technicians are sometimes required to enter the paint booth, for example, during daily or routine calibration or while teaching new paths to a robot. Maintenance personnel also must work inside the paint booth periodically. Whenever personnel are working inside the paint booth, ventilation equipment must be used. Instruction on the proper use of ventilating equipment usually is provided by the paint shop supervisor. Although paint booth hazards have been minimized, potential dangers still exist. Therefore, today’s highly automated paint booth requires that process and maintenance personnel have full awareness of the system and its capabilities. They must understand the interaction that occurs between the vehicle moving along the conveyor and the robot(s), hood/deck and door opening devices, and high-voltage electrostatic tools. Paint robots are operated in three modes:  Teach or manual mode  Automatic mode, including automatic and exercise operation  Diagnostic mode During both teach and automatic modes, the robots in the paint booth will follow a predetermined pattern of movements. In teach mode, the process technician teaches (programs) paint paths using the teach pendant. In automatic mode, robot operation is initiated at the System Operator Console (SOC) or Manual Control Panel (MCP), if available, and can be monitored from outside the paint booth. All personnel must remain outside of the booth or in a designated safe area within the booth whenever automatic mode is initiated at the SOC or MCP. In automatic mode, the robots will execute the path movements they were taught during teach mode, but generally at production speeds. When process and maintenance personnel run diagnostic routines that require them to remain in the paint booth, they must stay in a designated safe area.

MARO2P10203703E

Paint System Safety Features

SAFETY

xxxv

Process technicians and maintenance personnel must become totally familiar with the equipment and its capabilities. To minimize the risk of injury when working near robots and related equipment, personnel must comply strictly with the procedures in the manuals. This section provides information about the safety features that are included in the paint system and also explains the way the robot interacts with other equipment in the system. The paint system includes the following safety features:  Most paint booths have red warning beacons that illuminate when the robots are armed and ready to paint. Your booth might have other kinds of indicators. Learn what these are.  Some paint booths have a blue beacon that, when illuminated, indicates that the electrostatic devices are enabled. Your booth might have other kinds of indicators. Learn what these are.  EMERGENCY STOP buttons are located on the robot controller and teach pendant. Become familiar with the locations of all E-STOP buttons.  An intrinsically safe teach pendant is used when teaching in hazardous paint atmospheres.  A DEADMAN switch is located on each teach pendant. When this switch is held in, and the teach pendant is on, power is applied to the robot servo system. If the engaged DEADMAN switch is released during robot operation, power is removed from the servo system, all axis brakes are applied, and the robot comes to an EMERGENCY STOP. Safety interlocks within the system might also E-STOP other robots.

WARNING An EMERGENCY STOP will occur if the DEADMAN switch is released on a bypassed robot.

 Overtravel by robot axes is prevented by software limits. All of the major and minor axes are governed by software limits. Limit switches and hardstops also limit travel by the major axes.

xxxvi

SAFETY

MARO2P10203703E

 EMERGENCY STOP limit switches and photoelectric eyes might be part of your system. Limit switches, located on the entrance/exit doors of each booth, will EMERGENCY STOP all equipment in the booth if a door is opened while the system is operating in automatic or manual mode. For some systems, signals to these switches are inactive when the switch on the SCC is in teach mode. When present, photoelectric eyes are sometimes used to monitor unauthorized intrusion through the entrance/exit silhouette openings.  System status is monitored by computer. Severe conditions result in automatic system shutdown.

Staying Safe While Operating the Paint Robot

When you work in or near the paint booth, observe the following rules, in addition to all rules for safe operation that apply to all robot systems.

WARNING Observe all safety rules and guidelines to avoid injury.

WARNING Never bypass, strap, or otherwise deactivate a safety device, such as a limit switch, for any operational convenience. Deactivating a safety device is known to have resulted in serious injury and death.  Know the work area of the entire paint station (workcell).  Know the work envelope of the robot and hood/deck and door opening devices.  Be aware of overlapping work envelopes of adjacent robots.  Know where all red, mushroom-shaped EMERGENCY STOP buttons are located.  Know the location and status of all switches, sensors, and/or control signals that might cause the robot, conveyor, and opening devices to move.  Make sure that the work area near the robot is clean and free of water, oil, and debris. Report unsafe conditions to your supervisor.  Become familiar with the complete task the robot will perform BEFORE starting automatic mode.  Make sure all personnel are outside the paint booth before you turn on power to the robot servo system.

MARO2P10203703E

SAFETY

xxxvii

 Never enter the work envelope or paint booth before you turn off power to the robot servo system.  Never enter the work envelope during automatic operation unless a safe area has been designated.  Never wear watches, rings, neckties, scarves, or loose clothing that could get caught in moving machinery.  Remove all metallic objects, such as rings, watches, and belts, before entering a booth when the electrostatic devices are enabled.  Stay out of areas where you might get trapped between a moving robot, conveyor, or opening device and another object.  Be aware of signals and/or operations that could result in the triggering of guns or bells.  Be aware of all safety precautions when dispensing of paint is required.  Follow the procedures described in this manual.

Staying Safe During Maintenance

When you perform maintenance on the painter system, observe the following rules, and all other maintenance safety rules that apply to all robot installations. Only qualified, trained service or maintenance personnel should perform repair work on a robot.  Paint robots operate in a potentially explosive environment. Use caution when working with electric tools.  When a maintenance technician is repairing or adjusting a robot, the work area is under the control of that technician. All personnel not participating in the maintenance must stay out of the area.  For some maintenance procedures, station a second person at the control panel within reach of the EMERGENCY STOP button. This person must understand the robot and associated potential hazards.  Be sure all covers and inspection plates are in good repair and in place.  Always return the robot to the ‘‘home’’ position before you disarm it.  Never use machine power to aid in removing any component from the robot.  During robot operations, be aware of the robot’s movements. Excess vibration, unusual sounds, and so forth, can alert you to potential problems.  Whenever possible, turn off the main electrical disconnect before you clean the robot.

xxxviii

SAFETY

MARO2P10203703E

 When using vinyl resin observe the following:

– Wear eye protection and protective gloves during application and removal

– Adequate ventilation is required. Overexposure could cause drowsiness or skin and eye irritation.

– If there is contact with the skin, wash with water.  When using paint remover observe the following:

– Eye protection, protective rubber gloves, boots, and apron are required during booth cleaning.

– Adequate ventilation is required. Overexposure could cause drowsiness.

– If there is contact with the skin or eyes, rinse with water for at least 15 minutes.

Page1

1 OVERVIEW

MARO2P10203703E

1

Topics In This Chapter

OVERVIEW 1–1

Page

Overview

This manual describes the SYSTEM R-J2 controller which is used in conjunction with the P-200 robot, P-10 door opener, P-15 hood and deck opener and the Systems PaintTool software. This chapter describes the major components used in the controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3

Backplane

Three styles of backplane are available. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–6

Main CPU Printed Circuit Board

The main CPU PC board contains the central processing units, integrated circuit, and all the memory used by the controller. . . . . . . . . . . . . . . . . 1–10

Sub-CPU Printed Circuit Board

The sub CPU performs all calculations required by the controller. . . . . . . . . . . . . 1–13

Aux Axis Printed Circuit Board

The aux axis printed circuit board contains up to five servo control modules that provide servo control to the available auxiliary axes. . . . . . . . . . . . 1–16

Power Supply Unit Printed Circuit Board

The power supply unit printed circuit board is supplied with 210 VAC nominal. from the multi-tap transformer and produces DC voltages. . . . . . . . . . . . . . . . . . . 1–17

Emergency Stop Control Printed Circuit Board

Supplies 24 VDC to the (Magnetic Control Contactor), turns off 24 VDC to the (Magnetic Control Contactor) during fault conditions, supplies power to the motor brakes and to the serial pulse coders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–18

Servo Amplifiers

The servo amplifier drives the motor(s) in response to signals from the axis control circuitry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–20

Multi-Tap Transformer

The multi-tap transformer is supplied 3 phase VAC from the main disconnect or circuit breaker. This supply voltage can range from 220 - 575 volts. To accommodate the various levels of supply, tap selections are provided on the primary side of the transformer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–27

Interface Devices

The interface between controller and peripheral devices is provided by input and output signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–29  Modular I/O Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–29  ABRIO and Genius I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–33

Ethernet Remote Printed Circuit Boards

Ethernet remote PCB’s are an R-J2 option that use communication protocols to back up and restore all the information on a controller to and from an external device, or host computer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–34

User Transformer

The option user transformer supplies 120VAC single phase power to a outlet receptacle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–37

Operator Panel

Pushbuttons and LEDs on the operator panel of the R-J2 are used to start and shut down the robot and indicate status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–38

Teach Pendant

The teach pendant is a hand held device used to operate and program the robot and controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–39

Heat Exchange and Fans

The temperature in the controller is kept within operating range through the use of an air-to-airheat exchange system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–40

Purge Control Unit

The purge control unit consists of an purge intrinsically safe barrier unit module, contact signal transducer, purge control PCB, and 24VDC power supply. . . . . . . 1–41

Purge System IBRC

The IBRC is an intrinsically safe barrier unit that is used as part of the purge system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–42

Purge Unit Power Supply

The purge unit power supply is a 24VDC auxiliary power supply used exclusively for the purge system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–44

1. OVERVIEW

1–2

MARO2P10203703E

Topics In This Chapter

Page

Purge Intrinsically Safe Barriers

The Purge Intrinsically Safety Barriers are used in the purge system in that they restrict power that may cause a spark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–45

Brake Release (Option)

The brake release option adds (4) optional brake switches to selectively release the gravity and non-gravity axes of the P-200 robot. . . . . . . . . . . . . . . . . . . . . . . . . 1–55

P-10 Door Opener and P-15 Hood and Deck Opener (Option)

The P-10 opener is a three axis, electrically-driven door opener and the P-15 opener is a three axis, electrically-driven hood and deck opener. . . . . . . . . 1–56

Integral Pump Control (Option)

The Integral Pump Control option is the FANUC Robotics integrated two component fluid delivery system which features metering pumps directly coupled to FANUC servomotors that are controlled by the FANUC R-J2 controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–57

1. OVERVIEW MARO2P10203703E

1.1 OVERVIEW

1–3

The R-J2 controller, hereafter referred to as the controller, contains the computer that operates the robots. It executes a user-defined program to perform the following functions:  Supply drive power to the servomotors of the P-10, P-15, and P-200, robots to move it through a series of program motions.  Send control signals to process devices and other peripheral equipment. The controller consists of modular circuit boards, components, controls and indicators that are housed in a C-size cabinet with or without a side cabinet depending if a door or hood and deck opener are included. Figure 1–1 illustrates an external view of the controller. Figure 1–2 illustrates the internal view of the controller. Figure 1–3 illustrates a R-J2 C-size controller with side cabinet.

Figure 1–1. External View of the P-200 R-J2 Controller

Î Î Î ÎÎ Î ÎÎÎ Î ÎÎÎ Î ÎÎ Î ÎÎ Î ÎÎ ÎÎ ÎÎ Î Î

Teach pendant

1. OVERVIEW

1–4

MARO2P10203703E

Î ÎÏÎ ÏÎÎ Î ÎÎ ÎÎ ÎÎÎ ÎÎÎ ÎÎ

Figure 1–2. Internal View of the P-200 R-J2 Controller Purge Control Power Supply

Operator panel Servo amplifier #4

Purge Control PCB ISBU

IBRC

Modular I/O rack

Main power disconnect

Front Door Flowmeter interface module Servo amplifiers #1–3

Fuses FL1–3 Main CPU

Power supply unit SERVO ON Light Aux axis board

Emergency stop control printed circuit board

Teach pendant ISB unit SPC battery case

User transformer

Multi-tap transformer

1. OVERVIEW MARO2P10203703E

1–5 Figure 1–3. R-J2 C-Size Controller with Side Cabinet

Side cabinet

R-J2-C Size cabinet with door removed

PURGE CONTROL UNIT

OVP DELTRON W112A

24V @ 1.2A

ISB3 ISB4 ISB5 ISB7 ISB9

ISB6 ISB8

AMP 5

AMP 6

ON

ON

CONTACT SIGNAL TRANSDUCER

AMP 1

AMP 2

AMP 3

ON

ON

ON

OFF

OFF

OFF

OFF

OFF

FANUC AC SERVO AMPLIFIER

FANUC AC SERVO AMPLIFIER

FANUC AC SERVO AMPLIFIER C series

FANUC AC SERVO AMPLIFIER C series

FANUC AC SERVO AMPLIFIER C series

DISCONNECT

I/O RACK

1”W X 4”H DUCT EMG BOARD 1 MAIN PSU CPU

0 FANUC AC SERVO AMPLIFIER

AMP 4 STATUS

8

1 1/2 ”W X 4”H DUCT

USER TRANS.

OPT

1. OVERVIEW

1–6

MARO2P10203703E

1.2

Three styles of backplane are available:

BACKPLANE

 2-Slot  3-Slot  5-Slot

2-SLOT A05B-2316-C107 3-SLOT A05B-2316-C105 5-SLOT A05B-2316-C111

These three printed circuit boards are interchangeable. The backplane consists of a printed circuit board and two, three, or five board racks attached to it. The controller printed circuit boards are mounted on the backplane printed circuit board. See Figure 1–4, Figure 1–5, and Figure 1–6. It provides the bus structure for communication between the controller printed circuit boards. A thermostat switch is mounted on the backplane printed circuit board. It senses the temperature within the controller. If the internal temperature exceeds 65 degrees centigrade (149 degrees Fahrenheit), the thermostat will open, generating a system overheat alarm. The board racks support the printed circuit boards and guides them into their electrical connectors on the backplane printed circuit board. A 24 VDC cooling fan is mounted in the top of each backplane board rack.

1. OVERVIEW

1–7

MARO2P10203703E

Figure 1–4. 2-Slot Backplane (A05B-2316-C107) 2 slot back plane printed circuit board A20B-2001-0860

Total version

Fan

Fan

GND1

Main CPU

Power Supply PCMCIA Memory Card

Backplane Printed Circuit Board

1. OVERVIEW

1–8

MARO2P10203703E

Figure 1–5. 3-Slot Backplane (A05B-2316-C105) 3 slot back plane printed circuit board A20B-2001-0670

Total version

Fan

Main CPU Power Supply PCMCIA Memory Card

Backplane Printed Circuit Board

Fans

1. OVERVIEW

1–9

MARO2P10203703E

Figure 1–6. 5-Slot Backplane (A05B-2316-C111) 5 slot back plane printed circuit board A20B-2001-0990

Total version

Fan

Fan Main CPU Power Supply PCMCIA Memory Card

Backplane Printed Circuit Board

1. OVERVIEW

1–10

1.3 MAIN CPU PRINTED CIRCUIT BOARD A16B–3200–0040 NOTE: This part number specifies a Main CPU without daughter boards.

MARO2P10203703E

The main Central Processor Unit printed circuit board is mounted in the slot marked “1” at the far left end of the backplane. It contains the central processing units, integrated circuit, and all the memory used by the controller. The main CPU performs all calculations required by the controller. It generates axis drive signals on the basis of programmed requirements and feedback signals from encoders driven by each axis. The main CPU also acts as the interface between the controller and the operator and attached devices, through connections to:  The I/O unit(s)  The teach pendant  One or more general purpose serial communication ports  The operator panel lights and push buttons A storage capacitor on the main CPU printed circuit board maintains power to the CMOS RAM for short periods of time (up to 30 minutes) if the main CPU is removed from the backplane. The BAT-VBAT connector can be used to connect the battery from the power supply unit to the main CPU when either of the two printed circuit boards is removed from the backplane for an extended period of time. The main CPU consists of a main mother board with several modules installed perpendicular to it. The modules are small printed circuit boards with components surface-mounted on both sides. The modules are installed in sockets, allowing them to be changed quickly and easily.

1.3.1

The following kinds of memory exist in the controller:

Identifying Kinds of Memory

 Controller memory  Flash ROM (F-ROM or FROM)  C-MOS RAM  D-RAM (or DRAM)

Controller Memory

Controller memory consists of Flash Read Only Memory (Flash ROM), Complementary Metal Oxide Semiconductor Random Access Memory (C-MOS RAM), and Dynamic Random Access Memory (D-RAM). C-MOS RAM memory stores some robot system software, some application software, and some user programs. Flash ROM stores the majority of the robot system software such as core, and application software. Most of the SYSTEM R-J2 system software executes from D-RAM. When the controller is turned on, the system software is loaded from Flash ROM to D-RAM and then is executed. Teach pendant programs are stored and are executed from C-MOS RAM.

1. OVERVIEW

1–11

MARO2P10203703E

Flash ROM

Flash ROM Module contains System and Application Software. Flash ROM (F-ROM or FROM disk) is not battery-backed but is non-volatile. Non-volatile means that all data in Flash ROM is saved even after you turn off and turn on the controller. Flash ROM has three parts: a system memory section, an image memory section, and a flash file section. The system memory section contains the software that executes all system software. Image memory contains software options. The flash file system section contains space for backing up user programs and robot configuration information. It also holds hidden files required for Re-INIT start (CMOSINIT).

C-MOS RAM

D-RAM

CMOS RAM Module stores user programs, system variables, I/O configuration files, and mastering data. C-MOS RAM is battery-backed. C-MOS RAM is non-volatile only while the batteries are working. If the batteries are faulty or removed, C-MOS RAM is lost. C-MOS RAM has two parts: the TPP memory pool, and the permanent (PERM) memory pool.  The TPP memory pool contains the teach pendant programs. The PERM memory pool contains system variables.  PERM can also contain system software and options. DRAM (Dynamic) Module loads information from Flash ROM, eliminates fragmentation and must reload after a cold start. D-RAM is volatile, but it is loaded from flash ROM when the controller is turned on. D-RAM also has three parts: a SYSTEM memory pool, an IMAGE memory pool, and a TEMP memory pool. The SYSTEM memory pool contains the software that executes all system software. The IMAGE memory pool contains KAREL programs and software options. The TEMP memory pool contains the read/write scratch space for system and KAREL software and KAREL programs. CAUTION Data in C-MOS RAM can be lost if the battery is removed or loses its charge, or if new core software is loaded on the controller. The C-MOS RAM memory will last for 30 minutes without the battery when power is off. To prevent loss of data, back up or copy all files for permanent storage.

CAUTION To transport or store the contents of the MAIN CPU, you can plug the battery into the VBAT connector in the MAIN CPU. However, do not plug it into the RESET connector; otherwise you could damage equipment. Figure 1–7 shows the board layout. Table 1–1 lists the modules available for installation on the board.

1. OVERVIEW

1–12

MARO2P10203703E

Figure 1–7. Main CPU Printed Circuit Board

CMOS module Flash ROM module

DRAM module Axis module (J1,-J2) Axis module (J3, J4) Axis module (J5, J6)

Table 1–1. Name

Main CPU Modules Part Number

Remarks

Flash ROM Module

A20B-2902-0370

2.0 Mbyte

Flash ROM Module

A20B-2902-0371

4.0 Mbyte

Flash ROM Module

A20B-2902-0372

6.0 Mbyte

Flash ROM Module

A20B-2902-0373

8.0 Mbyte

CMOS RAM Module

A20B-2902-0211

0.5 Mbyte

CMOS RAM Module

A20B-2902-0210

1.0 Mbyte

CMOS RAM Module

A20B-2902-0380

2.0 Mbyte

DRAM Module

A20B-2902-0021

3.0 Mbyte

DRAM Module

A20B-2902-0531

4.0 Mbyte

DRAM Module

A20B-2902-0530

8.0 Mbyte

Axis Control Module

A20B-2902-0070

Three required

Robot Output Driver DV1 and DV2

A76L-0151-0062

Two required

1. OVERVIEW

1–13

MARO2P10203703E

1.4 SUB CPU PRINTED CIRCUIT BOARD A16B–3200–015 NOTE: This part number specifies a Sub CPU without daughter boards.

The sub Central Processor Unit printed circuit board is mounted in the slot marked “1” at the far left end of the backplane. It contains the central processing units, integrated circuit, and all the memory used by the controller. The sub CPU performs all calculations required by the controller. It generates axis drive signals on the basis of programmed requirements and feedback signals from encoders driven by each axis. The Sub CPU also acts as the interface between the controller and the operator and attached devices, through connections to:  The I/O unit(s)  The teach pendant  One or more general purpose serial communication ports  The operator panel lights and push buttons The sub CPU consists of a main mother board with one module installed perpendicular to it. The module is a small printed circuit board with components surface-mounted on both sides. The module is installed in a socket, allowing it to be changed quickly and easily.

1. OVERVIEW

1–14

MARO2P10203703E

Figure 1–8. Sub-CPU Printed Circuit Board

RISC-B FANUC

A16B-3200-015 STATUS ALARM

D16

ÎÎ ÎÎ

ÎÎ Î ÎÎÎ

Table 1–2. Name ROM Module

LV ALM F21 5A

5.0 A

PC13

PC5

ÎÎ ÎÎ ÎÎ ÎÎÎÎ PC3

PR1

JNA

EPROM MODULE

BAT1

VD1

Sub CPU Modules Part Number

Remarks Memory for the sub-CPU

1. OVERVIEW

1–15

MARO2P10203703E

Figure 1–9. Block Diagram

SUB-CPU

DRAM

BUS I/F

SHARED RAM

SUB-CPU System ROM

FANUC BUS BUS I/F

1. OVERVIEW

1–16

MARO2P10203703E

1.5

The auxiliary axis control printed circuit board is mounted in the slot marked “3” at the right end of the backplane. It contains up to five servo control modules that provided servo control of the available auxiliary axes (7 through 16). It is required whenever more than six axes are used, such as for a rail-mounted P-200 robot. See Figure 1–10.

AUX AXIS PRINTED CIRCUIT BOARD A16B–2202–0820

Figure 1–10. Aux Axis Printed Circuit Board

Servo control module (for axis 7 and 8) A20B–2902–0070 Servo control module (for axis 9 and 10) A20B–2902–0070

JNA

JRY2

Servo control module (for axis 11 and 12) A20B–2902–0070 Servo control module (for axis 13 and 14) A20B–2902–0070 Servo control module (for axis15 and 16) A20B–2902–0070

AUX.AXIS CONT. PCB

AMP16 JV16 AMP15 JV15

AMP14 JV14

AMP13 JV13

AMP12 JV12

AMP11 JV11

AMP10 PV10

AMP9 JV9

AMP8

JV8 AMP7 JV7

ENC16 JRF1B

ENC15 JRF1A

ENC14 JF14

ENC13 JF13

ENC12 JF12

ENC11 JF11

ENC10 JF10

ENC9 JF9

ENC8 JF8

ENC7 JF7

LINE2 JF22 RS232C /RS422 JD29

1. OVERVIEW

1–17

MARO2P10203703E

1.6 POWER SUPPLY UNIT PRINTED CIRCUIT BOARD A16B-1212-0870

The power supply unit printed circuit board is mounted on the backplane in the slot marked PSU. See Figure 1–11. The power supply unit printed circuit board is supplied with 210 VAC nominal from the multi-tap transformer and produces the following DC voltages:  +24V used: – For inputs, outputs receivers, drivers, and relays – As the power source for the teach pendant power supply circuitry  +15V, –15V, and +5V used: – For logic power within the controller The power supply unit printed circuit board also contains the ON/OFF logic circuits used by the controller. CAUTION The CMOS RAM backup battery is mounted on the power supply unit printed circuit board. Do not remove the board for longer than 30 minutes; otherwise, all controller software will be lost and will need to be reloaded. Figure 1–11. Power Supply Unit

JNPO F1: 7.5A fuse for AC input

PCMCIA receptacle Battery cover Battery

PIL: Green LED for indicating the AC power supply status ALM: Red LED for indicating an alarm F4: 5A fuse for +24E F3: 5A Slow-Blow fuse for +24V (With the battery cover removed)

1. OVERVIEW

1–18

1.7 EMERGENCY STOP CONTROL PRINTED CIRCUIT BOARD A16B-1212-0931

MARO2P10203703E

The emergency stop control printed circuit board is mounted on the side of the board rack adjacent to the CPU. See Figure 1–2, for location. It contains the circuits that:  Supply 24VDC to the servo amplifiers magnetic control contactors (MCCs) during normal operation.  Turn off 24VDC for the MCC during fault conditions such as:

– – – – –

Emergency stop Axis overtravel Safety fence open Teach pendant DEADMAN switch Hand breakage detection

 Supply power to the motor brakes to release them during normal operation. Brake power is turned off (applying motor brakes) during major alarm conditions, or when regulated by the software. There is a second brake circuit that is manually operated by a front panel key switch. See Section 6. This key switch operated circuit provides a method to move the robot manually should servo power fail, or when mastering is required.  Supply 24VDC required for serial pulse code (SPC) encoder operation through the 24 to 5VDC converter unit located within the robot base and switched on through the purge complete relay contacts for protection from explosive gases. Figure 1–12 shows the emergency stop control printed circuit board layout.

1. OVERVIEW

1–19

MARO2P10203703E

Figure 1–12. Emergency Stop Control Printed Circuit Board

COM B

A

B

A

HBK

COMMON JUMPER A=0VDC common B=24VDC common

HAND BROKEN JUMPER

A= USING SWITCH B= BY-PASSING SWITCH

RLY4 RLY5 RLY6 Door interlock jumper/connector

RLY1

RLY2 RLY3

1. OVERVIEW

1–20

1.8 SERVO AMPLIFIERS

MARO2P10203703E

The servo amplifiers are mounted on the back wall of the controller. See Figure 1–2 for component location. The servo amplifier drives the motor(s) in response to signals from the axis control circuitry.

Refer to Table 1–3 for part numbers.

Servo amplifiers are supplied in single, double or triple-axis configurations. CAUTION While two servo amplifiers might look identical, they might have different output power capabilities. If you replace a servo amplifier, make sure that the new unit has the same part number as the old one. Otherwise, the servo amplifier or servomotor might be damaged or destroyed. See Figure 1–13 for a typical servo amplifier. The P-200 controller uses α-series SVU type amplifiers. The features of the servo amplifier units are as follows:  Compact – The servo amplifier unit is integrated with a power supply. It enables implementation of a compact system with one or two feed axes.  Satisfies safety standards – The servo amplifier unit is designed to comply with the VDE 0160 (Europe), UL (USA), and CSA (Canada) safety standards.  New interfacing capability – The servo amplifier unit provides a new interface (type B) as well as the conventional interface (type A) for the CNC.  Up-to-date power device – The servo amplifier unit uses an up-to-date power device, IPM (intelligent power module), to reduce power loss and enhance alarm detection, thereby increasing its reliability.

1. OVERVIEW

1–21

MARO2P10203703E

Figure 1–13. Servo Amplifier

Circuit breaker Terminal board T1

13 L1C 14 L2C 15 TH1 16 TH2 17

RC

18 19

RI RE

20 FAN1 21 FAN2

1 PE (G) 2 L1 (R) 3

L2 (S)

4

L3 (T)

5 6

100A 100B

7 8

MC1 MC2

9 10

U V

11

W G

12

IRL ISL

IRM ISM

0V

+5V

LED Fuse

1. OVERVIEW

1–22

MARO2P10203703E

Figure 1–14. Servo Amplifier Specifications

Item

Power Supply

Specifications

Three-phase input for power

Voltage : 200/220/230 VAC +10 %. –15 % Frequency : 50/60 Hz +/- 2Hz Voltage deviation due to load (at maximum output) shall be 79% or less).

Single-phase input for control power

Voltage : 200/220/230 VAC + 10 %, - 15% Frequency : 50/60 Hz +/- 2Hz

Control of main circuit

Sine-wave PWM control by transistor bridge (IPM)

Alarm and protection functions

Over-voltage alarm Low control power voltage alarm Low DC link voltage alarm Regenerative discharge control circuit failure alarm Over-regenerative discharge alarm Dynamic brake circuit failure alarm Over-current alarm IPM alarm Circuit breaker

Figure 1–15 through Figure 1–19 show the mounting location of amplifiers for various robot locations. Figure 1–15. Mounting Locations of Servo Amplifiers for the P-200 6 Axis Robot

Amp1

Amp2

Amp 3

J1-J4

J3-J5

J6

Amp 4 J2

1. OVERVIEW

1–23

MARO2P10203703E

Figure 1–16. Mounting Locations of Servo Amplifiers for the P-200 7 Axis Robot

Amp 1

Amp 2

Amp 3

J1-J4

J3-J5

J6-J7

Amp 4 J2

Figure 1–17. Mounting Locations of Servo Amplifiers for the P-200 6+2 Robot

Amp 1

Amp 2

Amp 3

J1-J4

J3-J5

J6

Amp 4

Amp 5

J2

J7–J8

1. OVERVIEW

1–24

MARO2P10203703E

Figure 1–18. Mounting Locations of Servo Amplifiers for the P-200 7+2 Robot

Amp 1

Amp 2

Amp 3

J1-J4

J3-J5

J6–J7

Amp 4

Amp 5

J2

J8-J9

Figure 1–19. Mounting Locations of Servo Amplifiers for the P-200 7+3 Robot Side Cabinet

C-Size Cabinet

Amp 1

Amp 2

Amp 3

J1-J4

J3-J5

J6–J7

Amp 4

Amp 5

Amp 6

J2

J8

J9-J10

1. OVERVIEW

1–25

MARO2P10203703E

Table 1–3. Amp Spec.

Servo Amplifiers

Servo Amplifier 1

Servo Amplifier 2

Servo Amplifier 3

Servo Amplifier 4

SVU2-12/80 L(12A)=J4 M(80A)=J1 A06B–6089-H209

SVU2–12/80 L(12A)=J5 M(80A)=J3 A06B-6089–H209

SVU1-12 J6

SVU1–130 J2

A06B-6089–H101

A06B–6089-H106

SVU2-12/80 L(12A)=J4 M(80A)=J1 A06B–6089-H209

SVU2-12/80 L(12A)=J5 M(80A)=J3 A06B-6089-H209

SVU2-12/80 L(12A)=J6 M(80A)=J7 A06B-6089-H209

SVU1-130 J2 A06B–6089–H106

SVU2-12/80 L(12A)=J4 M(80A)=J1 A06B–6089-H209

SVU2–12/80 L(12A)=J5 M(80A)=J3 A06B–6089-H209

SVU1–12 J6

SVU1-130 J2

A06B-6089–H101

A06B–6089–H106

P-200 6+2 (Hood – Deck) Axes Control

SVU2–12/80 L(12A)=J4 M(80A)=J1 A06B-6089-H209

SVU2-12/80 L(12A)–J5 M(80A)=J3 A06B-6089–H209

SVU1-12 J6

SVU1-130 J2

A06B-6089-H101

A06B-6089-H106

P-200 7+2 (Door Opener) Axes Control

SVU2-12/80 L(12A)=J4 M(80A)=J1 A06B-6089–H209

SVU2-12/80 L(12A)=J5 M(80A)=J3 A06B-6089-H209

SVU2–12/80 L(12A)=J6 M(80A)=J7 A06B-6089-H209

SVU1–130 J2

SVU2-12/80 L(12A)=J4 M(80A)=J1 A06B-6089-H209

SVU2–12/80 L(12A)=J5 M(80A)=J3 A06B-6089-H209

SVU2-12/80 L(12A)=J6 M(80A)=J7 A06B-6089-H209

SVU2-12/80 L(12A)=J4 M(80A)=J1 A06B-6089-H209

SVU2–12/80 L(12A)=J5 M(80A)=J3 A06B-6089-H209

SVU2-12/80 L(12A)=J6 M(80A)=J7 A06B-6089-H209

P-200 6 Axes Control

P-200 7 Axes Control

P-200 6+2 (Door Opener) Axes Control

P-200 7+2 (Hood–Deck) Axes Control P-200 7+3 (Opener) Axes Control Amp Spec. P-200 7+3 (Opener) Axes Control

Servo Amplifier 6 SVU2–80/80 L(80A)=J9 M(80A)=J10 A06B-6089–H208

A06B-6089-H106 SVU1-130 J2 A06B–6089-H106 SVU1-130 J2 A06B–6089-H106

Servo Amplifier 5

SVU2-12/12 L(12A)=J7 M(12A)=J8 A06B–6089-H201 SVU2-80/80 L(80A)=J7 M(80A)=J8 A06B–6089–H208 SVU2-12/12 L(12A)=J8 M(12A)=J9 A06B-6089–H201 SVU2–80/80 L(80A)=J8 M(80A)=J9 A06B-6089–H208 SVU1–80 J8=(80A) A06B-6089–H208

1. OVERVIEW

1–26

MARO2P10203703E

Table 1–4. Machine Type

Dip Switch Settings

Servo Amplifier 1

Servo Amplifier 2

Servo Amplifier 3

Servo Amplifier 4

P-200 – 6 Axes

1 ON 2 OFF 3 ON 4 ON

1 ON 2 OFF 3 ON 4 ON

1 ON 2 OFF 3 ON 4 ON

1 ON 2 OFF 3 ON 4 ON

P-200 – 7 Axes

1 ON 2 OFF 3 ON 4 ON

1 ON 2 OFF 3 ON 4 ON

1 ON 2 OFF 3 ON 4 ON

1 ON 2 OFF 3 ON 4 ON

P-200 – 6 + 2

1 ON 2 OFF 3 ON 4 OFF

1 ON 2 OFF 3 ON 4 ON

1 ON 2 OFF 3 ON 4 ON

1 ON 2 OFF 3 ON 4 ON

1 ON 2 OFF 3 ON 4 ON

P-200 – 7 + 2

1 ON 2 OFF 3 ON 4 OFF

1 ON 2 OFF 3 ON 4 ON

1 ON 2 OFF 3 ON 4 ON

1 ON 2 OFF 3 ON 4 ON

1 ON 2 OFF 3 ON 4 ON

P-200 – 7 + 3

1 ON 2 OFF 3 ON 4 OFF

1 ON 2 OFF 3 ON 4 ON

1 ON 2 OFF 3 ON 4 ON

1 ON 2 OFF 3 ON 4 ON

1 ON 2 OFF 3 ON 4 ON

Machine Type P-200 – 7 + 3

Servo Amplifier 6 1 ON 2 OFF 3 ON 4 OFF

Servo Amplifier 5

1. OVERVIEW

1–27

MARO2P10203703E

1.9 MULTI-TAP TRANSFORMER Refer to TABLE 1–5 for part numbers.

The multi-tap transformer is located on the floor of the controller on the right side of the rear cabinet. See Figure 1–2 for component location. The multi-tap transformer is supplied 3-phase VAC from the main disconnect or circuit breaker. This supply voltage can range from 220 – 575 volts. To accommodate the various levels of supply, tap selections are provided on the primary side of the transformer. The transformer output supplies the following voltages:  3–phase 210 VAC nominal for the servo amplifiers  1–phase 210 VAC nominal for the backplane–mounted components  1–phase 210 VAC nominal for the IBRC module  1–phase 210 VAC nominal for the 24VDC Purge Power Supply  1–phase 100VAC nominal for the brakes and servo amplifier A06B–6066–Hxxx MCC Two series-connected thermostats are mounted on the transformer. They are connected to fault detection circuitry in one servo amplifier. If the transformer overheats, the controller will signal a SRVO–0043 DCAL alarm. Figure 1–20 shows the transformer. Table 1–5 and Table 1–6 list the information necessary for selecting a proper primary tap. Table 1–5.

Multi-Tap Transformer Part Numbers

Transformer Type 7.5kVA 5kVA

Part Number A80L–0026–0010#A A80L–0024–0010#A

1. OVERVIEW

1–28

MARO2P10203703E

Figure 1–20. Multi-Tap Transformer 575V 550V 500V 480V 460V 240/415V 220V/380V F4 7.5

F1

F5 7.5

13

F2

2 3 4 5 6 7

F3

A1

A2

0V 575V 550V 500V 480V 460V 240/415V 220V/380V

23

31

1

3

5

41

32

2

4

6

42

14

0V 575V 550V 500V 480V 460V 240/415V 220V/380V

24

0V

Table 1–6.

1

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24

Selecting Transformer Taps Primary Tap

S pply Voltage Supply

L1

L2

L3

Jumper

220

7

15

23

8–15/16–23/24–7

240

6

14

22

8–14/16–22/24–6

380

7

15

23

415

6

14

22

460

5

13

21

480

4

12

20

500

3

11

19

550

2

10

18

575

1

9

17

8–16

16–24

Connection Type  DELTA

Y STAR

1. OVERVIEW

1–29

MARO2P10203703E

1.10

The interface between the controller and peripheral devices is provided by input and output signals from one or more of the following:

INTERFACE DEVICES

 Modular I/O (Model A) Unit  Distributed I/O (Model B) Unit  Process I/O printed circuit board  A printed circuit board specializing in communicating with a logic controller, which includes

– ABRIO for communication to an Allen-Bradley PLC – Genius I/O for communication to a GE Fanuc programmable controller  Digital I/O to and from the robot through the axis control board.  External E-Stop peripheral device connections.

1.10.1

The modular I/O unit provides communication between the controller and various peripheral devices. See Figure 1–21.

Modular I/O Unit

Figure 1–21. Modular I/O

Interface Module

I/O Module

F

Modular I/O Rack (Backplane)

Slot 2 Slot 1 Slot I/F

Interface Module

I/O Module

1. OVERVIEW

1–30

MARO2P10203703E

The modular I/O unit uses the following communication modes:  Discrete (On or Off) input and output signal lines at 24VDC or 120VAC. Outputs can be sink or source outputs.  Analog signal lines, which can vary from –10VDC to +10VDC The modular I/O unit consists of the following:  The base unit  The interface module  Various discrete input and output (I/O) modules The control can use as many as 64 modular I/O modules concatenated (daisy-chained) together on multiple racks. A single modular I/O unit is referred to as rack 1. The I/O modules are located in slots 1 to 5 or 1 - 10, depending on the model used. Base Unit 5 I/O Module Slot A03B-0807-C002 10 I/O Module Slot A03B-0807-C001

Interface Module With 1 Rack A03B-0807-C011 Additional Racks A03B-0807-C012

Discrete Input Modules Refer to Table 1–7 and Table 1–9 for specifications and part numbers.

Discrete Output Modules Refer to Table 1–8 and Table 1–9 for specifications and part numbers.

The base unit is the backplane for the modular I/O unit. The interface module and the I/O modules plug into it. The base unit has no LEDs, fuses, or electrical connections, except for the module sockets. The first slot to the left (I/F) always contains the interface module. The other slots are used for the I/O modules. The interface module transfers data between the main CPU and the I/O modules. The interface module is connected to the JD4 connector on the main CPU printed circuit board through connector JD1B. The interface module is always mounted in the I/F (first) slot. Discrete input modules receive 24VDC or 120VAC signals on their terminals and relay the data to the interface module.

Discrete output modules transmit 24VDC or 120VAC signals on their terminals under command of the interface module.

1. OVERVIEW

1–31

MARO2P10203703E

Table 1–7. Input Type Non-isolated DC input

Optically isolated DC input inp t

AC input

Rated Voltage 24VDC

Rated Current 7.5 mA

32

External Connection Connector

Not provided

AID32B

24VDC

7.5 mA

Both

Maximum 2 ms

32

Connector

Not provided

AID16C

24 VDC

7.5 mA

NEG

Maximum 20 ms

16

Terminal block Provided

AID16D

24VDC

7.5 mA

POS

Maximum 20 ms

16

Terminal block Provided

AID32E

24VDC

7.5 mA

Both

Maximum 20 ms

32

Connector

Not provided

AID32F

24VDC

7.5 mA

Both

Maximum 2 ms

32

Connector

Not provided

AIA16G

100~ 120VAC

10.5 mA (120VAC)

16

Terminal block Provided

* Polarity is defined as follows:

Not fused DC output

Fused AC output

Relay output

Module Name AOD32A

Polarity* Both

Response Time Maximum 20 ms

ON Max 35 ms OFF Max 45 ms

Points

LED Display

Negative: 0 V common (current source type); ON when input is at low level. Positive: 24 V common (current sink type); ON when input is at high level. Table 1–8.

Output Type Not fused DC output Fused DC output

Digital Input Module Specifications

Module Name AID32A

Digital Output Module Specifications

2A

NEG (Sink)

8

8

LED Display Not provided Terminal block Provided

AOD08D

2A

POS (Source)

8

8

Terminal block Provided

Provided

AOD16C

0.5 A

NEG (Sink)

16

8

Terminal block Provided

Not provided

AOD16D

0.5 A

POS (Source)

16

8

Terminal block Provided

Not provided

AOD32C

0.3 A

NEG (Sink)

32

8

Connector

Not provided

Not provided

AOD32D

0.3 A

POS (Source)

32

8

Connector

Not provided

Not provided

100 ~ 240 VAC

2A



5

1

Terminal block Provided

Provided

1A



8

4

Terminal block Provided

Provided

AOA12F

100 ~ 120 VAC

0.5 A



12

6

Terminal block Provided

Provided

AOR08G

Maximum 250 VAC /30 VD

4A



8

1

Terminal block Provided

Not provided

2A



16

4

Terminal block Provided

Not provided

AOD08C

AOA05E AOA08E

AOR16G

Rated Voltage 5~ 24 VDC 12 ~ 24 VDC

* Polarity is defined as follows:

Maximum Polarity* Points Current 0.3A NEG 32

Points/ Common 8

External Connection Connector

Fuses Not provided Provided

Negative: 0 V common (current sink type); output is at low level when ON. Positive: 24 V common (current source type); output is at high level when ON.

1. OVERVIEW

1–32

MARO2P10203703E

Table 1–9.

I/O Module Part Numbers Part Number

Name DC input module

Non-isolated

32 points 20 ms

AID32A

A03B-0807-C101

32 points 2 ms

AID32B

A03B-0807-C102

16 points NEG

AID16C

A03B-0807-C103

16 points POS

AID16D

A03B-0807-C104

32 points 20 ms

AID32E

A03B-0807-C105

32 points 2 ms

AID32F

A03B-0807-C106

AIA16G

A03B-0807-C107

32 points NEG

A0D32A

A03B-0807-C162

8 points NEG

AOD08C

A03B-0807-C151

8 points POS

AOD08D

A03B-0807-C152

16 points NEG

AOD16C

A03B-0807-C153

16 points POS

AOD16D

A03B-0807-C154

32 points NEG

AOD32C

A03B-0807-C155

32 points POS

AOD32D

AO3B-0807-C156

5 points, 2 A AOA05E

A03B-0807-C157

8 points 1A

AOA08E

A03B-0807-C158

12 points 0.5 A

AOA12F

A03B-0807-C159

8 points 4A

AOR08G

A03B-0807-C160

16 points 2A

AOR16G

A03B-0807-C161

Analog input module

AAD04A

A03B-0807-C051

Analog output module

ADA02A

A03B-0807-C052

Optically isolated

AC input module 16 points DC output Not fused module Fused

Not fused

AC output module

Fused

Relay output module

1. OVERVIEW

1–33

MARO2P10203703E

1.10.2 ABRIO and Genius I/O R-J2 style: A20B-8001-0120-RIO with Ethernet and A20B-8001-0121-RIO A15L-0001-0026-GENIUS I/O Daughter Board and A16B-2203-0291-GENIUS Mother Board PCB

The ABRIO and Genius I/O printed circuit boards use serial communication to interface to a programmable controller. These printed circuit boards are used for communicating control information between the R-J2 controller and the programmable controller. Refer to the following manuals for information on these boards.  A User’s Guide to the FANUC Robotics Genius Network Interface for GEFanuc  A User’s Guide to the FANUC Robotics Genius Network Interface for GEFanuc (R-H Style Board in R-J2 Controller)  A User’s Guide to the FANUC Robotics Remote I/O Interface for an Allen-Bradley PLC (R-H Style Board in R-J2 Controller)  A User’s Guide to the FANUC Robotics SYSTEM R-J2 Controller Remote I/O Interface for an Allen Bradley PLC.

1. OVERVIEW

1–34

1.11 ETHERNET REMOTE PRINTED CIRCUIT BOARDS

MARO2P10203703E

Two general styles of the Ethernet Remote printed circuit board are available. These are  Ethernet Remote-1 Printed Circuit Board (ER-1)  Ethernet Remote-2 Printed Circuit Board (ER-2) The ER-1 style consists of a full-size motherboard printed circuit board with an optionally attached daughter printed circuit board. The five kinds of ER-1 printed circuit boards that support Ethernet are listed in Table 1–10. See Figure 1–22 for the ER-1 Printed Circuit Boards. The ER-2 style consists of a single printed circuit board in a half-slot form factor that allows it to be installed in the half slot available in the power supply unit. The three kinds of ER-2 that support Ethernet are listed in Table 1–10. See Figure 1–23 for the ER-2 Printed Circuit Boards. Table 1–10. FANUC R-J2 Ethernet Remote Style Printed Circuit Board Part Numbers Part

Greenbook Part Number

Spare Part Number

ER-2 Ethernet PCB (10Base2)

A05B-2350-J121

A20B-8001-0122

ER-2 A-B RIO/Ethernet PCB (10Base2)

A05B-2350-J122

A20B-8001-0120

ER-2 A-B RIO-Ethernet 10BaseT PCB

Contact FANUC Robotics Customer Service for part numbers

ER-1 PLC I/O-Ethernet 10Base5 PCB A05B-2300-J122

A16B-2201-0892

Order also: ER-1 A-B RIO D-PCB

A05B-2300-J130

A20B-9001-0610

ER-1 PLC I/O-Ethernet PCB (10Base2)

A05B-2300-J121

A16B-2201-0891

Order also: ER-1 Genius I/O D-PCB

A05B-2300-J131

A15L-0001-0026

ER-1 PLC I/O-Ethernet 10Base5 PCB A05B-2300-J122

A16B-2201-0892

Order also: ER-1 Genius I/O D-PCB

A05B-2300-J131

A15L-0001-0026

ER-1 PLC I/O-Ethernet 10Base5 PCB A05B-2300-J122

A16B-2201-0892

ER-1 A-B RIO/Ethernet 10BaseT Kit

Contact FANUC Robotics Customer Service for part numbers

ER-1T + A-B/RIO

A05B-2350-J127

A16B-2203-0290

ER-1T + GENIUS (Motherboard)

A05B-2350-J128

A16B-2203-0291

ER-1T + GENIUS (Daughterboard)

A05B-2300-J131

A15L-0001-0026

Refer to the appropriate application-specific SYSTEM R-J2 Software Installation Manual for software part number information.

1. OVERVIEW

1–35

MARO2P10203703E

Figure 1–22. ER-1 Ethernet Printed Circuit Boards

ER-1

1 23 4

1

1 23 4

2

3

4

AB RIO

PF PC IP

ACTIVE POWER

A–B

A–B

RACK SEL

SMGN

AUI CD27

BAUD SEL DISC/BLK LAST RACK LAST STAT RESTART RACK SIZ

ETHER NET

F1 2.0A

LINK OK

2.0 A

10 BASE T

ER-1 PLC I/O-Ethernet Printed Circuit Board(10Base2)

ER-1 PLC I/O-Ethernet Printed Circuit Board(10Base5)

ER-1 PLC I/O-Ethernet Printed Circuit Board(10BaseT)

1. OVERVIEW

1–36

MARO2P10203703E

Figure 1–23. ER-2 Ethernet Printed Circuit Boards

ER-2

ER-2 Ethernet Printed Circuit Board(10Base2)

ER-2 A-B RIO/Ethernet Printed Circuit Board(10Base2)

1. OVERVIEW

1–37

MARO2P10203703E

1.12 USER TRANSFORMER A80L-0001-0520

The controller can contain an optional user transformer. It supplies 120VAC single-phase power to a National Electrical Manufacturers Association (NEMA) outlet receptacle and is located on the lower left side of the controller. See Figure 1–24. Figure 1–24. User Transformer

Multi-tap transformer

1. OVERVIEW MARO2P10203703E

1–38

1.13 OPERATOR PANEL A05B-2363-C001 A05B-2363-C002

Pushbuttons and LEDs on the operator panel of the R-J2 are used to start the robot and indicate status. The panel has a port for serial interface to an external device. The operator panel can be equipped with one or both of the following  Disconnectable teach pendant port with a switch for operation without serial interface to an external device.  DB–25 connector for serial interface (External disk drive, for example.) An emergency stop button on the operator panel places the system into the emergency stop condition when pressed. Figure 1–25. Operator Panel without Teach Panel Disconnect

Î Î Î Î

BATTERY ALARM

CYCLE START

ON

ENABLED HOLD

OFF

FAULT

FAULT RESET

ÎÎ Î ÎÎÎ ÎÎ ÎÎÎ ÏÏ ÏÏ

PURGE COMPLETE

PURGE ENABLE

PURGE FAULT

ÎÎ ÎÎ ÏÏ ÏÏ REMOTE

REMOTE

LOCAL

BRAKE ENABLE ON

PORT

OFF

HOUR METER

ÎÎÎ ÎÎÎ ÎÎÎ

EMERGENCY STOP

1. OVERVIEW

1–39

MARO2P10203703E

1.14 TEACH PENDANT A05B–2308–C300

The teach pendant is a hand held device used to operate and program the robot and controller. See Figure 1–26. Keys on the teach pendant are used to enter data, jog the robot, and to display menus. The pendant has a liquid crystal display 16 lines long by 40 characters wide. The teach pendant also has an emergency stop button that, when pressed, places the robot into an emergency stop condition. A DEADMAN switch mounted on the back of the teach pendant enables servo drive power if held with the teach pendant on/off switch turned to ON. When the teach pendant switch is turned to OFF, pressing the DEADMAN switch is not required to keep servo drive power enabled.

WARNING The robot will become fully functional and capable of being started at the operator panel if the teach pendant is turned off and the fence circuit is not installed or closed. When working in the robot envelope, ALWAYS CARRY THE TEACH PENDANT and HAVE THE TEACH PENDANT ENABLED. Otherwise, you could injure personnel or damage equipment.

Seven of the keys on the teach pendant provide different functions depending on the software in the controller. Eleven indicators, located on the left side of the LCD display, indicate status of the system. The indicator labels are different based on software operating in the controller. Refer to Chapter 3, “Lights, Indicators, and LEDs,” for an explanation of the indicators. Figure 1–26. Teach Pendant Indicators LCD Display Emergency Stop Button

Indicator Labels

DEADMAN Switches

Enable/disable switch Software-Dependent Keys

1. OVERVIEW

1–40

MARO2P10203703E

1.15 HEAT EXCHANGE AND FANS Refer to Figure 1–27 for Fan Part Numbers

The temperature in the controller is kept within operating range through the use of an air-to-air heat exchange system. The controller is sealed to prohibit outside air from entering the controller cabinet. Internal controller air is circulated by fans around the inside of the controller and downward through the internal side of the heat exchange unit. Outside air is circulated upward through the external side of the heat exchange unit also by using a fan. This process cools the inside air. Fans are provided on the printed circuit board racks mounted on the backplane to circulate air over the printed circuit boards. Cooling fins connected to the servo amplifiers are within the heat exchange unit to keep the heat generated by the servo power circuits out of the controller. Figure 1–27 shows the heat exchange system for the controller. Figure 1–27. Heat Exchange System

Backplane fan(s) A90L–0001–0378 A90L–0001–0385#A

Fan 1 A05B–2301–C901 Fan Assy A90L–0001–0213 Fan

Air flow Internal air Outside air

Fan 2

A05B–2051–C902 Fan Assy A90L–0001–219#A Fan

Outside air in Fan 3 A02B–0056–C904 Fan Assy A90L–0001–0219#A Fan

1. OVERVIEW

1–41

MARO2P10203703E

1.16 PURGE CONTROL UNIT A05B–2363–C020

The purge control unit consists of an Intrinsically Safe Barrier Unit (ISBU) module, an IDEC model IBRC contact signal transducer (IBRC), purge control PCB, and 24VDC power supply. There are no authorized adjustments on the purge control unit. Refer to Figure 1–28 for identification of components and Figure 1–2 for component locations.

WARNING The purge control timer is set at five minutes to conform to Factory Mutual Specifications. Do not adjust the purge control timer; otherwise, an explosion or fire could occur.

Figure 1–28. Purge Control Unit

Purge control PCB 1

2 3 4 5 6 7 8 9 1011 12 1314 1516 171819 20 21 222324

1 2 3 4

5 6 7 8 9 1011 12 13 14 15 16 1718 19 20 21 22 2324

P1 N1 P2 N2 P3 N3 P4 N4 P5 N5 P6 N6 G

G FG

CH1 CH2 CH3 CH4 CH5 CH6 A1 C1 A2 C2 A3 C3 A4 C4 A5 C5 A6 C6 0V 200V 220V

ISBU

IBRC

Power supply

1. OVERVIEW

1–42

1.17 PURGE SYSTEM IBRC

A15L–0001–0048

MARO2P10203703E

The IDEC model IBRC contact signal transducer is an intrinsically safe isolation unit that is used as part of the purge system. It has six photo-isolated relays and provides an intrinsically safe barrier for the following signals. See Figure 1–29.  Channel 1 (P1-N1) Pressure switch from robot or pressure switches from robot and opener in series.  Channel 2 (P2-N2) Flow switch from robot or flow switches from robot and opener in series.  Channel 3 (P3-N3) Robot overtravel switches, If used.  Channel 4 (P4-N4) Hand broken signal, If used.  Channel 5 (P5-N5) Teach pendant disconnected, If used.  Channel (P6-N6) End of arm tooling input, Not used. The IBRC operates on 220 (max. 250)VAC from a secondary winding of TF1. There are six red LEDs, one for each device used in the field. There are a pair of terminals, labeled Px and Nx, for each hazardous signal, while the corresponding safe side terminals have Ax and Cx. Ax and Cx are the normally open contact output located on the safe side. When the hazardous location switches are closed, the IBRC LED will be illuminated for that particular contact. Should a jumper be installed across the P and N terminals, the LED for those terminals will be illuminated. When plant air is supplied to the robot, and power is available to the IBRC when the disconnect switch is in the ON position, the PS-1 LED will be illuminated.

1. OVERVIEW

1–43

MARO2P10203703E

Figure 1–29. Contact Signal Transducer (IBRC)

P1 N1 P2 N2 P3 N3 P4 N4 P5 N5 P6 N6 G

G

FG

idec IZBARL Relay Barrier Type IBRC6062R Intrinsically Sake Circuit

DC16V

14mA

Safety Rating of Out Put

Relay AC/DC 250V

CH1

CH2

CH3

CH4

CH5

CH6

A1 C1 A2 C2 A3 C3 A4 C4 A5 C5 A6 C6 0V 200V 220V

1. OVERVIEW

1–44

MARO2P10203703E

1.18 PURGE UNIT POWER SUPPLY A20B–1000–0472

The Purge Unit Power Supply is a 24VDC auxiliary power supply used exclusively for the purge system. It is mounted alongside the IBRC unit. It provides voltage necessary to energize the purge solenoid valve within the robot and opening devices when applicable. It also provides 24VDC to the relay coils mounted on the piggy-back Purge Control PCB in the EMG module. It requires 210VAC supplied by TF1 and is internally fused by two fuses mounted on the power supply PCB itself, F-11 and F-12. See Figure 1–30. Figure 1–30. Purge Power Supply

Cover

Purge Power Supply F12 F11 Contact Signal Transducer IBRC

1. OVERVIEW

1–45

MARO2P10203703E

1.19 PURGE INTRINSICALLY SAFE BARRIERS AND SIGNAL REPEATERS STAHL and PEPPERL+FUCH

The P-200 R-J2 controller contains a number of Intrinsically Safety Barriers (ISB) units and signal repeaters. They are used for the robot or opener purge circuits. The number of barriers and repeaters installed is dependant on the options ordered for that particular installation. The Purge Intrinsically Safety Barriers and repeaters are mounted to the left of the IBRC unit. These devices limit the energy in their respective circuits to eliminate the possibility of an explosion in the hazardous environment of the paint booth. The internal atmosphere of the robot must be considered hazardous prior to operation, therefore a Purge Intrinsically Safe Barrier or repeater device is used to safely control the purge process. Purge Intrinsically Safe Barriers and repeaters are similar to a fuse. If one should be found defective, it must be replaced by a known good Purge Intrinsically Safe Barrier or repeater, and you must discard the defective one. Refer to Table 1–11 for part number used for specific ISB functions. For detailed illustrations of the Purge Intrinsically Safe Barriers and Signal repeaters see Figure 1–31 through Figure 1–36. To troubleshoot faults you might encounter with the Purge Intrinsically Safe Barriers and Signal repeaters refer to Table 1–12. The barriers ISB1 and ISB2 are used to energize the purge air solenoid valves in the base of the robot or opener. ISB3 and ISB10 are Intrinsically Safe repeater relays which are used to isolate the signals from the robot/opener bypass switches, used to detect that powered down units are out of the way and it is safe for the conveyor to run. ISB4, 5, 6, 7, and 8 are used to provide power and control to the various circuits which control paint flow. ISB9 is use specifically for the P-10 and P-15 openers. ISB9 detects the status of the proximity switch in the openers arm. Refer to Table 1–11 for additional information regarding intrinsically safety barriers and signal repeaters. Table 1–11.

Part Number

Terminals

Figure Figure 1–31 Refer to Figure 12–13 Figure 12–21 Figure 12–22 Figure 12–23

 P-200 Purge Solenoid

1

Input Terminals 1 and 2 24V Output Terminals 3 and 4 to purge solenoid

2

Input Terminals 1 and 2 24V Output Terminals 3 and 4 to opener purge solenoid

Figure 1–31 Refer to Figure 12–13 Figure 12–21 Figure 12–22 Figure 12–23

 Opener Purge Solenoid  For P-200-+2 versions ISB2 use Stahl 9001-01/-280-165-10  For P-200-+3 (P10) ISB2 use Stahl 9001-01/-252-100-14

9001/01-252-100-14

For P-200+2 versions this barrier is Stahl 9001/01-280-165-10 For openers the barrier is Stahl 9001/01-252-100-14

Purge Intrinsically Safety Barriers and Signal Repeaters

ISB#

Description

1. OVERVIEW

1–46

MARO2P10203703E

Table 1–11. (Cont’d) Purge Intrinsically Safety Barriers and Signal Repeaters Part Number

ISB#

Terminals

Figure

Description

3

Input Terminals 1+,3 ≈DC8V/≈8mA Intrinsically safe Output I Terminals 7,8,9 Output II Terminals 10,11,12 Terminals 14(L+).-.15(L-) DC 20V 30V

Figure 1–32 Refer to Figure 12–13 Figure 12–21 Figure 12–22 Figure 12–23

 P-200 Bypass Switch  Single Channel  DC 24 V Nominal Power Supply  Selectable Mode of Operation  Output: 1 Signal Output with 2 Form “C” Relays  Optional Lead Breakage (LB) Monitoring

4

Input Terminals 7 (L+) - 8 (L-) DC 15V 35V Not intrinsically safe Output Terminals 1+ - 2≤24V Intrinsically safe

Figure 1–33 Refer to Figure 12–13 Figure 12–21 Figure 12–22 Figure 12–23

 I/P Power  Single Channel  DC 24 V Loop Powered  Max. 80mA Output Current

5

Input Power Rail and Terminals 7 (L+),8(L-) DC 20V...35V Output Terminals 1+,2Input not intrinsically safe Terminals 9+, 10-,11+

Figure 1–34 Refer to Figure 12–13 Figure 12–21 Figure 12–22 Figure 12–23

 I/P Signal  Single Channel  DC 24 V Nominal Power Supply  Voltage/Current or Current /Voltage Conversion  Adjustable “Zero Point Zero”  Conversion Ranges: 0/4-20mA, 0/1-5V, 0/2-10V

6

28 V, 300 Ω Hazard Area Connections Terminals 1 and 2 Safe Area Terminals 7 and 8

Figure 1–35 Refer to Figure 12–13 Figure 12–21 Figure 12–22 Figure 12–23

 24 V Power for Flow meter  Single or Double Channel  Positive Polarity  SafeSnap Zener Barrier

7 and 8

28 V, 300 Ω Hazard Area Connections Terminals 1 and 2 Safe Area Terminals 7 and 8

Figure 1–35 Refer to Figure 12–13 Figure 12–21 Figure 12–22 Figure 12–23

 ISB7 = Trigger 1 Signal  ISB8 = Trigger 2 Signal  Single Channel  Positive Polarity  SafeSnap Zener Barrier

KHD2-SR-Ex1.2S.P KFD2-SR2-Ex1.W.LB SWITCH POSITIONS S1 = I S2 = I S3 = II

KFD2-SD-Ex1.36

KHD2-CD-1.P 32 KFD2-CD-Ex1.32.

Z787

Z728

1. OVERVIEW

1–47

MARO2P10203703E

Table 1–11. (Cont’d) Purge Intrinsically Safety Barriers and Signal Repeaters Part Number

ISB#

Terminals

Figure Figure 1–36 Refer to Figure 12–13 Figure 12–23

9

Input Terminals 1+,3 ≈DC8V/≈8mA Output Terminals Not intrinsically safe 7,8,9 Terminals 14(L+).-.15(L-) DC 20V 30V

 Single Channel  DC 24 V Nominal Power Supply  Selectable Mode of Operation  1 Signal Output with 1 Form “C” Relay  Lead Breakage (LB) Monitoring

Figure 1–36 Refer to Figure 12–13

10

Input Terminals 1+,3 ≈DC8V/≈8mA Output Terminals Not intrinsically safe 7,8,9 Terminals 14(L+).-.15(L-) DC 20V 30V

 From P-10 Bypass Switch  Single Channel  DC 24 V Nominal Power Supply  Selectable Mode of Operation  1 Signal Output with 1 Form “C” Relay  Lead Breakage (LB) Monitoring

KHD2-SR-Ex1.P KFD2-SR2-Ex1.W SWITCH POSITIONS S1 = I S2 = II S3 = I KHD2-SR-Ex1.P KFD2-SR2-Ex1.W SWITCH POSITIONS S1 = I S2 = I S3 = II

Description

WARNING When you replace this Purge Intrinsically Safe Barrier device, pay careful attention to the exact model or part number. Many models appear physically identical, but have different power ratings and entity ratings. Also, careful observance of which end of the device is considered to be the “SAFE” side, or the “HAZARDOUS” side is critical. Typically the end with the “Blue” colored cap should be connected to the device located in the HAZARDOUS zone for STAHL barriers. Otherwise, you could injure personnel or damage equipment.

1. OVERVIEW

1–48

MARO2P10203703E

Figure 1–31. Intrinsic Safety Barrier Stahl 9001/01-252-100-14

STAHL 9001/01-252-100-14

1

2

“BLUE” colored cap

STAHL

3

4

1. OVERVIEW

1–49

MARO2P10203703E

Figure 1–32. Intrinsic Safety Barrier Pepperl + Fuchs KFD2-SR-Ex1.P and KFD2-SR2-Ex1.W

Pepperl+Fuchs KFD2-SR-Ex1.P KFD2-SR2-Ex1.W

LED Relay output (yellow)

1 4

2 5

3 6

Power (green) LED

LED LB (red) Switch S1= I For Open SW = De-Energized (mode of operation) Switch S2 = II For Lead Breakage on 10-11-12 (switch for output II)

I II 7 8 9 10 11 12 13 14 15

Switch S3 = I For Namur Input (LB Monitoring)

Figure 1–33. Intrinsic Safety Barrier Pepperl+Fuchs KFD2-SD-Ex1.36

Pepperl+Fuchs KFD2-SD-Ex1.36

1 4

2 5

3 6

7 8 9 10 11 12

1. OVERVIEW

1–50

MARO2P10203703E

Figure 1–34. Intrinsic Safety Barrier Pepperl+Fuchs KHD2-CD-1P32 and KFD2-CD-Ex1.32

Pepperl+Fuchs KHD2-CD-1.P32 KFD2-CD-Ex1.32

1 4

2 5

3 6

7 8 9 10 11 12

Figure 1–35. Intrinsic Safety Barrier Pepperl+Fuchs Z727 and Z787

Pepperl+Fuchs Zener Barriers Z727 Z787 1 2 3 4

5 6 7 8

1. OVERVIEW

1–51

MARO2P10203703E

Figure 1–36. Intrinsic Safety Barrier Pepperl+Fuchs KFD2-SR-Ex1.2S.P and KFD2-SR-Ex1.W.LB

Pepperl+Fuchs KFD2-SR-Ex1.2S.P KFD2-SR2-Ex1.W.LB

LED Relay output (yellow)

1 4

2 5

3 6

Power (green) LED

LED LB (red) Switch S1 (mode of operation)

Switch S3 (LB Monitoring) I II 7 8 9 10 11 12 13 14 15

Switch S2 (no functions)

ISB3 and ISB10 Switch Positions S1 = I S2 = I S3 = II ISB9 Switch Positions S1 = I S2 = II S3 = I

Table 1–12.

Troubleshooting

ISB

Manufacturer

Troubleshooting

1

Stahl

Symptom: Incomplete purge cycle. See Figure 1–31 and Refer to Table 1–11 for additional information. 1. Check for 24 VDC on terminals 1 and 2 during controller purge cycle. If 24VDC is not present troubleshoot controller. If 24VDC is present go to Step 2. 2. Check for 18 VDC on terminals 3 and 4 during controller purge cycle. If 18V is not present barrier is defective. If 18V is present troubleshoot flow switch or robot.

2

Stahl

Symptom: Incomplete purge cycle. See Figure 1–31 and Refer to Table 1–11 for additional information. 1. Check for 24 VDC on terminals 1 and 2 during controller purge cycle. If 24VDC is not present troubleshoot controller. If 24VDC is present go to Step 2. 2. Check for 18 VDC on terminals 3 and 4 during controller purge cycle. If 18V is not present barrier is defective. If 18V is present troubleshoot the opener.

1. OVERVIEW

1–52

MARO2P10203703E

Table 1–12. (Cont’d) Troubleshooting ISB

Manufacturer

Troubleshooting

3

Pepperl+Fuchs

Symptom:No bypass signal in “parked” position. Robot and or opener are safely parked out of the path of the conveyer. Provides signal to conveyer system. Bypass circuits See Figure 1–32 or Figure 1–36 and Refer to Table 1–11 for additional troubleshooting information.  Yellow LED OFF : Problem in the hazard area (ex. proximity switch wires) go to Step 7.  Green LED power indicator 1. Check for green power ON LED. If LED is not ON go to Step 2. If LED is ON go to Step 7. 2. Check input 120VAC to Deltron 24V power supply. If voltage is present go to Step 3. If voltage is not present troubleshoot 120 VAC from the conveyer. 3. Check output 24V from Deltron to OVP (EE-3112-600). If 24 VDC is present go to Step 4. If 24VDC is not present replace the power supply. 4. Check input 24V to OVP. If 24VDC is present go to Step 5. If 24VDC is not present replace wiring between the power supply and the OVP. 5. Check the output voltage from the OVP. If 24 VDC is present go to Step 6. If 24VDC is not present replace the OVP. 6. Check for 24 VDC between terminals 14 and 15 on the ISB. If 24 VDC is present the ISB is defective . If 24VDC is not present replace the wiring between the OVP and the ISB. 7. Check for signal on terminals 1 and 3 .If signal is present barrier is defective. If signal is not present robot proximity switch may be out of adjustment or defective.

4

Pepperl+Fuchs

Symptom:Problem controlling atomizing pressure. Supplies power to the current to pressure solenoid. See Figure 1–33 and Refer to Table 1–11 for additional troubleshooting information. 1. Check for 24VDC input signal on terminals 7 and 8. If 24V is not present troubleshoot the P-200 I/O. If 24VDC is present go to Step 2. 2. Check for 18VDC output signal on terminals 1 and 2. If 18V is not present the barrier is defective . If the 18 VDC output signal is present trouble shoot the current to pressure solenoid

5

Pepperl+Fuchs

Symptom:Problem controlling atomizing pressure. Relays signal to the current to pressure transducer. See Figure 1–34 and Refer to Table 1–11 for additional troubleshooting information. 1. Check for 24VDC input signal on terminals 9 and 10. If 24VDC is not present troubleshoot the P-200 I/O. If 24VDC is present go to Step 3. 2. Check for 24VDC output signal on terminals 7 and 8. If 24V is not present check connection to purge control printed circuit board (A16B-1310-0601). If 24VDC is present go to Step 3. 3. Check for 18VDC output signal on terminals 1 and 2. If 18V is not present defective barrier. If 18 VDC signal is present transducer is defective.

1. OVERVIEW

1–53

MARO2P10203703E

Table 1–12. (Cont’d) Troubleshooting ISB

Manufacturer

Troubleshooting

6

Pepperl+Fuchs

Symptom:No flowmeter data, accuflow errors. See Figure 1–35 and Refer to Table 1–11 for additional troubleshooting information. 1. Check for 24VDC input signal on terminals 7 and 8. If 24VDC is not present troubleshoot controller. If 24VDC is present go to Step 2. 2. Check for 24VDC output signal on terminals 1 and 2. If 24VDC is not present the barrier is defective. If 24VDC is present go to Step 3. 3. Check for input signal on terminals 2 and 4. If input signal from the P-200 flow meter is not present troubleshoot the flow meter. If the input signal is present go to Step 4. 4. Check for output signal on terminals 7 and 8. If the signal is not present the barrier is defective. If the signal is present troubleshoot the P-200 I/O.

7

Pepperl+Fuchs

Symptom:Paint gun will not trigger. Paint process trigger one signal. See Figure 1–35 and Refer to Table 1–11 for additional troubleshooting information. 1. Check for 24VDC input signal on terminals 7 and 8. If 24V is not present troubleshoot the P-200 I/O. If the 24VDC is present go to Step 2. 2. Check for output signal on terminals 1 and 2. If the output signal is not present defective barrier. If the output signal is present trouble shoot the number one trigger.

8

Pepperl+Fuchs

Symptom:Paint gun #2 will not trigger. Paint process trigger two signal. See Figure 1–35 and Refer to Table 1–11 for additional troubleshooting information. 1. Check for 24VDC input signal on terminals 7 and 8. If 24V is not present troubleshoot the P-200 I/O. If the 24VDC is present go to Step 2. 2. Check for output signal on terminals 1 and 2. If the output signal is not present defective barrier. If the output signal is present trouble shoot the number two trigger.

1. OVERVIEW

1–54

MARO2P10203703E

Table 1–12. (Cont’d) Troubleshooting ISB

Manufacturer

Troubleshooting

9

Pepperl+Fuchs

Symptom: Opener “acquire” signal inoperative. See Figure 1–36 and Refer to Table 1–11 for additional information.  Yellow LED magnet on opener acquired the door or hood.  Red LED lead breakage indicator  Green LED power is ON. 1. Check for green power ON LED. If LED is not ON go to Step 2. If LED is ON go to Step 3. 2. Check for 24VDC input between terminals 8 and 15, 11 and 15, 14 and 15. If 24VDC is not present at any one of the tested terminals troubleshoot the controller. If 24VDC is present go to Step 3. 3. Check for signal on terminals 1 and 3 .If signal is present barrier is defective. If signal is not present opener lead break switch may be out of adjustment or defective.

10

Pepperl+Fuchs

Symptom: No opener “bypass” signal in parked position. Robot and or opener are safely parked out of the path of the conveyor. Provides signal to conveyor system. Bypass circuits See Figure 1–36 and Refer to Table 1–11 for additional troubleshooting information.  Yellow LED OFF : Problem in the hazard area (ex. proximity switch wires) go to Step 7.  Green LED power indicator 1. Check for green power ON LED. If LED is not ON go to Step 2. If LED is ON go to Step 7. 2. Check input 120VAC to Deltron 24V power supply. If voltage is present go to Step 3. If voltage is not present troubleshoot 120 VAC from the conveyer. 3. Check output 24V from Deltron to OVP (EE-3112-600). If 24 VDC is present go to Step 4. If 24VDC is not present replace the power supply. 4. Check input 24V to OVP. If 24VDC is present go to Step 5. If 24VDC is not present replace wiring between the power supply and the OVP. 5. Check the output voltage from the OVP. If 24 VDC is present go to Step 6. If 24VDC is not present replace the OVP. 6. Check for 24 VDC between terminals 14 and 15 on the ISB. If 24 VDC is present the ISB is defective . If 24VDC is not present replace the wiring between the OVP and the ISB. 7. Check for signal on terminals 1 and 3 .If signal is present barrier is defective. If signal is not present opener proximity switch might be out of adjustment or defective.

1. OVERVIEW

1–55

1.20 BRAKE RELEASE (OPTION)

The brake release option adds (4) optional brake switches to selectively release the gravity and non-gravity axes of the P-200 robot. Refer to Procedure 6–1 . For circuit schematics and cable diagrams refer to Chapter 14 Openers and Options. WARNING Releasing the brakes could cause the robot to move. Provide support for the arm of the robot before releasing the brakes; otherwise, you could injure personnel or damage equipment. Figure 1–37. C Size R-J2 Controller With Optional Brake Release Switches

SYSTEM R–J2

P-200 AXES 1,4,5,7

P-200 AXIS 2

P-200 OPENER ALL AXIS 3 AXES

P-200BRAKE SELECT SWITCHES

P-200 AXES 1,4,5,7

P-200 AXIS 2

P-200 OPENER ALL AXIS 3 AXES

P-200 BRAKE SELECT SWITCHES

1. OVERVIEW

1–56

MARO2P10203703E

1.21 P-10 DOOR OPENER P-15 HOOD AND DECK OPENER (OPTIONS)

The P-10 opener is a three axis, electrically-driven door opener and the P-15 opener is a three axis, electrically-driven hood and deck opener. Refer to Chapter 14, “Openers and Options,” for schematics and diagrams.

Figure 1–38. P-10 Door opener and P-15 Hood and Deck Opener

Outer Arm

Inner Arm

Axis 3 Link

Riser (P-15 only) Base

Axis 2

P-10 End of Arm Tool Carriage Axis 1 Rail

P-15 End of Arm Tool

1. OVERVIEW

1–57

MARO2P10203703E

1.22 INTEGRAL PUMP CONTROL (OPTION)

The Integral Pump Control option is the FANUC Robotics integrated two component fluid delivery system which features metering pumps directly coupled to FANUC servomotors that are controlled by the FANUC R-J2 controller. This is a high performance fluid delivery system that accurately controls variable ratios and flow rates of two component materials. The P-200 robot and the R-J2 controller provide control for the color change sequence, fluid metering and fluid flow control operations. The paint process control enclosure provides the electro-pneumatic interface between the R-J2 controller and the spray applicator. The operator interface is provided via the R-J2 teach pendant. See Figure 1–39. For circuit schematics and cable diagrams refer to Chapter 14 Openers and Options. Two different styles of the Integral Pump Control are available. The Top hat model which is mounted atop the outer arm and the Side Saddle model which is mounted on the rail next to the robot. See Figure 1–40. The integrated two component fluid delivery system offers the following features and benefits:  Enhanced trigger response time  Common fluid control and robot motion control architecture  Gear pump and servo motor integral to P-200 robot mechanical unit  Reduced color change time and paint waste compared to conventional wall mounted two component systems  Accurate flow and ratio control through precise pump control The integrated two component fluid delivery system consists of the following major components:  Two mechanical coupled gear pump assemblies  Two FANUC servo controlled motors  One FANUC servo amplifier  Four pressure transducers  One mixing block assembly  One trigger assembly  One purged enclosure  One by-pass manifold  One Sames Moduflow valve stack assembly

1. OVERVIEW

1–58

MARO2P10203703E

Figure 1–39. Integral Pump Control Component Locator Diagram

Purge Enclosure

View From Front of Arm By-Pass Block

OUT

Mix Valves

IN

To Gun Axis 3 Trigger Valve Ass’y Mix Tube

Motor and Gear Reducer Assy. Inlet Regulators

IN PR1

Pump Outlet Transducers Gear Pump #1

BP 1 OUT REG. 1 0–100 P.S.I.

OUT

0–500 P.S.I. IN 0–500 P.S.I. IN

IN

0–100 P.S.I. REG. 2

OUT

IN

#1 FAR SIDE

PR2

BP 2

#2

FAR SIDE

OUT

Pump Inlet Transducers

OUT

Gear Pump #2

1. OVERVIEW

1–59

MARO2P10203703E

Figure 1–40. Top Hat and Side Saddle Mounted Models

Top Hat Mounted

Side Saddle Mounted

Page2

2 DIAGNOSTIC SCREENS

MARO2P10203703E

2

Topics In This Chapter

DIAGNOSTIC SCREENS 2–1

Page

Safety Signals

The safety signal screen displays the status of safety-related control signals coming into the controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3

Version ID Status

The STATUS Version ID screen displays information specific to your controller. 2–5

Memory Status

The STATUS Memory screen displays information about controller memory. . . . 2–8

Position Status

The POSITION screen displays positional information in joint angles or Cartesian coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–10

Axis Status

The axis status screen displays information for each axis. . . . . . . . . . . . . . . . . . . 2–12

Alarm Log

The Alarm Log displays a list of the 100 most recent alarms. . . . . . . . . . . . . . . . . 2–16

I/O Status

You can view the status of an I/O signal by displaying a status screen. . . . . . . . . 2–18

Various built-in diagnostic screens reveal important information regarding the status of the controller. This section describes each of these screens in detail. The diagnostic screen section provides coverage of the P-200. Figure 2–1 displays the teach pendant that displays the Status Screens.

2. DIAGNOSTIC SCREENS

2–2

MARO2P10203703E

Figure 2–1. Teach Pendant

FAULT HOLD STEP BUSY RUNNING MAN ENBL PROD MODE JOINT XYZ TOOL

OFF

ON

MAN FCTNS MOVE MENU

QUEUE

APPL INST

POSN

ALARMS

STATUS

2. DIAGNOSTIC SCREENS

2–3

MARO2P10203703E

2.1 SAFETY SIGNAL STATUS

The safety signal screen displays the status of safety-related control signals coming into the controller. The safety signal screen displays the current state (TRUE or FALSE) of each safety signal. You cannot change the condition of the safety signal using this screen. Table 2–1 lists and describes each safety signal. Use Procedure 2–1 to display safety signal status. Table 2–1.

SAFETY SIGNAL

Safety Signals DESCRIPTION

SOP E-Stop

Indicates whether the EMERGENCY STOP button on the operator panel has been pressed. The status is TRUE if the operator panel EMERGENCY STOP button has been pressed.

TP E-Stop

Indicates whether the EMERGENCY STOP button on the teach pendant has been pressed. The status is TRUE if the teach pendant EMERGENCY STOP button has been pressed.

Ext E-Stop

Indicates whether an external emergency exists. The status is TRUE if the external emergency stop contacts are open on the emergency control (EMG) printed circuit board and the following conditions exist:  SOP E-STOP is FALSE  TP E-Stop is FALSE  Hand Broken is FALSE  Overtravel is FALSE If any one of these conditions is TRUE, Ext E-Stop is displayed as FALSE even though these contacts could be open.

Fence Open

Indicates whether the safety fence switch is open. The status is TRUE if the safety fence contacts are open on the emergency control (EMG) printed circuit board.

TP Deadman

Indicates when either the left or right teach pendant DEADMAN switch is pressed. The status is TRUE if either DEADMAN switch is pressed. When released with teach pendant enabled, this alarm shuts off servo power.

TP Enable

Indicates whether the teach pendant ON/OFF switch is ON. The status is TRUE when the teach pendant ON/OFF switch is ON.

Hand Broken

Indicates whether the safety joint switch in the robot hand has been tripped and the hand might be damaged. The status is TRUE when the safety joint switch has been tripped. This turns off the hand broken signal (*HBK) to the axis control printed circuit board. This alarm shuts off servo power.

Overtravel

Indicates whether the robot has moved beyond its overtravel limits. The status is TRUE when the robot has moved beyond its overtravel limits tripping the overtravel switch. This turns off (*ROT) to the axis control printed circuit board. This alarm shuts off servo power.

Low Air Alarm

Indicates whether the air pressure has decreased below the acceptable limit. Low Air Alarm is usually connected to an air pressure sensing device. The status is TRUE when the air pressure is below the acceptable limit. This opens the pressure switch which turns off (*PPABN) to the axis control printed circuit board. You must set the $PPABN_ENBL system variable to TRUE to use this signal. This alarm shuts off servo power.

2. DIAGNOSTIC SCREENS

2–4

MARO2P10203703E

Procedure 2–1 Step

Displaying Safety Signal Status 1 Press MENUS. 2 Select STATUS. 3 Press F1, [TYPE]. 4 Select Safety Signal. You will see a screen similar to the following. STATUS Safety 1 2 3 4 5 6 7 8 9

SIGNAL NAME SOP E–Stop: E–Stop SOP TP E–Stop: Ext E–Stop: Fence Open: TP Deadman: TP Enable: Hand Broken: Overtravel: Low Air Alarm

[ TYPE ]

JOINT STATUS TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

10 % 1/10

2. DIAGNOSTIC SCREENS

2–5

MARO2P10203703E

2.2

The STATUS Version ID screen displays information specific to your controller. Use this information when you call the FANUC Robotics Hotline if a problem occurs with your controller. You cannot change the information displayed on this screen. Table 2–2 lists and describes the version identification status information.

VERSION IDENTIFICATION STATUS

Table 2–2.

Version Identification Status Items DESCRIPTION

ITEM SOFTWARE

Lists the software item loaded.

ID

Lists the version number of the software item loaded.

Use Procedure 2–2 to display version identification status. Procedure 2–2 Step

Displaying the Version Identification Status 1 Press STATUS. 2 Press F1, [TYPE]. 3 Select Version ID. You will see a screen similar to the following. STATUS Version ID

1 1: 2: 3: 4: 5: 6: 7: 8: 9: 10:

SOFTWARE: PaintTool P-200 Robot Servo Code Motion Parameter Std Operating System PaintTool Softparts

JOINT

10 % 1/24

ID: V4.30 V4.30 JB08.03

Core Built-ins Paint Built-ins User Frame

11: Background Editing 12: PLC I/O (A-B/GENIUS) 13: Core PaintTool 14: Paint Tool Tracking 15: Color Change V4.30 16: MOTET Interface V4.30 17: KAREL Command Lang V4.30 18: 19: 20: 21: 22: 23: 24: [ TYPE ] SOFTWARE MOT_ID MOT_INF

SER_PAR

2. DIAGNOSTIC SCREENS

2–6

MARO2P10203703E

4 Press the key that corresponds to the version ID status screen you want to display:  To display software version information, press F2, SOFTWARE.  To display motor types for each axis, press F3, MOT_ID. You will see a screen similar to the following.

STATUS Version IDs 1: 2: 3: 4: 5: 6: 7: 8: 9: 10:

GRP: 1 1 1 1 1 1 * * * *

AXIS: 1 2 3 4 5 6 * * * *

[ TYPE ] SOFTWARE

JOINT MOTOR ID: ACA3/3000 40A ACA3/3000 40A ACA1/3000 12A ACA0.5B/3000 12A ACA0.5B/3000 12A ACA0.5B/3000 12A Uninitialized Uninitialized Uninitialized Uninitialized MOT_ID

MOT_INF

10 % 1/16

SER_PAR

 To display the motor information for each axis, press F4, MOT_INF. You will see a screen similar to the following. STATUS Version IDs GRP: AXIS: 1: 1 1 2: 1 2 3: 1 3 4: 1 4 5: 1 5 6: 1 6 7: * * 8: * * 9: * * 10: * * [ TYPE ] SOFTWARE

JOINT 10 % MOTOR INFO: 1/16 H1 DSP1–L H2 DSP1–M H3 DSP2–L H4 DSP2–M H5 DSP3–L H6 DSP3–M Uninitialized Uninitialized Uninitialized Uninitialized MOT_ID

MOT_INF

SER_PAR

 To display the servo parameters for each axis, press F5, SER_PAR. You will see a screen similar to the following.

2. DIAGNOSTIC SCREENS

2–7

MARO2P10203703E

STATUS Version ID GRP: AXIS: 1 1: 1 1 2: 1 2 3: 1 3 4: 1 4 5: 1 5 6: 1 6 7: * * 8: * * 9: * * 10: * * [ TYPE ] SOFTWARE

E1 JOINT SERVO PARAM ID: PB08.02 PB08.02 PB08.02 PB08.02 PB08.02 PB08.02 Uninitialized Uninitialized Uninitialized Uninitialized MOT_ID

MOT_INF

10 % 1/16

SER_PAR

2. DIAGNOSTIC SCREENS

2–8

MARO2P10203703E

2.3

The STATUS Memory screen displays information about controller memory. Table 2–3 lists and describes each memory status item.

MEMORY STATUS

Use Procedure 2–3 to display memory status. Table 2–3. Memory Status MEMORY STATUS

DESCRIPTION

Pools

Indicates the amount of memory for  TPP contains teach pendant programs  PERM contains system variables and some KAREL variables  SYSTEM contains the operating system  IMAGE contains KAREL programs and options  TEMP contains temporary memory used for system operations

Hardware

Indicates the total amount of memory for  FROM Flash ROM  DRAM D-RAM  CMOS CMOS RAM

Procedure 2–3 Step

Displaying Memory Status 1 Press STATUS. 2 Press F1, [TYPE]. 3 Select Memory. You will see a screen similar to the following. STATUS Memory

E1

JOINT

10 %

Total Available Pools ----------------------TPP CMOS 600.0 KB 554.4 KB PERM CMOS 999.8 KB 275.8 KB TEMP DRAM 5054.9 KB 4340.4 KB Description: TPP: Used by .TP, .MR, .JB, .PR PERM: Used by .VR, RD:, Options TEMP: USed by .PC, .VR, Options [ TYPE ] DETAIL

HELP

2. DIAGNOSTIC SCREENS

2–9

MARO2P10203703E

4 To display the DETAIL screen, press F2, DETAIL. You will see a screen similar to the following. STATUS Memory

E1

JOINT

10 %

Total Free Lrgst Free Pools–––––––––––––––––––––––––––––––––––––– TPP 1200.0 KB 1181.8 KB 1181.8 KB PERM 2023.9 KB 564.7 KB 564.6 KB SYSTEM 1010.4 KB 7.1 KB 7.1 KB IMAGE 2303.9 KB 358.8 KB 358.8 KB TEMP 3774.9 KB 2954.5 KB 2943.3 KB Hardware––––––––––––––––––––––––––––––––––– FROM 6.0 MB DRAM 8.0 MB CMOS 2.0 MB [ TYPE ] BASIC

5 To display the first screen, press F2, BASIC.

HELP

2. DIAGNOSTIC SCREENS

2–10

MARO2P10203703E

2.4

The POSITION screen displays positional information in joint angles or Cartesian coordinates. The positional information on this screen is updated continuously when the robot moves. You cannot change the displayed information using this screen.

POSITION STATUS

NOTE E1, E2, and E3 indicate extended axis positional information if extended axes are installed in your system. Joint

The joint screen displays positional information in degrees for each robot axis. Tool indicates the number of the active tool frame.

User

The user screen displays positional information in Cartesian coordinates based on the user frame. Tool indicates the number of the active tool frame. Frame indicates the number of the active user frame.

World

The world screen displays positional information in Cartesian coordinates based on the world frame. Tool indicates the number of the active tool frame. Use Procedure 2–4 to display position status.

Procedure 2–4

Step

Displaying Position Status

1 Press POSN. 2 Select the appropriate coordinate system.  For joint, press F2, JNT. You will see a screen similar to the following.

POSITION Joint

J1: J4: E1:

E1

[ TYPE ]

.001 J2: –.000 J5: .000 E2:

JNT

JOINT

10.028 J3: 34.998 J6: .001 E3:

USER

10 % Tool: 1

–35.025 .001 .001

WORLD

NOTE E1:, E2:, and E3 are displayed only if you have extended axes.

2. DIAGNOSTIC SCREENS

2–11

MARO2P10203703E

 For user, press F3, USER. You will see a screen similar to the following.

POSITION User

E1

JOINT Frame: 0

Configuration: F, 0, 0, 0 x: 1906.256 y: .041 w: 178.752 p: –89.963 E1: .001 E2: .001

[ TYPE ]

JNT

10 % Tool: 1

z: 361.121 r: 1.249 E3: .001

USER

WORLD

 For world, press F4, WORLD. You will see a screen similar to the following.

POSITION World

E1

Configuration: F, 0, 0, 0 x: 1906.256 y: .041 w: 178.752 p: –89.963

[ TYPE ]

JNT

USER

WORLD

z: r:

10 % Tool: 1

361.121 1.249

WORLD

2. DIAGNOSTIC SCREENS

2–12

MARO2P10203703E

2.5 AXIS STATUS

The axis status screen displays information for each axis. This information is continually updated. Use this information when you call the FANUC Robotics Hotline if a problem occurs with your robot. This screen displays:  Status 1  Status 2  Pulse  Monitor  Tracking  Disturbance Torque The Axis Status Pulse screen displays information about axis motion. Table 2–4 lists and describes each kind of information displayed on this screen. Use Procedure 2–5 to display the axis status pulse screen. Table 2–4.

ITEM

Axis Status Pulse Screen Items DESCRIPTION

Motion Command

Displays the desired value of the Serial Pulse Coder (SPC) when the robot gets to the position commanded by the controller.

Machine Pulse

Shows the actual SPC count as read by the controller.

Position Error

Displays the difference between the commanded SPC count versus the actual SPC count.

You cannot change any information on this screen except for the group number. Group number only applies if you have multiple groups; otherwise, it remains as 1.

2. DIAGNOSTIC SCREENS

2–13

MARO2P10203703E

Procedure 2–5 Step

Displaying the Axis Status Pulse Screen 1 Press STATUS. 2 Press F1, [TYPE]. 3 Select Axis. 4 Display the status screen you want:  For Status 1, press F2, STATUS1. STATUS

J1: J2: J3: J4: J5: J6:

JOINT

Flag Bits 1/2 0000000000001011 0000000000001011 0000000000001011 0000000000001011 0000000000001011 0000000000001011

[ TYPE ]

STATUS1

10 %

GRP [ 1] History 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

STATUS2

PULSE

GRP# >

 For Status 2, press F3, STATUS2. STATUS

J1: J2: J3: J4: J5: J6:

JOINT

Alarm Status 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000

[ TYPE ]

STATUS1

10 %

GRP [ 1] History 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

STATUS2

 For Pulse, press F4, PULSE.

PULSE

GRP# >

2. DIAGNOSTIC SCREENS

2–14

MARO2P10203703E

STATUS

J1: J1: J2: J3: J4: J5: J6:

E1

Position Error 0 0 0 0 0 0

[ TYPE ]

STATUS1

JOINT

10 %

GRP [ 1] Motion Command 0 0 0 0 0 0

Machine Pulse 00000000 00000000 00000000 00000000 00000000 00000000

STATUS2

PULSE

[UTIL] >

 For Monitor, press MORE, >, and then press F2, MONITOR. STATUS

JOINT

10 %

GRP [ 1] J1: J1: J2: J3: J4: J5: J6:

Torque Monitor Ave. / Max. 0.000 0.000 0.000 0.000 0.000 0.000

[ TYPE ]

Inpos OT VRDY 1 0 ON 1 0 ON 1 0 ON 1 0 ON 1 0 ON 1 0 ON

0.000 0.000 0.000 0.000 0.000 0.000

MONITOR TRACKING DISTURB

GRP# >

 For Tracking, press MORE, >, and then press F3, TRACKING.  For Disturbance Torque, press MORE, >, and then press F4, DISTURB. STATUS

JOINT

10 %

GRP [ 1] Tracking Status J1: Flag Bits 1 P1: 0000000000000000 P2: 0000000000000000

P1: P2:

Alarm Status 000000000000 000000000000

[ TYPE ]

Flag Bits 2 0000000000000000 0000000000000000 Counter Value 0 0

MONITOR TRACKING DISTURB

GRP# >

2. DIAGNOSTIC SCREENS

2–15

MARO2P10203703E

5 To change the group number, press F5, GRP#. STATUS

JOINT

Disturbance Torque Current J1: –46080.000 / J2: –46080.000 / J3: –46080.000 / J4: –23040.000 / J5: –23040.000 / J6: –23040.000 /

[ TYPE ]

Max. 0.000 0.000 0.000 0.000 0.000 0.000

/ / / / / /

10 %

GRP [ 1] Min. –91802.813 –91802.813 –91802.813 –45901.406 –45901.406 –45901.406

MONITOR TRACKING DISTURB

GRP# >

2. DIAGNOSTIC SCREENS

2–16

2.6 ALARM LOG

MARO2P10203703E

The Alarm Log displays a list of the 100 most recent alarms. Figure 2–2 shows an example of the Alarm Log. Figure 2–2. Alarm Log

1 2 3

SRVO–049 OHAL 1 alarm (Group=1 Axis=6) PROGRAM LINE 4 Alarm JOINT 10% 1/100 1 SRVO–049 OHAL 1 alarm (Group:1 Axis:6) 2 SRVO–042 MCAL 1 Alarm (Group:1 Axis:6) 3 R E S E T

[ TYPE ]

CLEAR

4

HELP

The areas of the Alarm Log are as follows: 1. This is the most recent alarm message. This message will be displayed in this line regardless of the screen you choose. 2. Indicates the program name and line number of program last having been acted upon. 3. Lists all of the alarm messages, up to 100, with the most recent alarm on the top of the list. When the RESET key is pressed, a RESET is logged on the alarm message screen. 4. Indicates the line number the cursor is on in proportion to how many lines numbers available. Use Procedure 2–6 to display the Alarm Log.

2. DIAGNOSTIC SCREENS

2–17

MARO2P10203703E

Procedure 2–6

Condition Step

Displaying the Alarm Log  An error has occurred. 1 Press ALARMS. 2 Press F1, [TYPE]. 3 Select Alarm Log. The alarm log will be displayed. This lists all errors. See the following screen for an example. SRVO–002 Teach pendant emergency stop TEST1 LINE 15 ABORTED Alarm WORLD 100 % 1/100 1 SRVO–002 Teach pendant emergency sto 2 SRVO–001 Operator panel emergency st 3 R E S E T 4 SRVO–029 Robot calibrated (Group:1) 5 SRVO–001 Operator panel emergency st 6 SRVO–012 Power fail recovery 7 INTP–127 Power fail detected 8 SRVO–047 LVAL alarm (Group:1 Axis:5) 9 SRVO–047 LVAL alarm (Group:1 Axis:4) 10 SRVO–002 Teach pendant emergency sto [ TYPE ]

CLEAR

HELP

The most recent error is number 1. To display the complete message for a message that does not fit on the screen, press and hold the SHIFT key and press the right arrow key. 4 To display the motion log, which lists only motion-related errors, press F1, [TYPE], and select Motion Log. 5 To display the system log, which displays only system errors, press F1, [TYPE], and select System Log. 6 To display the application log, which displays only application-specific errors, press F1, [TYPE], and select Appl Log. 7 To display more information about an error, move the cursor to the error and press F5, HELP. The error help screen displays information specific to the error you selected. When you are finished viewing the information, press PREV. 8 To remove all of the error messages displayed on the screen, press F4, CLEAR.

2. DIAGNOSTIC SCREENS

2–18

MARO2P10203703E

2.7

You can view the status of an I/O signal by displaying a status screen. Use Procedure 2–7 to display I/O status.

I/O STATUS Procedure 2–7 Step

Displaying I/O Status 1 Press MENUS. 2 Select I/O. 3 Press F1, [TYPE]. 4 Select the kind of I/O for which you want to display status: spot welding, digital, analog, group, robot, UOP, or SOP. For digital outputs for example, you will see a screen similar to the following. I/O Digital Out # SIM STATUS DO[ 1] UU OFF [ DO[ 2] U ON [ DO[ 3] U OFF [ DO[ 4] U OFF [ DO[ 5] U OFF [ DO[ 6] U ON [ DO[ 7] U OFF [ DO[ 8] U OFF [ DO[ 9] U OFF [ DO[ 10] U OFF [ [ TYPE ]

CONFIG

IN/OUT

WORLD

10% ] ] ] ] ] ] ] ] ] ]

SIMULATE UNSIM

5 To change the display between inputs and outputs, press F3, IN/OUT. 6 To view the I/O configuration of the signal, press F2, CONFIG.

Index

3 LIGHTS, INDICATORS, AND LEDS

MARO2P10203703E

3

LIGHTS, INDICATORS, AND LEDS 3–1

Topics In This Chapter

Page

Teach Pendant Diagnostic Indicators

The teach pendant has several indicators to assist you in determining controller status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2

Operator Panel and Cabinet Lights

The operator panel has several LEDs to assist you in determining the status of the controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–3

Servo On Lights

The controller cabinet has a single Servo On light on the right-hand side of the cabinet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4

Circuit Boards Diagnostic LEDs

The R-J2 controller contains several diagnostic LEDs within the controller. . . . .  Power supply unit (PSU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Main CPU board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Sub CPU board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Modular I/O (Model A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Servo Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Emergency Stop Control Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . .  Module Assembly # EE–3044–401 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Contact Signal Transducer (IBRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  R-J2 Ethernet LEDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–5 3–7 3–8 3–10 3–13 3–14 3–16 3–18 3–19 3–20

This chapter describes the lights, indicators and LEDs you can use for diagnostics.

3. LIGHTS, INDICATORS, AND LEDS

3–2

MARO2P10203703E

3.1 TEACH PENDANT DIAGNOSTIC INDICATORS

The teach pendant has several indicators to assist you in determining controller status. Figure 3–1 shows the teach pendant indicators and Table 3–1 lists and describes the teach pendant indicators. The indicators whose labels are blank vary depending on the application. Refer to the Systems PaintTool Setup and Operations Manual for information on indicators. Figure 3–1. Teach Pendant Indicators

ÎÎ ÎÎ ÎÎ ÎÎ ÎÎ ÎÎ ÎÎ ÎÎ

Indicators

FAULT HOLD STEP BUSY RUNNING MAN ENBL PROD MODE JOINT XYZ TOOL

OFF

Table 3–1.

ON

Teach Pendant Status Indicators

INDICATOR

DESCRIPTION

FAULT

Indicates that a fault condition has occurred.

HOLD

Indicates that the robot is in a hold condition. HOLD is not on continuously during a hold condition.

STEP

Indicates that the robot is in step mode.

BUSY

Indicates that the controller is processing information.

RUNNING

Indicates that a program is being executed.

MAN ENBL

Indicates that the robot is in MANUAL MODE.

PROD MODE

Indicates that the robot is in PRODUCTION MODE.

JOINT

Indicates that the current jog coordinate system is JOINT.

XYZ

Indicates that the current jog coordinate system is CARTESIAN (JOG FRAME OR WORLD).

TOOL

Indicates that the current jog coordinate system is TOOL.

3. LIGHTS, INDICATORS, AND LEDS

3–3

MARO2P10203703E

3.2 OPERATOR PANEL AND CABINET LIGHTS

The operator panel has several LEDs to assist you in determining the status of the controller. Figure 3–2 shows the operator panel LEDs for the P-200 robot. Table 3–2 describes the indicator functions. Figure 3–2. Operator Panel LEDS

ÎÎ ÎÎ ÎÎ ÎÎ ÎÎ BATTERY ALARM

CYCLE START

ON

ENABLED

OFF

HOLD

TEACH PENDANT FAULT h m

FAULT RESET

ÎÎ Î ÏÏ ÏÏ ÎÎ ÎÎ ÏÏ ÏÏ

PURGE COMPLETE

REMOTE

PURGE ENABLE

REMOTE

LOCAL

PURGE FAULT

H

BRAKE ENABLE ON

OFF

PORT

HOUR METER METER HOUR

h

h

Table 3–2. INDICATOR BATTERY ALARM TEACH PENDANT ENABLED FAULT REMOTE

PURGE COMPLETE

ÎÎ ÎÎ

H

EMERGENCY STOP

Standard Operator Panel Status Indicators

DESCRIPTION Indicates that the backup battery voltage is low. Replace the battery. Refer to Procedure 9–1 . Indicates that the teach pendant is enabled and has motion control. Indicates a fault condition has occurred. Indicates that robot motion can only be started by a remote device (PLC or other remote device). The operator panel cycle start pushbutton cannot cause robot motion. This is determined by the position of the REMOTE/LOCAL keyswitch. Identifies that the robot cavities for the P-200 motor cavity containment cases have been purged and are presently at the prescribed pressure as outlined in the FANUC Robotics SYSTEM R-J2 Controller P-200 and In Booth Rail Mechanical Unit Parts and Service Manuals . This LED must be illuminated in order to turn power on to the R-J2 controller.

PURGE FAULT PURGE ENABLE PUSHBUTTON

Indicates a fault exists with the purge system. Indicates that the purge cycle has started. You can now release the pushbutton if you are holding it. POWER ON PUSHBUTTON LED Indicates that the robot is powered on. CYCLE START PUSHBUTTON LED Indicates that the robot is currently running a program HOLD Indicates that the robot is in a software hold condition.

3. LIGHTS, INDICATORS, AND LEDS

3–4

MARO2P10203703E

3.3 SERVO ON LIGHT

The controller cabinet has a single Servo On light on the right-hand side of the cabinet. See Figure 3–3 for light location. Refer to Table 3–3 for a description of the Servo On light.

Figure 3–3. Servo Amp Light

Î ÎÎ Î Î ÎÎ

SERVO ON Light

ÎÎ ÎÎÎ ÎÎ Î ÎÎ Î Î ÎÎ ÎÎ

Table 3–3. INDICATOR SERVO ON

Servo Amp On Description

DESCRIPTION Indicates that power is available to the servo amplifiers.

3. LIGHTS, INDICATORS, AND LEDS

3–5

MARO2P10203703E

3.4 CIRCUIT BOARD DIAGNOSTIC LEDS

The R-J2 controller contains several diagnostic LEDs within the controller. They are on the circuit boards that plug into the backplane, on the servo amplifiers, and on the Modular I/O (Model A) and Distributed I/O (Model B) units as well as the Intrinsic Barrier Relay Control (IBRC) Purge Control Unit. Figure 3–4 shows an overview of the circuit board diagnostic LEDs. Refer to the following sections for descriptions of each circuit board diagnostic LED:  Power supply unit (PSU)  Main CPU board  Sub CPU board  Modular I/O (Model A)  Servo amplifier  Emergency Stop Control Printed Circuit Board  Module Assembly #EE-3044-401  Contact Signal Transducer (IBRC)  ABRIO PCB (optional)

3. LIGHTS, INDICATORS, AND LEDS

3–6

MARO2P10203703E

Figure 3–4. Diagnostic LEDs

Main CPU LEDs Section 3.4.2

IBRC Section 3.4.6

CH1 CH2 CH3 CH4 CH5 CH6

PSU LEDs Section 3.4.1

IBRC

MODEL A INTERFACE MODULE Section 3.4.3

A1234567 B1234567

I/O MODULE Section 3.4.3

Interface I/O Module Module

SERVO AMPLIFIER LED Section 3.4.4

Servo Amplifier

EMG Stop Control PCB Section 3.4.5

Main CPU

PSU

3. LIGHTS, INDICATORS, AND LEDS

3–7

MARO2P10203703E

3.4.1

Figure 3–5 shows each power supply unit (PSU) diagnostic LED.

Power Supply Unit (PSU) Diagnostic LEDs

Figure 3–5. Power Supply Unit (PSU) Diagnostic LEDs

The PIL LED lights if 210 VAC nominal is being supplied to the PSU from the Transformer (circuit breaker is on), if Fuse F1 is not blown, if 24VDC Aux is supplied, and the power supply internal circuitry is in good condition.

PIL LED ALM LED The ALM LED will light if one of the following conditions exist: – Bad DC Power Supply – Alarm received from the remote device – Fuse F3 on the Power Supply unit is blown

3. LIGHTS, INDICATORS, AND LEDS

3–8

3.4.2 Main CPU Board Diagnostic LEDs

MARO2P10203703E

The Main CPU printed circuit board alarm LEDs are shown in Figure 3–6. Table 3–4 provides information for troubleshooting problems. Figure 3–6. Main CPU Board Diagnostic LEDs

3. LIGHTS, INDICATORS, AND LEDS

3–9

MARO2P10203703E

Table 3–4. 1

2

Troubleshooting Main CPU Board Diagnostic LEDs

Remarks

LEDs 3

4

STATUS ALARM

Procedure

Parity alarm on RAM in the Main CPU.

1. Restart the controller. 2. Reload Software. 3. Replace the Main CPU.

1

2

3

4

STATUS ALARM

The battery voltage that backs up the Main CPU CMOS RAM memory is low.

1. Get a replacement battery. 2. Turn off controller power and lock out the controller. 3. Replace the battery. The controller will retain memory for at least a half hour between the time the controller is turned off and the new battery is installed. WARNING: Lethal voltage is present in the controller WHENEVER IT IS CONNECTED to a power source. Be extremely careful to avoid electrical shock. 1. Restart the controller.

1

2

3

4

Non-maskable interrupt occurred in 2. Reload software. the ABC chip on the 3. Replace the Main CPU. Main CPU Board.

1

2

3

4

Servo alarm occurred on the Main CPU Board.

STATUS ALARM

STATUS ALARM

1. Restart the controller. 2. Reload software. 3. Replace the Main CPU.

1

2

3

4

1

2

3

4

STATUS ALARM

STATUS ALARM

Non-maskable 1. Restart the controller. interrupt occurred in 2. Reload software. the SLC2 chip on 3. Replace the Main CPU. the Main CPU Board SYS FAIL Signal occurred

1. Restart the controller. 2. Reload software. 3. Replace the Main CPU.

1

2

3

4

Normal Status

Controller should be operational.

STATUS ALARM

= OFF

= ON

NOTE To save time during board replacement, preload software on a spare main CPU board first. Refer to the appropriate software installation manual specific to your software for software loading information.

CAUTION To prevent software loss in the CMOS RAM module of the removed board, be sure a battery backup is attached to the main CPU before the board is removed from the controller.

3. LIGHTS, INDICATORS, AND LEDS

3–10

3.4.3 Sub CPU Board Diagnostic LEDs

MARO2P10203703E

The Sub CPU printed circuit board alarm LEDs are shown in Figure 3–7. Table 3–5 provides information for troubleshooting problems. Figure 3–7. Sub CPU Board Diagnostic LEDs

RISC-B

STATUS ALARM

LV ALM F21 5A

5.0 A

3. LIGHTS, INDICATORS, AND LEDS

3–11

MARO2P10203703E

Table 3–5.

Troubleshooting Sub CPU Board STATUS LEDs (Green) DESCRIPTION

LEDs 1

2

3

4

Power-off

1

2

3

4

Power on

1

2

3

4

SUBCPU start up

1

2

3

4

DRAM test OK

1

2

3

4

Software loading complete. Operating system start.

1

2

3

4

Software internal checking. (Kernel software initialization complete)

STATUS ALARM

STATUS ALARM

STATUS ALARM

STATUS ALARM

STATUS ALARM

STATUS ALARM

1

2

3

4

Software internal checking. (Task scheduling start)

1

2

3

4

Software internal checking. (Operating system initialization start)

1

2

3

4

Software internal checking. (Operating system initialization end)

1

2

3

4

Software internal checking. (INIT task initialization process start)

1

2

3

4

Software internal checking. (System work area initialization)

1

2

3

4

Software internal checking. (Non-volatile memory initialization)

1

2

3

4

Software internal checking. (Non-volatile memory recover)

1

2

3

4

Software internal checking. (Create system tasks)

STATUS ALARM

STATUS ALARM

STATUS ALARM

STATUS ALARM

STATUS ALARM

STATUS ALARM

STATUS ALARM

STATUS ALARM

3. LIGHTS, INDICATORS, AND LEDS

3–12

MARO2P10203703E

Table 3–5. (Cont’d) Troubleshooting Sub CPU Board STATUS LEDs (Green) LEDs

DESCRIPTION

1

2

3

4

Software internal checking. (Create system tasks)

1

2

3

4

Software internal checking. (Task creation complete)

1

2

3

4

Software internal checking. ((INIT task initialization process complete)

STATUS ALARM

STATUS ALARM

STATUS ALARM

= OFF Table 3–6.

Troubleshooting Sub CPU Board ALARM LEDs (Red) Procedure

LEDs 1

2

= ON

3

4

The Sub-CPU is not started.

STATUS ALARM

1

2

3

4

A parity alarm occured in the SRAM.

1

2

3

4

A parity alarm occured in the DRAM on the Sub-CPU board

STATUS ALARM

STATUS ALARM

= OFF Table 3–7.

= ON

Troubleshooting Sub CPU Board ALARM LEDs (Red) Procedure

LEDs

The output voltage of the 3.3V power supply exceeded the specified range. LV ALM

(Red)

= ON NOTE To save time during board replacement, preload software on a spare sub CPU board first. Refer to the appropriate software installation manual specific to your software for software loading information.

3. LIGHTS, INDICATORS, AND LEDS

3–13

MARO2P10203703E

3.4.4 Modular (Model A) I/O LEDs

The LEDs associated with module I/O are on the interface module printed circuit board and on each I/O module. Figure 3–8 shows the modular I/O LEDs. Table 3–8 describes the I/O LEDs. Figure 3–8. Modular I/O LEDs

LEDS PWR

LINK

A0 1 2 3 4 5 6 7

BAI

LEDS

BAO

B0 1 2 3 4 5 6 7

AIF0IA

JD1B

JD1A

CP32

JD2

INTERFACE MODULE

Table 3–8.

I/O MODULE

Modular I/O LEDs

LED PWR Link

Location Interface module Interface module

BA1

Interface module

BA0

Interface module

A01234567 B01234567

I/O Module

Description ON: The interface module is supplied with 24 VDC power. ON: The I/O Link is operating properly. Normally, this LED lights several seconds after the power is turned on. These LEDs indicate that a fault has occurred in the modular I/O system.

Indicates if the input or output is on.

3. LIGHTS, INDICATORS, AND LEDS

3–14

MARO2P10203703E

3.4.5 Servo Amplifier Diagnostic LED (7-Segment Display)

Figure 3–9 shows the servo amplifier seven-segment LED and Table 3–9 shows and describes the LED displays.

Figure 3–9. Servo Amplifier LED

4

α

3 2 1 ON

LED Circuit breaker

DIP SWITCH

3. LIGHTS, INDICATORS, AND LEDS

3–15

MARO2P10203703E

Table 3–9. Name

Servo Amplifier LED Functions

Indication

Over–voltage alarm (HV)

Description This alarm occurs if the DC voltage of the main circuit power supply is abnormally high. This alarm occurs if the control power voltage is abnormally low.

Low control power voltage alarm (LV) Low DC link voltage alarm (LVDC) Regenerative discharge control circuit failure alarm (DCSW)

This alarm occurs if the DC voltage of the main circuit power supply is abnormally low or the circuit breaker trips. This alarm occurs if: –The short-time regenerative discharge energy is too high –The regenerative discharge circuit is abnormal.

Over-regenerative discharge alarm (DCOH)

This alarm occurs if: –The average regenerative discharge energy is too high (too frequent acceleration/deceleration). –The transformer overheats.

Dynamic brake circuit failure alarm (DBRLY) L-axis over-current alarm (HCL) M-axis over-current alarm (HCM) L- and M- axis over current alarm (HCLM) L-Axis IPM alarm (IPML)

This alarm occurs if the relay contacts of the dynamic brake welds together.

M-Axis IPM alarm (IPMM) L- and M- axis IPM alarm (IPMLM) Circuit breaker

This alarm is detected by the IPM (intelligent power module) of the M-axis.*

This alarm occurs if an abnormally high current flows in the L-axis motor. This alarm occurs if an abnormally high current flows in the M-axis motor. This alarm occurs if an abnormally high current flows in the L- and M axis-motors This alarm is detected by the IPM (intelligent power module) of the L-axis.*

Trips

The MCC contactor in the servo amplifier is turned on. The amplifier is armed and can drive the motor. The circuit breaker trips if an abnormally high current (exceeding the working current of the circuit breaker) flows through it. **

Amplifier not ready

Indicates that the servo amplifier is not ready to drive the motor.

Amplifier ready

Indicates that the servo amplifier is ready to drive the motor

*NOTE The IPM can detect the following alarms.  Over-current  Over-heat  Drop in IPM control power voltage **NOTE When the control power is separated from the main power, if the circuit breaker for the servo amplifier is off, low DC link voltage alarm (LVDC) is detected.

3. LIGHTS, INDICATORS, AND LEDS

3–16

3.4.6 Emergency Stop Control Printed Circuit Board

MARO2P10203703E

The LEDs associated with the Emergency Stop Control Printed Circuit Boards are shown in Figure 3–10 and described in Table 3–10. Figure 3–10. Emergency Stop Control Printed Circuit Board

BrakefuseblownalarmLED

1

4

2

3

3. LIGHTS, INDICATORS, AND LEDS

3–17

MARO2P10203703E

Table 3–10. Functions

Emergency Stop Control Printed Circuit Board LED

LED BRAKE FUSE ALARM 1 LED 2 LED 3 LED 4 LED

Function Brake fuse blown. SVON Q1 and Q2 ON (Brakes 1, 2, and 3) Q4 ON (Brake 4) Q3 ON (Brakes 6 and 7)

3. LIGHTS, INDICATORS, AND LEDS

3–18

MARO2P10203703E

3.4.7 Module Assembly # EE–3044–401

The Module Assembly # EE–3044–401 is located in the robot purge cavity. Before you enter to the purge cavity, be sure to perform the procedures and warnings in Section 4.6.43 shall be performed. The LED indicators are described in Table 3–11 and are shown in Figure 3–11. Figure 3–11. Intrinsic Barrier Relay Control Indicators ‘

CR1 DC/DC MODULE

6.5V LED 24V LED

MODULE ASSY # EE–3044–401

24V 6.5V

Table 3–11. Channel 24V 6.5V

Modular I/O LEDs

Function Indicates 24VDC input from 24VDC power supply in controller Indicates output of 6.5 VDC through relay CR1

3. LIGHTS, INDICATORS, AND LEDS

3–19

MARO2P10203703E

3.4.8 Contact Signal Transducer (IBRC)

The Intrinsic Barrier Relay Control (IBRC) LED indicators are described in Table 3–12 and are shown in Figure 3–12. Figure 3–12. Intrinsic Barrier Relay Control Indicators

CH1

Table 3–12. Channel

CH2

CH3

CH4

CH5

CH6

Modular I/O LEDs

CH2 CH3 CH4 CH5

Function Air pressure switch Flow switch *ROT switch *HBK switch TPDSC switch

Description Monitors internal air pressure. The switch is closed when the robot is in a safe operating state. Monitors air flow during purge sequence. Robot overtravel closed when robot is not in an overtravel condition. Hand broken switch. Robot wrist is broken. Normally this is a closed input. Teach pendant disconnect switch.

CH6

EOAT switch

End of arm tooling switch triggers RDI2.

CH1

3. LIGHTS, INDICATORS, AND LEDS

3–20

MARO2P10203703E

3.4.9 R-J2 Ethernet LEDs

Figure 3–13 and Figure 3–14 show ER-1 and ER-2 R-J2 Ethernet printed circuit boards. Refer to A User’s Guide to the FANUC Robotics SYSTEM R-J2 Controller Remote I/O Interface for an Allen-Bradley PLC for LED descriptions. Figure 3–13. ER-1 and ER-2 Printed Circuit Board LEDs

ER-1

1 23 4

1

1 23 4

2

3

4

AB RIO

PF PC IP

ACTIVE POWER

A–B

A–B

RACK SEL

SMGN

AUI CD27

BAUD SEL DISC/BLK LAST RACK LAST STAT RESTART RACK SIZ

ETHER NET

F1 2.0A

LINK OK

2.0 A

10 BASE T

ER-1 PLC I/O-Ethernet Printed Circuit Board(10Base2)

ER-1 PLC I/O-Ethernet Printed Circuit Board(10Base5)

ER-1 PLC I/O-Ethernet Printed Circuit Board(10BaseT)

3. LIGHTS, INDICATORS, AND LEDS

3–21

MARO2P10203703E

Figure 3–14. ER-2 Ethernet Printed Circuit Boards

ER-2

ER-2 Ethernet Printed Circuit Board(10Base2)

ER-2 A-B RIO/Ethernet Printed Circuit Board(10Base2)

3. LIGHTS, INDICATORS, AND LEDS

3–22

MARO2P10203703E

ER-1 Alarm LEDs

Table 3–13 lists and describes the ER-1 alarm LEDs. Table 3–13.

ER-1 Alarm LEDs

ALARM

DESCRIPTION 1

2

3

4

STATUS ALARM Fuse Alarm DRAM Parity Error Soft Alarm LED Soft Alarm LED

Turned on and off by system software.

DRAM Parity Error

Turns on when a DRAM parity error occurs.

Fuse Alarm

Turns on when a fuse has blown (for 10BASE5 PCBs only).

ER-2 Alarm LEDs

Table 3–14 lists and describes the ER-2 alarm LEDs. Table 3–14.

ER-2 Alarm LEDs

ALARM

DESCRIPTION Soft Alarm LED

A1

A4

Not used

DRAM Parity Error

A2

A3

Not used

ALARM Soft Alarm LED

Turned on and off by system software.

DRAM Parity Error

Turns on when a DRAM parity error occurs.

Page23

4 TROUBLESHOOTING

MARO2P10203703E

4

Topics In This Chapter

TROUBLESHOOTING 4–1

Page

Power ON Sequence

The following procedures are applicable to all P-200 robot systems including those on a pedestal, rail or with an opener. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3

Controller shutdown

Use this procedure for complete controller shutdown including purge circuitry. . 4–4

Servo Lockout

Servo Lockout Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–4

Class 1 Fault Troubleshooting

A Class 1 Fault is a malfunction that prevents the controller from operating. The main contactor might or might not be energized. No text is displayed on the teach pendant. Refer to Section 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–5

Class 2 Fault Troubleshooting

A Class 2 Fault is a malfunction that prevents the Boot ROM operating system from turning the system over to the application software. Text will be displayed on the the teach pendant, but the teach pendant display will be frozen and will not respond to keypad entries. Refer to Section 4.5. . . . . . . . . . . . . . . . . . . . . . . . 4–21

Class 3 Fault Troubleshooting

A Class 3 Fault is a malfunction that prevents the robot from operating normally, even though the application software is running. A numbered alarm message will be displayed on the teach pendant. You can access teach pendant menus and diagnostic screens during a Class 3 fault. Refer to Section 4.6. . . . . . . . . . 4–23  SRVO-001 Operator Panel E-Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–24  SRVO-002 Teach Pendant E-stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–25  SRVO-003 Deadman switch released . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–26  SRVO-004 Fence Open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–27  SRVO-005 Robot Overtravel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–28  SRVO-006 Hand Broken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–30  SRVO-007 External Emergency Stops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–32  SRVO-011 TP Released While Enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–34  SRVO-012 Power Failure Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–34  SRVO-014 Fan Motor Abnormal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–34  SRVO-015 System Over Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–35  SRVO-019 ER_SVAL1 SVON input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–36  SRVO-020 ER_SVAL1 SRDY off (TP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–36  SRVO-021 ER_SVAL1 SRDY off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–37  SRVO-022 ER_SVAL1 SRDY on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–40  SRVO-023 ER_SVAL1 Stop Error Excess . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–40  SRVO-024 ER_SVAL1 Move Error Excess . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–40  SRVO-026 ER_WARN Motor Speed Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–41  SRVO-027 ER_WARN Robot Not Mastered . . . . . . . . . . . . . . . . . . . . . . . . . . 4–41  SRVO-033 ER_WARN Robot Not Calibrated . . . . . . . . . . . . . . . . . . . . . . . . . . 4–41  SRVO-035 ER_WARN Joint Speed Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–41  SRVO-036 Imposition Time Over . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–41  SRVO-037 ER_SVAL1 IMSTP Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–41  SRVO-038 PULSE MISMATCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–42  SRVO-042 ER_SVAL2 MCAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–43  SRVO-043 ER_SVAL2 DCAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–44  SRVO-044 ER_SVAL2 HVAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–46  SRVO-045 ER_SVAL2 HCAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–47  SRVO-046 ER_SVAL2 OVC Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–48  SRVO-047 ER_SVAL2 LVAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–48  SRVO-049 ER_SVAL2 OHAL1 Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–49  SRVO-050 ER_SVAL1 CLALM Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–49  SRVO-051 ER_SVAL2 CUER Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–50  SRVO-053 ER_WARN Disturbance excess . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–50  SRVO-054 ER_SVAL1 DSM memory error . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–50  SRVO-061 ER_SVAL2 CKAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–50  SRVO-062 ER_SVAL2 BZAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–51

4. TROUBLESHOOTING

4–2

MARO2P10203703E

Topics In This Chapter

Page

Class 3 Fault Troubleshooting (continued)

 SRVO-063 ER_SVAL2 RCAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SRVO-064 ER_SVAL2 PHAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SRVO-065 ER_WARN BLAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SRVO-066 ER_SVAL2 CSAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SRVO-067 ER_SVAL2 OHAL2 Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SRVO-068 ER_SVAL2 DTERR Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SRVO-069 ER_SVAL2 CRCERR Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SRVO-070 ER_SVAL2 STBERR Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SRVO-071 ER_SVAL2 SPHAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SRVO-072 ER_SVAL2 PMAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SRVO-073 ER_SVAL2 CMAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SRVO-074 ER_SVAL2 LDAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SRVO-075 ER_WARN Pulse Not Established . . . . . . . . . . . . . . . . . . . . . . . . .  SRVO-081 ER_WARN EROFL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SRVO-082 ER_WARN DAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SRVO-083 ER_WARN CKAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SRVO-084 ER_WARN BZAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SRVO-085 ER_WARN RCAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SRVO-086 ER_WARN PHAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SRVO-087 ER_WARN BLAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SRVO-088 ER_WARN CSAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SRVO-089 ER_WARN OHAL2 Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SRVO-090 ER_WARN DTERR Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SRVO-091 ER_WARN CRCERR Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SRVO-092 ER_WARN STBERR Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SRVO-093 ER_WARN SPHAL Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SRVO-147 SERVO LVAL(DCLK) Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SRVO-163 ER_FATL DSM Hardware Mismatch . . . . . . . . . . . . . . . . . . . . . . .  SRVO-164 ER_FATL DSM/Servo Param Mismatch . . . . . . . . . . . . . . . . . . . .  SRVO-165 ER_FATL Panel (SVON Abnormal) E-Stop . . . . . . . . . . . . . . . . .  SRVO-166 ER_FATL TP (SVON Abnormal) E-Stop . . . . . . . . . . . . . . . . . . . .  SRVO-167 ER_FATL Deadman Switch (SVON Abnormal) . . . . . . . . . . . . . .  SRVO-168 ER_FATL External/SVON(SVON Abnormal) E-Stop . . . . . . . . . .

4–52 4–52 4–52 4–53 4–53 4–54 4–56 4–56 4–56 4–57 4–57 4–57 4–58 4–58 4–59 4–59 4–59 4–59 4–59 4–60 4–60 4–60 4–60 4–60 4–60 4–61 4–61 4–61 4–61 4–61 4–61 4–62 4–62

Class 4 Fault Troubleshooting

A Class 4 Fault is a malfunction that prevents the robot paint system components in the outer arm of the P-200 from operating normally, even though the application software is running. No numbered alarm messages will be displayed as in the case of a class 3 fault. Process defects will be noticed on each job as a result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Trigger Valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Shut Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Trigger (Electrical) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Process Fault Transducer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Flow Meter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4–63 4–64 4–65 4–66 4–73 4–76

This chapter describes the steps you must follow to repair electrical faults in the R-J2 controller.

WARNING The procedures described in this section require you to work with high voltage circuits. Carelessness or inattention can kill you. Do not attempt any of these procedures unless you are trained and experienced in electrical repair.

4. TROUBLESHOOTING

4–3

MARO2P10203703E

4.1

The following procedures are applicable to all P-200 robot systems including those on a pedestal, rail or with an opener. In the case of a P-200 robot and opener, both units must be properly purged before the controller can be turned on.

POWER ON SEQUENCE

Procedure 4–1 Step

Troubleshooting Purge Problems 1 With the main disconnect ON, you should observe:  Purge complete LED is off.  Purge enable pushbutton (purging) lamp is off.  ON pushbutton lamp is off.  Purge fault LED is on 2 Push and hold the PURGE ENABLE pushbutton. You should observe  Purge solenoid engages when minimum pressure requirements are met.  Purge fault LED turn off.  Purging lamp (behind purge enable pushbutton) lights. 3 Release the purge enable pushbutton. 4 At the end of the 5 minute purge, the pushbutton purging lamp will turn off and the purge complete LED will turn on. Also, the purge solenoid will shut off. 5 If this procedure does not work, go to troubleshooting Table 4–1. If the purge cycle works correctly but the robot will not power up, go to Procedure 4–4 .

4. TROUBLESHOOTING

4–4

MARO2P10203703E

4.2

Use this procedure for complete controller shutdown including purge circuitry.

CONTROLLER SHUTDOWN Procedure 4–2 Step

Controller Shutdown Procedure 1 Push the E-stop push button. 2 Push the controller “OFF” pushbutton. 3 Pull the Main Disconnect switch.

4.3

For servo lockout use the following procedure:

SERVO LOCKOUT

Procedure 4–3 Step

Servo Lockout Procedure 1 Push the E-stop push button. 2 Open the servo lockout disconnect switch. 3 Lockout switch

4. TROUBLESHOOTING

4–5

MARO2P10203703E

4.4 CLASS 1 FAULT TROUBLESHOOTING How to use the Troubleshooting Tables

This section contains troubleshooting information for Class 1 Faults. A Class 1 fault prevents the controller from operating. The main A.C. line contractor (ALC) might be energized. The Purge Complete light might be on. No text is displayed on the teach pendant. This section contains several tables. Each table provides procedures to correct the fault. To troubleshoot a Class 1 fault, always start at Procedure 4–1 . Perform the procedures in order. You will either correct the fault using Table 4–1 or it will refer you to another table in this section. Use the other tables only when Table 4–1 refers you to them.

Class 1 Fault Condition

If the following conditions are true, follow the steps in Table 4–1.  The main disconnect is ON.  The ON button has been pressed.  The power on sequence (Procedure 4–1 ) has been attempted.  The controller does not operate. Without turning off the main disconnect, open the controller door. Release the disconnect latch by turning the screw to the lower right of the disconnect handle.

4. TROUBLESHOOTING MARO2P10203703E

4–6

Table 4–1. Troubleshooting Procedure 1 (Initial Purge Troubleshooting Procedure) Troubleshooting Procedure 1.

Illustration

Find the Purge Complete light on the Standard Operator Panel. If the light is on this indicates that the purge cycle was successful. If the light is on go to Table 4–4.

ÎÎÎ ÎÎ Î ÎÎÎ ÎÎÎ

BATTERY ALARM

CYCLE START

ON

TEACH PENDANT ENABLED

If the light is off continue troubleshooting. Purge Complete Light

HOLD

OFF

FAULT

FAULT RESET

ÎÎ ÎÎ ÎÎ ÎÎ ÏÏ ÏÏ ÎÎ PURGE COMPLETE

REMOTE

PURGE ENABLE

REMOTE

LOCAL

PURGE FAULT

Purge Enable Pushbutton and Lamp

2.

Find the Purge Fault light on the Standard Operator Panel. If the light is on go to Step 4. If the light is out continue troubleshooting.

FAULT RESET

ÎÎ ÎÎÎ Î ÎÎ ÎÎ ÏÏ ÏÏ ÎÎÎ ÏÏ ÏÏ PURGE COMPLETE

REMOTE

PURGE ENABLE

REMOTE

LOCAL

PURGE FAULT

Purge Fault Light

BRAKE ENABLE ON

OFF

PORT

HOUR METER

ÎÎÎ ÎÎÎ ÎÎÎ

EMERGENCY STOP

4. TROUBLESHOOTING

4–7

MARO2P10203703E

Table 4–1. (Cont’d) Troubleshooting Procedure 1 (Initial Purge Troubleshooting Procedure) Troubleshooting Procedure 3.

Press and hold the Purge Enable pushbutton on the Standard Operator Panel until it lights (1 - 5 seconds) and then release. If the Purge Complete light comes on  test the controller for proper operation. Go to Table 4–4.

If the Purge Enable or Purge Complete light does not come on and/or the Purge Fault light comes on  continue troubleshooting.

Î ÎÎ

FAULT RESET

Illustration

Î

PURGE COMPLETE

Purge enable

Î Î Ï Ï

PURGE FAULT

Purge fault

PORT

ÏÏ ÏÏ

REMOTE

PURGE ENABLE

LOCAL

BRAKE ENABLE ON

OFF

HOUR METER

ÎÎÎ ÎÎÎ ÎÎÎ

EMERGENCY STOP

4. 5.

Turn off the main disconnect handle. On the Intrinsically Safe Terminal Board (ISTB) unit, connect test jumper wires between terminals 1 and 4, and between terminals 5 and 8 on the ISTB.  These terminals are the inputs from the robot-mounted air pressure and air flow switches. Go to Step 6. Refer to Figure 12–13.

NOTE: Jumper 1-2 simulates the pressure switch from the robot. Jumper 3-4 simulates the pressure switch from the opener, If applicable (If there is no opener all ready jumpered). Jumper 5-6 simulates the flow switch from the robot. Jumper 7-8 simulates the flow switch from the opener, if applicable (If there is no opener all ready jumpered).

6.

Turn on the main disconnect handle.

Test Jumpers

ISTB

4. TROUBLESHOOTING MARO2P10203703E

4–8 Table 4–1. (Cont’d) Troubleshooting Procedure 1 (Initial Purge Troubleshooting Procedure) Troubleshooting Procedure 7.

Press and hold the Purge Enable pushbutton on the Standard Operator Panel until it lights (1 - 5 seconds) and then release it.  If the purge circuit is cycling, the purge enable pushbutton will stay lit until the 5 minute purge is complete. The Purge Fault light will be out.  If the robot does not purge with jumpers inserted go to step 8.  If the purge is successful with jumpers the problem could be: – The wiring connected to the pressure switch(s) or the flow switch(s)



The pressure switch in robot (or opener if applicable)

– –

The flow switch in robot (or opener if applicable)

Possibly a casting leak in robot (or opener if applicable)  Locate the problem and replace faulty component.  If problem still exists check any Auxiliary device pressure and flow switches. If not used check jumpers across terminals 3 and 4, and terminals 5 and 6.  Locate the problem and replace faulty component.  Refer to Figure 12–13.  Remove jumpers from step 5 and retest purge system.  If the purge is successful without jumpers Go to Table 4–4. 8.

Illustration

PURGE ENABLE

Purge Enable Purge Fault

ÎÎ ÎÎ ÏÏ ÏÏ

PURGE FAULT

ÏÏ REMOTE

LOCAL

BRAKE ENABLE ON

OFF

PORT

HOUR METER

ÎÎ ÎÎ ÎÎ

EMERGENCY STOP

Replace purge control PCB.  Retest purge control without jumpers.  If purge control is still not working go to Table 4–2.

WARNING The purge control timer is adjusted to five minutes to conform to Factory Mutual Specifications. Do not adjust the purge control timer; otherwise, an explosion or fire could occur.

4. TROUBLESHOOTING

4–9

MARO2P10203703E

Table 4–2. Procedure)

Troubleshooting Procedure 2 (IBRC Troubleshooting

Troubleshooting Procedure 1.

If one or more of the lights are on go to Table 4–3.

2.

Illustration

Observe the lights on the IDEC IBRC unit . If all of the lights are off go to Step 2.

Measure the AC voltage coming into the IDEC IBRC unit at terminals 220 VAC and 0V. If the voltage is 200 to 240 VAC replace the IDEC IBRC Unit. If there is no voltage continue troubleshooting.

Lights

CH1 CH2 CH3 CH4 CH5 CH6

MultiTap Transformer

TF1 43

44

Refer to Figure 12–1, Figure 12–12, Figure 12–13 and Figure 12–15. 3.

Measure the AC Voltage at terminals R and S on the purge control PCB If the voltage is 200 to 240 VAC replace the wires between IDEC IBRC and CP1 on the purge control PCB.

Purge Control PCB 200A

200B

If there is no voltage check for continuity between terminals FRA1 and FRA2 on purge control PCB. If there is no continuity replace jumper between FRA1 and FRA2. If there is continuity continue troubleshooting. Refer to Figure 12–1, Figure 12–7 and Figure 12–13. 4.

Measure the AC voltage coming into the purge control PCB at terminals 200A and 200B. If there is 200 to 240 VAC replace purge control PCB. If there is no voltage turn off main power disconnect and check for continuity between terminals 200A and 200B on purge control PCB and terminals 43 and 44 on the multi-tap transformer. Continue troubleshooting. Refer to Figure 12–1, Figure 12–7 and Figure 12–13.

5.

If there is no continuity replace the wires between terminals 200A and 200B on the purge control PCB and terminals 43 and 44 on the multi-tap transformer. If there is continuity go to Table 4–5.

FRA 2

FRA 1 R

S

. . G

AC IN 24VDC PSU 15ma MAX.

220VAC

0V

IDEC IBRC

4. TROUBLESHOOTING MARO2P10203703E

4–10 Table 4–3.

Troubleshooting Procedure 3 (Non-Specific Purge Problems) Illustration

Troubleshooting Procedure 1.

Turn off the power disconnect handle. Continue troubleshooting.

2.

Reseat the following connectors: Contact signal transducer (IDEC IBRC) connector CNCA. Purge control printed circuit board (mounted with EMG control PCB) connector CNIN. Continue troubleshooting.  Refer to Figure 12–1, Figure 12–12, Figure 12–13 and Figure 12–14.

3.

Turn off the power disconnect handle. FAULT RESET

Purge Fault

Î Î ÎÎ ÏÏ ÏÏ ÎÎ Î ÎÎ Î ÏÏ ÏÏ

PURGE COMPLETE

REMOTE

PURGE ENABLE

REMOTE

LOCAL

PURGE FAULT

BRAKE ENABLE ON

4.

Observe on the Standard Operator Panel that the purge fault light is lit.

OFF

PORT

HOUR METER

ÎÎ ÎÎ ÎÎ

EMERGENCY STOP

4. TROUBLESHOOTING

4–11

MARO2P10203703E

Table 4–3. (Cont’d) Troubleshooting Procedure 3 (Non-Specific Purge Problems) Troubleshooting Procedure 5.

Re-initiate the purge sequence. Go to Procedure 4–1 . If the controller does not purge properly go to Step 6. If the purge was successful go to Table 4–4.

6.

Illustration

PSU2

Measure the DC voltage between the (+) and (-) on PSU2. If the voltage is 24 VDC go to Step 9. If there is no voltage check fuses F11 and F12 on the purge unit power supply board. If either fuse or both fuses are blown replace bad fuses. If new fuses blow check 24VDC wiring. If fuses are not bad continue troubleshooting. Refer to Figure 12–13.

F11

3.2A

F12

3.2A

Power supply (–) 7.

If CH1 light is on, go to Step 8. If CH1 light is out, test jumper ISTB terminals 1 to 4 and observe if the light comes on. If the CH 1 light did not light replace the IDEC IBRC unit If the light comes on replace the pressure switch or wiring for proper operation. Continue troubleshooting. Remove test jumpers at the end of each step.

(+)

Test Jumpers for step 7 Test Jumpers for Step 8 ISTB

4. TROUBLESHOOTING MARO2P10203703E

4–12

Table 4–3. (Cont’d) Troubleshooting Procedure 3 (Non-Specific Purge Problems) Troubleshooting Procedure 8.

Illustration

If CH 2 light is out, test jumper ISTB terminals 5 to 8 and observe if the light comes on. If the CH 2 light does not come on go to step 9. If the light comes on replace the auxiliary flow switch or wiring or replace the jumper, when auxiliary flow switch is not used.

IDEC IBRC

CH1

CH2

CH3

CH4

CH5

CH6

NOTE Remove test jumpers at the end of each step.

Lights 9.

Replace the following in the order shown:  Purge enable switch  Purge control PCB  IBRC unit

Procedure 4–4 Condition

Troubleshooting Turn-on Problems  You have performed Procedure 4–1 and the system is purged.  The following conditions exist:  Purge complete LED on  Purge enable pushbutton (purging) lamp is off.  ON pushbutton lamp is off.  Purge fault LED off.

Step

1 Attempt normal power by pressing the ON pushbutton.  The ON pushbutton will light.  Main CPU and axis control PCBs also execute internal diagnostics. When the diagnostics are all complete the MCC on all servo amplifiers will energize and “click”. When this occurs, the teach pendant is on and the controller is ready to operate. If unit powered up correctly go to Section 4.5. If the unit did not turn ON normally, go to Table 4–4.

4. TROUBLESHOOTING

4–13

MARO2P10203703E

Table 4–4. Troubleshooting Procedure 4 (General Power Supply Troubleshooting) Troubleshooting Procedure 1.

Illustration

Check and see if the green PIL light in the center of the Power Supply Unit module is ON. If the light is on go to Table 4–6.

CP1 3 G

If the light is off continue troubleshooting.

2.

Check fuse F1 in the top center of the Power Supply Unit module.  A white flag in the center of the fuse indicates it is bad. If the fuse is bad, replace it and attempt the power up Procedure 4–4 . If the fuse is good go to step 3.

If the white flag does not appears in the center fuse window and the green PIL light still does not come on, check fuse with an ohmeter If the fuse is blown replace the fuse.

S

1

R

F1: 7.5A fuse for AC input

CP2 CP3 3 G1 G2 3

If the fuse continues to blow go to step 5.

3.

2

2 S1 S2

2

1 R1 R2

1

Battery

If the fuse blows again replace the Power Supply Unit. If the fuse is OK and the green PIL light does not come on continue troubleshooting.

4.

Disconnect CP1 at the top of the Power Supply Unit module. Measure the voltage coming into the PSU on the two red wires in the harness connector (S and R). Check to see if the voltage is 220 to 240 VAC. If the voltage is ok go to step 5.

PIL: Green LED for indicating the AC power supply status ALM: Red LED ffor indicating an alarm

If their is no voltage go to Table 4–5.

5.

Turn off the main disconnect switch and, using an ohmmeter, to test for a short in the wiring harnesses at CP2 and CP3. If no short is evident go to step 6. If there is a short replace the shorted wiring harness and attempt power up sequence.

F4: 5A fuse for +24E

F3: 5A Slow-Blow fuse for +24V

4. TROUBLESHOOTING MARO2P10203703E

4–14 Table 4–4. (Cont’d) Troubleshooting Procedure 4 (General Power Supply Troubleshooting) Troubleshooting Procedure 6.

7.

Reconnect harnesses CP2 and CP3 and turn the main disconnect switch to on. Press the ON pushbutton and check for proper operation. If the fuse continues to blow Continue troubleshooting. If fuse F1 has blown again it is due to a short in one of the following. Replace components one at a time the until problem is solved. Wiring harness to servo power control coil Servo power control coil Wiring harness to fans (check in particular where cable and front door hinge point meet). Fan motor shorted. Replace fan motor, replace fuse.

Illustration

Power Supply Unit Module PIL: Green LED Su ly Status AC Power Supply ALM Red Alarm Light

F4: 5-Afuse for +24E F3: 5-AS slow–blow fuse for +24V

4. TROUBLESHOOTING

4–15

MARO2P10203703E

Table 4–5.

Troubleshooting Procedure 5 (Transformer) Illustration

Troubleshooting Procedure 1.

Measure the AC voltage between Multi-Tap Transformer terminals 43 and 44 of TF1. You should see 200 to 240 VAC. If 200 to 240 VAC is present replace the harness between the Power Supply Unit and the Multi-Tap Transformer.

MULTI–TAP TRANSFORMER TF1 A1 A2

EE–0989–550

L1

If voltage is not present or incorrect continue troubleshooting. Refer to Figure 12–1 and Figure 12–3.

L2

F1

575 550 500 480 460 415/240 380/220

F2 F3

F4

3

4

SERVO POWER CONTROL (220VAC) SERVO POWER (210 VAC)

5

6

13

14

23

24

100 VAC

F5

OV 575 550 500 480 460 415/240 380/220 24

2

30A

OV 575 550 500 480 460 415/240 380/220 ST1

L3

1

7.5A

43 44

220 VAC

OV 51 52

ST2

THERMOSTAT FOR OVERHEAT

SPECIFICATION OF TF1 CAPACITY 7.5KVA

2.

Check Multi-Tap Transformer tap settings. As shown in Section 1.9. If the tap settings are set incorrectly Set to correct values.

3.

Check AC voltage between transformer primary terminals. Check between terminals L1 and L2. Check between terminals L2 and L3. Check between terminals L1 and L3. All voltage readings should be the be the same depending on plant supplied 3 phase voltage. If proper voltage is present replace Multi-Tap Transformer. If incorrect or no input voltage is present continue troubleshooting. Refer to Figure 12–1 and Figure 12–3.

F1,F2,F3

IN CASE OF CIRCUIT BREAKER BREAKER

If the tap settings are correct continue troubleshooting. Refer to Figure 12–1 and Figure 12–3.

SPECIFICATION A80L–0026–0010#A

L1 L2 L3 G FUSE UNIT FL1 FL2 FL3

DISCONNECT SWITCH IN CASE OF DISCONNECT SWITCH

30A

F4,F5 7.5A

F1

4. TROUBLESHOOTING MARO2P10203703E

4–16

Table 4–5. (Cont’d) Troubleshooting Procedure 5 (Transformer) 4.

Troubleshooting Procedure

Illustration

Check AC voltage between bottom terminals of fuses FL1, FL2, & FL3. All voltage readings should be the be the same depending on plant supplied 3 phase voltage. If voltage is present replace wiring harness between Multi-Tap Transformer and Fuse Block.

Fuse Block

If voltage is not present continue troubleshooting.

FL1 FL2 FL3

Refer to Figure 12–1 and Figure 12–3. 5.

Check AC voltage between top terminals of fuses FL1, FL2, and FL3. All voltage readings should be the be the same depending on plant supplied 3 phase voltage. If voltage is present fuses F1, F2, F3 is/are blown Replace the bad fuse. If it blows again, replace the Multi-Tap Transformer. If voltage is not present continue troubleshooting. Refer to Figure 12–1 and Figure 12–3.

6.

Check AC voltage between terminals at bottom of the Main Disconnect Switch. All voltage readings should be the be the same depending on plant supplied 3 phase voltage. If voltage is present replace wiring harness between Fuse Block and Main Disconnect Switch.

Main Disconnect Switch

If voltage is not present continue troubleshooting.

7.

Check AC voltage between terminals at top of disconnect. All voltage readings should be the be the same depending on plant supplied 3 phase voltage. Replace Main Disconnect Switch if voltage is present; otherwise, contact plant maintenance.

Fuse Block FL1, FL2, FL3

4. TROUBLESHOOTING

4–17

MARO2P10203703E

Table 4–6.

Troubleshooting Procedure 6 (Power Supply Alarms) Illustration

Troubleshooting Procedure 1.

Check the red alarm light in the center of the Power Supply Unit module. The alarm light should be off. If the light is ON go to Table 4–7.

Power Supply Unit Module PIL: Green LED AC Power Supply Status

If the light is OFF continue troubleshooting.

ALM Red Alarm Light

F4: 5-A fuse for +24E F3: 5-AS slow–blow fuse for +24V 2.

Listen and look for main cabinet cooling fans to be running. Fans should be running indicating that the 200V outputs from PSU, CPZ, ,and CP3 are ON. If fans are not running go to Step 3.

COOLING FANS Fan#1

If fans are running go to Table 4–7.

Backplane Fan

Fan#2 Fan#3

3.

Check for 200 to 240 VAC at Power Supply Unit Module on connector CP2 by checking contacts R1 and S1 or on CP3 by checking contacts R2 and S2. You should see 200 to 240 VAC on either connector. If there is 200 to 240 VAC replace the wiring to the fans and/or the Servo power control relay. If there is not 200 to 240 VAC go to Step 4. Refer to Figure 12–16 and Figure 12–17.

Power Supply Unit Module CP2 CP3 G1 G2 CP2 CP3

S1 S2 R1 R2

4. TROUBLESHOOTING MARO2P10203703E

4–18

Table 4–6. (Cont’d) Troubleshooting Procedure 6 (Power Supply Alarms) Illustration

Troubleshooting Procedure 4.

Check the terminal block TBOP1 on the operator panel for jumpers between terminals (EX COM) and (EX OFF). If you use an external OFF button, there will be a wire on each terminal. If the terminals are connected with a jumper wire check for loose screws and good contact. If an external OFF button is used test for continuity of the external OFF, and DIL circuits replace it if necessary. Continue troubleshooting.

CNOP PORT 2

CRS1

CNHM SVON1

EXON

SVON2

EXCOM

E STOP1

EXOFF

E STOP2

EMGIN1

EMGOUT1

EMGIN2

EMGOUTC

FENCE 1

EMGOUT2

FENCE 2

KA1

Refer to Figure 12–16 and Figure 12–17.

5.

On the operator panel, momentarily connect (Ex ON) to (Ex COM). Controller should turn on. If the controller turns on there is a break in the on/off switch circuit replace any damaged wire or the on/off switch circuit. If the controller does not turn on replace the Power Supply Unit module.

KA2

KA3

Refer to Figure 12–16 and Figure 12–17.

TBOP2

TBOP1

KA4

4. TROUBLESHOOTING

4–19

MARO2P10203703E

Table 4–7.

Troubleshooting Procedure 7 (Power Supply Output) Illustration

Troubleshooting Procedure Check fuse F3 at the bottom of the Power Supply Unit. A white flag in the center of the fuse indicates it is bad and that 24V power is missing. If the fuse is blown there might be a short circuit in one of the following: -Backplane (See Figure 4–1 and Figure 4–2) -24VDC Cooling Fans for module card cage -Process I/O 24 VDC supply -Main CPU Module -Modular I/O 24 VDC supply -Option #1 Card -Option #2 Card -Option #3 Card

Power Supply Unit Module ALM: Red LED for indicating an alarm

F4: 5-A fuse for +24E

F3: 5-AS slow blow fuse for +24V

Isolate the short and replace the defective component. If the fuse is good replace the Power Supply Unit. Refer to Figure 12–6, Figure 12–7 and Figure 12–8. Figure 4–1. 24 Volt (24V) Power Distribution Chart

JNA3

CA44

JRM10

JRM3

3 JD1A

1.

For 5 slot backplane only

CNOP (FOR PAINT ONLY)

4. TROUBLESHOOTING MARO2P10203703E

4–20

JNA3

JRA5

#3 CRM10

JRA5

Figure 4–2. 24 Volt (24E) Power Distribution Chart

For 5 slot backplane only

ISB CNOP

4. TROUBLESHOOTING

4–21

MARO2P10203703E

4.5 CLASS 2 FAULTS TROUBLESHOOTING

A Class 2 Fault occurs when frozen text (letters or numbers) are displayed on the teach pendant. This indicates a problem with the main CPU printed circuit board caused by either the memory, processor, the board itself, or a bad teach pendant cable. Use Table 4–8 to troubleshoot a class 2 fault. Table 4–8.

Class 2 Faults Troubleshooting Procedure

Troubleshooting Procedure 1.

Is the Battery light on the main CPU module on? If the Battery light is on  replace the battery. Refer to Procedure 9–1 . Continue troubleshooting.

Perform a cold start of the controller following the procedures in the S ystems PaintTool Setup and Operations Manual. Go to Step 3. 3. Are all four green LEDs on the main CPU board turned on? If all four green LEDs are on continue troubleshooting. 2.

If all four green LEDs are not on troubleshoot the controller using Table 3–4 . 4.

5.

Turn the controller off. Hold down the NEXT and PREV keys on the teach pendant and press the ON button.  Check the teach pendant cable by swapping it with a known working cable or by doing a continuity test.  Does the “BMON>” prompt appear on the teach pendant? If it does not appear, replace the main CPU printed circuit board and reload the software. Otherwise, continue troubleshooting. Perform the following steps on the teach pendant to check the CMOS memory: a. Press the NEXT key twice. b. Press F1, DIAG. c. Press ENTER.The prompt changes to DIAG> (diagnostic monitor). d. Press the NEXT key three times. e

Press F5, TEST.

f.

Press F1, CMOS.

g. Press ENTER. The teach pendant will display a message that gives you an opportunity to exit without destroying the contents of CMOS memory.

CAUTION

Do not continue unless your controller actually has a Class 2 fault. Continuing beyond this point will erase all software stored in the controller including all taught positions in your application. Otherwise, a complete software reload will be required.

h. Press 1, and then press ENTER if you want to continue with the test. The CMOS memory test will take a few minutes to run. If an error is encountered, replace the CMOS module and reload the software. Refer to the Paint Tool SYSTEM R-J2 Controller Software installation manual for more information. If the CMOS memory test passes, continue troubleshooting.

4. TROUBLESHOOTING

4–22

MARO2P10203703E

Table 4–8. (Cont’d) Class 2 Faults Troubleshooting Procedure Troubleshooting Procedure 6.

Perform the following steps on the teach pendant to check the FROM: a. Press the NEXT key three times. b. Press F5, TEST. c. Press F3, FROM. d. Press ENTER. The teach pendant will display a message that gives you an opportunity to exit without destroying the contents of Flash ROM memory. e. Press 1, and then ENTER if you want to continue with the test. The Flash ROM memory test will take a few minutes to run. If an error is encountered, replace the Flash ROM module and reload the software. Otherwise, continue troubleshooting.

7.

Perform the following steps on the teach pendant to check the DRAM: a. Press the NEXT key three times. b. Press F2, DRAM. c. Press ENTER. The teach pendant will display a message that gives you an opportunity to exit without destroying the contents of the DRAM memory. d. Press 1 and then ENTER if you want to continue with the test. The DRAM memory test will take a few minutes to run. If an error is encountered, replace the DRAM module. The software does not have to be reloaded. Otherwise, go to Step 8.

8.

The hardware in your controller is OK. Reload your application software. Refer to the Paint Tool SYSTEM R-J2 Controller Software installation manual for more information.

4. TROUBLESHOOTING

4–23

MARO2P10203703E

4.6 CLASS 3 FAULT TROUBLESHOOTING

A class 3 fault occurs when the teach pendant displays a fault message. This section contains troubleshooting procedures for each class 3 fault message. To determine which procedure to use, perform the following steps: 1. Press the MENUS key on the teach pendant. 2. Select ALARM. 3. Refer to the appropriate section and follow the corresponding troubleshooting procedure. The subsections that follow are arranged in numerical error code order.

4. TROUBLESHOOTING

4–24

MARO2P10203703E

4.6.1

The operator panel emergency stop pushbutton is pressed.

SRVO-001 ER_SVAL1 Operator Panel E-Stop

Remedy: Twist the operator panel emergency stop push button clockwise to reset. Press RESET. If the problem still exists, it is caused by an error in the emergency stop circuit or a bad main CPU. Perform the following troubleshooting procedure: Table 4–9.

SRVO-001 Troubleshooting Procedure Illustration

Troubleshooting Procedure 1.

Make sure that the teach pendant E-stop button is not pressed and that the external emergency stop inputs and fence switch inputs are jumpered or closed.

2.

Reseat the CNOP connector on the operator panel. Reseat the JRM10 connector on the main CPU.

3.

Turn on the controller and check for proper operation. If the problem is still present, continue troubleshooting.

4.

Open the door of the controller. Press and release the E-stop button several times. Listen for relay KA4 to click. Does the relay KA4 on the standard operator panel click? If yesreplace the cable between the operator panel CNOP and main CPU JRM10.

E-Stop button

CNOP

If nocontinue troubleshooting. 5.

Connect jumper wires across terminals 1 and 2 of each switch section of the E-stop switch and then press reset on teach pendant. Does the fault reset? If yesreplace the E-stop switch assembly If noreplace the operator panel.

Refer to Figure 12–9, Figure 12–15 and Figure 12–16.

PORT 2

CRS1

CNHM SVON1

EXON

SVON2

EXCOM

E STOP1

EXOFF

E STOP2

EMGIN1

EMGOUT1

EMGIN2

EMGOUTC

FENCE 1

EMGOUT2

FENCE 2

KA1

KA2

KA3

TBOP2 TBOP1 1

2

E-Stop Switch NC NC 2 1

KA4

4. TROUBLESHOOTING

4–25

MARO2P10203703E

4.6.2

The teach pendant emergency stop (E-Stop) pushbutton has been pressed.

SRVO-002 ER_SVAL1 Teach Pendant E-stop

Remedy: Twist the teach pendant emergency stop pushbutton clockwise to release and press RESET. If the problem still exists, it is caused by the loss of 24VDC to the teach pendant relay RLY2 or the 5VDC signal to the matrix decoding from the normally closed contact of the teach pendant relay RLY2. Any of the following can cause this problem:  A defective teach pendant emergency stop switch.  A defective component on the teach pendant printed circuit board.  Loss of 24VDC to the E-STOP switch (not part of the teach pendant power). This loss of power can be caused by a bad teach pendant emergency stop switch, a broken wire in the teach pendant cable, a bad operator panel, or a bad cable between the operator panel CNOP and the main CPU JRM10. You can fix it by replacing the teach pendant. If you want to troubleshoot the problem further, perform the following troubleshooting procedure: Table 4–10.

SRVO-002 Troubleshooting Procedure

Troubleshooting Procedure 1.

Turn off the controller.

2.

Reseat CNOP at the operator panel interface and connector JRM10 at the main CPU.

3.

Turn on the controller and check for proper operation. If the problem is still present, continue troubleshooting.

4.

One of the following components is bad.  Replace the teach pendant.  Replace the operator panel.  Replace cable between CNOP on the operator panel and JRM10 on the main CPU.  Replace main CPU. Determine the bad component by substituting it with a new component.

Refer to Figure 12–8 and Figure 12–16.

4. TROUBLESHOOTING

4–26

4.6.3 SRVO-003 ER_SVAL1 Deadman switch released

MARO2P10203703E

The teach pendant DEADMAN switch is released while the teach pendant is enabled. Remedy: Press and hold the teach pendant DEADMAN switch. Press RESET. If the problem still exists, perform the following steps:

Table 4–11.

SRVO-003 Troubleshooting Procedure

Troubleshooting Procedure 1.

Turn off the controller.

2.

Reseat the teach pendant cable at both ends, connector JRM10 at the operator panel printed circuit board, and connector JRM10 at the main CPU.

3.

Turn on the controller and check for proper operation. If the problem is still present, continue troubleshooting.

4.

Open the controller door. Turn on the controller. Make sure the teach pendant E-Stop pushbutton is not pressed.

5.

Press and release a DEADMAN switch several times. You should be able to hear relay KA1 click on the operator panel interface. If the relay clicks replace cable between the operator panel interface and the main CPU. After replacing the cable check the DEADMAN switch for proper operation, if problem still exists continue troubleshooting. Go to step 6. If the relay does not click one of the following components is bad:  The teach pendant  The teach pendant cable  The operator panel interface. Determine the bad component by substitution. Problem solved.

6.

If your teach pendant is bad, and you want to troubleshooting the teach pendant continue troubleshooting.

7.

Turn off the controller.

8.

Remove the seven screws on the teach pendant endant back.

9.

Remove the teach pendant back but leave all electrical connectors in place.

10. Press each DEADMAN switch bar while you watch the switch body inside the teach pendant. 11. Make sure that the copper strip presses the switch actuator all the way into the switch body. You should be able to hear and feel it click into place. 12. If the actuator is frozen or will not click sharply, replace the switch. 13. Slide the wiring connector half way off the circuit board connector. 14. Measure the resistance between: Pins 1 and 2 Pins 3 and 4.

NOTE When the DEADMAN switch is not pressed, there is continuity between pins 1 and 2 and no continuity between pins 3 and 4.

NOTE When the DEADMAN switch is pressed, there is no continuity between pins 1 and 2 and continuity between pins 3 and 4. If one or more measurements are bad replace the DEADMAN switch assembly. If the measurements are good the teach pendant is defective replace the teach pendant.

4. TROUBLESHOOTING

4–27

MARO2P10203703E

4.6.4

The safety fence gate is open.

SRVO-004 ER_SVAL1 Fence open

Remedy: Close the gate. Several gates in the workcell might be involved. If the problem still exists, perform the following troubleshooting procedure: Table 4–12.

SRVO-004 Troubleshooting Procedure Illustration

Troubleshooting Procedure 1.

Look at terminals Fence 1 and Fence 2 on TBOP1 on the operator panel interface. Check for a jumper connecting the terminals or a wire on each terminal. There should be continuity between the two terminals. If there is no continuity install a jumper or repair the external fence circuit. If there is continuity continue troubleshooting.

2.

PORT 2

CRS1

CNHM SVON1

EXON

SVON2

EXCOM

E STOP1

EXOFF

E STOP2

EMGIN1

EMGOUT1

EMGIN2

EMGOUTC

FENCE 1

EMGOUT2

FENCE 2

Turn off the controller.

3.

Reseat CNOP at the operator panel interface and connector JRM10 at the main CPU.

4.

Make sure that no EMERGENCY STOP buttons are pressed.

5.

Open the controller door.

6.

Disconnect one end of the fence jumper or external fence circuit.

7.

CNOP

Briefly short the two fence terminals on the operator panel interface together. You should be able to hear and see relay KA4 click on the operator panel interface. If the relay clicks replace the cable between the operator panel interface CNOP and the main CPU connector JRM10.

KA1

KA3

If the relay does not click replace the operator panel. Refer to Figure 12–8 and Figure 12–16.

KA2

TBOP2

TBOP1

KA4

4. TROUBLESHOOTING

4–28

MARO2P10203703E

4.6.5 SRVO-005 ER_SVAL1 Robot Overtravel

An overtravel error occurs when the robot moves beyond the software motion limits, tripping the overtravel limit switch. If more than one axis is moving when the switch is tripped, the controller will report an overtravel error on several axes. Table 4–13.

SRVO-005 Troubleshooting Procedure Illustration

Troubleshooting Procedure 1.

If you have not already done so, continuously press and hold the DEADMAN switch and turn the teach pendant ON/OFF switch to ON.

2.

Hold down the SHIFT key and press RESET.

3.

Press COORD until you select the JOINT coordinate system.

4.

Jog the axis in overtravel off of the overtravel switch.

5.

If you cannot jog the robot off of the overtravel switch the wrong motion inhibit flag has been set; therefore, continue to Step 6. Otherwise, the axis (or axes) are no longer in overtravel and you can end the procedure now.

6.

Cold start the controller and go to Step 1. If the overtravel still cannot be cleared, continue troubleshooting. NOTE In some instances, the teach pendant screen will indicate a FALSE for a given axis when a TRUE should be set because of the way overtravel is read in the software. It is best to perform the following procedure on all of the axes.

7.

Press MENUS.

8.

Select MANUAL FCTNS.

9.

Press F1, [TYPE].

10. Select OT Release. 11. Move the cursor to the OT PLUS or OT MINUS value of the axis in overtravel. The status of OT PLUS or OT MINUS for that axis is TRUE.

MENUS SHIFT

12. Press and hold SHIFT and press F2, RELEASE. 13. Press and hold SHIFT and press RESET. 14. Press COORD until you select the JOINT coordinate system.

RESET

15. Continuously press and hold the DEADMAN switch and turn the teach pendant ON/OFF switch to ON. 16. Jog the axis off of the overtravel switch.

COORD

4. TROUBLESHOOTING

4–29

MARO2P10203703E

Table 4–13. (Cont’d) SRVO-005 Troubleshooting Procedure Troubleshooting Procedure 17. Turn the teach pendant ON/OFF switch OFF and release the DEADMAN switch. If the error cannot be reset continue troubleshooting.

Illustration

Central Processing Unit Power Supply Unit

18. Check fuse F4 on the power supply unit. If the fuse is blown replace it and check for a short circuit in the external 24V circuit (I/O and/or end effector power.)

JRF2

If fuse is not blown continue troubleshooting. 19. Reseat connector JRF2 at the main CPU and connectors CRM11 and JRF2 on the emergency stop control board. 20. Turn on the controller and check for proper operation. If the problem is still present, continue troubleshooting. 21. Using an ohmmeter and the wiring diagrams, check the CRM11 (Emergency Stop Control Board) cable for continuity. If a break is found, replace the cable on CRM11 emergency stop control board. 22. If error still exist, one of the following is bad: Determine the bad component by substitution.  The ribbon connector between the main CPU connector JRF2 and Emergency Stop Control Board connector JRF2.  The Emergency Stop Control Board.  The main CPU. Refer to Figure 12–8 and Figure 12–9.

F4: 5-A fuse for +24E

4. TROUBLESHOOTING

4–30

4.6.6 SRVO-006 ER_SVAL1 Hand Broken

MARO2P10203703E

A hand breakage error occurs when the hand (wrist) breakage detection switch or aux hand breakage detection switch is tripped. Remedy: If you are not using the hand broken function, ensure that the HBK jumper on the Emergency Stop Control Printed Circuit Board is set to the A side. If you are using the hand broken function, perform the following steps: 1. If you have not already done so, continuously press and hold the DEADMAN switch and turn the teach pendant ON/OFF switch to ON. 2. Hold down the SHIFT key and press RESET. The robot can now be moved. 3. Jog the robot to a safe position off of the limit switch. 4. Turn the teach pendant ON/OFF switch to OFF and release the DEADMAN switch.

4. TROUBLESHOOTING

4–31

MARO2P10203703E

If the problem still exists, perform the following troubleshooting procedure: Table 4–14.

SRVO-006 Troubleshooting Procedure

Troubleshooting Procedure 1.

Turn off the controller and check fuse F4 on the power supply unit. If the fuse is blown replace it and check for a short circuit in the external 24V circuit (I/O and/or end effector power.)

Illustration

Power Supply Unit F4: 5-A fuse for +24E

If fuse is not blown continue troubleshooting. 2.

Reseat the CRM10 and JRF2 connectors on the main CPU and the CRM11 and JRF2 connectors on the emergency stop control board.

3.

Turn on the controller and check for proper operation. If the problem still exists, continue troubleshooting.

4.

Test the end effector switch and its wires at the robot for continuity. If there is no continuity replace the switch or its wires. If there is continuity continue troubleshooting.

5.

Set the HBK jumper on the Emergency Stop Control Board to the A side and test the robot for proper operation. If the fault is fixed replace the cable between the main CPU connector CRM10 and the robot. Be sure to reset the jumper on the emergency stop control board to the B side. If the fault is not fixed one of the following components is bad.

Emergency Stop Control Board HBK

HAND BROKEN JUMPER

Power Supply Unit

Determine the bad component by substitution.

 The Emergency Stop control board.  The ribbon cable between the Emergency Stop Control Board and the main CPU.

 Main CPU.

CRM 10

4. TROUBLESHOOTING

4–32

MARO2P10203703E

4.6.7 SRVO-007 ER_SVAL1 External Emergency Stops

An external emergency stop button somewhere in the workcell has been pressed. Remedy: Locate and release the external emergency stop button. Press reset on the operator panel or teach pendant. If the problem still exists, perform the following troubleshooting procedure: Table 4–15.

SRVO-006 Troubleshooting Procedure Illustration

Troubleshooting Procedure 1.

Look at terminals EMGIN1 and EMGIN2 on the operator panel interface. Check for a jumper connecting the terminals or a wire on each terminal. There should be continuity between the two terminals. If there is no continuity install a jumper or repair the external fence circuit. If there is continuity continue troubleshooting.

CNOP PORT 2

CRS1

CNHM SVON1

EXON

SVON2

EXCOM

E STOP1

EXOFF

E STOP2

EMGIN1

EMGOUT1

EMGIN2

EMGOUTC

FENCE 1

KA1

KA2

KA3

EMGOUT2

TBOP2 2.

Turn off the controller.

3.

Reseat the JRM10 connector at the operator panel interface and the JRM10 connector at the main CPU.

FENCE 2

TBOP1

MAIN CPU

KA4

4. TROUBLESHOOTING

4–33

MARO2P10203703E

Table 4–15. (Cont’d) SRVO-006 Troubleshooting Procedure Troubleshooting Procedure 4.

5.

Illustration

Turn off the controller and check for proper operation. If the problem still exists continue troubleshooting.

Make sure that no EMERGENCY STOP push buttons are pressed. Check the operator panel, teach pendant and any other external EMERGENCY STOP buttons that were added.

CNOP PORT 2

CRS1

CNHM SVON1

EXON

KA1 6.

Open the controller door.

7.

Disconnect one end of the EMGIN1 and 2 jumper or external emergency stop circuit.

SVON2

EXCOM

E STOP1

EXOFF

E STOP2

EMGIN1

EMGOUT1

EMGIN2

EMGOUTC

FENCE 1

EMGOUT2

FENCE 2

KA2

KA3 8.

Briefly short the EMGIN1 and EMGIN2 terminals on the operator panel interface TBOP1 together. You should be able to hear relay KA4 click on the operator panel interface. If the relay clicks replace cable between the operator panel CNOP and the main CPU If not replace the operator panel. Refer to Figure 12–8, Figure 12–9 and Figure 12–16.

TBOP2

TBOP1

KA4

4. TROUBLESHOOTING

4–34

MARO2P10203703E

4.6.8

Teach pendant DEADMAN switch was released while enabled.

SRVO-011 ER_SVAL1 TP Released While Enabled

Remedy: Press the DEADMAN switch, then press RESET.

4.6.9

Normal power is on (hot start).

SRVO-012 ER_SVAL1 Power Failure Recovery

Remedy: This message is normal and does not indicate a problem. No action is required by the operator.

4.6.10

One or all of the 24VDC cooling fans in the backplane cage are not running.

SRVO-014 Fan Motor Abnormal (Group:i Axis:j)

Each double-board board cage in the backplane has a cooling fan mounted in its top. Each fan contains a centrifugal switch that opens when the fan is not running.

Table 4–16.

SRVO-014 Troubleshooting Procedure Illustration

Troubleshooting Procedure 1.

With power on, test whether each fan is turning by passing a strip of paper over the top of each board cage. If all fans are turning go to Step 3. If one or more fans are motionless continue troubleshooting.

2.

Remove the circuit boards from the board cage with the motionless fan. Reconnect the four-wire connector on the backplane behind the board cage. Re-install the boards and turn on the controller. If the fault is not fixed replace the fan.

Fan motor Cable

3.

One of the fans or the board is probably defective. Determine which part is bad by temporarily replacing it with a known-good part. If the fault is not fixed continue troubleshooting.

Connector

Backplane Back lane

4.

Replace the backplane.

4. TROUBLESHOOTING

4–35

MARO2P10203703E

4.6.11 SRVO-015 ER_SVAL1 System Over Heat (Group:i Axis:j)

The temperature in the controller is too high, or the overheat sensor located on the backplane has opened.

Table 4–17.

SRVO-015 Troubleshooting Procedure

Troubleshooting Procedure 1.

Check the heat exchanger fans for operation. If the fans are operating replace the backplane. If one or more fans do not work continue troubleshooting.

2.

Check the AC voltage at the terminals of the non-working fan(s). If the voltage is 200 to 240 VAC replace the non operational fan(s). If the voltage is out of tolerance replace the fan motor wiring harness.

Print Reference Figure 12–1.

4. TROUBLESHOOTING

4–36

MARO2P10203703E

4.6.12

The SVON (servo ON/OFF) input is asserted.

SRVO-019 ER_SVAL1 SVON input

Perform the following troubleshooting steps.

Table 4–18.

SRVO-019 Troubleshooting Procedure

Troubleshooting Procedure 1.

Check for continuity between SVON1 and SVON2 on the operator panel interface terminal strip TBOP2. If no continuity jumper terminals together or replace application wiring.

Print Reference Figure 12–16.

If there is continuity replace the operator panel. If the alarms still exist replace the cable between the operator panel (CNOP) and the Main CPU (JRM10). If alarm still exists replace the main CPU.

4.6.13 SRVO-020 ER_SVAL1 SRDY off (TP)

The teach pendant cable is disconnected or a momentary break occurred in any of the teach pendant emergency stop circuits; DEADMAN switch or teach pendant EMERGENCY STOP button. Perform the following troubleshooting steps.

Table 4–19.

SRVO-020 Troubleshooting Procedure

Troubleshooting Procedure 1.

Replace the teach pendant cable or teach pendant as necessary. If alarm still exists replace the cable between the operator panel (CNOP) and the main CPU If alarm still exists replace the main CPU.

Print Reference Figure 12–8 and Figure 12–16.

4. TROUBLESHOOTING

4–37

MARO2P10203703E

4.6.14 SRVO-021 ER_SVAL1 SRDY off (Group:i Axis:j)

The Magnetic Control Contactor on the servo amplifier cannot turn on and no obvious emergency stop conditions exist. Perform the following troubleshooting steps. Refer to Table 4–20. NOTE The paint robot is normally set up for Group 1, Axes 1-6 or Group 1, Axes 1-7. The opener, if present is usually set up as Group 2. The alarms will indicate which group is having problems.

Table 4–20.

SRVO-021 Troubleshooting Procedure

Troubleshooting Procedure 1.

Check the continuity of the plunger switch that detects an open controller door. The switch should Figure 12–1 show continuity when the actuator is pressed. ressed. Figure 12–15. If the plunger p g switch does not show continuity y replace the plunger g switch. If the plunger switch shows continuity continue troubleshooting.

2.

Remove connector from CRM15 on the Emergency Stop Control Board and check switch continuity thru CRM15 socket.

3.

Check the servo amplifier connections between the Emergency Stop Control Board.

4.

Check servo amplifier switch settings. See Figure 4–3.

5.

Check for proper cable connections between Emergency Stop Control Board and servo amplifier. See Figure 4–4.

6.

Turn on the controller and check for proper operation. If the problem is still exists continue troubleshooting.

7.

Check the Magnetic Control Contactor coil for continuity: If the Magnetic Control Contactor (MCC) coil is bad replace the MCC. If the MCC coil is good  continue troubleshooting.

8.

Print Reference

One of the following components is bad. Determine the bad component by substituting it with a new component. Replace the following components one at a time until problem the is solved.  The Emergency Stop Control Board  Cable between the Emergency Stop Control Board (CRR15) and the MCC.  The cable between the MCC (CRR20) and the servo amplifiers.  The ribbon connector between the main CPU and the Emergency Stop Control Board (JRV1).  Cable from Emergency Stop Control board JS1 thru JS6 and servo amplifier.  The servo amplifier.

4. TROUBLESHOOTING

4–38

MARO2P10203703E

Figure 4–3. Servo Amplifier Switch Settings

OFF There are four channel switches above the 7-segment LED behind the terminal board cover on the front of the servo amplifier. These switches should be set as described below before you use the servo amplifier. The switches are sequentially numbered 1, 2, 3, and 4 with the one at the bottom as switch 1. The OFF position is on the left and the ON position is on the right. Switch 1 ON Type B Interface OFF Type A Interface Switch 1 determines the interface type. Paint controllers use the Type B interface for Robot Axes 1–6 Set switch 2 to OFF. If the setting is incorrect, SRVO-021 SRDY OFF alarm might occur. Normal settings for switches 3 and 4 are in the ON position. Refer to Figure 4–6.

ON 4 3 2 1 LED

4. TROUBLESHOOTING

4–39

MARO2P10203703E

Figure 4–4. Connector and Terminal (T1) Identification

AO6B-6089-H201-H210

AO6B-6089-H101-H106 7

5

7

3

6

5

8 9

4

3

8 9 2

1

NAME

INDICATION

REMARK

Connector for L-Axis (major channel) type A interface Connector for M-Axis (minor channel) type A interface

JV1B

TYPE A Interface

JV2B

TYPE A Interface

3

Connector for L-Axis (major channel) type B interface

JS1B

TYPE B Interface

4

Connector for L-Axis (minor channel) type B interface N/A

JS2B

TYPE B Interface

JF1

TYPE B Interface

6

N/A

JF2

TYPE B Interface

7

N/A

JA4

TYPE B Interface

CX3

1 pin 3 pin

CX4

2 pin: ESP (at open) 3 pin: 24V

1 2

5

8 Connector for main power supply (Y key) Connector for expo signal 9 (X key)

1

4. TROUBLESHOOTING

4–40

4.6.15 SRVO-022 ER_SVAL1 SRDY on (Group:i Axis:j)

MARO2P10203703E

The Magnetic Control Contactor on the servo amplifier is on before it is expected to be on. Perform the following troubleshooting steps.

Table 4–21.

SRVO-022 Troubleshooting Procedure

Troubleshooting Procedure 1.

Print Reference

Check the Magnetic Control Contactor (MCC) for stuck contacts. If the contacts are stuck replace the MCC. If the MCC is OK continue troubleshooting.

2.

Refer to the Section 4.6.14.

4.6.16 SRVO-023 ER_SVAL1 Stop Error Excess (Group:i Axis:j)

The axis position is too far from its commanded position when the robot is stopping, or the robot is stopped and it will not move. The torque necessary to decelerate an overloaded motor could cause this alarm to occur. Perform the following troubleshooting steps.

Table 4–22.

SRVO-023 Troubleshooting Procedure

Troubleshooting Procedure 1.

Make sure that the load on the robot is not excessive.

2.

Check that the affected axis is not binding and rotates freely. Especially, make sure that the brake is not stuck.

3.

Check that the motor power cables do not have any open wires and that the cables are not misconnected.

4.

Either the motor or the servo amplifier is bad. Determine the bad component by substituting it with a new component.

4.6.17 SRVO-024 ER_SVAL1 Move Error Excess (Group:i Axis:j)

Print Reference

The servo error is too big when the robot is moving, or the robot moves when it is supposed to be stopped. Remedy: Same as SRVO-023, Stop Error Excess.

4. TROUBLESHOOTING

4–41

MARO2P10203703E

4.6.18 SRVO-026 ER_WARN Motor Speed Limit (Group:i Axis:j)

The motor cannot rotate as fast as the calculated speed required for the current motion. Remedy: Even though this is just a warning, every attempt should be made to eliminate this error by modifying the programmed speed or motion.

4.6.19

The robot is not mastered.

SRVO-027 ER_WARN Robot Not Mastered (Group:i Axis:j)

Remedy: Master the robot. Refer to Chapter 8.

4.6.20

The robot is not calibrated. Remedy: Calibrate the robot. Refer to Chapter 8.

SRVO-033 ER_WARN Robot Not Calibrated (Group:i Axis:j)

4.6.21 SRVO-035 ER_WARN Joint Speed Limit (Group:i Axis:j)

4.6.22 SRVO-036 Imposition Time Over (Group:i Axis:j)

Joint cannot rotate as fast as the calculated speed required for the current motion. Remedy: Even though this is just a warning, every attempt should be made to eliminate this error by modifying the programmed or motion speed.

The robot is not in position for the specified period, or the servo error is in excess of the specified position when the robot is stopping, or the robot is stopped and it will not move. The torque necessary to decelerate an overloaded motor could cause this alarm to occur. Remedy: Same as SRVO-023, Stop Error Excess.

4.6.23 SRVO-037 ER_SVAL1 IMSTP Input (Group:i Axis:j)

IMSTP (immediate stop) UOP (User Operator Panel) input asserted. Remedy: If using a UOP, determine the cause and repair. If not using UOP, select the I/O menus and zero UOP mapping.

4. TROUBLESHOOTING

4–42

4.6.24 SRVO-038 PULSE MISMATCH (Group:i Axis:j)

MARO2P10203703E

When the controller was powered up, one or more of its axes was at a different position from when it was powered off. This might occur when a motor is replaced or when a CPU from one controller is installed in another. Remedy: Perform the following procedure:

Table 4–23.

SRVO-038 Alarm Reset Procedure

Reset Procedure 1.

Press MENUS.

2.

Select SYSTEM.

3.

Press F1, [TYPE].

4.

Select MASTER/CAL

If MASTER/CAL is not displayed, perform the following: a. Select VARIABLES. b. Select $MASTER_ENB. c. Set $MASTER_ENB to 1. d. Press F1 [TYPE] and select MASTER/CAL. 5.

Press F3, RES_PCA.

6.

Press F4, YES.

7.

Press RESET to clear the alarm without turning off the controller. If the fault does not reset, cold start the controller. Refer to Procedure 10–3 .

Print Reference

4. TROUBLESHOOTING

4–43

MARO2P10203703E

4.6.25 SRVO-042 ER_SVAL2 MCAL Alarm (Group:i Axis:j)

The servo amplifier magnetic control contactor (MCC) is welded closed. If the contact of the MCC is already closed when the contactor is turned on, this alarm circuit regards the contact as welded closed and the MCC alarm occurs. This error code can also be caused by improper controller shut down sequence (see Procedure 10–5 ) or improper servo lockout procedure (see Procedure 10–6 ). Perform the following troubleshooting procedure:

Table 4–24.

SRVO-042 Troubleshooting Procedure

Troubleshooting Procedure 1.

2. 3.

Does this alarm occur with SRVO-049? If SRVO-049 occurs check for the absence of input three-phase voltage. Connect as necessary. Check (reseat) the cable between the servo amplifier and the Emergency Stop Control Board. Turn the controller power off for fifteen second and then turn it on again. See Procedure 4–1 . If the alarm is still present, continue troubleshooting. Replace the servo amplifier. If error still exists replace re lace the cable between the Emergency Stop Sto Control Board and the servo amplifier. If error still exists replace re lace the cable between the Emergency Stop Sto Control Board (JRV1) and the main CPU. If error still exists replace replace the Emergency Stop Control Board. Board If error still exists replace the main CPU.

Print Reference Figure 12–8 Figure 12–9.

4. TROUBLESHOOTING

4–44

4.6.26 SRVO-043 ER_SVAL2 DCAL Alarm (Group:i Axis:j)

MARO2P10203703E

The regenerative energy produced by the motor exceeded the specifications.

NOTE The amplifier supplies the energy (velocity energy) to the motor when the axis (without gravity) moves at the acceleration and constant speed. When the axis moves at the deceleration and constant speed and with gravity (gravity energy), the motor supplies this energy (velocity energy plus gravity energy) to the amplifier.

This energy from the motor to the amplifier is the regenerative energy. The amplifier discharges this energy by converting this energy to heat energy through the discharge resistor. If the charged energy exceeds the discharged energy, this alarm occurs. Remedy: Check the LED on the amplifier, then perform the following troubleshooting procedure.

Table 4–25.

SRVO-043 Troubleshooting Procedure

Troubleshooting Procedure 1.

Is “4” or “5” indicated on the servo amplifier 7-segment display? Step 2. If 4 is indicated go to Ste If 5 is indicated go to Step 3. If no number is indicated check the cables between the servo amplifier and Emergency Stop Control Board. Board Verify the correct switch 3 and 4 setting (see Figure 4–5). 4 5) If the error still exists replace the servo amplifier. If the error still exists re replace lace the cable between the servo amplifier am lifier and the Emergency Stop Sto Control Board. If the error still exists replace the ribbon cable (JRV1) between the main CPU and Emergency Stop Control Board. Sto If the error still exists replace the Emergency Stop Control Board.

2.

3.

If the error still exists replace the main CPU. A “4” is indicated (DCSW alarm) when the regenerative transistor is on continuously for one second or longer. See Figure 4–6. Reduce the load of the robot. If error still exists replace the servo amplifier. A “5” is indicated (DCOH alarm). See Figure 4–6. The DCOH alarm is caused when the regenerative resistor overheats and is sensed by the thermostat or the thermostat in transformer TF1 opens. opens If the average regenerative energy is excessive  This alarm occurs when the acceleration/deceleration frequency is high or gravity energy at the axis is large. Relax the o operating erating conditions. For robots with extended axes or if the thermostat is incorrectly wired or is defective When a separate regenerative discharge unit or power transformer for the servo controller is used, check the wiring for the thermostat according to the connection diagrams for proper wiring.

Print Reference Figure 12–1 Figure 12–3

4. TROUBLESHOOTING

4–45

MARO2P10203703E

Figure 4–5. Switch 3 and 4 Settings SWITCH 3 AND 4 SETTINGS The setting varies depending on the regenerative discharge resistance used. If the setting is incorrect, the regenerative discharge control circuit failure alarm (DCSW) cannot be detected. Normal setting for switches 3 and 4 are ON. SVU1 (12, 20) Regenerative Discharge Resistor

3

4

ON

ON

Built-in

ON

OFF

Separate A06B-6089-H510

OFF

OFF

Separate A06B-6089-H500

SVU1 (40, 80), SVU2 3

/

Regenerative Discharge Resistor

4 Built-in

ON

ON

ON

OFF

Separate A06B–6089-H500

OFF

OFF

Separate A06B-6089 H713(800W), A06B-6089-H714(1200W) SVU1 (130)

3

Regenerative Discharge Resistor

4

ON

ON

Built-in

ON

OFF

Separate A06B-6089-H711

OFF

OFF

Separate A06B-6089-H712

Figure 4–6. Servo LED Display SERVO LED DISPLAY Regenerative discharge control circuit failure alarm (DCSW) Over regenerative discharge alarm (DC0II)

4 5

This alarm occurs if: The short-time regenerative discharge energy is too high. The regenerative discharge circuit is abnormal. This alarm occurs if: The average regenerative discharge energy is too high (too frequent acceleration/deceleration). The transformer overheats.

4. TROUBLESHOOTING

4–46

4.6.27 SRVO-044 ER_SVAL2 HVAL Alarm (Group:i Axis:j)

MARO2P10203703E

The DC voltage on the main power circuit of the servo amplifier exceeded specification. HVAL (High Voltage Alarm) Remedy: Check the three-phase voltage to the servo amplifier input. It should not exceed 253 VAC phase-to-phase. If the problem still exists, perform the following troubleshooting procedure: Table 4–26.

SRVO-044 Troubleshooting Procedure

Troubleshooting Procedure 1.

Is the voltage of the three-phase input servo to the amplifier higher than 253 VAC? If the voltage than 253 VAC check multi-tap transformer TF1 taps. If it is within limits 200 to 240 VAC continue troubleshooting.

2.

Is the load of the robot within the specification? This alarm can be caused by the charge of the regenerative energy when the load exceeds the specification. If it exceeds the specification reduce the load of the robot. If the specification is not exceeded continue troubleshooting.

3.

Replace the servo amplifier. If the error still exists replace replace the cable between the Emergency Stop Control Board and the servo amplifier. If error still exists replace the cable (JRV1) between the Emergency Stop Control Board and the main CPU. CPU replace Stop Control Board. If error still existsre lace the Emergency Sto If error still exists replace the main CPU.

Print Reference Figure 12–3

4. TROUBLESHOOTING

4–47

MARO2P10203703E

4.6.28

The current in the main power circuit of the servo amplifier exceeded specification. The servo amplifier LED should display “8”, “9”, “6”, “8.”, “9.”, or “6.”.

SRVO-045 ER_SVAL2 HCAL Alarm (Group:i Axis:j)

Remedy: If no alarm is indicated on the servo amplifier 7-segment display, check the cabling between the servo amplifier (JS1B or JS2B) and the Emergency Stop Control Printed Circuit Board (JS1-6). If the problem still exists, perform the following troubleshooting procedure: Table 4–27.

SRVO-045 Troubleshooting Procedure

Troubleshooting Procedure 1.

Disconnect the motor power lines from the amplifier terminals and turn on the power. This alarm will re-occur if the servo amplifier is defective. If an HCAL (High Current Alarm) alarm occurs replace the servo amplifier. If an HCAL alarm does not occur continue troubleshooting.

2.

Remove the motor power lines from the amplifier terminals and check the continuity between GND and each of the lines U, V, and W that go to the motor. If any are short-circuited go to Step 3. If all are not shorted go to Step 4.

3.

Remove the power lines from the motor connectors (J1-6) and re-check the continuity between GND and each of the lines U, V, and W to the robot motor. If any lines are shorted, the motor is defective replace the motor. If all lines are open the power lines to the motor are defective replace the line that was shorted to GND.

4.

Remove the motor power lines from the amplifier terminals and measure the resistance between U-V, V-W, and W-U on the servo amplifier using a measuring instrument sensitive enough to detect small resistances. If the three measured values are the same go to Step 5. If the three measured values are different go to Step 6.

5.

Remove the power lines from the motor connectors and remeasure the resistance between U-V, V-W, and W-U using a measuring instrument sensitive enough to detect small resistances. If the three measured values are the same the power lines are defective. Replace the power lines. If the three measured values are different the motor is defective replace the motor. Go to Step 7.

6. 7.

Replace the servo amplifier. Continue troubleshooting. Check whether you are using the robot under conditions that exceed the specification. For example, load, duty, and so forth. If there is no mechanical reason (binding and so forth) to cause this alarm, alarm this alarm might occur under conditions that exceed the specification. specification If you are using the robot over the specification, relax the operating conditions. If the error still exists existsreplace replace the cable between the servo amplifier and the Emergency Stop Control Board. If the error still exists replace replace the cable between the Emergency Stop Control Board (JRV1) and the main CPU. If the error still exists replace replace the Emergency Stop Control Board Board. If the error still exists replace the main CPU.

Print Reference

4. TROUBLESHOOTING

4–48

4.6.29 SRVO-046 ER_SVAL2 OVC Alarm (Group:i Axis:j)

4.6.30 SRVO-047 ER_SVAL2 LVAL Alarm (Group:i Axis:j)

MARO2P10203703E

The average current calculated by the servo software exceeded specification. OVC (Over Current Alarm). This is caused by excessive load or by a collision with an axis hard stop or an object in the robot work envelope.

The DC voltage on the main power circuit of the servo amplifier is lower than specification. LVAL (Low Voltage Alarm) Remedy: If no alarm is indicated on the servo amplifier LED, check the cabling between the servo amplifier and the Emergency Stop Control Board. If the problem still exists, perform the following troubleshooting procedure: Table 4–28.

SRVO-047 Troubleshooting Procedure

Troubleshooting Procedure 1.

Does the LED of the amplifier indicate “2” ? Check the three-phase input voltage to the amplifier. If the LED indicates a “2” the voltage is lower than the recommended specification. The phase-to-phase input voltage at the servo amplifier terminals should measure at least 170VAC between each phase Check for 200 to 240 VAC input power to terminals 13 and 14 of the servo amplifier. If it is low or missing, check multi-tap transformer TF1 taps, fuses, and Magnetic Control Contactor (MCC). If the alarm occurs again replace the servo amplifier. Go to Step 4.

2.

Does the LED of the amplifier indicate “3” ? This indicates the DC current in the main power circuit is too low. Check the three-phase 200 to 240 VAC input voltage to the amplifier. If the voltage is lower than 170VAC the three-phase input voltage needs to be adjusted to within the FANUC specifications. Check the multi-tap transformer TF1 taps and fuses.

3.

Did the circuit breaker on the servo amplifier trip? (If a circuit breaker trips, this alarm will occur incidentally.) If a circuit breaker trips turn on the breaker. If it trips again, replace the servo amplifier. Continue troubleshooting.

4.

Does the LED of the amplifier indicate a “7”? This alarm could occur when the contact of the magnetic contactor (MCC) is melted (welded together).

Refer to the SRVO-042 MCAL alarm. See Section 4.6.25. 5.

If the servo amplifier has been replaced and the error still exists; replace the cable between the servo amplifier am lifier and the Emergency Stop Sto Control Board. If error still exists replace the cable between the Emergency Stop Control Board (JRV1) and the main CPU CPU. If error still existsre replace Stop Control Board. lace the Emergency Sto If error still exists replace the main CPU.

Print Reference Figure 12–1 Figure 12–3

4. TROUBLESHOOTING

4–49

MARO2P10203703E

4.6.31 SRVO-049 ER_SVAL1 OHAL1 Alarm (Group:i Axis:j)

The servo amplifier or transformer is overheated. OHAL1 (Over Heat Alarm 1) Remedy: Check the fans and the heat exchange unit for proper operation. If the problem still exists, perform the following troubleshooting procedure: Table 4–29.

SRVO-049 Troubleshooting Procedure

Troubleshooting Procedure 1.

Relax the operating condition (duty cycle). If the alarm no longer g occurs the operating g condition of the robot exceeded the specification.

Print Reference Figure 12–8 Figure 12–15

If the alarm still occurs replace the servo amplifier If no alarm is indicated on the servo amplifier 7-segment display check the cabling between the servo amplifier and the Emergency Stop Control Board. If the cabling is not bad, continue troubleshooting. 2.

Replace the cable between the Emergency Stop Control Board (JRV1) and the main CPU. If the alarm still occurs replace the Emergency Stop Control Board. If the alarm still occurs replace the main CPU.

4.6.32 SRVO-050 ER_SVAL1 CLALM Alarm (Group:i Axis:j)

The servo software detected a disturbance torque that was too high or a collision occurred and tripped a collision detection alarm. CLALM (Collision Alarm) Remedy: Reset the robot by using the teach pendant reset and jog the robot away from obstructions. If the problem still exists, perform the following troubleshooting procedure: Table 4–30.

SRVO-050 Troubleshooting Procedure

Troubleshooting Procedure 1.

Does the load exceed the specifications? (When the robot moves over the specifications, the estimated disturbance torque might become larger and this alarm could occur.) If the load exceeds the specifications lower the load to within the specifications. If the load does not exceed the specifications continue troubleshooting.

2.

Is the three-phase AC input voltage to the servo amplifier lower than 170VAC phase-to-phase (O-V, V-W, U-W). If the voltage is lower than 170VAC increase the input voltage to within the specifications. Check multi-tap transformer TF1 taps and fuses. If the voltage is not lower than 170VAC continue troubleshooting.

3.

Check the continuity of the motor power wires (from the servo amplifier to the motor). If the motor power wires are defective replace as required. If after the motor power wires have been replaced and the problem still exists replace the main CPU.

Print Reference Figure 12–1 Figure 12–3

4. TROUBLESHOOTING

4–50

4.6.33

MARO2P10203703E

The feedback current is abnormal. CUER (Current Error)

SRVO-051 ER_SVAL2 CUER Alarm (Group:i Axis:j) Table 4–31.

SRVO-051 Troubleshooting Procedure

Troubleshooting Procedure 1. 2.

Print Reference

Replace the servo amplifier. If the error still exists continue troubleshooting. Replace the main CPU.

4.6.34

The servo software detected a disturbance torque that was too high.

SRVO-053 ER_WARN Disturbance excess (Group:i Axis: J)

Remedy: Reset the robot and try again.

4.6.35

The DSP module program memory is defective. DSM (Digital Servo Module).

SRVO-054 ER_SVAL1 DSM memory error (DS:i)

4.6.36 SRVO-061 ER_SVAL2 CKAL Alarm (Group:i Axis:j)

Remedy: Replace the appropriate DSP module on the main CPU and continue.

The clock for the rotation counter in the serial pulse coder is abnormal. CKAL (Clock Alarm)

Table 4–32.

SRVO-061 Troubleshooting Procedure

Troubleshooting Procedure 1.

Did a SRVO-068 DTERR, or SRVO-069 CRCERR, or a SRVO-070 STBERR occur with this alarm? If YES disregard error SRVO_061 and refer to the remedy of any of the other three alarms. If NO alarms occur replace the serial pulse coder on the specified axis and master the robot. See Chapter 8.

Print Reference

4. TROUBLESHOOTING

4–51

MARO2P10203703E

4.6.37 SRVO-062 ER_SVAL2 BZAL Alarm (Group:i Axis:j)

The battery voltage for the serial pulse coders is zero volts. BZAL (Battery Zero Alarm).

Table 4–33.

SRVO-062 Troubleshooting Procedure

Troubleshooting Procedure 1.

Did a SRVO-068 DTERR, or SRVO-069 CRCERR, or a SRVO-070 STBERR occur with this alarm? If YES  disregard the BZAL alarm and refer to the procedure for the other alarm (SRVO-68 - SRVO-70). If NO continue troubleshooting.

2.

Did this alarm message list only one axis? If YES check the battery cable for the serial pulse coder of the axis listed in the alarm message. Reconnect, or replace as necessary. Go to Step 4. If NO continue troubleshooting.

3.

Press the teach pendant emergency stop button. Turn the controller on. Check the pulse coder batteries for 6 VDC at the battery terminals on the battery box in the door of the controller. Do the batteries read 6 VDC ? If YES replace the battery compartment cable. Go to Step 4. If NO replace the batteries. Continue troubleshooting.

4.

Perform serial pulse coder reset procedure under SRVO-038 alarm.

5.

Turn the controller off and then back on.

6.

It might be necessary to perform the SRVO-038 procedure again. If alarm still exists on only one axis Replace the serial pulse coder (after verifying battery cable is good) .

Print Reference

4. TROUBLESHOOTING

4–52

4.6.38 SRVO-063 ER_SVAL2 RCAL Alarm (Group:i Axis:j)

MARO2P10203703E

The built-in rotation counter on the serial pulse coder is abnormal. RCAL (Revolution Clock Alarm).

Table 4–34.

SRVO-063 Troubleshooting Procedure

Troubleshooting Procedure 1.

Print Reference

Did a SRVO-068 DTERR, or SRVO-069 CRCERR, or a SRVO-070 STBERR occur with this alarm? If YES disregard SRVO_063 and refer to the remedy of any of the other three alarms. If NO replace the serial pulse coder on the specified axis and master the robot. See Chapter 8.

4.6.39 SRVO-064 ER_SVAL2 PHAL Alarm (Group:i Axis:j)

The relationship between the analog signals on the serial pulse coder are abnormal. PHAL (Phase Alarm).

Table 4–35.

SRVO-064 Troubleshooting Procedure

Troubleshooting Procedure 1.

Print Reference

Did a SRVO-068 DTERR, or SRVO-069 CRCERR, or a SRVO-070 STBERR occur with this alarm? If YES disregard SRVO_064 and refer to the remedy of any of the other three alarms. If NO replace the serial pulse coder on the specified axis and master the robot. See Chapter 8.

4.6.40

The serial pulse coder batteries are low. BLAL (Battery Low Alarm).

SRVO-065 ER_WARN BLAL Alarm (Group:i Axis:j)

Table 4–36.

SRVO-065 Troubleshooting Procedure

Troubleshooting Procedure 1.

Did a SRVO-068 DTERR, or SRVO-069 CRCERR, or a SRVO-070 STBERR occur with this alarm? If YES disregard SPC_065 and refer to the remedy of any of the other three alarms. If NO replace the SPC backup batteries with controller power on.

NOTE: Replace the battery as soon as possible when this alarm occurs, otherwise, if the battery voltage goes to zero volts, the robot will require remastering.

Print Reference

4. TROUBLESHOOTING

4–53

MARO2P10203703E

4.6.41 SRVO-066 ER_SVAL2 CSAL Alarm (Group:i Axis:j)

The serial pulse coder ROM checksum data are abnormal. CSAL (Check Sum Alarm).

Table 4–37.

SRVO-066 Troubleshooting Procedure

Troubleshooting Procedure 1.

Print Reference

Did a SRVO-068 DTERR, or SRVO-069 CRCERR, or a SRVO-070 STBERR occur with this alarm? If YES disregard SRVO_066 and refer to the remedy of any of the other three alarms. If No  alarms occur replace the serial pulse coder on the specified axis and master the robot. See Chapter 8.

4.6.42

The serial pulse coder overheated. OHAL2 (Over Heat Alarm).

SRVO-067 ER_SVAL2 OHAL2 Alarm (Group:i Axis:j)

Table 4–38.

SRVO-067 Troubleshooting Procedure

Troubleshooting Procedure 1.

Did a SRVO-068 DTERR, or SRVO-069 CRCERR, or a SRVO-070 STBERR occur with this alarm? If YES  disregard SRVO-067 and refer to the remedy of any of the other three alarms. If NO continue troubleshooting.

2.

Does the operating condition (load, duty) exceed the specifications? If the operating condition exceeds the specifications relax the operating condition within the specification. (Reduce the load, change the program). If it operating conditions does not exceed the specifications continue troubleshooting.

3.

Turn off the controller and when the temperature of the motor returns to normal, turn it back on. If the alarm immediately occurs again the built-in thermostat in the serial pulse coder is defective. Replace the serial pulse coder. If the alarm occurs again, but not immediately the motor is generating too much heat. Replace the motor.

Print Reference

4. TROUBLESHOOTING

4–54

MARO2P10203703E

4.6.43

The main CPU sent the serial data request signal to the serial pulse coder, but did not receive serial data from the serial pulse coder.

SRVO-068 ER_SVAL2 DTERR Alarm (Group:i Axis:j)

In order to troubleshoot the 24V to 5V converter, it will be necessary to operate the power supply with the covers removed from the robot. The following procedure is necessary to insure the proper pre-test conditions are met. WARNING The robot is designed to operate in a hazardous location. The covers are an integral part of the protection therefore all of the steps listed below must be followed EXACTLY AND IN THE ORDER PRESENTED. These steps must be taken IN ADDITION TO NORMAL SAFETY PRECAUTIONS. Failure to follow these procedures could result in an explosion. Step

1 Consult your plant procedures to insure the area around the robot is KNOWN to be NON HAZARDOUS. Typically this will include the booth in which the robot is located. 2 Take steps to insure the area around the robot will REMAIN NON HAZARDOUS for the duration of the test procedure and until the covers are replaced on the robot. 3 Install a TEMPORARY jumper between terminals ISTB 1 and ISTB 4. 4 Install a TEMPORARY jumper from terminals ISTB 5 to ISTB 8. 5 Shut off the air supply to the robot. 6 If the above procedure causes a loss of controller power, press the purge enable pushbutton and wait 5 minutes. When the PURGE COMPLETE light comes on, the controller can be turned on. 7 After you complete Steps 1-6 remove the covers on the robot and with the controller powered ON, perform the required troubleshooting. 8 After the troubleshooting is complete, replace the covers tightly. 9 Turn on the air supply to the robot. 10

Turn off the controller and open the disconnect switch.

11 Remove both temporary jumpers and insure the connections to the ISTB are correct. WARNING DO NOT TAMPER WITH THE SETTING of the purge timer; otherwise, you could cause an explosion.

4. TROUBLESHOOTING

4–55

MARO2P10203703E

WARNING For continued safety, the temporary jumpers must be removed; otherwise, you could cause an explosion. 12

Close the main disconnect to the controller.

13

Press the PURGE ENABLE pushbutton. Hold the pushbutton until it lights (approximately 10 seconds). This indicates adequate purge air flow. If the pushbutton does not light, purge air flow is not adequate and the robot should be checked for leaks.

14

After the PURGE COMPLETE light comes on, the controller can be turned back on. The controller can not be turned on before the purge complete light comes on.

Table 4–39.

SRVO-068 Troubleshooting Procedure Print Reference

Troubleshooting Procedure 1.

2.

If an individual axes has failed, check for connection and continuity of the serial pulse coder cable. Replace if necessary. If all axes indicate failure or if the alarm occurs again continue troubleshooting. Check the 24V and 6.5 V LEDs on Module Assembly EE-3044-401 located in the purge cavity. See Steps 1 through 14 and Warnings of SRVO-068 and Figure 4-7. If the 24V LED is not illuminated check the wiring between the Module Assembly EE-3044-401 and the 24V power supply in the controller. If the 24V LED is illuminated and 6.5V LED is not illuminated disconnect CONN1 through CONN7 on Module Assy EE-3044-401. If 6.5V LED illuminates, check for shorted Cable. If 6.5V does not illuminate, replace the Module Assembly EE-3044-401. If the 24V LED is illuminated and 6.5 LED is illuminated continue troubleshooting.

3. 4.

Replace the main CPU. If the alarm occurs again continue troubleshooting. Replace the serial pulse coder. Figure 4–7. Module Assembly # EE-3044-401

CR1 DC/DC MODULE LEDs

24V

6.5V

MODULE ASSY #EE-3044-401

4. TROUBLESHOOTING

4–56

4.6.44 SRVO-069 ER_SVAL2 CRCERR Alarm (Group:i Axis:j)

MARO2P10203703E

The serial data from the serial pulse coder changed during communication to the main Central Processor Unit. CRCERR (Cyclical Redundancy Check Error). This fault is frequently caused by electrical noise induced on the serial pulse coder cable. Make sure that the cable does not lie parallel or close to power cables. Make sure that the robot-mounted relays and solenoids have spark suppression diodes. Check all pulsecoder cable shield grounds points. Make sure that all cable connections are properly connected. Only as a last resort should the cable or a serial pulse coder be replaced.

4.6.45 SRVO-070 ER_SVAL2 STBERR Alarm (Group:i Axis:j)

4.6.46 SRVO-071 ER_SVAL2 SPHAL Alarm (Group:i Axis:j)

The communication stop and start bits are abnormal. STBERR (Stop Bit Error). Refer to the SRVO-068 remedy.

The feedback velocity exceeds the specifications. SPHAL (Software Phase Alarm). If the problem still exists, perform the following troubleshooting procedure:

Table 4–40.

SRVO-071 Troubleshooting Procedure

Troubleshooting Procedure 1.

Does this alarm occur with any other alarm? If another alarm occurs this alarm is caused byy the previous alarm of the serial serial pulse coder. d Refer R f to t the th other th alarm l ffor d details. t il If another alarm does not occur replace the serial pulse coder.

Print Reference

4. TROUBLESHOOTING

4–57

MARO2P10203703E

4.6.47

The serial pulse coder fails.

SRVO-072 ER_SVAL2 PMAL alarm (Group:%d Axis:%d) Table 4–41.

SRVO-072 Troubleshooting Procedure

Troubleshooting Procedure 1.

Print Reference

Does this alarm occur with any other alarm? If this alarm occurs along with a SRVO-068 DTERR, SRVO-069 CRCERR, or SRVO-070 STBERR disregard this alarm and refer to the other three alarm remedies. If this alarm does not occur along with a SRVO-068 DTERR, SRVO-069 CRCERR, or SRVO-070 STBERR continue troubleshooting.

2.

Replace the serial pulse coder and master the robot. See Chapter 8 Mastering.

4.6.48 SRVO-073 ER_SVAL2 CMAL alarm (Group:%d Axis:%d)

Incorrect position data detected in the serial pulse coder, or abnormal serial pulse coder data caused by noise.

Table 4–42.

SRVO-071 Troubleshooting Procedure

Troubleshooting Procedure 1.

Print Reference

If this alarm occurs along with a SRVO-068 DTERR, SRVO-069 CRCERR, or SRVO-070 STBERR, disregard this alarm and refer to the other three alarm remedies. If the SRVO-068 DTERR, SRVO-069 CRCERR, or SRVO-070 STBERR, does not occur with this alarm, continue troubleshooting.

2.

Master the robot. See Chapter 8 then continue troubleshooting.

3.

Check the grounding of the serial pulse coder cable shield. If the serial pulse coder cable shield is grounded go to step 4. If the serial pulse coder cable shield is not grounded ground the shield or replace the cable.

4.

Replace the serial pulse coder and master the robot. See Chapter 8, “Mastering”.

4.6.49

The Serial pulse coder failure.

SRVO-074 ER_SVAL2 LDAL alarm (Group:%d Axis:%d)

Table 4–43.

SRVO-071 Troubleshooting Procedure

Troubleshooting Procedure 1.

If this alarm occurs along with a SRVO-068 DTERR, SRVO-069 CRCERR, or SRVO-070 STBERR, disregard this alarm and refer to the other three alarm remedies. Otherwise, continue troubleshooting.

2.

Replace the serial pulse code and master the robot. See Chapter 8, “Mastering”.

Print Reference

4. TROUBLESHOOTING

4–58

4.6.50 SRVO-075 ER_WARN Pulse not established (G:%d A:%d)

MARO2P10203703E

The pulse position is not established until the serial pulse coder is rotated one complete revolution.

Table 4–44.

SRVO-071 Troubleshooting Procedure

Troubleshooting Procedure 1.

Print Reference

The pulse position is not established until the serial pulse coder is rotated one complete revolution.

4.6.51

Line Tracking Overflow Error.

SRVO-081 ER_WARN EROFL Alarm (Track encoder:n) Table 4–45.

SRVO-081 Troubleshooting Procedure

Troubleshooting Procedure 1. 2.

Check the connection between the controller and the line tracking device (absolute encoder or pulse generator). Check that the line speed is within the recommended specification. If the line speed is not within the specification relax the line speed.

Print Reference

4. TROUBLESHOOTING

4–59

MARO2P10203703E

4.6.52

Line Tracking serial pulse coder is disconnected.

SRVO-082 ER_WARN DAL Alarm (Track encoder:n)

Remedy: Check axis control printed circuit board for proper line tracking cable connections. If the problem still exists, perform the following troubleshooting procedure:

Table 4–46.

SRVO-082 Troubleshooting Procedure

Troubleshooting Procedure 1.

Replace the main CPU.

2.

Replace the line tracking serial pulse coder.

4.6.53 SRVO-083 ER_WARN CKAL Alarm (Track encoder:n)

Print Reference

The clock for the rotation counter in the line tracking serial pulse coder is abnormal. Remedy: Refer to SRVO-061 remedy.

4.6.54

The battery voltage for the line tracking serial pulse coder is zero volts.

SRVO-084 ER_WARN BZAL Alarm (Track encoder:n)

Remedy: Refer to SRVO-062 remedy.

4.6.55

The built-in rotation counter on the line tracking serial pulse coder is abnormal.

SRVO-085 ER_WARN RCAL Alarm (Track encoder:n)

4.6.56 SRVO-086 ER_WARN PHAL Alarm (Track encoder:n)

Remedy: Refer to SRVO-063 remedy.

The relationship between the analog signals on the line tracking serial pulse coder are abnormal. Remedy: Refer to SRVO-064 remedy.

4. TROUBLESHOOTING

4–60

MARO2P10203703E

4.6.57

The line tracking serial pulse coder batteries are low.

SRVO-087 ER_WARN BLAL Alarm (Track encoder:n)

Remedy: Refer to SRVO-065 remedy.

4.6.58

The line tracking serial pulse coder ROM checksum data is abnormal.

SRVO-088 ER_WARN CSAL Alarm (Track encoder:n)

Remedy: Refer to SRVO-066 remedy.

4.6.59

The line tracking serial pulse coder overheated.

SRVO-089 ER_WARN OHAL2 Alarm (Track encoder:n)

Remedy: Refer to SRVO-067 remedy.

4.6.60

The axis control printed circuit board sent the request signal, but did not receive serial data from the line tracking serial pulse coder.

SRVO-090 ER_WARN DTERR Alarm (Track encoder:n)

4.6.61 SRVO-091 ER_WARN CRCERR Alarm (Track encoder:n)

Remedy: Refer to SRVO-068 remedy.

The serial data from the line tracking serial pulse coder changed during communication to the axis control printed circuit board. Remedy: Refer to SRVO-069 remedy

4.6.62

The communication stop and start bits for line tracking axis are abnormal.

SRVO-092 ER_WARN STBERR Alarm (Track encoder:n)

Remedy: Refer to SRVO-070 remedy.

4. TROUBLESHOOTING

4–61

MARO2P10203703E

4.6.63

The feedback velocity exceeds the specification for line tracking axis.

SRVO-093 ER_WARN SPHAL Alarm (Track encoder:n)

Remedy: Refer to SRVO-071 remedy.

4.6.64

The back-up charge circuit for the amplifier has an abnormal voltage. This error code can also be caused by improper controller shut down sequence (See Procedure 10–5 ) or improper servo lockout procedure (See Procedure 10–6 ).

SRVO-147 SERVO LVAL(DCLK) alarm (G:%d A:%d)

Remedy: Check the cables and connections between amplifier (CN1) and MCC. Check the fuse (F1,F2) in transformer. Replace the amplifier.

4.6.65

The DSM (Digital Servo Module) hardware does not all match.

SRVO-163 ER_FATL DSM Hardware Mismatch

Remedy: Remove the main Central Processor Unit from the controller and check the part numbers on the DSM boards mounted in the axis module slots. The part numbers should be the same. If the robot has more than six axes, also check the multifunction board DSM hardware. All DSM hardware must have the same part number to prevent this alarm. (See Figure 1–7 and Table 1–1).

4.6.66

The current servo parameters do not match the DSM hardware installed.

SRVO-164 ER_FATL DSM/Servo param mismatch

Remedy: Replace all DSP-IV DSM modules with DSP-V type. (See Figure 1–7 and Table 1–1).

4.6.67

The panel emergency stop button is pressed and the controller detected a wiring error on SVON or EMGIN terminals.

SRVO-165 ER_FATL Panel (SVON abnormal) E-Stop

4.6.68 SRVO-166 ER_FATL TP (SVON abnormal) E-Stop

Remedy: Turn off the controller and check EMGIN and SVON wiring to operator panel interface terminals. Correct external wiring as necessary.

The teach pendant emergency stop button is pressed and the controller detected a wiring error on SVON or EMGIN terminals. Remedy: Turn of the controller and check EMGIN and SVON wiring to operator panel interface terminals. Correct external wiring as necessary.

4. TROUBLESHOOTING

4–62

4.6.69 SRVO-167 ER_FATL Deadman switch (SVON abnormal)

4.6.70 SRVO-168 ER_FATL External/SVON (SVON abnormal) E-Stop

MARO2P10203703E

The teach pendant DEADMAN was released and the controller detected a wiring error on SVON or EMGIN. Remedy: Turn off the controller and check EMGIN and SVON wiring to operator panel interface terminals. Correct external wiring as necessary.

The external emergency stop or external SVON switch is pressed and the controller detected a wiring error on the SVON or EMGIN terminals. Remedy: This error is applicable is the redundant external emergency stop or SVON wiring is used. If so, turn off the controller and check the EMGIN and SVON wiring to the operator panel interface terminals. Correct external wiring as necessary.

4. TROUBLESHOOTING

4–63

MARO2P10203703E

4.7 CLASS 4 FAULTS

A Class 4 Fault occurs when the process equipment within the outer arm of the P-200 robot fails to perform correctly. This section contains troubleshooting procedures for each kind of malfunction. Trigger Valve Malfunctions and Troubleshooting  Gun(s) that do not turn on (Trigger) or work intermittently. Refer to Procedure 4–5 .  Gun(s) that do not shut off Refer to Procedure 4–6  Paint Gun Trigger Troubleshooting Procedure (Electrical). Refer to Procedure 4–7 . Current to Pressure Transducer Troubleshooting Refer to Section 4.7.4  Poor Film Build (Too heavy or light)  Repeated “Adapted Out Of Range” messages  Need for continual Preset corrections  Transducer Troubleshooting Procedure. Refer to Procedure 4–8 .  Flow Meter Troubleshooting Procedure. Refer to Procedure 4–9 . P-200 end of arm troubleshooting error descriptions  Error #178, Cal. Timeout at maximum flow  Error #179, Cal. Timeout at low flow  Error #183, Min. output has flow > setpoint  Error # 189, Failed to reach setpoint  Display reads 0 cc/min when paint is actually flowing from the gun.  Display reads the exact same cc/min value whether paint is flowing or not. Depending on the manufacturer, style and/or type of gun assembly used, these malfunctions could be attributed to a single gun assembly when two guns are mounted on a common manifold having a common supply pilot signal. In this case, the problem would be in the individual gun assembly; the gun assembly would be suspected first and replaced before looking into the supply.

4. TROUBLESHOOTING

4–64

MARO2P10203703E

4.7.1

Remedy: There is no clear cut remedy for this type of malfunction.

Process Fault - Both Guns Do Not Trigger or Work Intermittently

Considerations: This function is electrical and pneumatic in operation. Procedure 4–5 first considers the most common causes which may be pneumatic in nature, then , if the problem still exists, will continue troubleshooting the electrical components.

Procedure 4–5

Both Guns Do Not Trigger or Work Intermittently Perform the following troubleshooting steps.

Step

1 Shut off the plant supplied air to the pilot trigger valve. 2 Remove the output pilot line from the pilot trigger valve. 3 Apply plant supplied air to the pilot trigger valve. 4 Push the mechanical override button on the valve body. Refer to the Trigger Valve/ Regulator Assembly in Figure 12–32. 5 Determine whether pilot air is coming out of the pilot trigger valve. If NO > Remove and replace pilot trigger valve. If YES > Go to step 6.

WARNING This valve is intrinsically safe. Repair of the solenoid and pilot section is prohibited. If the solenoid portion is faulty, you must replace the solenoid and pilot section as one assembly. They are assembled as a matched set and should not be exchanged with other components.

6 Is pilot air sufficient and constant with plant supplied air pressure? Refer to gun manufacture’s specification. If NO > Go to step 7. If YES > Troubleshoot pilot trigger line to gun assembly. Refer to the Trigger Valve/ Regulator Assembly in Figure 12–32. If problem still exists , Go to step 8. 7 Is the air supply to the system sufficient and consistent with plant supplied air pressure? If NO > Troubleshoot air supply. If YES > Remove and replace pilot trigger valve. Is problem solved. If NO > Go to step 9.

4. TROUBLESHOOTING

4–65

MARO2P10203703E

WARNING This valve is intrinsically safe. Repair of the solenoid and pilot section is prohibited. If the solenoid portion is faulty, you must replace the solenoid and pilot section as one assembly. They are assembled as a matched set and should not be exchanged with other components. 8 Troubleshoot the paint spray gun assembly. Determine whether the problem is solved. If NO > go to step 9. 9 Continue troubleshooting with Procedure 4–7 .

4.7.2

Remedy: There is no clear cut remedy for this type of malfunction.

Both Guns Will Not Shut Off

Considerations: This function is electrical and pneumatic in operation. Procedure 4–6 first considers the most common causes which may be pneumatic in nature, then , if the problem still exists will continue troubleshooting the electrical components.

Procedure 4–6

Both Guns Will Not Shut Off Perform the following troubleshooting steps.

Step

1 Shut off the air supply to the pilot trigger valve. Refer to the Trigger Valve/ Regulator Assembly in Figure 12–32. 2 Remove the output pilot line from the pilot trigger valve. 3 Apply air supply to the pilot trigger valve. 4 Is air leaking from valve output port? Refer to the Trigger Valve/ Regulator Assembly in Figure 12–32. If NO > troubleshoot trigger (s) in gun assembly. If YES > Go to step 5. 5 Check for 12Vdc on solenoid/pilot trigger valve. Refer to the Trigger Valve/ Regulator Assembly in Figure 12–32. WARNING This valve is intrinsically safe. Repair of the solenoid and pilot section is prohibited. If the solenoid portion is faulty, you must replace the solenoid and pilot section as one assembly. They are assembled as a matched set and should not be exchanged with other components. If NO > Remove and replace pilot trigger valve. If YES > Go to Procedure 4–7 .

4. TROUBLESHOOTING

4–66

MARO2P10203703E

4.7.3 Paint Gun Trigger Troubleshooting Procedure (Electrical) Procedure 4–7 Step

Use Procedure 4–7 to troubleshoot the electrical paint gun trigger components.

Paint Gun Trigger Troubleshooting Procedure (Electrical) 1 Is DOUT [145] (PT) configured correctly? If NO > Go to step 2. If YES > Go to step 3. I/O Digital Out # SIM STATUS DO[ 140] U OFF [ DO[ 141] U OFF [ DO[ 142] U OFF [ DO[ 143] U OFF [ DO[ 144] U OFF [ DO[ 145] U OFF [ DO[ 146] U OFF [ DO[ 147] U OFF [ DO[ 148] U OFF [ DO[ 149] U OFF [ [ TYPE ]

CONFIG

G2

IN/OUT

JOINT 100% 145/256 Reserved ] Reserved ] Reserved ] Reserved ] Reserved ] Gun 1 pilot ] ] ] ] ] ON

OFF

2 Reconfigure using Site I/O program, then go to step 3. 3 Is DOUT [145] (PT) ON ? If NO > Go to step 4. If YES > Go to step 5. 4 Set DOUT [145] (PT) to ON. Refer to Procedure 7–1 . Is output led (AO) on the output module ON? Refer to Figure 4–8. If NO > Go to step 5. If YES > Go to step 13.

4. TROUBLESHOOTING

4–67

MARO2P10203703E

Figure 4–8. I/O Module LEDS

LEDS A0 1 2 3 4 5 6 7 B0 1 2 3 4 5 6 7

A0 LED

I/O MODULE

5 Is DOUT [145] (PT) simulated. Refer to Procedure 7–2 . If YES > Go to step 6 If NO > Go to step 7. 6 Unsimulate DOUT [145] (PT). Go to step 3.

4. TROUBLESHOOTING

4–68

MARO2P10203703E

7 Determine whether the interface module power LED (PWR) is on? Refer to Figure 4–9. If NO > Go to step 8. If YES > Go to step 10. Figure 4–9. Interface Module PWR LED

PWR

LINK BAI BAO

AIF0IA

PWR LED

JD1B

JD1A

CP32

JD2

INTERFACE MODULE

LINK LED

4. TROUBLESHOOTING

4–69

MARO2P10203703E

8 Determine whether the 24V input fuse is good? Refer to Figure 4–10. If NO > Replace 24VDC input fuses. If YES > Go to step 9. Figure 4–10. Interface Module Interface module AIFO1A

Output 5.0A Fuse

5.0A F2

Input 3.2A Fuse

F1 3.2A

4. TROUBLESHOOTING

4–70

MARO2P10203703E

9 Determine whether 24E at input connector (CP32) to I/F (Interface Module)? Refer to Figure 4–11. If NO > Troubleshoot the 24E circuit and wiring. If YES > Replace I/F module. Figure 4–11. Pin Out and Locator for Connector CP32 I/O UNIT MODEL A POWER SUPPLY A16B–1212–0870

1 2 3

CP6

CP32 +24V 0V

MODULAR I/O 5–SLOT BASE UNIT A03B–0807–J002 10–SLOT BASE UNIT A03B–0807–J001 MODULAR I/O INTERFACE MODULAR I/O CP32 MODULE A03B–0807–J011 JD1B JD1A

MAIN CPU A16B–3200–0040

JD2

JD1A

10

Determine whether the interface module Link LED is ON? Refer to Figure 4–12. If NO > Go to step 11. If YES > Replace output module, AOD16D.

Figure 4–12. Interface Module PWR LED

PWR

LINK BAI BAO

AIF0IA

JD1B

JD1A

CP32

JD2

INTERFACE MODULE

LINK LED

4. TROUBLESHOOTING

4–71

MARO2P10203703E

11 Is output fuse good? Refer to Figure 4–10. If No > Replace output fuse. If YES > Replace interface module. 12

Replace output module, AOD16D.

13

Is there 24Vdc at ISB7 input terminals 7 and 8? Refer to Figure 4–13 If NO > Go to step 14. If YES > Go to step 15.

Figure 4–13. Intrinsic Safety Barrier DC OUTPUT MODULE EE-3287-328-001 LOCATED IN P-200 ROBOT ARM 8663SOL

INTRINSIC CABLE EE-3287-117-XXX ISB7 8336F .5 AMP 2

8

ISB7-1

1

WHT

GRN

P1 7

ISB7-2

2

I.S. GROUND

14

Is wiring from the output module to ISB7 okay? Refer to Figure 4–13. If NO > Repair wiring. If YES > Go to step 16.

15

Is fuse 8336F/0.5A blown? Refer to Figure 4–13. If NO > Replace output module, AOD16D. If YES > Replace 8336F 0.5A Fuse.

4. TROUBLESHOOTING

4–72

MARO2P10203703E

16

Is 12Vdc at ISB7 output terminals 1 and 2 correct. Refer to Figure 4–14.

WARNING Never apply test leads to output terminals during paint booth operations. To do so could injure personnel or damage equipment. Remove ISB7 output terminals 1 and 2 before any voltage measurements are taken.

If NO > Replace Intrinsic Safety Barrier If YES > Go to step 17. Figure 4–14. Intrinsic Safety Barrier DC OUTPUT MODULE EE-3287-328-001 LOCATED IN P-200 ROBOT ARM 8663SOL

INTRINSIC CABLE EE-3287-117-XXX ISB7 8336F .5 AMP 2

8

ISB7-1

1

WHT

GRN

P1 7

ISB7-2

2

I.S. GROUND

17

Is 12Vdc at pilot trigger valve connector? Refer to Trigger Valve/ Regulator Assembly Figure 12–32. If NO > Check the cables and connector. If YES > Replace the 8336SOL valve assembly.

WARNING The 8336SOL valve is intrinsically safe. Repair of the solenoid and pilot section is prohibited. If the solenoid portion is faulty, you must replace the solenoid and pilot section as one assembly. They are assembled as a matched set and should not be exchanged with other components.

4. TROUBLESHOOTING

4–73

MARO2P10203703E

4.7.4

Use Procedure 4–8 to cover:

Process Fault Transducer Troubleshooting Procedure

 Poor Film Build (Too heavy or light)  Repeated “Adapted Out Of Range” Messages  Need for Continual Preset Corrections Remedy: There is no clear remedy for these types of symptoms. It might be caused by a faulty current to pressure transducer (I/P) or a faulty flow meter. Considerations: The current to pressure transducer is an electrical and pneumatic device that is intrinsically safe. The only troubleshooting that can be done to the transducer is covered in Procedure 4.7.4.

Procedure 4–8 Step

Transducer Troubleshooting 1 Is AOUT[1] set to a count of 200? If NO > Go to step 2. If YES > Go to step 3.

I/O Analog Out # SIM VALUE AO[ 1] U 200 AO[ 2] U 200 AO[ 3] U 200 AO[ 4] U 200 DO[ 5] U 0 DO[ 6] U 0 DO[ 7] * * DO[ 8] * * DO[ 9] * * DO[ 10] * * [ TYPE ]

CONFIG

G1 [ [ [ [ [ [ [ [ [ [

JOINT 10% 1/25 Fluid Flow 1 ] Atom. Air 1 ] Fan Air 1 ] Estats 1 ] Flw setpoint ] Flw diag out ] ] ] ] ]

IN/OUT

SIMULATE

UNSIM

2 Set AOUT[1] to a count of 200. Refer to Procedure 7.1. 3 Attach an analog 0 to 60 psi gauge to the gage port on the current to pressure transducer. Refer to Trigger Valve/Regulator Assembly Figure 12–32. 4 Set AOUT[1] to a count of 1000. Refer to Procedure 7.1. 5 Is there any output pressure? If NO > Go to step 6. If YES > Go to step 12.

4. TROUBLESHOOTING

4–74

MARO2P10203703E

6 Is the plant air supply ON? If NO > Turn ON air supply. If YES > Go to step 7. 7 Is your paint system in the proper mode of operation? (Proper mode of operation will depend upon the unique characteristics of your system). If NO > Set paint mode to proper mode of operation. If YES > Go to step 8. 8 Is there 14.5 VDC at the current to pressure transducer I/P connector P1 pins 1 and 6. Refer to Trigger Valve/ Regulator Assembly Figure 12–32. If NO > Go to step 9. If YES > Go to step 12.

WARNING Never apply test leads to output terminals during paint booth operations. Otherwise, you could injure personal and damage equipment.

9 Is there 14.5 Vdc at ISB4 terminals 1 and 2? Refer to Single Stage Purge Process Control Figure 12–41. If NO > Go to step 10. If YES > Go to step 11. 10

Is there 24Vdc at ISB4 input terminals 7 and 8? Refer to Single Stage Purge Process Control Figure 12–41. If NO > Check power supply and wiring. If YES > Replace ISB4.

11 Check the cable and connector wiring from ISB4 to I/P transducer P1. 12

Check for pressure leaks at pneumatic connections. This can be accomplished using a soapy liquid solution. If No > Tighten pneumatic connections. If YES. Go to step 13.

4. TROUBLESHOOTING

4–75

MARO2P10203703E

13

Perform calibration on the Current to Pressure Transducer I/P. Refer to Procedure 10.1.

Consider the following while doing the calibration procedure:

– – – – – – – – 14

Non-Linearity Hunting Poor Response No Reaction at Output Poor Hysteresis Poor Accuracy Poor Repeatability Inaccurate Span

Did the Current to Pressure Transducer (I/P) pass the calibration? If NO > Go to step 15. If YES > Troubleshoot other process equipment.

15

Connect a mA meter in series with terminal 8 of the D/A module (ADA02A) in slot 3 of the I/O rack. Refer to Single Stage Purge Process Control Figure 12–41.

16

Set the AOUT[1] on the teach pendant to 600 counts

I/O Analog Out # SIM VALUE AO[ 1] U 600 AO[ 2] U 200 AO[ 3] U 200 AO[ 4] U 200 DO[ 5] U 0 DO[ 6] U 0 DO[ 7] * * DO[ 8] * * DO[ 9] * * DO[ 10] * * [ TYPE ]

17

CONFIG

G1 [ [ [ [ [ [ [ [ [ [

JOINT 10% 1/25 Fluid Flow 1 ] Atom. Air 1 ] Fan Air 1 ] Estats 1 ] Flw setpoint ] Flw diag out ] ] ] ] ]

IN/OUT

SIMULATE

UNSIM

Is there 12.00mA on the meter? If NO > Go to step 18. If YES > Go to step 19

18

Is there 24 Vdc at ISB5 terminals 7 & 8? Refer to Single Stage Purge Process Control Figure 12–41. If NO > Check source of 24 Vdc power. If YES > Go to step 22.

4. TROUBLESHOOTING

4–76

MARO2P10203703E

19

Connect mA meter in series with terminal 1 of ISB5.

20

Is there 12.00 mA on the meter? If NO > Go to step 21. If YES > Replace I/P transducer.

21

Check the cable and wiring from the ISB5 to the I/P transducer. Is the wiring defective? If NO > Replace the ISB5. If YES. Replace the wiring or cable.

22

Is AOUT[1] configured correctly? If NO use Site I/O program. Refer to PaintTool Manual Setup Chapter. IF YES > Go to step 23.

23

Is AOUT[1] Simulated? Refer to Procedure 7.2 If NO > Check cable/wiring from D/A module to IBS5, terminals 9 and 10. If YES > Unsimulate.

4.7.5 Process Fault - Flow Meter Troubleshooting Procedure

Procedure 4–9 Step

Remedy: There is no clear remedy for these types of symptoms. It may be caused by a faulty flow meter. Considerations:The Flow Meter is a mechanical to electrical feedback transducer. The only troubleshooting that can be done to the transducer is covered in Procedure 4–9 . Flow Meter Troubleshooting 1 Remove MODUFLOW/Flow Meter assembly from the P-200 robot arm. Refer to Figure 12–33. 2 Remove the Flow Meter from the MODUFLOW assembly. 3 Remove the electrical connector from the Flow Meter. 4 Blow air into the Flow Meter input port. Do the gears spin? If NO > Disassemble, clean, and then reassemble the Flow Meter. Return to step 4. If gears do not spin after Flow Meter has been cleaned replace Flow Meter. If YES > Go to step 5.

4. TROUBLESHOOTING

4–77

MARO2P10203703E

5 Reconnect the sensor cable. 6 Monitor GIN[8] and GIN[9] at the teach pendant from the I/O menu.

I/O Group In # SIM VALUE GI[ 1] S 0 [ U GI[ 2] S 0 [ GI[ 3] U 0 [ GI[ 4] U 0 [ GI[ 5] U 0 [ GI[ 6] U 0 [ GI[ 7] U 0 [ GI[ 8] U 59147 [ GI[ 9] U 32767 [ GI[ 10] U 0 [ [ TYPE ]

CONFIG

JOINT 100% 1/25 Init data ] Init type ] CC cycsel ] CC shared ] CC group ] Flw/tpar ] Parm/indc ] Totl cnt ] Rate cnt ] Job type ]

IN/OUT

SIMULATE

UNSIM

7 Blow air into the Flow Meter input port. Did you see a change in GIN[8] and GIN[9]? If NO > Go to step 8 If YES > Go to step 8 Is GIN[8] & GIN[9] configured correctly? If NO > Run Site I/O program Refer to PaintTool Setup Chapter. then > Go back to step 6. If YES > Go to step 9. 9 Is there 24 Vdc at the terminal block of the Flow Meter Interface module, wires 82091 and 82092? Refer to schematics 47 A sheet 082 and 087 If NO > Check wiring and CPU power supply If YES > Go to step 10. 10

Is there +5 Vdc at the terminal block of the Flow Meter Interface module, wires 82142 and 82092? Refer to Figure 12–39 and Figure 12–42. If NO > Go to step 11 If YES > Go to step

11 Is fuse 8214F blown? Refer to Figure 12–43. If NO > Go to step 12 If YES > Replace fuse

4. TROUBLESHOOTING

4–78

MARO2P10203703E

12

Check connector and wiring at JD1A port of the I/F module. Refer to Figure 4–11. If the wiring is damaged replace wiring If the connector is damaged replace I/F module Verify for proper operation. If the problem still exists > Go to step 13.

13

Is there 24 Vdc at the terminal block of the Flow Meter Interface module, wires 87091 and 87101? Refer to Figure 12–39 and Figure 12–42. If No > Replace Flow Meter Interface module. If YES > Go to step 14.

14

Is there 24 Vdc at ISB6, terminals 7 and 8. Refer to Figure 12–42. If NO > Replace wiring If YES > Go to step 15.

15

Is there zero ohms at the terminal block of the Flow Meter Interface module, -Sig. and wire 87101? Refer to Figure 12–42. If NO > Tighten jumper connections or Replace jumper. If YES > Go to step 16.

16

Is there 24 Vdc at ISB6, terminals 1 and 2. Refer Figure 12–42. If NO > Replace ISB6 If YES > Go to step 17.

WARNING Never apply test leads to these pins during paint booth operations. Otherwise, you could injure personnel and damage equipment.

17

Is there 24 Vdc at the Flow Meter connector P1, pins A and B. Refer to Figure 12–42. If NO > Replace wiring If YES > Replace Flow Meter

18

Perform a Flow Test (Beakering Test). Refer to Procedure 10–2 .

4. TROUBLESHOOTING

4–79

MARO2P10203703E

19

Does the amount in the beaker equal the Total (cc) and Flow Rate called for? If NO > Go to step 20. If YES > Troubleshooting completed.

STATUS AccuFlow JOINT 100 % AccuFlow Status Display Selected Operating Mode: Adaptive Current Operating Mode: Open Loop Color Valve Number: 1 Calibration Status: Complete Actual yield ((cc/min)/cnt): .78 Total (cc): 216 Set Point/Actual (cc/min): 600/594 Applicator Trigger: ON Set point reached: ON [ TYPE ] RES TOT HELP

20

Calculate new KFT factor and enter into the Equipment Characteristics parameter section on the teach pendant.

cc in beaker  X * old KFT  new KFT totalizer

4. TROUBLESHOOTING

4–80

MARO2P10203703E

SETUP AccuFlow

JOINT

AccuFlow Global Parameters 1 2 3 4 5 6 7

100 % 1/25

Mode selection source: Selected operating mode: Percent Tolerance Band: Min. tolerance band: Sample amount: Normal gain modifier (%): Pulsing pump gain mod. (%):

Equipment characteristics 8 KFT factor (CC): 9 Equipment learn done: 10 Trigger delay (ms): 11 Flow delay (ms): 12 Time up (ms/1000 cnts):

Pendant Adaptive 1.8 5 3 95.0 70.0

2366 Done 50 32 72

Calibration parameters 14 Hysteresis checks: 15 Leveling trys: 16 Cal time out (sec): 17 Cal step delay (ms): 18 Table point no. 2 (cc/min):

YES 2 15 800 200

Table adjustment parameters 19 Flow in-tol trys: 20 Indep point shift band (%):

2 30.0

Alarm parameters 21 Adaptive tolerance (%): 10.0 22 Max. error from setpoint (%): 6.0 23 Max. control out (ms): 200 24 Min. set point reached (ms): 3000 25 Grace period (ms): 4000 [ TYPE ] CHAN KFT_CAL [CHOICE] HELP

21

Preform a Flow Test (Beakering Test). Refer to Procedure 10–2

22

Does the amount in the beaker equal the Total (cc) and Flow Rate called for? If NO > Replace Flow Meter Interface module. Verify problem is solved by rerunning the Flow Test if problem still exists Replace Digital 32 bit Input module (AID32B) in the I/O rack. If YES > Troubleshooting completed.

Page81

5 REPLACING FUSES

MARO2P10203703E

5

Topics In This Chapter

REPLACING FUSES 5–1

Page

Fused Flange Mounted Disconnect Fuses

The fused flange-mounted disconnect provides overcurrent protection supply through three fuses; one for each leg of the 3-phase supply. . . . . . . . . . . . . . . . . 5–2

Multi-Tap Transformer Fuses

Five fuses reside on the multi-tap transformer with fuses F1, F2, and F3 for the three-phase 200 VAC servo power and F4 and F5 for 100 VAC. . . . . . . . . . . . . . 5–4

Power Supply Unit Fuses

Three fuses are located in the power supply unit F1 AC input, F3 and F4 +24V. 5–5

Servo Amplifier Fuses

The servo amplifiers for the P-200 contain one fuse (F1), except for Model A06B–6089–H106 which includes a second fuse (F2). . . . . . . . . . . . . . . . . . . . . . 5–6

Emergency Stop Control PCB Fuses

Two fuses reside on the Emergency Stop Control printed circuit board. . . . . . . . 5–7

Purge Power Supply Fuses

Two fuses reside on the Purge Power Supply F11 and F12. . . . . . . . . . . . . . . . . . 5–8

Modular I/O (Model A) Fuses

The modular I/O (Model A) modules that contain fuses are described in this section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–9

Sub-CPU Printed Circuit Board Fuse

One fuse resides on the Sub-CPU printed circuit board. . . . . . . . . . . . . . . . . . . . . 5–12

If a fuse blows in the controller, determine the cause, repair or replace the defective part or unit and replace the fuse with the same type and rating. Fuse replacement procedures are provided for the following fuses in the controller

WARNING Before replacing a fuse, turn the power off and lock out the controller; otherwise, you could injure personnel or damage equipment.

5. REPLACING FUSES

5–2

MARO2P10203703E

5.1

The controller is supplied with a fused flange-mounted disconnect.

FUSED FLANGE-MOUNTED DISCONNECT FUSES

The fused flange-mounted disconnect provides overcurrent protection supply through three fuses; one for each leg of the 3-phase supply. See Figure 5–1 for fused flange-mounted disconnect location and Table 5–1 for description of the fuse flange-mounted disconnect and fuses. The fused flange-flange disconnect provides a means for shutting off power to the controller and locking the power out.

WARNING Lethal voltage is present in the controller WHENEVER IT IS CONNECTED to a power source. Be extremely careful to avoid electrical shock. Turning the disconnect to the OFF position removes power from the output side of the device only. High voltage is always present at the input side whenever the controller is connected to a power source.

5. REPLACING FUSES

5–3

MARO2P10203703E

Figure 5–1. Main Disconnect Location MAIN DISCONNECT

Fuse Block

FL1 FL2 FL3

Table 5–1.

Fused Flange-Mounted Disconnect Switch, C-Size Cabinet

Fused Flange-Mounted Disconnect Switch Inp t Input Voltage

Fuse Size

Part Number

220 240

50A

Fuse XGMF-00160 (A60L–0001-0042 #JG2-50)

380 416 460 480 500 550

30A

Fuse XGMF-04148 (A60L–0001-0042 #JG1-30)

575

20A

Fuse XGMF-04148 (A60L–0001-0042 #JG1-20)

5. REPLACING FUSES

5–4

5.2 MULTI-TAP TRANSFORMER FUSES

MARO2P10203703E

Five fuses reside on the multi-tap transformer with fuses F1, F2, and F3 for the three-phase 200 VAC servo power and F4 and F5 for 100 VAC. The fuses are described in Table 5–2 and are located in Figure 5–2. Table 5–2.

Multi-Tap Transformer Fuses

Fuse Number F1, F2, F3 F4, F5

Robot P-200 P-200

Rated Current 30A 7.5A

Part Number A60L–0001–0042#JG1–30 A60L–0001–0101#P475H

Figure 5–2. Replacing Transformer Fuses

Fuse

Fuse

WARNING Before you replace a fuse, turn the power off and lock out the controller. Otherwise, you could injure personnel or damage equipment.

5. REPLACING FUSES

5–5

MARO2P10203703E

5.3 POWER SUPPLY UNIT FUSES

Refer to Figure 5–3 for fuse locations on the PSU and Table 5–3 for fuse ratings. Table 5–3.

PSU Fuse Ratings

Fuse No. F1 (AC Input) F3 (+24V) F4 (+24E)

Rated current

Part number

7.5A

A60L00010245#GP75

5A

A60L00010075#5.0

5A

A60L00010046#5.0

Figure 5–3. Replacing a Fuse of the Power Supply Unit

F1 : 7.5A fuse for AC input

F3 : 5AS (slow-blow) fuse for +24V

F4 : 5A fuse for +24E

5. REPLACING FUSES

5–6

MARO2P10203703E

5.4 SERVO AMPLIFIER FUSES

The servo amplifiers for the P-200 contain one fuse (F1), except for Model A06B–6089–H106 which includes a second fuse (F2). The fuse(s) are located behind the servo front cover as located in Figure 5–4 and are described in Table 5–4. Table 5–4.

Servo Fuse Ratings

Fuse Number F1 F2

Rating 5A– 250V 5A – 250V

Part Number A60L–0001–0359 A60L–0001–0359

Figure 5–4. Replacing Fuses of Servo Amplifier F1

Circuit breaker

F2 (In servo A06B–6089–H106 only)

5. REPLACING FUSES

5–7

MARO2P10203703E

5.5 EMERGENCY STOP CONTROL PCB FUSES

Two fuses reside on the Emergency Stop Control printed circuit board. The location of these fuses are shown in Figure 5–5 and the specifications are listed in Table 5–5. Table 5–5.

Fuse Number

Rated Current

Emergency Stop Control Printed Circuit Board Fuses Part Number

Purpose

F1

5A

XGMF-00762

Fuse for brake power supply.

F2

0 32 0.32

A60L–0001–0046#0 32 A60L–0001–0046#0.32

Fuse for +24E +24E.

Figure 5–5. Replacing Emergency Stop Control Board Fuses

Fuse2

F2

F1

Fuse1

5. REPLACING FUSES

5–8

5.6 PURGE POWER SUPPLY FUSES

MARO2P10203703E

The two fuses that reside on the Purge Power Supply are described in Table 5–6 and are shown in Figure 5–6. Table 5–6.

Emergency Stop Control PCB Fuses

Fuse Number F11 F12

Rated Current 3.2A 3.2A

Part Number A60L–0001–0175#3.2 A60L–0001–0175#3.2

Figure 5–6. Purge Power Supply Location Purge Power Supply

F11 F12

5. REPLACING FUSES

5–9

MARO2P10203703E

5.7 MODULAR I/O (MODEL A) FUSES

The modular I/O (Model A) modules that contain fuses are described in Table 5–7 and are shown in Figure 5–7, Figure 5–8, and Figure 5–9. Table 5–7.

Emergency Stop Control PCB Fuses

Module Number AIF01A AIF01A AOD08C AOD08D AOA05E AOA08E AOA12F

Rated Current 5.0A 3.2A 5A 5A 3.15A 3.15A 3.15A

Part Number A60L–0001–0290#LM50 A60L–0001–0290#LM32 A60L–0001–0260#5R00 A60L–0001–0260#5R00 A60L–0001–0276#3.15 A60L–0001–0276#3.15 A60L–0001–0276#3.15

Figure 5–7. Interface Module AIF01A Fuse Location

Interface module AIFO1A

5.0A Fuse

3.2A

Fuse

5.0A F2

3.2A

5. REPLACING FUSES

5–10

MARO2P10203703E

Figure 5–8. Modular I/O Fuse Locations – AOA05E, ADA08E, and AOA12F

AOA05E

ADA08E

FUSES FUSES

AOA12F

FUSES

5. REPLACING FUSES

5–11

MARO2P10203703E

Figure 5–9. Modular I/O Fuse Locations – AOS08C and AOD08D AOD08C

FUSES

AOD08D

FUSES

5. REPLACING FUSES

5–12

MARO2P10203703E

5.8

One fuse resides on the Sub-CPU printed circuit board. The location of this fuse is shown in Figure 5–10 and the specifications are listed in Table 5–8.

SUB CPU PRINTED CIRCUIT BOARD FUSE

Figure 5–10. Main CPU Printed Circuit Board RISC-B FANUC

A16B-3200-015 STATUS ALARM

D16

ÎÎ ÎÎ

ÎÎ ÎÎÎ Table 5–8.

Fuse Number F21

LV ALM F21 5A

5.0 A

FUSE

PC13

PC5

ÎÎ ÎÎ ÎÎ ÎÎÎÎ PC3

PR1

JNA

EPROM MODULE

BAT1

VD1

Emergency Stop Control PCB Fuses Rated Current 5.0A

Part Number XGMF-00762

Page13

6 BRAKE RELEASE

6

MARO2P10203703E

Topics In This Chapter Brake Release

BRAKE RELEASE 6–1

Page

You can release the axes brakes using the operator panel switch. . . . . . . . . . . . 6–2

When you troubleshoot and perform some error recovery procedures on the P-200 robot you might need to release the brakes. Refer to Procedure 6–1 for the brake release procedure.

6. BRAKE RELEASE

6–2

MARO2P10203703E

6.1

Use Procedure 6–1 to release the brakes using the operator key.

BRAKE RELEASE Procedure 6–1 Condition

Brake Release Using the Operator Panel Switch  Insure that the following conditions exist:  Controller main power disconnect is ON.  Purge complete.  Controller power on  Insure that area around robot is clear and that all personnel are clear of the area.

Step

1 Press the EMERGENCY STOP push button on the operator panel. WARNING Releasing the brakes could cause the robot to move. Provide support for the arm of the robot before releasing the brakes; otherwise, you could injure personnel or damage equipment. 2 Insert the key into BRAKE ENABLE key switch on the operator panel and turn to the ON position. See Figure 6–1. 3 If you have the optional brake release switches for individual axes continue to step 4. Figure 6–1. Operator Panel

Î Î Î Î

BATTERY ALARM

CYCLE START

ON

TEACH PENDANT ENABLED

FAULT

FAULT RESET

OFF

HOLD

Î ÎÎ Î ÏÏ ÎÎ ÏÏ Î ÏÏ ÏÏ ÎÎ ÎÎ ÎÎ

PURGE COMPLETE

REMOTE

PURGE ENABLE

REMOTE

LOCAL

PURGE FAULT

BRAKE ENABLE ON PORT

OFF

HOUR METER

EMERGENCY STOP

6. BRAKE RELEASE

6–3

MARO2P10203703E

4 Activate the enable switch for axis:  SW1 – P-200 axes 1, 4, 5 and 7  SW2 - P-200 axes 2 *  SW3 – P-200 axes 3 *  SW4 – Opener all axes * NOTE * P-200 axes 2, 3 and opener axes 2 and 3 will drop due to gravity. They do not have balancers. NOTE * Enable switches must be held, they are momentary switches. Figure 6–2. C Size R-J2 Controller With Optional Brake Release Switches

SYSTEM R–J2

P-200 AXES 1,4,5,7

P-200 AXIS 2

P-200 OPENER ALL AXIS 3 AXES

P-200BRAKE SELECT SWITCHES

P-200 AXES 1,4,5,7

P-200 AXIS 2

P-200 OPENER ALL AXIS 3 AXES

P-200 BRAKE SELECT SWITCHES

Page2

7 CONTROLLING I/O

7

MARO2P10203703E

Topics In This Chapter

CONTROLLING I/O 7–1

Page

Forcing Outputs

Forcing outputs is turning output signals on or off. . . . . . . . . . . . . . . . . . . . . . . . . . 7–2

Simulating Inputs and Outputs

Simulating inputs and outputs is forcing inputs and outputs without signals entering or leaving the controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–4

SOP I/O Status

The I/O SOP screen indicates the status of the standard operator panel signals. 7–5

Controlling I/O allows you to test the I/O in your system for proper function.

7.

CONTROLLING I/O

7–2

MARO2P10203703E

7.1 FORCING OUTPUTS

Forcing outputs is turning output signals on or off. Outputs can also be forced within a program using I/O instructions. Use Procedure 7–1 to force outputs outside of a program. NOTE RO[1] and RO[2] control HAND 1, and RO[3] and RO[4] control HAND 2.

Procedure 7–1 Condition Step

Forcing Outputs  The outputs you are forcing have been configured. 1 Press MENUS. 2 Select I/O. 3 Press F1, [TYPE]. 4 Select the type of output you want to force: digital, analog, group, robot, UOP, or SOP.

WARNING Forcing digital outputs causes connected devices to function. Make certain you know what the digital output is connected to and how it will function before forcing it; otherwise, you could injure personnel or damage equipment.

7. CONTROLLING I/O

7–3

MARO2P10203703E

For digital outputs for example, you will see a screen similar to the following. I/O Digital Out # SIM STATUS DO[ 1] U OFF DO[ 2] U ON DO[ 3] U OFF DO[ 4] U OFF DO[ 5] U OFF DO[ 6] U ON DO[ 7] U OFF DO[ 8] U OFF DO[ 9] U OFF DO[ 10] U OFF [ TYPE ] DO[

4] U

OFF

CONFIG

E 1 [ [ [ [ [ [ [ [ [ [

IN/OUT

WORLD

10% ] ] ] ] ] ] ] ] ] ]

SIMULATE UNSIM

5 Move the cursor to the STATUS of the output you want to force. 6 Press the function key that corresponds to the value you want. For digital, robot, UOP, and SOP outputs, press :  F4 for ON  F5 for OFF

AO[

4] U

12H

For analog and group outputs, move the cursor to value, and use the numeric keys to type the value. Value entry is always in decimal format. To change the displayed value from decimal to hexadecimal, press F4, FORMAT. Hexadecimal numbers are followed by an ‘‘H’’ on the screen.

7.

CONTROLLING I/O

7–4

MARO2P10203703E

7.2 SIMULATING INPUTS AND OUTPUTS

Procedure 7–2 Condition Step

Simulating inputs and outputs is forcing inputs and outputs without signals entering or leaving the controller. Simulate I/O to test program logic and motion when I/O devices and signals are not set up. You can simulate digital, analog, and group I/O only; you cannot simulate robot, UOP, or SOP I/O. When you are finished simulating a signal, you can reset, or unsimulate it. Use Procedure 7–2 to simulate and unsimulate I/O. Simulating and Unsimulating Inputs and Outputs  The input or output has been configured. 1 Press MENUS. 2 Select I/O. 3 Press F1, [TYPE]. 4 Select the type of input or output you want to simulate: digital, analog, or group. For digital inputs for example, you will see a screen similar to the following. I/O Digital Input # SIM STATUS DI[ 1] U OFF DI[ 2] S ON DI[ 3] U OFF DI[ 4] U OFF DI[ 5] U OFF DI[ 6] U ON DI[ 7] U OFF DI[ 8] S OFF DI[ 9] U OFF DI[ 10] U OFF [ TYPE ]

CONFIG

WORLD

E 1 [ [ [ [ [ [ [ [ [ [ IN/OUT

10% ] ] ] ] ] ] ] ] ] ]

SIMULATE UNSIM

5 If you simulate a signal, you can force the status by setting it to a value. When the signal is unsimulated, its actual status is displayed. DO[

4]

OFF

6 Move the cursor to the SIM column of the signal you want to simulate.  U means the signal is not simulated or unsimulated.  S means the signal is simulated. 7 Simulate or unsimulate the signal.  To simulate, press F4, SIMULATE.  To unsimulate, press F5, UNSIM. 8 To unsimulate all simulated signals, press FCTN and then select UNSIM ALL I/O.

7. CONTROLLING I/O

7–5

MARO2P10203703E

7.3 SOP I/O STATUS

The I/O SOP screen indicates the status of the standard operator panel signals. SOP input signals (SI) and SOP output signals (SO) correspond to internal controller software Panel Digital Input signals (PDI) and Panel Digital Output signals (PDO). Refer to Table 7–1 and Table 7–2. Table 7–1.

SI

PDI

0

1

EMERGENCY STOP

1

2

FAULT RESET

2

3

REMOTE

3

4

HOLD

4

5

PURGE ENABLE

6

7

CYCLE START

7-15

8-16

Standard Operator Panel Input Signals

Function

NOT USED

Description Input signal is normally turned ON, indicating that the EMERGENCY STOP button is not being pressed. Input signal is normally turned OFF, indicating that the FAULT RESET button is not being pressed. Input signal is normally turned OFF, indicating that the controller is not set to remote. Input signal is normally turned ON, indicating that the HOLD push button is not being pressed. Input signal is normally turned OFF, indicating that the PURGE ENABLE push button is not being pressed. Input signal is normally turned OFF, indicating that the CYCLE START push button is not being pressed. Open for additional PDI.

Table 7–2.

Standard Operator Panel Output Signals

SO

PDO

Function

Description

0

1

REMOTE LED

Output signal indicates the controller is set to remote.

1

2

CYCLE START

Output signal indicates the CYCLE START button has been pressed or a program is running.

2

3

HOLD

3

4

FAULT LED

4

5

BATTERY ALARM

5

6

PURGE COMPLETE

6

7

PURGE FAULT

7

8

TEACH PENDANT ENABLED

Output signal indicates the teach pendant is enabled.

8-15

9-16

NOT USED

Open for additional PDO.

Output signal indicates the HOLD button has been pressed or a hold condition exists. Output signal indicates a fault has occurred. Output signal indicates the voltage in the battery is low. Output signal indicates the purge cycle is complete. Output signal indicates a purge fault condition exists.

Use Procedure 7–3 to display and force SOP I/O.

7.

CONTROLLING I/O

7–6

MARO2P10203703E

Procedure 7–3 Step

Displaying and Forcing SOP I/O 1 Press MENUS. 2 Select I/O. 3 Press F1, [TYPE]. 4 Select SOP. You will see a screen similar to the following.

E1

I/O SOP Out # SO[ SO[ SO[ SO[ SO[ SO[ SO[ SO[ SO[ SO[

STATUS 1] OFF OFF 2] OFF 3] OFF 4] OFF 5] OFF 6] OFF 7] OFF 8] OFF 9] OFF 10] OFF

[ TYPE ]

JOINT

[ [ [ [ [ [ [ [ [ [

10 %

] ] ] ] ] ] ] ] ] ] IN/OUT

ON

OFF

To change between the display of the input and output screens, press F3, IN/OUT. To move quickly through the information, press and hold the SHIFT key and press the down or up arrow keys. NOTE You can only view the status of input signals. Input signals cannot be forced. 5 To force an output signal, move the cursor to the output you want to change:  To turn on an output signal, press F4, ON.  To turn off an output signal, press F5, OFF.

Index

8 MASTERING

8

MARO2P10203703E

Topics In This Chapter

MASTERING 8–1

Page

Resetting Alarms and Preparing for Mastering

Before mastering the robot or opener you must reset the alarm . . . . . . . . . . . . . 8–2

Standard Mastering for the P-200 Robot

Method of choice for the P-200 robot. (To perform Standard Mastering, Select Fixture Position Master) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–4

Single Axis Mastering for the P-200 Robot

Use when mastering was lost due to a single axis going bad, and that axis is the only axis affected.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–16

Standard Mastering for the P-10 Door Opener and P-15 Hood and Deck Opener

Method of choice for the P-10 and P-15 openers. . . . . . . . . . . . . . . . . . . . . . . . . . . 8–19  When mastery was lost due to mechanical disassembly or repair.  When a quick master reference position was not previously set.

When you master a robot or an opener you electronically calibrate the serial pulse coders of the servomotor on the robot or opener against a mechanical zero position. When a robot or opener is mastered, the position data from the encoders are stored while the robot or opener is at a known mechanical position. Mastering is required to ensure that the unit axes motion is limited to the designed travel range. Robot and openers must be mastered to operate properly. Robots and openers are usually mastered before they leave FANUC Robotics. However, it is possible that they might lose their mastering data and need remastering. This chapter provides mastering methods for the P-200 robot and P-10 and P-15 openers. Before you master the robot or openers, you must clear any faults that prevent servo power from being restored or that prevent mastering completion.

CAUTION Record the quick master reference position after the robot or opener is installed to preserve the factory mastering settings for future remastering.

8. MASTERING

8–2

MARO2P10203703E

8.1 RESETTING ALARMS AND PREPARING FOR MASTERING

When you turn on the robot or opener after disconnecting the pulsecoder backup batteries you might see a SRVO–062 BZAL or SRVO–038 Pulse mismatch alarm. Before mastering the robot or opener you must reset the alarm and rotate the motor of each axis that lost battery power to prepare the robot or opener for mastering. Use Procedure 8–1 to reset these alarms and prepare the robot or opener for mastering. NOTE These SRVO errors will also appear after you have installed all new application software on a robot or opener.

Procedure 8–1 Condition Step

Preparing the Robot or Opener for Mastering  You see a SRVO–062 BZAL or SRVO–038 Servo mismatch alarm. 1 Replace the robot and opener batteries with four new 1.5 volt alkaline batteries, size D. Observe the direction arrows in the battery box for proper orientation of the batteries. Refer to Procedure 9–2 . 2 Press MENUS. 3 Select SYSTEM. 4 Press F1, [TYPE]. 5 Select Master/Cal. If Master/Cal is not listed on the [TYPE] menu, do the following; otherwise, continue to Step 6. a Select VARIABLE from the [TYPE] menu. b Move the cursor to $MASTER_ENB. c Press the numeric key “1” and then press ENTER on the teach pendant. d Press F1, [TYPE]. e Select Master/Cal. You will see a screen similar to the following. SYSTEM Master/Cal 1 2 3 4 5 6

JOINT 10%

FIXTURE POSITION MASTER ZERO POSITION MASTER QUICK MASTER SINGLE AXIS MASTER SET QUICK MASTER REF CALIBRATE Press ’ENTER’ or number key to select.

[ TYPE ]

LOAD

RES_PCA

DONE

8 MASTERING MARO2P10203703E

8–3 6 Press F3, RES_PCA. You will see a screen similar to the following. SYSTEM Master/Cal 1 2 3 4 5 6

JOINT 10%

E1

FIXTURE POSITION MASTER ZERO POSITION MASTER QUICK MASTER SINGLE AXIS MASTER SET QUICK MASTER REF CALIBRATE Press ’ENTER’ or number key to select.

Reset pulse coder alarm? [NO] ‘

[ TYPE ]

YES

NO

7 Press F4, YES. 8 Cold start the controller. a Turn off the robot or the opener. b Press and continue pressing the FAULT RESET button on the operator panel. c While still pressing FAULT RESET, press the ON button on the operator panel. 9 If the SRVO–062 alarm is still present, there is a battery, cable or pulse coder problem. Refer to the FANUC Robotics SYSTEM R-J2 Controller Series Electrical Connection and Maintenance Manual for further information. 10

If a SRVO–038 alarm is present at this time, repeat Step 6 to reset it. It is not necessary to cold start the robot or opener after resetting to clear this alarm.

11 Rotate each axis that lost battery power by at least one motor revolution in either direction to clear SRVO–075 Pulse Not Established. a Jog each rotary axis at least twenty degrees. b Jog each linear axis at least thirty millimeters.

12 Perform any of the mastering procedures from the MASTER/CAL menu.

8. MASTERING

8–4

MARO2P10203703E

8.2

Standard mastering is the preferred method used to master the P-200 robot.

STANDARD MASTERING FOR THE P-200 ROBOT

Use Procedure 8–2 to perform standard mastering.

Procedure 8–2

Standard Mastering

NOTE You do not need a fixture to master the P-200 robot. To perform Standard Mastering, select Fixture Position Master. Condition

 You have cleared any servo faults that prevent you from jogging the robot.

 You have jogged each axis that has lost mastery at least one motor turn.  You have reset all “Pulse not established (SRVO-075)” errors . Step

1 Jog the robot to the approximate mastering position shown in Figure 8–1. Figure 8–1. Zero Degree Position of the P-200 Robot

8 MASTERING MARO2P10203703E

8–5 NOTE Align surfaces using a 1 - 2 - 3 block or other straight edge device. NOTE Always rotate each axis into the mastered position from the same direction to insure backlash errors are not added to the mastering data. Figure 8–2. Axes 4, 5, and 6 100° Wrist Assembly

Axis 4 Bearing Surface

Axis 6 Bearing Surface Inner Knuckle

Outer Knuckle

Axis 5 Bearing Surface

8. MASTERING

8–6

MARO2P10203703E

2 Rotate the inner knuckle counter-clockwise. Align the edge of the notch on the inner knuckle and the pin in the bearing retainer (axis 4) See Figure 8–2. See Figure 8–3 if the wrist is 100°, or Figure 8–4 if . the wrist is 140 Figure 8–3. Axes 4, 5, and 6 100° Wrist Mastering Positions

Axis 4 Mastering Position

Axis 5 Bearing Surface Axis 5 Mastering Position

Mastering Surface

Axis 6 Mastering Position Mastering Pin

8 MASTERING MARO2P10203703E

8–7 Figure 8–4. Axes 4, 5, and 6 140° Wrist Mastering Positions

Axis 4 Mastering Position

AXIS 5 Bearing Surface Axis 5 Mastering Position

Axis 6 Mastering Position Mastering Pin Mastering Surface

3 Rotate the outer knuckle counter-clockwise aligning the edge of the notch on the outer knuckle and the pin in the bearing retainer (axis 5) See Figure 8–2. See Figure 8–3 if the wrist is 100°, or Figure 8–4 if . the wrist is 140 4 Rotate the wrist faceplate counter-clockwise aligning the edge of the notch on the faceplate and the pin in the bearing retainer (axis 6). See Figure 8–2. See Figure 8–3 if the wrist is 100°, or Figure 8–4 if the . wrist is 140

8. MASTERING

8–8

MARO2P10203703E

5 Align the witness marks on the turret and pedestal (axis 1). See Figure 8–5. Figure 8–5. Robot Pedestal Axis 1 100°/140° Mastering Surface Location

Left Hand Mastering Surface

Right Hand Mastering Surface

P-200 Robot Pedestal

Turret Witness Mark

MASTERED POSITION: AXIS 1 = 75 ° Mastering Surface

P-200 Robot Pedestal P-200 Robot Turret

8 MASTERING MARO2P10203703E

8–9 6 Lower the inner arm aligning the witness marks on the inner arm and turret (axis 2). See Figure 8–6. Figure 8–6. Axis 2 100°/140° Mastering Surface Location

Inner Arm

Right Hand Witness Marks Left Hand Witness Marks Mastering Surface

Mastering Surface

P-200 Turret

Mastering Surface

Witness Mark

MASTERED POSITION: AXIS 2 = 20 °

P-200 Turret

Inner Arm

8. MASTERING

8–10

MARO2P10203703E

NOTE If you are mastering a 100 wrist robot, go to step 7. If your robot has a 140° wrist, go to step 8. 7 Lower the outer arm aligning the notches on the inner and outer arm (axis 3). See Figure 8–7. Go to step 14. Figure 8–7. Axis 3 100° Mastered Position

Outer Arm Inner Arm Witness Mark Witness Mark Outer Arm

MASTERED POSITION: AXIS 3 = –65 °

Inner Arm

8 MASTERING MARO2P10203703E

8–11 8 Lower the outer arm aligning the mastering pin on the 140° wrist to the mastering surface located on the inner arm (axis 3). See Figure 8–8. NOTE If your robot is not mounted on a rail, go to to step 16. Figure 8–8. Axis 3 Mastering Position (140° Wrist)

Outer Arm Mastering Pin

Inner Arm 140° Wrist Mastering Surface

Left and Right Side Mastering Pins

MASTERED POSITION: AXIS 3 ARM LENGTH 1200 MM

94.366°

1400 MM

97.0°

8. MASTERING

8–12

MARO2P10203703E

NOTE If your robot is using a P-200 Clean Wall Retrofit (P-150 Retrofit) rail, go to to step 9. If not continue to step 14. 9 Attach the mastering block to the side of the saddle. See Figure 8–9. Figure 8–9. Mastering Block

10

Release the brakes for the rail axis.

11 Manually push the saddle until the mastering block comes in contact with the rail axis master stop. See Figure 8–9.

8 MASTERING MARO2P10203703E

8–13 12

Engage the brakes for the rail axis and reset all faults.

13

Go to Step 16.

14

Jog the robot to the approximate mastering position shown in Figure 8–10.

Figure 8–10. Axis 7 Mastering Position

Witness Mark

Rail

Mastering Surface

AXIS 7

Side View

15

Align the mastering surface on the pedestal to the witness mark on the rail using a 1-2-3 block or other straight edge device.

16

Press MENUS.

17

Select SYSTEM.

18

Press F1, [TYPE].

19

Select Master/Cal.

8. MASTERING

8–14

MARO2P10203703E

NOTE You do not need a fixture to master the P-200 robot. To perform Standard Mastering, select Fixture Position Master. See the following screen for an example. SYSTEM Master/Cal

1 2 3 4 5 6

G1

JOINT 10 % TORQUE =[ON]

FIXTURE POSITION MASTER ZERO POSITION MASTER QUICK MASTER SINGLE AXIS MASTER SET QUICK MASTER REF CALIBRATE

Press ‘Enter’ or number key to select.

[ TYPE ]

20

LOAD

Select FIXTURE POSITION MASTER. You will see a screen similar to the following.

SYSTEM Master/Cal

1 2 3 4 5 6

RES_PCA

G1

JOINT 10 % TORQUE =[ON]

FIXTURE POSITION MASTER ZERO POSITION MASTER QUICK MASTER SINGLE AXIS MASTER SET QUICK MASTER REF CALIBRATE

Press ‘Enter’ or number key to select. Master at master position? [NO] [ TYPE ] YES

NO

8 MASTERING MARO2P10203703E

8–15 21

Press F4, YES. You will see a screen similar to the following.

SYSTEM Master/Cal

G1

JOINT 10 % TORQUE = [ON]

1 FIXTURE POSITION MASTER 2 ZERO POSITION MASTER 3 QUICK MASTER 4 SINGLE AXIS MASTER 5 SET QUICK MASTER REF 6 CALIBRATE Robot Mastered! Mastering Data: < 0> < 0> < 0> [ TYPE ]

LOAD

RES_PCA

DONE

NOTE If there is an encoder fault that was not reset, the teach pendant will not confirm mastering and the mastering position will not be entered. 22 Select CALIBRATE. You will see a screen similar to the following. SYSTEM Master/Cal

1 2 3 4 5 6

G1

JOINT 10 % TORQUE = [ON]

FIXTURE POSITION MASTER ZERO POSITION MASTER QUICK MASTER SINGLE AXIS MASTER SET QUICK MASTER REF CALIBRATE

Press ’Enter’ or number key to select Calibrate [NO] [ TYPE ]

23

YES

NO

Press F4, YES.

SYSTEM Master/Cal

G1

JOINT 10 % TORQUE = [ON]

1 FIXTURE POSITION MASTER 2 ZERO POSITION MASTER 3 QUICK MASTER 4 SINGLE AXIS MASTER 5 SET QUICK MASTER REF 6 CALIBRATE Robot Calibrated! CUR JNT ANG (deg): [ TYPE ]

8. MASTERING

8–16

MARO2P10203703E

8.3

When a single axis of the P-200 has been positioned at its mastering location, single axis mastering can be performed. See Figure 8–11.

SINGLE AXIS MASTERING FOR THE P-200 ROBOT

Figure 8–11. Mastering Position of the P-200 robot

Use Procedure 8–3 to master a single axis. Procedure 8–3

Mastering a Single Axis

Condition

 You have cleared any servo faults that prevent you from jogging the machine.

 You have jogged each axis that has lost mastery at least one motor turn. Step

1 Press MENUS. 2 Select SYSTEM. 3 Press F1, [TYPE]. 4 Select Master/Cal. If Master/Cal is not listed on the [TYPE] menu, do the following; otherwise, continue to Step 5.

8 MASTERING MARO2P10203703E

8–17

a Select VARIABLE from the [TYPE] menu. b Move the cursor to $MASTER_ENB. c Press the numeric key “1” and then press ENTER on the teach pendant. d Press F1, [TYPE]. e Select Master/Cal. You will see a screen similar to the following. SYSTEM Master/Cal

1 2 3 4 5 6

JOINT

10%

FIXTURE POSITION MASTER ZERO POSITION MASTER QUICK MASTER SINGLE AXIS MASTER SET QUICK MASTER REF CALIBRATE

Press ‘Enter’ or number key to select.

[ TYPE ]

LOAD

RES_PCA

DONE

5 Select 4, Single Axis Master. You will see a screen similar to the following. SINGLE AXIS MASTER ACTUAL POS J1 0.000 J2 3.514 J3 -7.164 J4 -357.366 J5 -1.275 J6 4.571 E1 0.000 E2 0.000 E3 0.000 [ TYPE ]

(MSTR POS) ( 75.000) ( 20.000) ( -65.000) ( 0.000) ( 0.000) ( 0.000) ( 0.000) ( 0.000) ( 0.000)

JOINT (SEL) (0) (0) (0) (0) (0) (0) (0) (0) (0) GROUP

10% 1/9 [ST] [2] [0] [2] [2] [2] [2] [0] [0] [0] EXEC

6 Jog all unaffected axes to their respective mastering positions so that the actual position matches that of the master position column. 7 Using a 1-2-3 block, or other straight edge device, align the unmastered axis (axes) to their witness mark(s) as described in Procedure 8–2 .

8 Move the cursor to the SEL column for each unmastered axis (axes) and press the numeric key “1”, then press ENTER.

8. MASTERING

8–18

MARO2P10203703E

WARNING Do not modify the values in the column labeled (MSTR POS). Otherwise, unexpected motion could occur which could injure personnel or damage equipment.

9 Press F5, EXEC. Mastering will be performed automatically. 10

Press PREV.

11 Select Calibrate. 12

Press F4, YES.

Single axis mastering is now complete.

8 MASTERING MARO2P10203703E

8–19

8.4 STANDARD MASTERING FOR THE P-10 DOOR OPENER AND THE P-15 HOOD AND DECK OPENER Procedure 8–4

Condition

Use Procedure 8–4 to master the P-10 Door Opener and the P-15 Hood and Deck opener. NOTE You do not need a fixture to master the P-10 or P-15 openers. To perform Standard Mastering, select Fixture Position Master on the teach pendant.

Standard Mastering for the P-10 Door Opener and the P-15 Hood and Deck Opener  You have cleared any servo faults that prevent you from jogging the opener.  You have reset all “Pulse not established (SRVO-075)” errors.

Step

1 Select Motion Group 2. a Press FCTN. b Select CHANGE GROUP. G2 should be displayed in the title line of the teach pendant screen. 2 Jog the opener to the approximate mastering position shown in Figure 8–12. NOTE Align surfaces using a 1 - 2 - 3 block or other straight edge device.

8. MASTERING

8–20

MARO2P10203703E

Figure 8–12. P-10 and P-15 Opener Mastering Position

45°

BOOTH WALL

45° AXIS 2

AXIS 3

AXIS 1

8 MASTERING MARO2P10203703E

8–21 3 Align the mastering surfaces on the x-drive housing and the rail. See Figure 8–13. Figure 8–13. P-10 and P-15 Axis One Mastering Position

700T 25T A View A

RAIL – REF. Mastering Surfaces Line Up Machine Edge On Rail With Cover As Shown

8. MASTERING

8–22

MARO2P10203703E

4 Align the mastering surfaces on the base and the inner arm. See Figure 8–14. Figure 8–14. P-10 and P-15 Axis Two Mastering Position Inner Arm

Mastering Surfaces (Inner Arm To Base)

Inner Arm

Line Up These Surfaces

Base

View B (rear view)

B

Base

B A

View A

Front Of Opener

8 MASTERING MARO2P10203703E

8–23 5 Align the mastering surfaces on the crank and base. See Figure 8–15. Figure 8–15. P-10 and P-15 Axis Three Mastered Position Line Up These Surfaces

Mastering Surfaces (Crank To base)

(Crank To Base)s

BASE

B

View B

45° REF

B

A Front Of Opener

View A

6 Press MENUS. 7 Select SYSTEM. 8 Press F1, [TYPE].

8. MASTERING

8–24

MARO2P10203703E

9 Select Master/Cal. NOTE You do not need a fixture to master the P-10 opener. To perform Standard Mastering, select Fixture Position Master on the teach pendant. You will see a screen similar to the following. SYSTEM Master/Cal

1 2 3 4 5 6

G2

JOINT 10 % TORQUE =[ON]

FIXTURE POSITION MASTER ZERO POSITION MASTER QUICK MASTER SINGLE AXIS MASTER SET QUICK MASTER REF CALIBRATE

Press ‘Enter’ or number key to select.

[ TYPE ]

10

LOAD

Select FIXTURE POSITION MASTER. You will see a screen similar to the following.

SYSTEM Master/Cal

1 2 3 4 5 6

RES_PCA

G2

JOINT 10 % TORQUE =[ON]

FIXTURE POSITION MASTER ZERO POSITION MASTER QUICK MASTER SINGLE AXIS MASTER SET QUICK MASTER REF CALIBRATE

Press ‘Enter’ or number key to select. Master at master position? [NO] [ TYPE ] YES

NO

11 Press F4, [YES]. You will see a screen similar to the following. NOTE If there is an encoder fault that was not reset, the teach pendant will not confirm mastering and the mastering position will not be entered.

8 MASTERING MARO2P10203703E

8–25 12

Select CALIBRATE. You will see a screen similar to the following.

SYSTEM Master/Cal

1 2 3 4 5 6

G2

JOINT 10 % TORQUE =[ON]

FIXTURE POSITION MASTER ZERO POSITION MASTER QUICK MASTER SINGLE AXIS MASTER SET QUICK MASTER REF CALIBRATE

Press ‘Enter’ or number key to select. Calibrate [NO] [ TYPE ]

13

YES

NO

Press F4, YES. The robot is now calibrated and can be jogged in coordinate frames.

SYSTEM Master/Cal

G2

JOINT 10 % TORQUE = [ON]

1 FIXTURE POSITION MASTER 2 ZERO POSITION MASTER 3 QUICK MASTER 4 SINGLE AXIS MASTER 5 SET QUICK MASTER REF 6 CALIBRATE Robot Mastered! Mastering Data: < 0> < 0> < 0> [ TYPE ]

Page2

9 REPLACING COMPONENTS

9

MARO2P10203703E

REPLACING COMPONENTS 9–1

Topics In This Chapter

Page

Replacing R-J2 Batteries

Replacing R-J2 Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Replacing the PSU Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Replacing the SPC Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Replace PCMCIA Memory Card (Optional) Battery . . . . . . . . . . . . . . . . . . . . .

9–2 9–2 9–3 9–4

Replacing Relays

Replacing Relays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Operator Control Panel Relays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Emergency Stop Control Board (EMG) Printed Circuit Board Relay Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Purge Control PCB Relay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9–6 9–6 9–7 9–8

Replacing a Printed Circuit Board

Replacing a Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–9  Removal and Replacement of a Printed Circuit Board from the Backplane Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–10  Replacing the Backplane Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . 9–12

Replacing a Module on the Main CPU or Aux Axis Control PCB

Use this procedure to replace a module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–13

Replacing an I/O Module (Model A)

Replacing an I/O Module (Model A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Replacing the Base Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Replacing a Model A Interface Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Replacing a Model A I/O Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Replacing the Multi-Tap Transformer

Replacing the Multi-Tap Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–19

Replacing a Servo Amplifiers

Replacing a Servo Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–20

Replacing the Operator Panel

Replacing the Operator Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–21

Replacing the Backplane Fan Motors

Replacing the Fan Motors in the Backplane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–22

Teach Pendant

Replacing the Teach Pendant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–24

Replacing Serial Pulse Coders

Replacing Serial Pulse Coder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–25  Replacing Internal Mounted Serial Pulse Coder . . . . . . . . . . . . . . . . . . . . . . . 9–25  Replacing Externally Mounted Serial Pulse Coder . . . . . . . . . . . . . . . . . . . . . 9–27

9–16 9–16 9–17 9–17

9. REPLACING COMPONENTS

9–2

MARO2P10203703E

9.1

FANUC Robotics recommends that all batteries be changed immediately prior to production start up. Change the batteries annually to assure reliable robot performance for extended periods of time. Use Procedure 9–1 to replace the PSU battery, Procedure 9–2 to replace the SPC battery, and Procedure 9–3 to replace the PCMCIA memory card battery.

REPLACING R-J2 BATTERIES

Procedure 9–1 Step

Replacing the PSU Battery 1 Get the new battery. (number: A98L-0031-0012) 2 Turn off and lock out the controller. CAUTION The battery must be replaced within 30 minutes. If the power is turned off and the battery is removed for 30 minutes or more, the contents of the memory on the main CPU printed circuit board may be lost. WARNING Do not short circuit or incinerate a discarded battery. Follow your company’s procedures for disposing of lithium batteries. Otherwise, you could injure personnel or damage equipment.

WARNING Lethal voltage is present in the controller WHENEVER IT IS CONNECTED to a power source. Be extremely careful to avoid electrical shock. 3 Remove the battery case from the front panel of the power supply unit. See Figure 9–1. The case can be removed easily by squeezing the top and bottom of it and pulling. Figure 9–1. Replacing the Battery

BATTERY

Cable connector

Front panel of the power supply unit Battery (ordering drawing number: A98L-0031-0007)

Battery case

Front panel of the power supply unit

PC board connector

Battery

9. REPLACING COMPONENTS

9–3

MARO2P10203703E

4 Remove the battery and connector from the PSU. 5 Replace the battery and reconnect the connector. 6 Install the battery case. Procedure 9–2 Step

Replacing the SPC Batteries 1 Get four new alkaline D-cell batteries. 2 Turn on the controller. 3 Press the operator panel Emergency Stop button and the teach pendant Emergency Stop button. 4 Remove the black plastic battery cover from the battery box on the inside of the controller cabinet front door. See Figure 9–2. 5 Remove the old batteries. 6 Insert the new batteries while observing battery polarity as shown on the battery case. 7 Replace the battery cover. 8 Cold start the controller. The teach pendant might display a SRVO–065 BLAL alarm. This is normal. It will reset when you cold start the controller.

9. REPLACING COMPONENTS

9–4

MARO2P10203703E

Figure 9–2. Internal View of the P-200 R-J2 Controller

Main power disconnect

Main CPU

Power supply unit

Aux axis board

Emergency stop control printed circuit board SPC battery case

Procedure 9–3 Step

Replace PCMCIA Memory Card (Optional) Battery 1 Get one new BR2325 3V lithium battery. 2 Remove the PCMCIA (memory) card from the Memory Card Interface board (PN A 20B-2000-0600). 3 Insert a small diameter pointed object into the hole on the upper side of the 2 MG SRAM PC card (PN DISKMF32M1LCDA7). 4 Release the battery holder by pressing the small diameter object against the battery holder catch and pull the battery holder straight out from the card. See Figure 9–3 for the location of the battery. 5 Replace the old battery with the new battery. Insure that the (+) symbol on the battery is located as shown on the battery holder.

9. REPLACING COMPONENTS

9–5

MARO2P10203703E

WARNING DO NOT Install the Memory Card Interface board with the power on. This will damage the Interface board.

6 With the new battery in the holder, install the battery holder into the memory card and reinstall the card into the controller. See Figure 9–4. Figure 9–3. Replacing Memory Card Battery

Figure 9–4. 3-Slot Backplane (A05B-2316-C105) 3 slot back plane printed circuit board A20B-2001-0670

Total version

Fan

Main CPU Power Supply PCMCIA Memory Card

Backplane Printed Circuit Board

Fans

9. REPLACING COMPONENTS

9–6

MARO2P10203703E

9.2 REPLACING RELAYS

9.2.1 Operator Control Panel Relays

This section includes relays located on the back of the operator control panel and the EMG printed circuit boards relay replacement procedures. See Figure 9–5 for relay locations and Table 9–1 for operator control panel relay identification. Table 9–1.

EMG Printed Circuit Board Relay Identification

Relay Designation

Relay Identification

Relays KA1 – KA4

A58L–0001–0192#1231R

Figure 9–5. Operator Control Panel Relay Locations

SW1

LED1

SW3

SW2 LED3

SW6

LED6

LED4

SW5

SW7

LED2

Replaceable Relays

CNPG

SWO PDIO

LED5

SW8 CNHM

KA1

KA2

KA3

KA4

SW9

CNOP CRS1

EXON

EXCOM

EXOFF

EMGIN1

EMGIN2

FENCE 1

FENCE 2

TBOP2

SVON2

E–STOP1

E–STOP2

EMGOUT1

EMGOUTC

EMGOUT2

TBOP1

PORT 2

SVON1

SW10

9. REPLACING COMPONENTS

9–7

MARO2P10203703E

9.2.2 Emergency Stop Control Board (EMG) Printed Circuit Board Relay Replacement

See Figure 9–6 for relay locations and refer to Table 9–2 for relay identification. Table 9–2.

EMG Printed Circuit Board Relay Identification

Relay Designation

Relay Identification

RLY1

A58L–0001–0422#3232K

RLY2

A58L–0001–0192#1509A

RLY 3 , RLY4, RLY5, and RLY6

A58L–0001–0192#1472R

Figure 9–6. EMG Printed Circuit Board Relay Locations for B-Size Cabinet

RLY4 RLY5 RLY6

RLY1

RLY2 RLY3

9. REPLACING COMPONENTS

9–8

MARO2P10203703E

9.2.3 Purge Control PCB Relay

Refer to Table 9–3 for relay identification and see Figure 9–7 for relay locations on the purge control printed circuit board. Table 9–3.

EMG Printed Circuit Board Relay Identification

Relay Designation Relays KA5 and KA6

Relay Identification A58L–0001–0192#1231R

Figure 9–7. Purge Control Unit

Purge control PCB 1 2 3 4 5 6 7 8 9 1011 12 1314 1516 171819 20 21 222324

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 1718 19 20 21 22 2324

P1 N1 P2 N2 P3 N3 P4 N4 P5 N5 P6 N6 G

G FG

CH1 CH2 CH3 CH4 CH5 CH6 A1 C1 A2 C2 A3 C3 A4 C4 A5 C5 A6 C6 0V 200V 220V

ISBU

IBRC

Relays KA5 and KA6

Power supply

9. REPLACING COMPONENTS

9–9

MARO2P10203703E

9.3 REPLACING A PRINTED CIRCUIT BOARD

When replacing a printed circuit board, insure that the following precautions are followed:  The controller is locked out and tagged out.  Remove the battery from the power supply unit and plug it into the battery connector (BAT. VBAT) on the front panel of the main CPU, if the power supply unit or the main CPU are to be removed from the backplane. See Figure 9–8. Figure 9–8. Battery Transfer to Maintain CMOS RAM Memory

Power Supply Unit

Main CPU Printed Circuit Board

Aux Battery Connection (BAT. VBAT)

Battery

9. REPLACING COMPONENTS

9–10

MARO2P10203703E

9.3.1 Removal and Replacement of a Printed Circuit Board from the Backplane Printed Circuit Board

Procedure 9–4

Removal and replacement of a printed circuit board from the backplane printed circuit board is provided in Procedure 9–4 and is shown in Figure 9–9.

Printed Circuit Board Removal and Replacement

1 Turn the power off and remove the cable(s) from the power supply unit or printed circuit board to be replaced. If the cable markings are missing or difficult to read, write them down before removing the cables.

CAUTION Be sure to back up all program and setup data on a floppy disk before you replace a printed circuit board otherwise, you could lose data.

CAUTION When either the power supply or main CPU printed circuit boards are removed from the controller, the data storage battery is disconnected. All boards must be reinstalled properly within half an hour to avoid data loss.

NOTE When removing the printed circuit board, do not touch semiconductor components on it and do not let the components touch other components.

9. REPLACING COMPONENTS

9–11

MARO2P10203703E

2 Squeeze the removal tabs at the top and bottom of the front panel of the power supply unit or printed circuit board. The latches of the control unit rack are released. Holding the tabs in this state, pull out the unit or printed circuit board. See Figure 9–9. Figure 9–9. Replacing the Components on the Backplane Printed Circuit Board Main CPU printed circuit board Power supply unit Optional boards

Removal tab

Removal tab

NOTE If you are removing the printed circuit boards in preparation to remove the backplane go to Procedure 9–5 . 3 Insert a new power supply unit or printed circuit board into the slot of the control unit rack. Carefully push it into the slot until the front panel is latched at the top and bottom. 4 Check that the printed circuit board to be installed is correctly set and adjusted. 5 Connect the cables removed for replacement to the original positions.

9. REPLACING COMPONENTS

9–12

MARO2P10203703E

9.3.2 Replacing the Backplane Printed Circuit Board Procedure 9–5

Procedure 9–5 provides instructions for replacement of the backplane printed circuit boards and Figure 9–10 shows an example of board replacement.

Replacing Backplane Printed Circuit Board 1 When you replace the backplane printed circuit board, remove the entire rack. Remove the power supply unit printed circuit board, main CPU printed circuit board, and any optional printed circuit boards using Procedure 9–4 . 2 Remove the ground cable from the backplane printed circuit board. 3 Loosen the screws fastening the rack at the top. Then remove the screws fastening the rack at the bottom. See Figure 9–10. 4 Lift up on backplane until slots have cleared the mounting screws and carefully move it forward until the backplane is clear of the controller. 5 Install the new backplane in reverse order. Figure 9–10. Replacing the Backplane Printed Circuit Board

Loosen screws

Backplane printed circuit board

Remove screws

9. REPLACING COMPONENTS

9–13

MARO2P10203703E

9.4

Use Procedure 9–6 to replace a module.

REPLACING A MODULE ON THE MAIN CPU OR AUX AXIS CONTROL PRINTED CIRCUIT BOARD

CAUTION Following electrostatic discharge procedures when handling all circuit boards.

Refer to Chapter 1 for part numbers. Procedure 9–6

Step

Replacing a Module on the Main CPU or Aux Axis Control Printed Circuit Board 1 Move the latches at both ends of the module socket toward the outside. The spring of the contact tilts the module. See Figure 9–11. Figure 9–11. Moving the Latches on the End of the Module Socket

2 If the tilted module touches the next module, it might be difficult to remove it. In this case, release the latches of the next module as described in step 1 above. 3 Now the module is free in the socket. Pull out the module carefully in a straight line. Do not pull it out in an arc. The contacts of the socket or module might be damaged. 4 Install a new module in the socket at an angle. Push it into the socket until the bottom of the module reaches the bottom of the socket groove. Be sure you have the module facing in the proper direction. align the groove in the module with the tab as shown in Figure 9–12.

9. REPLACING COMPONENTS

9–14

MARO2P10203703E

Figure 9–12. Installing a New Module at an Angle

Short

Long Fit the recess on the module over the tab in the module socket.

5 Push the module in the top edge so that the module stands upright. See Figure 9–13. Figure 9–13. Pushing in the Module

6 Check that the module is latched properly at both ends of the socket. If it is insufficiently latched, the electrical contact might be improper and a malfunction could occur.

9. REPLACING COMPONENTS

9–15

MARO2P10203703E

Figure 9–14. Mounting Locations of the Modules

CMOS module Flash ROM module

DRAM module Axis module (J1, J2) Axis module (J3, J4) Axis module (J5, J6)

MAIN CPU

JNA

Servo control module (for axis 9 and 10) Servo control module (for axis 7 and 8) JRY2

Servo control module (for axis 5 and 6) Servo control module (for axis 3 and 4) Servo control module (for axis 1 and 2)

AUX AXIS CONTROL PCB

9. REPLACING COMPONENTS

9–16

MARO2P10203703E

9.5 REPLACING AN I/O MODULE (MODEL A)

Procedure 9–7 Step

Use Procedure 9–8 and Procedure 9–9 to replace an Interface Module and I/O Module (Model A). Replacement of the Interface Module is provided in Procedure 9–8 and replacement of the I/O Module is provided in Procedure 9–9 and shown in Figure 9–16. Use Procedure 9–7 to replace the base unit if needed after you remove the I/O Interface Module. Replacing the Base Unit 1 Remove the I/O modules from the base unit. 2 Loosen the upper two mounting screws. 3 Remove the lower two mounting screws and replace the base unit. Figure 9–15. Replacing the Base Unit of the Model A I/O

M4 screw

9. REPLACING COMPONENTS

9–17

MARO2P10203703E

9.5.1

Use Procedure 9–8 to replace a Model A Interface Module.

Replacing a Model A Interface Module Procedure 9–8 Step

Replacing a Model A Interface Module 1 Turn off and lock out the controller. 2 Disconnect the signal and power cables from the interface module. 3 Press the latch on the bottom of the module and rotate the module toward you and up. 4 Engage the hook at the top rear of the module with the bar above the base unit socket. 5 Rotate the module downward until the latch engages. 6 Reconnect the signal and power cables to the interface module.

9.5.2

Use Procedure 9–9 to replace a Model A I/O Module.

Replacing a Model A I/O Module Procedure 9–9 Step

Replacing a Model A I/O Module 1 Turn off and lock out the controller. 2 Remove the wiring harness block. a Lift the latch at the lower left corner of the module window. b Rotate the block toward you and down. 3 Press the latch on the bottom of the module and rotate the module toward you and up. See Figure 9–16. 4 Engage the hook at the top read of the module with the bar above the base unit socket. 5 Rotate the module downward until the latch engages.

9. REPLACING COMPONENTS

9–18

MARO2P10203703E

Figure 9–16. Replacing a Model A I/O Module

6 Install the wiring harness block. a Engage the hook at the bottom rear of the block with the bar at the bottom of the module. b Rotate the block upward until the latch engages.

9. REPLACING COMPONENTS

9–19

MARO2P10203703E

9.6

Use Procedure 9–10 to replace the multi-tap transformer.

REPLACING THE MULTI-TAP TRANSFORMER Refer to Chapter 1 for part numbers. Procedure 9–10 Step

Replacing the Multi-Tap Transformer 1 Turn off and lock out the controller. 2 Remove the acrylic covers from the transformer and ALC relay. 3 Disconnect the wiring harnesses and ground wire from the transformer. 4 Disconnect the three wires from the bottom of the ALC relay. 5 After removing the eight screws fastening the transformer, remove the transformer. See Figure 9–17. Put a new transformer on the rail in the controller and push it into the controller along the rail. Then reinstall the screws. 6 Reconnect the wires and harnesses. 7 Reinstall the acrylic covers. Figure 9–17. Replacing the Multi-Tap Transformer

M5 screws

9. REPLACING COMPONENTS

9–20

MARO2P10203703E

9.7

Use Procedure 9–11 to replace a servo amplifier. See Figure 9–18.

REPLACING A SERVO AMPLIFIER Refer to Chapter 1 for part numbers. Procedure 9–11

Step

Replacing a Servo Amplifier

1 Turn off and lock out the controller. 2 Remove the five bus bars from the servo amplifier bank. 3 Disconnect the wires from the servo amplifier terminal strip. Remove the two screws fastening the servo amplifier and remove the amplifier. 4 Set the terminal strip jumpers on the new servo amplifier to match those of the one you removed. 5 Install the new servo amplifier by following these steps in reverse order. Figure 9–18. Replacing a Servo Amplifier

Screw

9. REPLACING COMPONENTS

9–21

MARO2P10203703E

9.8

Use Procedure 9–12 to replace the operator panel. See Figure 9–19.

REPLACING THE OPERATOR PANEL Refer to Chapter 1 for part numbers. Procedure 9–12 Step

Replacing the Operator Panel 1 Power down and lock out the controller. 2 Remove all connectors and wires from the rear of the rear operator panel and all connectors from the front panel. Identify all wires and connectors for installation of new operator panel. 3 Remove the six nuts fastening the operator panel and remove the operator panel. 4 Install new operator panel using 6 nuts removed during removal of old operator panel. 5 Reconnect all wires and connectors removed during Step 2. Figure 9–19. Replacing the Operator Panel

Î ÎÎ ÎÏ Î Ï ÏÎ ON

Nuts (Qyt 6)

9. REPLACING COMPONENTS

9–22

MARO2P10203703E

9.9 REPLACING THE FAN MOTOR IN THE BACKPLANE Procedure 9–13 Step

Replace a defective fan motor using Procedure 9–13 and as shown in Figure 9–20.

Fan Motor Replacement 1 Identify the defective fan motor and remove any printed circuit board directly below the fan to be replaced. 2 The cable connected to the fan motor is connected to the backplane printed circuit board in the slot. Holding the connector, remove the cable from the backplane printed circuit board. 3 Open the lid at the top of the backplane rack by placing the tip of a flat-blade screwdriver into the center hole at the front of the lid and moving the screwdriver like a lever in the direction in Figure 9–20. this will release the latch. 4 Replace the fan motor. 5 Close the lid until it is latched. 6 Connect the cable of the fan motor to the connector on the backplane printed circuit board. Suspend the center of the cable on the hook in the back of the rack. 7 Reinstall the removed printed circuit board.

9. REPLACING COMPONENTS

9–23

MARO2P10203703E

Figure 9–20. Replacing the Fan Motor

Fan motor

Cable

Connector

9. REPLACING COMPONENTS

9–24

9.10 REPLACING THE TEACH PENDANT

MARO2P10203703E

Replace a defective teach pendant using Table 9–4 for ordering and as shown in Figure 9–21. Figure 9–21. Replacing the Teach Pendant

Table 9–4.

Teach Pendant Part Numbers

Part Number(s) A05B-2301-C305 A05B-2308-C300 Intrinsically Safe Teach Pendant R-J2

Use General use Paint

Remarks English

9. REPLACING COMPONENTS

9–25

MARO2P10203703E

9.11 REPLACING A SERIAL PULSE CODER Procedure 9–14

Use Procedure 9–14 to replace an externally or internally mounted serial pulse coder.

Replacing Internal Mounted Serial Pulse Coder

NOTE The robot will have to be remastered after this procedure. Step

1 Turn off and lock out the robot. 2 At the end of the motor, remove both cables from the serial pulse coder cover. 3 Remove the four bolts that secure the serial pulse coder cover to the motor housing. 4 Remove the four screws holding the large serial pulse coder cable connector to the serial pulse coder cover. 5 Retract the rubber boot on the inside of the serial pulse coder cable connector. 6 Remove the snap ring on the inside of the serial pulse coder cable connector. 7 Separate the two-wire connector on the inside of the internal connector. 8 Detach the serial pulse coder cable from the serial pulse coder housing.

CAUTION In the next step, be sure to remove the correct bolts, as shown in Figure 9–22. Removing the wrong bolts can destroy the serial pulse coder.

9 Remove the four bolts attaching the serial pulse coder to the motor. See Figure 9–22. 10

Remove the serial pulse coder and the black plastic coupling and retain the black plastic coupling to be installed with the new serial pulse coder. See Figure 9–23.

11 Position the new serial pulse coder, with black plastic coupling, onto the motor so that the coupling engages both motor and pulse coder. If there are witness marks on the serial pulse coder case and the motor case, make sure that they line up. 12

Install the new serial pulse coder to the motor housing using four bolts.

13

Attach the serial pulse coder cable to the serial pulse coder housing.

9. REPLACING COMPONENTS

9–26

MARO2P10203703E

14

Install the snap ring on the inside of the serial pulse coder cable connector.

15

Reposition the rubber boot on the inside of the serial pulse coder cable connector.

16

Install the screws holding the serial pulse coder cable connector to the serial pulse coder housing.

17

Connect the two-wire cable connectors together.

18

Install the serial pulse coder housing to the motor, using four bolts

19

Attach both outside cables to the serial pulse coder housing.

Figure 9–22. Removing the Internally Mounted serial pulse coder

CAUTION: DO NOT REMOVE THE SCREWS FROM THESE FOUR RIBBED HOLES. THE SERIAL PULSE CODER WILL SEPARATE AND BE DESTROYED.

M4 Mounting Holes

FANUC

REAR VIEW

9. REPLACING COMPONENTS

9–27

MARO2P10203703E

Figure 9–23. Removing the Black Plastic Coupling

Serial Pulse Coder

Black Plastic Coupling

Procedure 9–15

Replacing an Externally Mounted Serial Pulse Coder

NOTE The robot will have to be remastered after this procedure. Step

1 Turn off and lock out the robot. 2 At the end of the motor, remove the two screws securing the serial pulse coder connector cover. 3 Remove the two screws securing the cable connector to the serial pulse coder receptacle.

CAUTION In the next step, be sure to remove the correct bolts, as shown in Figure 9–22. Removing the wrong bolts can destroy the serial pulse coder. 4 Remove the four screws holding the serial pulse coder to the motor housing and carefully remove the serial pulse coder. See Figure 9–22. Remove the coupling from the motor and serial pulse coder. See Figure 9–23.

9. REPLACING COMPONENTS

9–28

MARO2P10203703E

5 Position the new serial pulse coder, with coupling, onto the motor so that the coupling engages both the shaft of the serial pulse coder and the motor. See If there are witness marks on the serial pulse coder case and the motor case, make sure that they line up. 6 Install four new screws and secure the serial pulse coder housing to the motor. 7 Attach the serial pulse coder connector to the serial pulse coder housing using two screws. 8 Attach the connector cover to the serial pulse coder housing using two screws.

Page29

10 BOARD ADJUSTMENTS AND CALIBRATIONS

MARO2P10203703E

10

Topics In This Chapter

BOARD ADJUSTMENTS AND CALIBRATIONS 10–1

Page

I/P transducer/Regulator Performance Check

On a periodic basis, and whenever a transducer/regulator is replaced, this procedure should be preformed (Procedure 10–1 ). . . . . . . . . . . . . . . . . . . . . . . . . 10–2

Manual Flow Test (Beakering Test)

Measure paint Flow rate in cc/min (Procedure 10–2 ). . . . . . . . . . . . . . . . . . . . . . . 10–5

Cold Start

Standard Method For Turning On Power To The Robot And Controller. (Procedure 10–3 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–7

Powering on the Robot Systems

The following procedures are applicable to all P-200 robot systems including those on a pedestal, rail or with an opener. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–10

Controller Shutdown Procedure

Use this procedure for complete controller shutdown including purge circuitry. . 10–11

Servo Lockout Procedure

For servo lockout use the following procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–11

No board adjustments are required on the controller. However, Emergency Stop Control Board jumper settings are included for reference. See Figure 10–1. These jumpers are set at installation and are not to be changed. To set servo amplifier dip switches, refer to Chapter 1.

10. BOARD ADJUSTMENTS AND CALIBRATIONS MARO2P10203703E

10–2

10.1

On a periodic basis, and whenever a transducer/regulator is replaced, this procedure should be preformed to check out the Paint Regulator (PR) and the Proportion Air transducer/regulator assembly in the P-200 outer arm.

I/P TRANSDUCER/ REGULATOR PERFORMANCE CHECK

Tools Required:  0–60 psi precision pressure gauge with ±0.5 psi accuracy  Appropriate hand tools  Tubing and fittings as required

Procedure 10–1 Condition Step

Transducer/Regulator Performance Check  The robot/controller has been reset, and the system is in the MANUAL or PRODUCTION mode. 1 Remove the air supply to the panel. 2 Remove output line from the regulator. NOTE If a gauge port is available, connect the gauge here. 3 Connect a precision 0-60 psi pressure gauge at the output port on the PR I/P regulator section. This will register a pneumatic output signal while testing the transducer/regulator. NOTE When testing the I/P transducer for acceptable performance, connect at least a volume of approximately one cubic foot to the output of the regulator. Ensure that the inlet pressure is at least 5% higher than the desired output pressure but no more than +10% of the I/P transducer system range being used (maximum of 300 psi). 4 Turn on the air supply to the panel. 5 Ensure all connections are “bubble tight”. NOTE The signal to the transducer/regulator can be varied by selecting the desired transducer count at the analog output (AOUT[1]) menu screen on the teach pendant. 6 Full scale response check: at the teach pendant select I/O, then Press F1 [TYPE]. 7 Select AO (Analog Out) menu. 8 Enter a value of 1000 transducer counts, and press [ENTER] The gauge should climb swiftly and smoothly to a maximum value (it is not important what this value is). 9 Set the AO equal to 200. The gauge will fall steadily (usually slower than climbing) back to zero. Any observable irregular response indicates a problem.

10. BOARD ADJUSTMENTS AND CALIBRATIONS

10–3

MARO2P10203703E

10

Supply 4 mA to the transducer.

11 Starting at 0% (4mA) electrical signal, supply electrical signals in the following incremental and decremental order and observe the corresponding pneumatic output signals: (Refer to Table 10–1)

– Incremental (mA) 4, 8, 12, 16, 20. – Decremental (mA) 20, 16, 12, 8, 4. 12

Verify that the pressure output falls within the tolerance range as listed in Table 10–1 (including the hysteresis between the up and down setpoints).

13

If a unit is found to be defective - Replace the unit. WARNING This I/P transducer/regulator is intrinsically safe and any repair is prohibited. Replacement must be done by ProportionAir. If you attempt any repair yourself, you will violate the warranty and could injure personnel or damage equipment.

Table 10–1.

I/P Transducer/Regulator Performance Check

Input counts to Fanuc Analog Output Module

200 400 600 800 1000

Current (mA) Output from Fanuc Analog Output Module/Current (mA) Input to PR Transducer (mA) 4 8 12 16 20

Percent of Maximum Output from PR Transducer (%)

Output from PR Transducer (±1%) of Full Output

0 25 50 75 100

0 12.5 25 37.5 50

10. BOARD ADJUSTMENTS AND CALIBRATIONS MARO2P10203703E

10–4 Figure 10–1. Emergency Stop Control Board Jumpers

Common Jumper A= 0VDC common B=24VDC common Hand Broken Jumper A= Using Switch B=By–Passing Switch

Removejumperwhenusing Aux.*BRK ON3asseparate control

Aux. brake control input plug CRM16−P1=*BRKON3 CRM16−P2=*BRKON4

Doorinterlockjumper/connector

SBK1−1 Adds Surge Sup pression Across Brake Out puts BKP&M1. SBK1−2 Adds A Diode Across The Brake Coil At BKP&M1. SBK2−1 Adds Surge Sup pression Across Brake Out puts BKP&M4. SBK2−2 Adds A Diode Across The Brake Coil At BKP&M4.

10. BOARD ADJUSTMENTS AND CALIBRATIONS

10–5

MARO2P10203703E

10.2

Use Procedure 10–2 to perform a beaker test.

MANUAL FLOW TEST (BEAKERING TEST) Procedure 10–2 Manual Flow Test (Beakering Test) Condition

 All personnel and unnecessary equipment are out of the workcell.  The applicator is functioning properly.  The controller is in manual mode. This is performed either by the cell controller or by turning on the manual enable input.  Turn off the servo disconnect.  Place a graduated beaker under gun assembly.

Step

1 Press MAN FCTNS. 2 Press F1, [TYPE]. 3 Select Gun Control. You will see a screen similar to the following. Manual/Appl./Con/

JOINT

10 %

** Entries Affect Outputs Immediately ** Pulse time (sec.): 0.0 Gun OFF

Gun Select 1

Paint Fluid 0.0

Atomizing Ai 30.0

Electrostatic 0.0 Press a function key [ TYPE ] ON PULSE [ TYPE ]

ALLOFF

Color 1 Fan Air 0.0

[GROUP]

>

HELP

>

CAUTION The following steps will actually turn on and off the outputs. Be sure your workcell is set up properly.

10. BOARD ADJUSTMENTS AND CALIBRATIONS MARO2P10203703E

10–6

4 Move the cursor to each item you want to set, and set the item appropriately.  Set pulse time.  Set gun select  Set color number  Set paint fluid (Flow rate in cc/min)  Set Atomizing Ai, Fam Air and Electrostatic to 0. 5 To pulse the selected output, select the item to be pulsed and press F3, PULSE. The output will pulse on then off automatically. The system will dispense selected color for 30 seconds then turn off. 6 Measure paint in graduated beaker for proper results. 7 To turn off or set all outputs to 0, press NEXT, >, then press F4, ALLOFF. NOTE Any outputs turned on will remain until they are turned off or until all outputs are set to off.

10. BOARD ADJUSTMENTS AND CALIBRATIONS

10–7

MARO2P10203703E

10.3

A cold start (START COLD) is the standard method for turning on power to the robot and controller. A cold start does the following:

COLD START (START COLD)

 Initializes changes to system variables  Initializes changes to I/O setup  Displays the UTILITIES Hints screen A cold start will be complete in approximately 30 seconds. Use Procedure 10–3 to perform a cold start.

Procedure 10–3 Condition

Performing a Cold Start  All personnel and unnecessary equipment are out of the workcell. WARNING DO NOT turn on the robot if you discover any problems or potential hazards. Report them immediately. Turning on a robot that does not pass inspection could result in serious injury.

Step ON

OFF POWER DISCONNECT C-SIZE CONTROLLER

1 Visually inspect the robot, controller, workcell, and the surrounding area. During the inspection make sure all safeguards are in place and the work envelope is clear of personnel. 2 Turn the power disconnect circuit breaker on the operator box or operator panel to ON. 3 On the teach pendant, press and hold the PREV and NEXT keys. See Figure 10–2. 4 While still pressing PREV and NEXT on the teach pendant, press the ON button on the operator panel. See Figure 10–2.

10. BOARD ADJUSTMENTS AND CALIBRATIONS MARO2P10203703E

10–8 Figure 10–2. Teach Pendant and Operator Panel

Î ÎÎ ÎÎ Î ÎÎ ÎÎ Î ÎÎ Î ÎÎ Î

BATTERY ALARM

ON BUTTON

CYCLE START

ON

HOLD

OFF

TEACH PENDANT ENABLED

FAULT

FAULT RESET

FAULT HOLD STEP

ÎÎÎ

BUSY RUNNING MAN ENBL PROD MODE

JOINT XYZ TOOL OFF

ÎÎ ÎÎ

PURGE COMPLETE

PURGE ENABLE

ÎÎ ÎÎ ÎÎÎ ÏÏ ÏÏ PURGE FAULT

ON

Î Î ÏÏ ÏÏ

REMOTE

REMOTE LOCAL

BRAKE ENABLE ON

PREVIOUS KEY

NEXT KEY

PORT

HOUR METER OFF

ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ EMERGCY STOP

(FAULT) RESET KEY

BMON>

5 After the BMON> prompt appears on the teach pendant screen, release the PREV and NEXT keys.

10. BOARD ADJUSTMENTS AND CALIBRATIONS

10–9

MARO2P10203703E

6 Turn on the controller. You will see a screen similar to the following. *** BOOT MONITOR for R-J2 CONTROLLER *** Version 4.22P(OIE) 01-JAN-199x F-ROM/D-RAM/C-MOS : TP Version : Current TIME : Slot 0 1 D E BMON> COLD

ID 9B AF 6A 8A

FC 1 1 0 0 CTRL

8.0/8.0/2 MB I 01-JAN-199x 22:52:53 OP 0 0 0 0

R-J2 Main CPU R4600 Sub-CPU V4.20 MCARD I/F AB/Ether I/F

INIT

NOLOAD

BMON> COLD

7 Press F1, COLD, and press ENTER.

BMON> START

8 Press F5, START, and press ENTER.

START

optional optional optional

>

 On the operator panel or operator box, the ON button will be illuminated, indicating robot power is on.  On the teach pendant screen, you will see a screen similar to the following.

UTILITIES Hints

JOINT 10 % PaintTool (TM) V4.30-x

Copyright 1997, FANUC Robotics North America, Inc. All Rights Reserved [TYPE ] HELP

10. BOARD ADJUSTMENTS AND CALIBRATIONS MARO2P10203703E

10–10

10.4

The following procedures are applicable to all P-200 robot systems including those on a pedestal, rail or with an opener. In the case of a P-200 robot and opener, both units must be properly purged before the controller can be turned on.

POWER ON SEQUENCE

Procedure 10–4 Step

Powering on the Robot Systems 1 With the main disconnect ON, you should observe:  Purge complete LED is off.  Purge enable pushbutton (purging) lamp is off.  ON pushbutton lamp is off.  Purge fault LED is on 2 Push and hold the PURGE ENABLE pushbutton. You should observe  Purge solenoid engages when minimum pressure requirements are met.  Purge fault LED turn off.  Purging lamp (behind purge enable pushbutton) lights. At this point you can release the purge enable pushbutton, no change should occur. 3 At the end of the 5 minute purge, the pushbutton purging lamp will turn off and the purge complete LED will turn on. Also, the purge solenoid will shut off. 4 If this procedure does not work, go to Chapter 4 Troubleshooting.

10. BOARD ADJUSTMENTS AND CALIBRATIONS

10–11

MARO2P10203703E

10.5

Use this procedure for complete controller shutdown including purge circuitry.

CONTROLLER SHUTDOWN

Procedure 10–5 Step

Controller Shutdown Procedure 1 Push the E-stop push button. 2 Push the controller “OFF” pushbutton. 3 Pull the Main Disconnect switch.

10.6

For servo lockout use the following procedure:

SERVO LOCKOUT

Procedure 10–6 Step

Servo Lockout Procedure 1 Push the E-stop push button. 2 Open the servo lockout disconnect switch. 3 Lockout switch

Page2

11 CONNECTIONS

11

CONNECTIONS

MARO2P10203703E

11–1

This section includes the connections and specifications for modular I/O units. It also contains diagrams for the cables connecting the R-J2 to the P-200 robot and noise reduction guidelines.

Topics In This Chapter

Page

Noise Reduction Guidelines

Excessive noise might cause errors in the controller. . . . . . . . . . . . . . . . . . . . . . . . 11–1

Modular I/O Outputs

Connections and specifications for modular I/O outputs. . . . . . . . . . . . . . . . . . . . .  Output Module AOD32A, Non-isolated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Output Modules AOD08C and AOD08D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Output Modules AOD16C and AOD16D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Output Module AOD32C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Output Module AOD32D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Output Modules AOA05E and AOA08E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Output Module AOA12F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Output Modules AOR08G and AOR16G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Output Module ADA02A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ethernet Remote Printed Circuit Board Diagnostics

Two general styles of the Ethernet Remote printed circuit board are available. . 11–11

Modular I/O Inputs

This section describes the connections and specifications for modular I/O units. 11–12  Input Module AID32B, Non-isolated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–12  Input Modules AID16C and AID16D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–13

Analog Input Module

This section describes the connections and specifications for analog input module AAD04A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–14  Analog Input Module AAD04A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–14

11.1 NOISE REDUCTION GUIDELINES

11–2 11–2 11–3 11–4 11–5 11–6 11–7 11–8 11–9 11–10

Excessive noise might cause errors in the controller. Wiring guidelines for eliminating these conditions include routing I/O wiring well away from any conductors connected to the pulse coder and other internal control wiring. I/O wiring must not occupy the same wireways as the internal control wiring. Where possible avoid parallel runs of I/O and internal control wiring. Cross internal control wiring with I/O wiring at right angles. A minimum separation of 100 mm is recommended. Provide all I/O wiring with a separate power supply. Do not use controller internal voltages such as +5VDC or 24VDC for I/O. Insure that common conductors for power supplies are not shared. Use separate commons for each power supply used for I/O. Insure that all coils for electromechanical devices such as relays, contactors, pneumatic solenoids, etc. are equipped with suppression devices. For DC circuits, diode suppressors are recommended and for AC circuits the suppressors should be a combination of a MOV with a resistor/capacitor network.

11. CONNECTIONS MARO2P10203703E

11–2

11.2

This section describes the connections and specifications for modular I/O outputs.

MODULAR I/O OUTPUTS

Table 11–1.

Output Module AOD32A, Non-isolated

Item

AOD32A

Points/module

32 points

Points/common

8 points/common

Sink/source current

Sink current type

Rated load voltage

5 ~ 24VDC +20% –15%

Maximum load current

0.3A (however 2A/common)

Maximum voltage drop when ON

0.24V (load current 0.8)

Maximum leak current when OFF

0.1 mA

Response Time

OFF ON

Max. 1 ms

ON OFF

Max. 1 ms

Output display

Not provided

External connection

Connector (HONDA TSUSIN MR-50RMA)

Terminal connection and circuitry O : output circuit +5~+24 Internal Circuit

L : load

+ –

+ –

CM L L L L L L L L

+24A A0 A1 A2 A3 A4 A5 A6 A7 CMA

17 16 32 48 15 31 47 30 46 49,50

O O O O O O O O

L L L L L L L L

+24B B0 B1 B2 B3 B4 B5 B6 B7 CMB

13 12 28 44 11 27 43 10 42 29,45

O O O O O O O O

+ –

+ –

L L L L L L L L

+24C C0 C1 C2 C3 C4 C5 D6 D7 CMC

08 07 24 39 06 23 38 22 37 40,41

O O O O O O O O

L L L L L L L L

+24D D0 D1 D2 D3 D4 D5 D6 D7 CMD

04 03 20 35 02 19 34 01 33 21,36

O O O O O O O O

11. CONNECTIONS

11–3

MARO2P10203703E

Table 11–2. Item

Output Modules AOD08C and AOD08D

AOD08C

AOD08D

Points/module

8 points

8 points

Points/common

8 points/common

8 points/common

Sink/source current

Sink current type

Source current type

Rated load voltage

12 ~ 24VDC +20% –15%

12 ~ 24VDC +20% –15%

Maximum load current

2A (however 4A/fuse)

2A (however 4A/fuse)

Limit of load



Refer to load derating curve

Maximum voltage drop when ON

0.8V (load current 0.4)

1.2V (load current 0.6)

Maximum leak current when OFF

0.1mA

0.1mA

Response Time

OFF ON

Max. 2 ms

ON OFF

Max. 2 ms

This is the value from input to output in the module. The actual value is determined by adding it to the scanning time depending on each system.

Max. 2 ms Max. 2 ms

This is the value from input to output in the module. The actual value is determined by adding it to the scanning time depending on each system.

Output display

LED display

LED display

External connection

Terminal block connector (20 terminal, M3.5 screw terminal)

Terminal block connector (20 terminal, M3.5 screw terminal)

Fuse

5A, 1 piece for each output A0-A3 and A4-A7

5A, 1 piece for each output A0-A3 and A4-A7

Terminal connection and circuitry

Fuses 1 load L

2

load

3 A0

4

O

L

3 A0

5 L

A1

6

O

L

A1

L

8

A2

O

L

A2

O

L

+

A3

11 L

A4

12

A5



O

L

A4

14

A6

O

L

A5

16

A7

O

10

O

12

O

14

O

16

O

15 O

L

A6

17 L

8

13

15 L

O

11

13 L

6

9 10

A3

O

7

9

+ –

4 5

7 L

Fuses

1 2

17 18

O

L

19

A7

18

O

19 20

20

Fuses O : output circuit

O : output circuit

2

2 Internal Circuit

20

Internal Circuit

LED

20

LED

11. CONNECTIONS MARO2P10203703E

11–4 Table 11–3. Item

Output Modules AOD16C and AOD16D

AOD16C

AOD16D

Points/module

16 points

16 points

Points/common

8 points/common

8 points/common

Sink/source current

Sink current type

Source current type

Rated load voltage

12 ~ 24VDC +20% –15%

12 ~ 24VDC +20% –15%

Maximum load current

0.5A (however 2A/common)

0.5A (however 2A/common)

Maximum voltage drop when ON

0.7V (load current 1.4)

0.7V (load current 1.4)

Maximum leak current when OFF

0.1mA

0.1mA

Response Time

OFF ON

Max. 2 ms

ON OFF

Max. 2 ms

This is the value from input to output in the module. The actual value is determined by adding it to the scanning time depending on each system.

Max. 2 ms Max. 2 ms

This is the value from input to output in the module. The actual value is determined by adding it to the scanning time depending on each system.

Output display

LED display

LED display

External connection

Terminal block connector (20 terminal, M3.5 screw terminal)

Terminal block connector (20 terminal, M3.5 screw terminal)

Terminal connection and circuitry

L

: load

L

: load

1

+ –

L

A0

L L

L

A1 A2 A3

L

A4

L

7

L

A5 A6

L

A7

9

1 2

3 4 5 6 8

O O O O

+

O O O O



L

A0

L L L

A1 A2 A3

L L L L

A4 7

A7

9

L +

12 14 15

L

L L L

B5 B6 B7

17

6

O O O O

10

16 18 19

O O O

L L L L L L L L

+

O O O



O O

B0 B1 B2

12 13 14

B3 B4

15

B5 B6 B7

17

20

O O O

16

O O O

18

O O

19 20

O : output circuit

O : output circuit

1

1 Internal Circuit

10

O O

11

13

B3 B4

L



B0 B1 B2

4

8

10

L

O O

5

A5 A6

11 L

2 3

Internal Circuit

LED

10

LED

11. CONNECTIONS

11–5

MARO2P10203703E

Table 11–4.

Output Module AOD32C

Item

AOD32C

Points/module

32 points

Points/common

8 points/common

Sink/source current

Sink current type

Rated load voltage

12 ~ 24VDC +20% –15%

Maximum load current

0.3A (however 2A/common)

Maximum voltage drop when ON

0.24V (load current 0.8)

Maximum leak current when OFF

0.1mA

Response Time

OFF ON

Max. 2 ms

ON OFF

Max. 2 ms

This is the value from input to output in the module. The actual value is determined by adding it to the scanning time depending on each system system.

Output display

Not provided

External connection

Connector (HONDA TSUSIN MR-50RMA)

Terminal connection and circuitry

O : output circuit

+24

Internal Circuit

L

CM

: load +24A

+ –

+ –

L L L L L L L L

L L L L L L L L

A0 A1 A2 A3 A4 A5 A6 A7 CMA

+24B B0 B1 B2 B3 B4 B5 B6 B7 CMB

17 16 32 48 15 31 47 30 46 49,50

13 12 28 44 11 27 43 10 42 29,45

O O O O O O O O

O O O O O O O O

+ –

L L L L L L L L

+24C C0 C1 C2 C3 C4 C5 C6 C7 CMC

08 07 24 39 06 23 38 22

L L L L L L L L

+24D D0 D1 D2 D3 D4 D5 D6 D7 CMD

04 03 20 35 02 19 34 01

Note: For the common (CMA, CMB CMC, CMD) make sure to use both.

37 40,41

33 21,36

O O O O O O O O

O O O O O O O O

11. CONNECTIONS MARO2P10203703E

11–6 Table 11–5.

Output Module AOD32D

Item

AOD32D

Points/module

32 points

Points/common

8 points/common

Sink/source current

Source current type

Rated load voltage

12 ~ 24VDC +20% –15%

Maximum load current

0.3A (however 2A/common)

Maximum voltage drop when ON

0.24V (load current 0.8)

Maximum leak current when OFF

0.1mA

Response Time

OFF ON

Max. 2 ms

ON OFF

Max. 2 ms

This is the value from input to output in the module. The actual value is determined by adding it to the scanning time depending on each system.

Output display

Not provided

External connection

Connector (HONDA TSUSIN MR-50RMA)

Terminal connection and circuitry

O : output circuit

L



+ –

Internal Circuit

0

: load CMA

+

CM

L L L L L L L L

L L L L L L L L

A0 A1 A2 A3 A4 A5 A6 A7 0A

CMB B0 B1 B2 B3 B4 B5 B6 B7 0B

49,50 16 32 48 15 31 47 30 46 1B

29,45 12 28 44 11 27 43 10 42 14

O O O O O O O O

O O O O O O O O

+ –

+ –

L L L L L L L L

CMC C0 C1 C2 C3 C4 C5 C6 C7 0C

40,41 07 24 39 06 23 38 22

L L L L L L L L

CMD D0 D1 D2 D3 D4 D5 D6 D7 0D

21,36 03 20 35 02 19 34 01

37 09

33 05

Note: For the common (CMA, CMB CMC, CMD) make sure to use both.

O O O O O O O O

O O O O O O O O

11. CONNECTIONS

11–7

MARO2P10203703E

Table 11–6. Item

Output Modules AOA05E and AOA08E

AOA05E

AOA08E

Points/module

5 points

8 points

Points/common

1 point/common

4 points/common

Rated load voltage

100 ~ 230VAC  15%, 47 ~ 63Hz

100 ~ 230VAC  15%, 47 ~ 63Hz

Maximum load current

2A (however 5A/module)

1A (however 2A/common)

Maximum in rush current

25A (1 period)

10A (1 period)

Limit of load

Refer to load derating curve



Maximum voltage drop when ON

1.5Vrms

1.5Vrms

Maximum leak current when OFF

3.0mA (115VAC), 6.0mA (230VAC)

3.0mA (115VAC), 6.0mA (230VAC)

Response Time

OFF ON

Max. 1 ms

ON OFF

Half of the load frequency or less

This is the value from input to output in the module module. The actual value is determined by adding it to the scanning time depending on each system.

This is the value from input to output in the module module. The actual value is determined by adding it to the scanning time depending on each system.

Max. 1 ms Half of the load frequency or less

Output display

LED display

LED display

External connection

Terminal block connector (20 terminals, M3.5 screw terminal)

Terminal block connector (20 terminals, M3.5 screw terminal)

Fuse

3.2A, 1 piece for each output A0 ~ A4

3.2A, 1 piece for each output A0 ~ A3 and A4~ A7

Terminal connection and circuitry

1

1 L

2 O

3 L

A0

A0

L

4

A1

5 L

6 A1

A2

O L

8

A3

L

A4

L

A5

14

O

16

O

15

O L

16

A6

17

17 L

18 19

A7

20

O

18 19

O

Fuse 20

load O

O

12 13

14

A4

O Fuse

11

12

15

L

O

10 O

13

A3

6

8

10

L

O

9

11 A2

4

7

9

L

O

5

7 L

2 3

load O

: output circuit

: output circuit

2

LED 4

LED 10 20

11. CONNECTIONS MARO2P10203703E

11–8 Table 11–7.

Output Module AOA12F

Item

AOA12F

Points/module

12 points

Points/common

6 points/common

Rated load voltage

100 ~ 115VDC  15% 47 ~ 63Hz

Maximum load current

0.5A/point (however 2A/common)

Maximum in rush current

5A (1 period)

Limit of load

Refer to load derating curve

Maximum voltage drop when ON

1.5Vrms

Maximum leak current when OFF

1.5mA (115 VAC)

Response Time

OFF ON

Max. 1 ms

ON OFF

Half of the load frequency or less

This is the value from input to output in the module. The actual value is determined by adding it to the scanning time depending on each system.

Output display

LED display

External connection

Terminal block connector (20 terminal, M3.5 screw terminal)

Fuse

3.2A, 1 piece for each output A0 ~ A5 and B0 ~ B5

Terminal connection and circuitry

L

: load 1

L

A0

L L L

A1 A2 A3

3

L

A4

5

L

A5

O 2

O

4

O O O

6 7 8 9

O O O Fuse

10 L L L L L L

B0 B1 B2 B3 B4

O

11 12

O O

14

O O

13 15

B5

16 17 18

O O O

19 20

Fuse

O : output circuit

LED 9 19

NOTE: Each output signal group (A0–A5 and B0–B5) contains six output signals. However, each group must have an entire group of eight signals assigned to it. For example, A0–A5 might be occupied by digital outputs 1 through 6 and B0–B5 might be occupied by digital outputs 9 through 14. Digital outputs 7 and 8 and digital outputs 15 and 16 are unusuable.

11. CONNECTIONS

11–9

MARO2P10203703E

Table 11–8. Item

Output Modules AOR08G and AOR16G AOR08G

AOR16G

Points/module

8 points

8 points

Points/common

1 point/common

4 points/common

Maximum load

30VDC/250VAC, 4A (resistance load)

30VDC/250VAC, 2A (resistance load)

Minimum load

5VDC, 10mA

1A (however 2A/common)

Maximum current



4A/common

Limit of load

Refer to load derating curve

Refer to load derating curve

Response Time OFF ON

Max. 15ms

ON OFF

Max. 15ms

This is the value from input to output in the module. The actual value is determined by adding it to the scanning time depending on each system.

This is the value from input to output in the module. The actual value is determined by adding it to the scanning time depending on each system.

Max. 15ms

Max. 15ms

Output display

LED display

LED display

External connection

Terminal block connector (20 terminals, M3.5 screw terminal)

Terminal block connector (20 terminals, M3.5 screw terminal)

Relay life

Mechanical

Min. 20,000,000 times

Min. 20,000,000 times

Electrical

Min. 100,000 times (resistance load)

Min. 100,000 times (resistance load)

Terminal connection and circuitry

v

1 v L

A0

3

L

A1

5

L

A2

7

L

A3

9

v v

L

A0 A1 A2 A3

3

4

L L L L L L L

A4

7

A5 A6 A7

9

8 10 12 L

A4

13

L

A5

15

L

A6

17

L

A7

19

v

14

v

18 20

v : Direct current power or alternating current power

8 10 11

L L L L

BO B1 B2 B3

13

L L L L

B4

17

B5 B6 B7

19

12 14 15

v

16

v

4 5 6

v

11 v

2

v

6

v

1

2

v

16 18 20

: Direct current power or alternating current power

11. CONNECTIONS MARO2P10203703E

11–10 Table 11–9.

Output Module ADA02A ADA02A

Item Number of output channels

2 channels/module

Digital input

12-bit binary (2’s complement representation)

Analog output

–10VDC ~ +10VDC (external load resistance: 10K or more) selectable 0mADC ~ + 20mADC (external load resistance: 400 or less) usable

Input/output correspondence

Digital Input

Analog Output

+2000 +1000 0 –1000 –2000

+10V +5V or +20mA 0V or 0mA –5V –10V

Resolution

5mV or 20 A

Comprehensive accuracy

Voltage output  0.5% (for the full scale) Current output  1% (for the full scale)

Converting time

1ms or less. The converting time is the one only inside the module. The actual response time is added a scan time that is determined by the system.

Isolation

Photocopier isolation (between output signal and base). However, non-isolation between output channels.

External connection

At removable terminal block (20 terminals, M3.5 screw terminals)

Number of occupied output points

82

ADA02A

V0+ Channel 0 D/A converter

Voltage output

Load

2

10K ohms or more

Voltage V0– 4 amp. Current amp.

6

10+ 8

10– 10

V1+ Channel 1 D/A converter

12

Voltage V1– 14 amp. Current 16 amp. 10+

Current output

18

10– 20

(Note 1) Use a 2–core twisted shielded cable as the connection cable. (Note 2) Ground the cable shield on the load side

Load 400 ohms or less

11. CONNECTIONS

11–11

MARO2P10203703E

11.3

Figure 11–1 shows both the ER-1 and ER-2 R-J2 Allen-Bradley Remote I/O (ABRIO) printed circuit boards. For more detailed information on the types and styles of the Ethernet Remote Printed Circuit Board, see Section 1.11, Table 3–13, and Table 3–14 which list the functions of the alarm LEDs.

ETHERNET REMOTE PRINTED CIRCUIT BOARD DIAGNOSTICS

Figure 11–1. ER-1 and ER-2 Printed Circuit Board LEDs

ER-1

ER-2

1 23 4

Alarm LEDs

A-B

Alarm LEDs

11. CONNECTIONS MARO2P10203703E

11–12

11.4

This section describes the connections and specifications for modular I/O units.

MODULAR I/O INPUTS

Table 11–10.

Input Module AID32B, Non-isolated AID32B

Item Points/module

32 points

Points/common

16 points/common

Sink/source current

Both directions

Input voltage

24 VDC +10% –20%

Input current

7.5mA (average)

ON voltage current

Min. 18 VDC min. 6 mA

OFF voltage current

Max. 6VDC max. 1.5 mA

Respo OFF ON nse ON OFF Time

Max. 2 ms

Input display

Not provided

External connection

Connector (HONDA TSUSIN MR-50RMA)

This is the value from input to output in the module. The actual value is determined by adding it to the scanning time depending on each system. system

Max. 2 ms

Terminal connection and circuitry

: input circuit CM Internal Circuit CMA A0 A1 A2 A3 A4 A5 A6 A7 B0 B1 B2 B3 B4 B5 B6 B7

29,45 49,50 16 32 48 15 31 47 30 46 12 28 44 11 27 43 10 42 13,17 ––+24V 14,18 ––GND

CMC C0 C1 C2 C3 C4 C5 C6 D7 D0 D1 D2 D3 D4 D5 D6 D7

21,36 40,41 07 24 39 06 23 38 22 37 03 20 35 02 19 34 01 33 04,08 ––+24V 05,09 ––GND

+24V or GND can be selected for input common as above figure. Note: Make sure to connect all common (CMA, CMC) pins.

11. CONNECTIONS

11–13

MARO2P10203703E

Table 11–11. Item

Input Modules AID16C and AID16D

AID16C

AID16D

Points/module

16 points

16 points

Points/common

16 points/common

16 points/common

Sink/source current

Source current type

Sink current type

Input voltage

24VDC +10% –20%

24 VDC +10% –20%

Input current

7.5 mA (average)

7.5 mA (average)

ON voltage current

Min. 15VDC min. 4 mA

Min. 15 VDC min. 4 mA

OFF voltage current

Max. 5VDC max. 1.5 mA

Max. 5VDC max. 1.5 mA

Response Time

OFF ON

Max. 20ms

ON OFF

Max. 20ms

This is the value from input to output in the module. The actual value is determined by adding it to the scanning time depending on each system.

Max. 20ms Max. 20ms

This is the value from input to output in the module. The actual value is determined by adding it to the scanning time depending on each system.

Input display

LED display

LED display

External connection

Terminal block connector (20 terminals, M3.5 screw terminal)

Terminal block connector (20 terminals, M3.5 screw terminal)

Terminal connection and circuitry

(C)

(D)

+





+

1

A0 A1 A2 A3 A4 A5 A6 A7 B0 B1 B2 B3 B4 B5 B6 B7

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

FOR AID16C : input circuit 1

LED

FOR AID16D : input circuit LED 1

11. CONNECTIONS MARO2P10203703E

11–14

11.5

This section describes the connections and specifications for analog input module AAD04A.

ANALOG INPUT MODULE

Table 11–12.

Analog Input Module AAD04A

Item

AAD04A

Number of input channels

4 channels/module

Analog input

–10VDC to +10VDC (input resistance 4.7M) –20mADC to +20mADC (input resistance: 250 selectable

Digital output

12-bit binary (complementary representation of “2”)

Input/output correspondence

Analog Input

Digital Output

+10V +5V or +20mA 0V or 0mA –5V or –20mA –10V

+2000 +1000 0 –1000 –2000

Resolution

5mV or 20 A

Total precision

Voltage input  0.5% (for the full scale) Current input  1% (for the full scale) Maximum 2ms. NOTE: Actual response speed is determined by adding the scanning time depending on each system to this conversion time. 15V 30mA

Conversionary time Maximum input voltage/current Insulation External connection Number of occupied output points

Photocopier insulation (between output signal and base). However, non-insulation between output channels. At removable terminal block (20 terminals, M3.5 screw terminals) 82

10+

1 2

11+ Voltage input

V0+

3 V1+

Voltage supply

4

V0– 5

V1– 6

COM0 COM1 8

7 FG0

MULTI PROCESSOR

9 FG1

Current input Current supply

10 12+ 11 250 13+ 12 V2+ 13 V3+ 14 V2– 15 V3– 16 COM2 17 COM3 18 FG2 19 FG3 20

(Note 1) Though the example above shows the connection of channels 0 and 2, it is just the same with the channel 1 (I1+, V1+, V1–, COM1 and FG1) and the channel 3 (I3+, V3+, V3–, COM3 and FG3). (Note 2) Either voltage input or current input can be specified for each channel. When current input is specified, make sure to short–circuit in + and Vn+. (Note 3) Use shielded cables of twisted pair for connecting.

Page15

12 SCHEMATICS

12

MARO2P10203703E

Topics In This Chapter Schematics

SCHEMATICS 12–1

Page

The following section includes separate print sets for the P-200 robot. Each print set includes the R-J2 controller schematic with R-J2 internal cable connector pinouts and an overview of the C-size cabinet with component locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–1

12. SCHEMATICS

12–2 NOTES

MARO2P10203703E

12. SCHEMATICS

12–3

MARO2P10203703E

Figure 12–1. R-J2 P-200 Controller Total Circuit Diagram USER TRANSFORMER (OPTION) TF2 (SEE SHEET 4) (REFER TO 002) IN CASE OF CIRCUIT BREAKER

A1 SERVO POWER CONTROL (220 VAC)

A2 MULTI–TAP TRANSFORMER TF1 (SEE SHEET 4)

L1 INPUT VOLTAGE REFER TO PAGE 002

F2 F1

F1

L2

F2

1

2

3

4

5

6

SERVO POWER (210 VAC)

L3 F3

G

FUSE UNIT FL1 FL2

F4

FL3

100 VAC

F5

13

14

41

23

24

42

DISCONNECT SWITCH

43 220 VAC

IN CASE OF DISCONNECT SWITCH

44 51

THERMOSTAT

ST FAN UNIT

M

M

FOR OVERHEAT

52

M AC 200V

PSU SEE SHEET 8CP1

BACK PLANE

E–STOP PCB

CP2 JRV1

JNPO CP3

JRF2

SEE SHEET 10

JS1

CP5

MAIN CPU SEE SHEET 9

JRV1

JRF2

CRF1

CRM9

JS2

CRM11

JS3

CRM15

JS4

CRM16

JS5

CRR20

JS6

CRR21

CRR15

CRR22

CRR5

SERVO POWER

REFER TO SHEETS 2 , 3 AND 4

SURGE ABSORBER UNIT

OVERHEAT (TF1)

PWM SIGNALS TO AMPLIFIERS ESTOP SIGNAL

ROBOT CONNECTIONS

CRM10 JRA5

JD1A

PULSE CODER (J1–J6)

BKP4 BKM4

JF21

AMPLIFIER CONNECTIONS

CRS1 JD17 JRM3

OPERATOR PANEL

PURGE CONTROL BRAKE RELEASE

CNIN

UNIT

CNPG

CNPG

JRM10 CNCA

AUX AXES BD JNA

JV1

FRA1 SEE SHEETS FRA2 13, 14 & 15 BKP1 BKM1 200A BKP2 200B BRD1 BKM2 BRDC BKP3 BRD2 BKM3 BKP4 BKM4 OT SVON2 SVON SVONC SVON1 EES1 EES2

PDIO

CRS1 SEE SHEETS 16, 17 & 18 PORT1

CNOP

PORT2

ISB CRS1

TEACH PENDANT

CRS2 MOTOR BRAKE (J1–J9)

EMGIN1 EMGIN2

EE-3287-500-001

12. SCHEMATICS

12–4 NOTES

MARO2P10203703E

12. SCHEMATICS

12–5

MARO2P10203703E

Figure 12–2. R-J2 P-200 Controller Total Circuit Diagram (Multi-Tap Transformer Details)

IN CASE OF CIRCUIT BREAKER

L1

MULTI–TAP TRANSFORMER TF1 EE–0989–550 F1

1 575 L1 2 550 3 500 4 480 5 460 6 415/240 7 380/220

x

AC POWER SUPPLY

A1 A2 1

2

30A F2

3

4

30A F3

5

6

F4

13

14

7.5A F5

23

24

SERVO POWER CONTROL (220VAC)

SERVO POWER (210 VAC)

30A L2 220/240 380/415 460/480 500/550 575 +10% –15% @ SELECTED VOLTAGE

x

L3

x

50/60Hz

8 OV 9 575 L2 10 550 11 500 12 480 13 460 14 415/240 15 380/220 16 OV 17 575 L3 18 550 19 500 20 480 21 460 22 415/240 23 380/220

ST1

100 VAC

7.5A

43 220 VAC

44

24 OV

G

51

IN CASE OF DISCONNECT SWITCH FUSE UNIT FL1 FL2 FL3 DISCONNECT SWITCH

THERMOSTAT FOR OVERHEAT

52

ST2

USER TRANSFORMER (OPTION) TF2 A80L–0001–0520 575 550 500 480 460 440 415 380 240 220

SPECIFICATION OF TF1 CAPACITY 7.5KVA F2 20A

COM F1 10A

115V L1 L1 L2 L2

SPECIFICATION A80L–0026–0010#A

F1,F2,F3 30A

F4,F5 7.5A

115 VAC TO OUTLET UNIT

9.6A

* CONNECTION TO TF1 * BREAKER, FUSE SIZE INPUT VOLTAGE 220 240 380 415 460 480 500 550 575

CIRCUIT BREAKER

LEAKAGE BREAKER

DISCONNECT SWITCH FL1 FL2 FL3

50A

50A

50A

30A

30A

30A

20A

20A

20A

POWER SUPPLY VOLTAGE 220 240 380 415 440 460 480 500 550 575

CONNECTION OF PRIMARY TAP L1 L2 L3 JUMPER 16–23 7 8–15 15 23 6 8–14 16–22 14 22 7 15 23 6

14

22

5 4 3 2 1

13 12 11 10 9

21 20 19 18 17

CONNECTING STYLE 24–7 24–6

DELTA

STAR 8–16

16–24

EE-3287-500-006

12. SCHEMATICS

12–6 NOTES

MARO2P10203703E

12. SCHEMATICS

12–7

MARO2P10203703E

Figure 12–3. R-J2 P-200 Controller Total Circuit Diagram (Amplifier Configurations)

AMP DIP SWITCH SETTINGS ALL CASES 1 – ON 2 – OFF 3 – ON 4 – ON

4 3 2 1 ON

AC 200V (CP3)

SERVO POWER OVER HEAT TF1

AMP 1 A06B–6089–H209

AMP 2 A06B–6089–H209

AMP 3 A06B–6089–H101

AMP 4 A06B–6089–H106

L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3

L1 L2 L3 L1C T1 L2C TH1 TH2 RC UL RI VL RE WL T1 PE CX3 UM VM CX4 4 WM 3 2 PE 1

L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3

L1 L2 L3 L1C T1 L2C TH1 TH2 RC U RI V RE T1 W CX3 PE

CX4

UL VL WL PE T1 UM VM 4 3 WM 2 1 PE ON

JS1B

PWM CABLE (JS1–JS6) E–STOP SIGNAL

JS4

J4 J1

J5 J3

CX4

ON

JS2B

JS1B

JS1

JS2B

JS5

U V W T1 PE

J6

CX4

4 3 2 1 ON

JS1B

JS3

AXES # P–200 6 AXES CONTROL MOTOR TYPE

AMP SPECIFICATION

SERVO POWER OVER HEAT TF1

MOTOR POWER (J1–J6) TO ROBOT

JS2

AMP 1 A06B–6089–H209

AMP 2 A06B–6089–H209

AMP 3 A06B–6089–H209

AMP 4 A06B–6089–H106

L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3

L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3

L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3

L1 L2 L3 L1C T1 L2C TH1 TH2 RC U RI V RE T1 W CX3 PE

CX4

JS1B

PWM CABLE (JS1–JS6, JV7) E–STOP SIGNAL

JS4

JS2B

JS1

J4 J1

CX4

JS1B

JS5

JS2B

JS3

P–200 (7) AXES CONTROL

J5 J3

CX4

JS1B

JS6

UL VL WL PE T1 UM VM 4 3 WM 2 1 PE ON JS2B

JV7

J6 J7

CX4

AMP

1 MCCOFF3

 2/3000

 0.5/3000

AMP1

AMP2 SVU2–12/80 L(12A)= J5 M(80A)= J3 A06B–6089–H209

AMP3

2

13 14 15 16 17 18 19 20 21 22 23

3 MCCOFF4

CX4 (X–KEY) (E–STOP CONTROL)

# P–200 7 AXES CONTROL AMP SPECIFICATION

AMP4

SVU1–12 J6

SVU1–130 J2

A06B–6089–H101

A06B–6089–H106

2 ESP

3 +24V

J1

6/3000

L1C L2C TH1 TH2 RC RI RE [UL] [VL] [WL] [ ]

1 2 3 4 5 6 7 8 9 10 11 12

L1(R) L2(S) L3(T) (100A) (100B) RL2 RL3 U[UM] V[VM] W[WM]

J2

J3

J4, J5

J6

J7

22/3000

12/3000

2/3000

0.5/3000

12/3000

AMP1 SVU2–12/80 L(12A)=J4 M(80A)=J1 A06B–6089–H209

AMP2 SVU2–12/80 L(12A)=J5 M(80A)=J3 A06B–6089–H209

AMP3 SVU2–12/80 L(12A)=J6 M(80A)=J7 A06B–6089–H209

AMP4 SVU1–130 J2 A06B–6089–H106

J2

4 3 2 1 ON

4 3 2 1 ON

JS1B

JS2

22/3000

T1 (TERMINAL BLOCK)

AXES # P–200 7 AXES CONTROL MOTOR TYPE

UL VL WL T1 PE UM VM 4 3 WM 2 1 PE ON

J6

CX3 (Y–KEY) (MCC CONTROL)

P–200 (6) AXES CONTROL

UL VL WL PE T1 UM VM 4 3 WM 2 1 PE ON

J4, J5

4 3 2 1 ON

1

AC 200V (CP3)

J3

12/3000

J2

JS1B

JS6

J2

SVU2–12/80 L(12A)= J4 M(80A)= J1 A06B–6089–H209

AMP

# P–200 6 AXES CONTROL

J1

 6/3000

MOTOR POWER (J1–J7) TO ROBOT

AMP DIP SWITCH SETTINGS ALL CASES 1 – ON 2 – OFF 3 – ON 4 – ON

EE-3287-500-002

12. SCHEMATICS

12–8 NOTES

MARO2P10203703E

12. SCHEMATICS

12–9

MARO2P10203703E

Figure 12–4. R-J2 P-200 Controller Total Circuit Diagram (Amplifier Configurations) AMP DIP SWITCH SETTINGS ALL CASES 1 – ON 2 – OFF 3 – ON 4 – ON

4 3 2 1 ON AC 200V (CP3)

SERVO POWER OVER HEAT TF1

L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3 T1 CX4

4 3 2 1 ON

JS1B

PWM CABLE (JS1–JS6 .J7–J9) E–STOP SIGNAL

UL VL WL PE UM VM WM PE

J4

AMP 2 A06B–6089–H209

AMP 3 A06B–6089–H101

L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3 T1

L1 L2 L3 L1C T1 L2C TH1 TH2 RC U RI V RE T1 W CX3 PE

CX4 J1

JS2B

4 3 2 1 ON

JS1B

UL VL WL PE UM VM WM PE

J5

CX4 J3

JS2B

AMP 4 A06B–6089–H106

J6

4 3 2 1 ON

JS1B

# P–200 6+2 (DOOR OPENER) AXES CONTROL MOTOR SPEC. P–200 6+2 (HOOD–DECK) AXES CONTROL MOTOR SPEC.

AMP 5 SEE CHART

L1 L2 L3 L1C T1 L2C TH1 TH2 J2 RC U RI RE T1 V W CX3 PE

L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3

CX4

CX4

4 3 2 1 ON

AMP

UL VL WL PE T1 UM VM 4 3 WM 2 1 PE

ON

JS1B

JS1B

J7

J8

P–200 6+2 (DOOR OPENER) AXES CONTROL AMP SPECIFICATION P–200 6+2 (HOOD–DECK) AXES CONTROL AMP SPECIFICATION

OVER HEAT TF1

JS4

JS1

JS5

JS3

JV7

JS2

JS6

JV8

AMP 3 A06B–6089–H209

L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3

L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3

L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3

4 3 2 1 ON

JS1B

JS4

UL VL WL PE T1 UM VM WM PE JS2B

JS1

J4

CX4 J1

4 3 2 1 ON

JS1B

JS5

J5 UL VL WL T1 PE UM VM WM PE J3 JS2B

JS3

P–200 7+2 AXES CONTROL

CX4

UL VL WL T1 PE UM VM 4 3 WM 2 1 PE

ON

JS1B

JS6

JS2B

JV7

AMP 4 A06B–6089–H106

J6

L1 L2 L3 L1C T1 L2C TH1 TH2 RC UL RI RE VL T1 WL CX3 PE

MOTOR POWER (J1–J9) TO ROBOT

1 MCCOFF3

CX4 J7 JS1B

JS2

4 3 2 1 ON

J2

CX4

JS1B

JV8

AMP

UL VL WL PE T1 UM 4 VM 3 2 WM 1 PE ON

#

P–200 7+2 (DOOR OPENER) MOTOR SPEC. P–200 7+2 (HOOD–DECK) MOTOR SPEC.

AMP 5 SEE CHART L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3

J7

J8

12/3000

2/3000

0.5/3000

2/3000

2/3000

 6/3000

22/3000

12/3000

2/3000

0.5/3000

6/3000

6/3000

AMP2

SVU2–12/80 L(12A)=J4 M(80A)=J1 A06B–6089–H209 SVU2–12/80 L(12A)=J4 M(80A)=J1 A06B–6089–H209

SVU2–12/80 L(12A)=J5 M(80A)=J3 A06B–6089–H209 SVU2–12/80 L(12A)=J5 M(80A)=J3 A06B–6089–H209

AMP3

AMP4

AMP5

SVU1–130 J2

SVU1–12 J6 A06B–6089–H101 SVU1–12 J6 A06B–6089–H101

SVU2–12/12 L(12A)=J7 M(12A)=J8 A06B–6089–H106 A06B–6089–H201 SVU2–80/80 SVU1–130 L(80A)=J7 J2 M(80A)=J8 A06B–6089–H106 A06B–6089–H208 T1

(TERMINAL BLOCK)

AXES AMP 2 A06B–6089–H209

J6

22/3000

13 14 15 16 17 18 19 20 21 22 23

2

3 MCCOFF4

CX4 (X–KEY) (E–STOP CONTROL)

AMP 1 A06B–6089–H209

J4,J5

 6/3000

CX3 (Y–KEY) (MCC CONTROL)

CX4

PWM CABLE (JS1–JS6 .J7–J9) E–STOP SIGNAL

J3

JS2B

1

SERVO POWER

J2

AMP1

#

P–200 6+2 AXES CONTROL

AC 200V (CP3)

J1

AXES

AMP 1 A06B–6089–H209

#

P–200 7+2 (DOOR OPENER) AXES CONTROL J8 AMP SPECIFICATION P–200 7+2 (HOOD–DECK) J9 AXES CONTROL AMP SPECIFICATION

2 ESP

3 +24V

J1

J2

J3

1 2 3 4 5 6 7 8 9 10 11 12

L1C L2C TH1 TH2 RC RI RE [UL] [VL] [WL] [ ]

J4,J5

J6

6/3000

22/3000

12/3000

2/3000

0.5/3000

6/3000

22/3000

12/3000

2/3000

0.5/3000

AMP1

AMP2

AMP3

L1(R) L2(S) L3(T) (100A) (100B) RL2 RL3 U[VM] V[VM] W[WM]

J7

J9

J8

12/3000 2/3000

2/3000

6/3000

6/3000

12/3000

AMP4

AMP5

SVU2–12/80 L(12A)=J4 M(80A)=J1 A06B–6089–H209

SVU2–12/80 SVU2–12/80 SVU2–12/12 SVU1–130 L(12A)= J5 L(12A)=J6 A06B–6089–H201 J2 L(12A)= J8 M(80A)= J7 M(80A)=J3 M(80A)= J9 A06B–6089–H209 A06B–6089–H209 A06B–6089–H106 A06B–6089–H208 SVU2–12/80 SVU2–12/80 SVU2–12/80 SVU1–130 SVU2–80/80 L(12A)= J5 L(12A)=J6 L(12A)=J4 J2 L(12A)= J8 M(80A)= J7 M(80A)=J3 M(80A)=J1 M(80A)= J9 A06B–6089–H209 A06B–6089–H209 A06B–6089–H209 A06B–6089–H106

JS2B

JV9

MOTOR POWER (J1–J9) TO ROBOT

4 3 2 1 ON

AMP DIP SWITCH SETTINGS ALL CASES 1 – ON 2 – OFF 3 – ON 4 – ON

P–200 R–J2

EE-3287-500-003

12. SCHEMATICS

12–10 NOTES

MARO2P10203703E

12. SCHEMATICS

12–11

MARO2P10203703E

Figure 12–5. R-J2 P-200 Controller Total Circuit Diagram (Amplifier Configurations)

SIDE CABINET AC 200V (CP3)

AMP 1 A06B–6089–H209 L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3 T1

SERVO POWER OVER HEAT TF1

CX4

JS1B

PWM CABLES (JS1–JS6 .J7–J9) E–STOP SIGNAL

JS4

4 3 2 1 ON

UL VL WL PE UM VM WM PE

AMP 2 A06B–6089–H209 L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3 T1

J4

4 3 2 1 ON

CX4 J1

JS2B

JS1B

JS1

UL VL WL PE UM VM WM PE

AMP 3 A06B–6089–H209 L1 L2 L3 L1C T1 L2C TH1 TH2 RC J6 UL RI VL RE T1 WL CX3 PE UM 4 VM CX4 3 2 WM 1 PE J7 ON

J5

J3

JS2B

JS5

AMP 4 A06B–6089–H106

JS1B

JS3

JS6

L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE T1 CX3 CX4

JS2B

JV7

U V W PE

AMP 6 A06B–6089–H208

AMP 5 A06B–6089–H105 L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3

J2

CX4

4 3 2 1 ON

JS1B

T1

UL VL W PE

L1 L2 L3 L1C T1 L2C TH1 TH2 RC RI RE CX3

J8

CX4

4 3 2 1 ON

JS1B

JS2

JS1B

JV8

JV9

4 3 2 1 ON

J9 UL VL WL T1 PE UM VM 4 3 2 WM 1 PE J10 ON

T1 (TERMINAL BLOCK)

JS2B

JV10

MOTOR POWER (J1–J10) TO ROBOT & OPENER

P–200 7+3 AXES CONTROL

AXIS

#

P–200 & P–10 OPENER MOTOR TYPE

J1

J2

J3

6/3000 22/3000 12/3000

J4,J5

2/3000

J6

J7

0.5/3000 2/3000

J8

OPENER J9 J10

6/3000 6/3000 6/3000

AMP

#

AMPLIFIER SPECIFICATION

AMP1 SVU2–12/80 L(12A)=J4 M(80A)=J1 A06B–6089–H209

AMP2

AMP3

SVU2–12/80 SVU2–12/80 L(12A)=J5 L(12A)=J6 M(80A)=J7 M(80A)=J3 A06B–6089–H209 A06B–6089–H209

AMP4 SVU1–130 J2 A06B–6089–H106

AMP DIP SWITCH SETTINGS ALL CASES 1 – ON 2 – OFF 3 – ON 4 – ON

13 14 15 16 17 18 19 20 21 22 23

L1C L2C TH1 TH2 RC RI RE [UL] [VL] [WL] [ ]

1 2 3 4 5 6 7 8 9 10 11 12

L1(R) L2(S) L3(T) (100A) (100B) RL2 RL3 U[VM] V[VM] W[WM]

OPENER SIDE CABINET AMP5 AMP6 SVU2–80/80 SVU1–80 L(80A)=J9 J8 (RAIL) M(80A)=J10 A06B–6089–H105 A06B–6089–H208

CX3 (Y–KEY) (MCC CONTROL) 1 MCCOFF3

2

3 MCCOFF4

CX4 (X–KEY) (E–STOP CONTROL) 1

2 ESP

3 +24V

EE-3287-500-004

12. SCHEMATICS

12–12 NOTES

MARO2P10203703E

12. SCHEMATICS

12–13

MARO2P10203703E

Figure 12–6. R-J2 P-200 Controller Total Circuit Diagram (AMP PWM Signal Connections) E–STOP PCB JS1

JS1

JS2

JS2

JS3

JS3

JS4

JS4

JS5

JS5

REFER TO PWM SIGNAL CONNECTION TABLE

PWM SIGNAL CONNECTION

AMP 1

AMP 2

P–200 6 AXES CONTROL

JS1B=JS4 JS2B=JS1

JS1B=JS5 JS2B=JS3

JS1B=JS6

JS1B=JS2

P–200 7 AXES CONTROL

JS1B=JS4 JS2B=JS1

JS1B=JS5 JS2B=JS3

JS1B=JS6 JS2B=JV7

JS1B=JS2

P–200 6+2 AXES CONTROL

JS1B=JS4 JS2B=JS1

JS1B=JS5 JS2B=JS3

JS1B=JS6

JS1B=JS2

JS1B=JV7 JS2B=JV8

P–200 7+2 AXES CONTROL

JS1B=JS4 JS2B=JS1

JS1B=JS5 JS2B=JS3

JS1B=JS6 JS2B=JV7

JS1B=JS2

JS1B=JV8 JS2B=JV9

P–200 7+3 AXES CONTROL

JS1B=JS4 JS2B=JS1

JS1B=JS5 JS2B=JS3

JS1B=JS6 JS2B=JV7

JS1B=JS2

JS6

JS6

JRV1

PWM SIGNAL CONNECTION TABLE

J1–J6

AMP 3

AMP 4

AMP 5

AMP 6

JS1B=JV8

JS1B=JV9 JS2B=JV10

MAIN CPU PCB JRA5

JRV1

J1–J6

BACK PLANE

AUX AXIS PCB JV7 JV8

JV8

JV9

JV9

JV10 JNA

JV7

JV11 JV12 JV13 JV14 JV15

JV10

REFER TO PWM SIGNAL CONNECTION TABLE

JS1B/JS2B JS1–JS6 (SERVO CONTROL)

JS1–JS6 (DUMMY CONNECTOR) A250–2361–0001

JV1–JV10 (SERVO CONTROL)

1

IR

11

IS

1

IR

11

IS

1

11

2

GNDR

12

GNDS

2

GNDR

12

GNDS

2

12

3

*PWMA

13

*ENBL

3

*PWMA

13

*PWMD

3

13

4

0V

14

0V

4

0V

14

0V

4

14

5

*PWMC

15

5

*PWMB

15

*PWME

5

15

6

0V

16

6

0V

16

0V

6

16

7

*PWME

17

7

*PWMC

17

7

17

8

0V

18

8

0V

18

9

*DRDY

19

0V

9

10

*MCON

20

0V

10

*PWMF 0V

19 *MCON

20

*DRDY

8 JMPR

18

9

*DRDY

19

10

*MCON

20

JV16

EE-3287-500-007

12. SCHEMATICS

12–14 NOTES

MARO2P10203703E

12. SCHEMATICS

12–15

MARO2P10203703E

Figure 12–7. R-J2 P-200 Controller Total Circuit Diagram (Power Supply Connections)

FAN

CA39A

CP1

POWER SUPPLY A16B–1212–0871 CP1

CP4

2

3

B1

B2

B3

B1

B2

R

S

G

AL

FA

FB

BAT+

BAT–

A1

A2

A3

ON

OFF

COM

200–240 VAC INPUT

CP2

200–240 VAC OUTPUT

CP3

200–240 VAC OUTPUT

CP2 1

2

3

R1

S1

G1

JNPO CP4

POWER ON/OFF ALARM

CP5

+24 VDC OUTPUT

CP5 B1

B2

+24V

0V

1

2

3

B1

R2

S2

G2

+24E

B2 0V

B3

CP8

SPECIFICATION OF FUSE

BACK PLANE 3–SLOT A20B–2001–0670 5–SLOT A20B–2001–0990

BATTERY

+24 VDC OUTPUT

B3

CP6

CP3 CP6

CP8

1

NAME

FUSE

VOLTAGE

F1

7.5A

200V

F3

5A

+24V

F4

5A

+24E

POWER SUPPLY UNIT

EE-3287-500-008

12. SCHEMATICS

12–16 NOTES

MARO2P10203703E

12. SCHEMATICS

12–17

MARO2P10203703E

Figure 12–8. R-J2 P-200 Controller Total Circuit Diagram (CPU Connector Details) JD1B (I/O LINK) FAN

JRF2 (ROBOT FEEDBACK) A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18

CA39A

BATTERY UNIT FOR MAINTENANCE

MAIN CPU A16B–3200–0040VBAT

SERVO AMPLIFIER

JRV1

JRF2

ROBOT FEEDBACK

JF21

LINE TRACKING

JRA5

JRM10

TO OPERATION BOX

BACK PLANE 3–SLOT A20B–2001–0670 5–SLOT A20B–2001–0990

JRY4 (FOR TEST) JD1B

I/O LINK

JD17

RS–232C/485 INTERFACE

JRM3

TO OPERATION BOX

CRS1

TO TEACH PENDANT RDI/RDO

CRM10

CRS1 (TEACH PENDANT) 01 02 03 04 05 06 07

TXTP RXTP EMGDM

+24V +24V

08 09 10 11 12 13

EMGB1 EMGB2 EMGTP

14 15 16 17 18 19 20

TXTP RXTP EMGEN 0V 0V

CRM10 RDI/RDO 14 15 16 17 18 19 20

RDO1 RDO2 RDO3 RDO4 RDO5 RDO6 +24E

08 09 10 11 12 13

RDI7 RDI8 RDI9 HBK RDO7 RDO8

01 02 03 04 05 06 07

RDI1 RDI2 RDI3 RDI4 RDI5 RDI6 0V

(OPTION)

A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31 A32 A33 A34 A35 A36 A37 A38 A39 A40 A41 A42 A43 A44 A45 A46 A47 A48 A49 A50

PD6 0V PRQ6 0V PD5 0V PRQ5 0V PD4 0V PRQ4 0V PD3 0V PRQ3 0V PD2 0V PRQ2 0V PD1 0V PRQ1 0V 0V 0V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V 0V 0V +24E +24E OTRST SVON RDICOM

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 B50

PD6 0V PRQ6 0V PD5 0V PRQ5 0V PD4 0V PRQ4 0V PD3 0V PRQ3 0V PD2 0V PRQ2 0V PD1 0V PRQ1 0V 0V 0V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V 0V 0V +24E 0V OTREL ROT HBK HBKREL

JRV1 (SERVO AMPLIFIER) A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31 A32 A33 A34 A35 A36 A37 A38 A39 A40 A41 A42 A43 A44 A45 A46 A47 A48 A49 A50

IS6 IR6 IS5 IR5 IS4 IR4 IS3 IR3 IS2 IR2 IS1 IR1 ENBL6 PWME6 PWMC6 PWMA6 ENBL5 PWME5 PWMC5 PWMA5 ENBL4 PWME4 PWMC4 PWMA4 ENBL3 PWME3 PWMC3 PWMA3 ENBL2 PWME2 PWMC2 PWMA2 ENBL1 PWME1 PWMC1 PWMA1 MCON DRDY 0V 0V +15V +15V 0V 0V –15V –15V 0V 0V BRKON BRKALM

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 B50

GNDS6 GNDR6 GNDS5 GNDR5 GNDS4 GNDR4 GNDS3 GNDR3 GNDS2 GNDR2 GNDS1 GNDR1 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +24V +24V +24V +24V

1 2 3 4 5 6 7 8 9 10

RXSLC RXSLC TXSLC TXSLC

+5V

11 12 13 14 15 16 17 18 19 20

0V 0V 0V 0V 0V 0V

VBAT (BATTERY)

+5V

1 2

+5V

EXVBAT 0V

JF17 (RS–232C/485) 1 2 3 4 5 6 7 8 9 10

RXDB 0V DSRBC 0V CTSB 0V RX485B RX485B +24E

11 12 13 14 15 16 17 18 19 20

TXDB 0V DTRB 0V RTSB 0V TX485B TX485B +24E

JF21 (LINE TRACKING) 1 2 3 4 5 6 7 8 9 10

PA PA PB PB PZ PZ REQ +5V

11 12 13 14 15 16 17 18 19 20

0V 0V 0V +5V +5V

JRM3 (PDI/PDO) 1 2 3 4 5 6 7 8 9 10

PDI1 0V PDI2 PDI3 PDI4 PDI5 PDI6 PDI7 TPOFF +24V

11 12 13 14 15 16 17 18 19 20

JRM10 (OPERATION BOX) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0V RTS1 0V DTR1 0V TXD1 0V RTSA 0V DTRA 0V TXDA TXTP TXTP TX485A TX485A ON OFF COM OPEMG EXEMG EMGDM EMGEM TPEMG SVON

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

0V CTS1 0V DSR1 0V RXD1 0V CISA 0V DSRA 0V RXDA RXTP RXTP RX485A RX485A 0V 0V +24V +24V +24V +24V +24V EMGB1 EMGB2

0V PDO1 PDO2 PDO3 PDO4 PDO5 PDO6 PDO7 +24V PDO8

EE-3287-500-009

12. SCHEMATICS

12–18

MARO2P10203703E

12. SCHEMATICS

12–19

MARO2P10203703E

Figure 12–9. R-J2 P-200 Controller Total Circuit Diagram (ESTOP Connection Details)

JRF2 (ROBOT FEEDBACK) A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31 A32 A33 A34 A35 A36 A37 A38 A39 A40 A41 A42 A43 A44 A45 A46 A47 A48 A49 A50

PD6 0V PRQ6 0V PD5 0V PRQ5 0V PD4 0V PRQ4 0V PD3 0V PRQ3 0V PD2 0V PRQ2 0V PD1 0V PRQ1 0V 0V 0V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V 0V 0V +24E +24E * OTRST SVON RDICOM

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 B50

* PD6 0V * PRQ6 0V * PD5 0V * PRQ5 0V * PD4 0V * PRQ4 0V * PD3 0V * PRQ3 0V * PD2 0V * PRQ2 0V * PD1 0V * PRQ1 0V 0V 0V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V 0V 0V +24E 0V * OTREL * ROT * HBK * HBKREL

JRV1 (SERVO CONTROL) A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31 A32 A33 A34 A35 A36 A37 A38 A39 A40 A41 A42 A43 A44 A45 A46 A47 A48 A49 A50

* * * * * * * * * * * * * * * * * * * * * * * *

IS6 IR6 IS5 IR5 IS4 IR4 IS3 IR3 IS2 IR2 IS1 IR1 ENBL6 PWME6 PWMC6 PWMA6 ENBL5 PWME5 PWMC5 PWMA5 ENBL4 PWME4 PWMC4 PWMA4 ENBL3 PWME3 PWMC3 PWMA3 ENBL2 PWME2 PWMC2 PWMA2 ENBL1 PWME1 PWMC1 PWMA1

* MCON * DRDY 0V 0V +15V +15V 0V 0V –15V –15V 0V 0V * BRKON * BRKALM

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 B50

E–STOP PCB GNDS6 GNDR6 GNDS5 GNDR5 GNDS4 GNDR4 GNDS3 GNDR3 GNDS2 GNDR2 GNDS1 GNDR1 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V +24V +24V +24V +24V

SERVO CONTROL

JRV1

CRF1

TO ROBOT (FEEDBACK)

COM (RDI COM) ROBOT FEEDBACK

JRF2

E–STOP CONTROL

CRM9

DOOR INTERLOCK

CRM15

B A A=PULLDOWN B=PULLUP HBK (HANDBROKEN)

JS1 JS2 JS3 SERVO CONTROL

AUX BRAKE CONTROL

CRM16

E–STOP CONTROL 100VAC INPUT FOR BRAKE POWER MCC CONTROL

A B A=NO HBKN B=HBKN USED

JS4 JS5

CRR20

JS6

CRR21

CRM11

ROBOT OVERTRAVEL

CRR15

CRR5

MOTOR BRAKE POWER

TB4

CRR22

100VAC OUTPUT

CRR5 CRM9 (E–STOP CONTROL) 3

2

CRR21 (BRAKE POWER)

1

MCCON

SVOUT

3

2

1

DIL2

DIL1

1

* BRKON4

* BRKON3

A3

A2

A1

200T

200S

200R

B3

B2

B1

AC3

AC2

AC1

1 2 3 4 5 6 7 8 9 10

2C

3C

BKP3

BKP3 3B

100B

100A

BKM1

BKM2

BKM2

1A

2A

3A

BKP1

BKP2

BKP2

2

1

100OUT2

100OUT1

IR GNDR * PWMA 0V * PWMC 0V * PWME 0V * DRDY * MCON

1C BKP3

2B

JS1–JS6 (SERVO CONTROL)

CRR20 (EMG CONTROL)

BKM3

1B

CRM16 (AUX BRAKE CONTROL) 2

3D

BKM3

1

CRR22 (100VAC OUT) 3

2D

BKM3

2

CRM15 (DOOR INTERLOCK) 3

1D

11 12 13 14 15 16 17 18 19 20

IS GNDS * ENBL 0V

0V 0V

CRM11 (ROBOT OVERTRAVEL) 3

CRF1 (PULSE CODER INTERFACE) 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

SPDJ5 * SPDJ5 SPRQJ5 * SPRQJ5 SPDJ6 * SPDJ6 SPRQJ6 * SPRQJ6 +5V +5V +5V +5V +5V +5V +5V +5V +5V +5V

19 20 21 22 23 24 25 26 27 28 29 30 31 32

* * * *

SPDJ3 SPDJ3 SPRQJ3 SPRQJ3 SPDJ4 SPDJ4 SPRQJ4 SPRQJ4 0V 0V 0V +5V +5V +5V

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

2

1

* ROTIN

+24E

CRR15 (MCC CONTROL)

SPDJ1 * SPDJ1 SPRQJ1 * SPRQJ1 SPDJ2 * SPDJ2 SPRQJ2 * SPRQJ2 0V 0V 0V 0V 0V 0V 0V 0V 0V

3

2

1

200B

200A

MCCB

MCCA

0V

EE-3287-500-10

12. SCHEMATICS

12–20 NOTES

MARO2P10203703E

12. SCHEMATICS

12–21

MARO2P10203703E

Figure 12–10. R-J2 P-200 Controller Total Circuit Diagram (Optional Process I/O Connections)

PROCESS I/O CR2A MAIN CPU A16B–3200–0040

CR2B

JD1A

JD4A

CR2B

JD4B

CR2B

TYPE OF PROCESS I/O (SINK TYPE) CA CB DA

SDI/SDO

SPECIFICATION A16B–2201–0470 A16B–2201–0472 A16B–2201–0480

CRM2A CRM2B O O O O O O

CRM2C CRM2D CRM4A CRM4B CRW1 X X X X O X X X X X O O O O X

CRW2 O X X

CR2B CR2B CRW1

TO WELD MACHINE (A/D, D/A, WDI, WDO)

CRW2

TO ANALOG INTERFACE (A/D) I/O LINK SLAVE

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

*IMSTP *HOLD *SFSPD CSTOPI FAULT RESET START HOME ENBL RSR1/PNS1 RSR2/PNS2 RSR3/PNS3 RSR4/PNS4 RSR5/PNS5 RSR6/PNS6 RSR7/PNS7 RSR8/PNS8 0V 0V

SDI03 SDI04 SDI05 SDI06 SDI07 SDI08 SDI09 SDI10 SDI11 SDI12 SDI13 SDI14 SDI15 SDI16 SDI17 SDI18 0V 0V

CRM2A (SDI/SDO) 19 20 21 22 23 24 25 26 27 28 29 30 31 32

ACK3/SN03 ACK4/SN04 ACK5/SN05 ACK6/SN06 COM–A4 ACK7/SN07 ACK8/SN08 SNACK RESERVED COM–A5 PNSTROBE PROD START SDI01 SDI02

CRM2B (SDI/SDO) 19 20 21 22 23 24 25 26 27 28 29 30 31 32

SDO13 SDO14 SDO15 SDO16 COM–B4 SDO17 SDO18 SDO19 SDO20 COM–B5 SDI19 SDI20 SDI21 SDI22

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

CMDENBL SYSRDY PROGRUN PAUSED COM–A1 HELD FAULT ATPERCH TPENBL COM–A2 BATALM BUSY ACK1/SN01 ACK2/SN02 COM–A3 +24E +24E

SDO01 SDO02 SDO03 SDO04 COM–B1 SDO05 SDO06 SDO07 SDO08 COM–B2 SDO09 SDO10 SDO11 SDO12 COM–B3 +24E +24E

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

SDI23 SDI24 SDI25 SDI26 SDI27 SDI28 SDI29 SDI30 SDI31 SDI32 SDI33 SDI34 SDI35 SDI36 SDI37 SDI38 0V 0V

SDI43 SDI44 SDI45 SDI46 SDI47 SDI48 SDI49 SDI50 SDI51 SDI52 SDI53 SDI54 SDI55 SDI56 SDI57 SDI58 0V 0V

CRM2C (SDI/SDO) 19 20 21 22 23 24 25 26 27 28 29 30 31 32

SDO33 SDO34 SDO35 SDO36 COM–C4 SDO37 SDO38 SDO39 SDO40 COM–C5 SDI39 SDI40 SDI41 SDI42

CRM2D (SDI/SDO) 19 20 21 22 23 24 25 26 27 28 29 30 31 32

SDO53 SDO54 SDO55 SDO56 COM–D4 SDO57 SDO58 SDO59 SDO60 COM–D5 SDI59 SDI60 SDI61 SDI62

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

SDO21 SDO22 SDO23 SDO24 COM–C1 SDO25 SDO26 SDO27 SDO28 COM–C2 SDO29 SDO30 SDO31 SDO32 COM–C3 +24E +24E

CRM4A (SDI/SDO) 01 02 03 04 05 06 07

SDI63 SDI64 SDI65 SDI66 SDI67 SDI68 SDI69

08 09 10 11 12 13

SDO65 SDO66 SDO67 SDO68 COM–E2 SDI70

14 15 16 17 18 19 20

SDO61 SDO62 SDO63 SDO64 COM–E1 +24E 0V

14 15 16 17 18 19 20

SDO69 SDO70 SDO71 SDO72 COM–F1 +24E 0V

SDO41 SDO42 SDO43 SDO44 COM–D1 SDO45 SDO46 SDO47 SDO48 COM–D2 SDO49 SDO50 SDO51 SDO52 COM–D3 +24E +24E

01 02 03 04 05 06 07

08 09 10 11 12 13

ADCH6 COMAD6

14 15 16 17 18 19 20

ADCH3 COMAD3 ADCH3 COMAD4 ADCH5 COMAD5

CRM4B (SDI/SDO) 01 02 03 04 05 06 07

SDI71 SDI72 SDI73 SDI74 SDI75 SDI76 SDI77

08 09 10 11 12 13

SDO73 SDO74 SDO75 SDO76 COM–F2 SDI78

CRW1 (WELD INTERFACE OPTION) 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

CRW2 (A/D INTERFACE OPTION)

01 02 03 04 05 06 07 08 09 10 11 12

DACH1 CAMDA1 DACH2 CAMDA2 WDI1 WDI2 WDI3 WDI4 WDI5 WDI6 WDI7 WDI8

13 14 15 16 17 18 19 20 21 22

ADCH1 COMAD1 ADCH2 COMAD2

0V 0V 0V 0V

23 24 25 26 27 28 29 30 31 32 33 34

WDO1 WDO2 WDO3 WDO4 WDO5 WDO6 WDO7 WDO8 WDI+ WDI– +24E +24E

JD4A, B (RS–422/SLC) 1 2 3 4 5 6 7 8 9 10

RX *RX TX *TX

*ENBL +15V +5V +24V

11 12 13 14 15 16 17 18 19 20

0V 0V 0V 0V 0V 0V –15V +5V +24V +5V

NOTE: THE PROCESS I/O IS NOT NORMALLY USED WITH P–200 ROBOTS

EE-3287-500-011

12. SCHEMATICS

12–22 NOTES

MARO2P10203703E

12. SCHEMATICS

12–23

MARO2P10203703E

Figure 12–11. R-J2 P-200 Controller Total Circuit Diagram (Optional I/O Connections)

I/O UNIT MODEL A POWER SUPPLY A16B–1212–0870

MODULAR I/O 5–SLOT BASE UNIT A03B–0807–J002 10–SLOT BASE UNIT A03B–0807–J001

CP6

CP32

MODULAR I/O INTERFACE MODULE A03B–0807–J011

JD1A/JD1B

CP32 1

+24V

2

0V

1 2 3 4 5 6 7 8 9 10

3

MODULAR I/O

JD1B JD1A

MAIN CPU A16B–3200–0040

JD2

RX RX TX TX

+5V

11 12 13 14 15 16 17 18 19 20

JD2 0V 0V 0V 0V

+5V +5V

1 2 3 4 5 6 7 8 9 10

S1 S1 S2 S2 S3 S3 S4 S4 ID1

11 12 13 14 15 16 17 18 19 20

S5 S5 S6 S6 0V 0V ID2 ID3

JD1A

I/O UNIT MODEL B

BASIC UNIT

POWER SUPPLY A16B–1212–0870

FG S– S+ 0V 24V

I/O UNIT MODEL B INTERFACE UNIT A03B–0808–C001

CP6 24V 0V

JD1B JD1A

MAIN CPU A16B–3200–0040 JD1A

EXPANSION UNIT

24V 0V S1+ S1– FG S2+ S2– FG S3+ S3– FG S4+ S4– FG

TO BASIC UNIT 2–4

TO BASIC UNIT 2

TO BASIC UNIT 3

TO BASIC UNIT 4

I/O LINK SLAVE

JD1A/JD1B 1 2 3 4 5 6 7 8 9 10

RX RX TX TX

+5V

11 12 13 14 15 16 17 18 19 20

0V 0V 0V 0V

+5V +5V

EE-3287-500-012

12. SCHEMATICS

12–24 NOTES

MARO2P10203703E

12. SCHEMATICS

12–25

MARO2P10203703E

Figure 12–12. R-J2 P-200 Controller Total Circuit Diagram (Purge Circuitry)

PAINT BOOTH

ISB UNIT CRS1

OPERATOR PANEL

FG

CRS1

I.S. TEACH PENDANT

CRS2 ISG

I.S. GND

PORT1 PDIO

PORT2

CNOP

CNPG EMGIN1 EMGIN2

PURGE AND I.S. CIRCUITS

PANEL I/F

PC BD PURGE/BRAKE BD CNPG RELAY BARRIER

BRAKE CONTROL

PC BD CNCA

IDEC IBRC

PC BD CNIN

SEE SHEET 14 & 15

MAIN CPU JRV1

CRM10

RDI/RDO

FIRE ALARM

JD1A JRF2

JF21

JRM3

CRS1

JRM10

JD17

200A 200B OFF1 PC BD OFF2 FASTON BRD1 TERMINAL BRDC BRD2

E–STOP PCB JRV1

CRF1 E–STOP SIGNAL

JRF2

FRA1 FRA2 BKP1 BKM1 BKP2 BKM2 BKP3 PC BD BKM3 TB BKP4 BKM4 SVON2 SVONC SVON1 EES1 EES2

24PG OPG SVON PGTB ROT PGC1 PURGE COMPLETE PGC2

CRM9 CRM11

I.S. G

CRR20 CRR21

I.S. GND

FG

PSA1 PSA2 PSB1 PSB2 FSA1 FSA2 FSB1 FSB2 OT11 OT12 OT21 ISTB OT22 OT31 OT32 OT41 OT42 OT51 OT52 HBK1 HBK2 TP1 TP2 EOAT1 EOAT2

ISB1–3 ISB1–4 ISB2–3 ISB2–4 ISB3–3 ISB3–4 ISB4–1 ISB4–2 ISB5–1 ISB UNITS ISB5–2 ISB6–1 ISB6–2 ISB6–4 ISB7–1 ISB7–2 ISB8–1 ISB8–2 ISB9–4 ISB9–6

CRR22 CRR5 BKP4 BKM4 REFER TO

PAGE 003–006 AMP ESP (CX4) 100VAC (TF1) 200VAC (TF1)

BATTERY UNIT 1+ 1– 2+ 2– 3 3– 4+ 4– 5 5– 6+ 6– +6V ISG

CNCA (RDI/RDO) 01 02 03 04 05 06 07 08 09 10 11 12

RDI9

RDI1 RDI6

13 14 15 16 17 18 19 20 21 22

RDI3 RDI4 RDI7 * HBK RDI2 RDI8

0V

PRESSURE SWITCH FLOW SWITCH

RDI5

23 24 25 26 27 28 29 30 31 32 33 34

RDO1 RDO2 RDO3 RDO4 RDO5 RDO6 RDO7 RDO8

RDI1: BKRL (BRAKE RELEASE DETECT) RDI2: EOAT (END OF ARM TOOLING)

+24E

CNPG 01 02 03 04 05 06 07

TPDSC

3 6 9 12

BKP2 BKM3 100 OUT1 EMG2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

PSA1 PSA2 PSB1 PSB2 FSA1 FSA2 FSB1 FSB2 OT11 OT12 OT21 OT22 OT31 OT32 OT41 OT42 OT51 OT52 HBK1 HBK2 TP1 TP2 EOAT1 EOAT2

PGCP PGFLT PG TPDSC2 PGEN1

08 09 10 11 12 13

PGEN2

0V 0V 0V

14 15 16 17 18 19 20

OFF1 OFF2 BKRL1 BKRL2

CNIN (BRAKE CONTROL) HAND BROKEN TEACH PENDANT DISCONNECT SWITCH END OF ARM TOOLING

2 5 8 11

ISTB POWER TO P–200 PURGE SOLENOID POWER TO P–10 PURGE SOLENOID (OPTION) P–200 BYPASS SW I/P POWER I/P SIGNAL FLOW SENSOR POWER AND SIGNAL TRIGGER #1 SIGNAL TRIGGER #2 SIGNAL (OPTION) P–10 MAGNET SENSOR DC–DC PULSE CODER POWER CONVERTER 24V TO +5V BRAKE POWER (J1–J9) BKP1,BKM1=J1,J2,J3 BKP2,BKM2=J4,J5,J6 BKP3,BKM3,BKP4,BKM4=J7,J8,J9

PULSE CODER BATTERY

23 24

BKM1 BKP3 100B EMG1

TB 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

FRA1 FRA2 BKP1 BKM1 BKP2 BKM2 BKP3 BKM3 BKP4 BKM4 SVON2 SVONC SVON1 PG1 PG2 EES1 EES2 SOL1 SOL2

1 4 7 10

BKP1 BKM2 100A 100 OUT2

FASTON FG +24V 0V +24V 0V OFF1 OFF2 BRD1 BRDC BRD2 200A 200B R S

EE-3287-500-13

12. SCHEMATICS

12–26 NOTES

MARO2P10203703E

12. SCHEMATICS

12–27

MARO2P10203703E

Figure 12–13. R-J2 P-200 Controller Total Circuit Diagram (Purge Wiring Diagram) PURGE CONTROL PCB A16B–1310–0601 PARTIAL SCHEMATIC (SEE SHEET 12) TPDSC1

CNPG 1

PS

2

PGCP

3

PGFLT

4

PG

R1:0

R3:0 PURGE CR3 FAULT R4:0 CR2A TR1 R5:0

5 6

PGEN1

7

3

FS1A

8

CR1A 4

FS1B

3 2 KA5

OFF2

15 16

BKRL2

17

CR2A

0V

TR1 (PURGE 0V COMPLETE)

0V

SH1A

+24P 7 8

CR1B 0V

CR2B0V

(PURGING)

8

BKRL1

6

CR2A

CR3

+24E

CR7B

11

EOAT

CR5B

12

CR5A CR6

C1 33OuF

14

CR6

15

CR7A

A3

P3

ROT SWITCH

C3

N3 P4

HBK SWITCH

C4

N4

A5

P5 TPDSC SWITCH

C5

N5

A6 C6 220VAC 0V

N6

FG G

8

RDI8

20

RDI7 22

+24E RDI1 (BKRL) RDI5

34

23

04

RDI3

15

RDI4

16

CNCR 15

RDI6

6

17

RDI7

17

RDO1

23

CR5A

1 STAHL ISB1 9001/01–252–100–14 + 3 4 2 +3 1 ISB2 * SEE NOTE 4 2 8 ISB9 P&F SENSOR 7 9 S1 I X II 1 11 LEAD X II S2 I 2 BROKEN S3 I X 10 II 3 12 14 +24V KFD2-SR2-Ex1.W.LB USED WITH 7+3 VERSION 15

0V 25 0V 120VAC FROM CONVEYOR

DELTRON

R17

R18 FRA1

200A 200B R S G FG +24P

+24P 0V

TB 1

FIRE ALARM

FRA2 2 TERM 8–10 ON SHEET 12 CR4 11

SVON2

12

SVONC

CR4

13

CR1B

14

SVON1 PG1

15

PG2

(PURGE COMPLETE) CR5B

EES1 16 EES2 17

0V

+24P

CR2B

D7 0V

5–FSA1 6–FSA2

18

SOL1

19

SOL2

FS VIA PURGE CBL

FSB1 FSB2 OT1–1

OT’S NOT USED

OT5–2 19–HBK1 FROM PURGE CABLE 20–HBK2

3 3

0V

PGTB 1 2 3 4 5 6

5 KA6 ISB1–3 P–200 PURGE SOL 6 ISB1–4 OPENER PURGE SOLENOID

24PG 0PG SVON *ROT PGC1 PGC2

FROM P–10 OR P–15 SENSOR VIA P–10 OR P–15 PURGE CABLE S1 = I FOR OPEN SW = DE-ENERGIZED S2 = II FOR LEAD BREAKAGE ON 10-11-12 S3 = I FOR NAMUR INPUT

24V POWER SUPPLY

+24 24V OVP R16

KA6 0V 4 2

PSB1 PSB2

0V

RLA 24

13

1

1–PSA1 PS VIA 1–PSA2 PURGE CBL

TP1 TP2 23 EOAT1 24 EOAT2

P6 EOAT SWITCH

21

RDI2

CNIN 11 12

N2

RDI3 20

19

0V

P2

FLOW SWITCH

C2

19

RDI5

0V

CNCA 18

A2

18

RDI4

TO OP EMG1 PANEL EMG2

RDI8 +24E

17

CR7B CR7B

N1

A4

9

CR5A

R7 100

1 0V

BKRA

16

BRD1 BRDC BRD2

TO IDEC 24V P.S. A20B–1000–0472

+24P

*HBK

CR8

OFF1 OFF2

TPDSC2

10

13 +24E

SVON

PRESSURE SWITCH

C1 KA5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

P1

0V CR1A CR1A

OFF1

*HBK

0V

ISTB

A1

PS1A TPDSC1

CR4 5

CR1A

11 12 13 CR1B 14

0V

0V

IDEC IBRC 6062RFM RELAY BARRIER

2

R6:0

TPDSC2

PGEN2

CNIS 1

* BARRIER NOTE:

EE–3112–600

7 S1 I X II 8 II S2 I X TO 10 X II S3 I SYS 11 ISB3 P&F ISRR 14+24 KFD2-SR2-Ex1.W.LB 15 7 II S1 I X TO 8 II S2 I X SYS 10 X II S3 I 11 ISB10 14+24 P&F ISRR KFD2-SR2-Ex1.W.LB 15 7 ISB4 P&F FROM P-200 I/O 8 9 + ISB5 FROM P-200 I/O 10 P&F BARRIER 7 +24 8 8 7 ISB6 TO P-200 I/O SIG 5 P&F BARRIER 6 8+ ISB7 P&F BARRIER FROM P-200 I/O 7 8+ P&F BARRIER ISB8 FROM P-200 I/O 7 SEE APPLICATION PACKAGE FOR WIRING DETAILS

1 2 3

ISB3–1 P–200 BYPASS SW

1 2 3

EOAT–5 P–10 OR P–15 BYPASS SWITCH

ISB3–3 FROM PURGE CABLE

EOAT–6 FROM PURGE CABLE I/P POWER VIA PURGE CABLE I/P SIGNAL VIA PURGE CABLE

+1 2 +1 2

ISB4–1 ISB4–2 ISB5–1 ISB5–2

+ 1 2 + 4 3 +1 2 +1 2

ISB6–1 24V POWER FLOW METER ISB6–2 0V VIA PURGE CABLE ISB6–4 SIGNAL

FOR P-200-6 OR -7 THIS BARRIER NOT MOUNTED FOR P-200 +2 VERSIONS THIS BARRIER IS STAHL 9001/01-280-165-10 FOR P-200 +3 (P-10, P-15) THIS BARRIER IS STAHL 9001/01-252-100-14 TRIGGER, I/P, FLOWMETER PROCESS PKG EE-3287-510 DUAL TRIGGER, I/P,

FLOWMETER PROCESS ISB7–1 TRIGGER ONE SIGNAL PKG EE-3287-511 ISB7–2 VIA PURGE CABLE ISB8–1 TRIGGER TWO SIGNAL ISB8–2 VIA PURGE CABLE NOTE: SEE PROCESS PACKAGES FOR BARRIER TYPES

EE-3287-500-014

12. SCHEMATICS

12–28 NOTES

MARO2P10203703E

12. SCHEMATICS

12–29

MARO2P10203703E

Figure 12–14. R-J2 P-200 Controller Total Circuit Diagram (Purge Board Details)

PURGE CONTROL PCB A16B–1310–0601

BRAKE RELEASE

CNPG 16

BKRL1

CNPG (TO PANEL)

CNIS 8

SH1A

01 02 03 04 05 06 07

+24E 9

17 BKRL2 CNIN 11

CR5A

EMG1 EMG2

12

CR5B

EES1

16 17

CR5B

R7 100

EES2 CR8

CR6

01 02 03 04 05 06 07 08 09

CR7B

CR7A

BRDC BRD2

CR7B

BKP1

0V

TB 3

BKP1

2

4

BKM1

BKP2

3

5

BKP2

BKM2

4

6

BKM2

BKP3

5

7

BKP3 J4, J5

6

8

BKM3

100OUT1

9

9

BKP4

10

BKM4

100OUT2

10

CR8

FROM XFMR 100B

8

CR7A CR7A

DS1

D4 CR7B

D5

D6

PS1A TPDSC1 FS1A FS1B SVON TPDSC2 +24P BKRA BKRB

OFF1 OFF2 BKRL1 BKRL2

10 11 12 13 14 15 16

*HBK EOAT RDI8 +24E

FG

17 18 19 20 21 22 23 24 25

RDI5 RDI3 RDI4 RDI7 RLA 0V

J6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

LED

ISTB 01 02

FRA1 FRA2 BKP1 BKM1 BKP2 BKM2 BKP3 BKM3 BKP4 BKM4 SVON2 SVONC SVON1 PG1 PG2 EES1 EES2 SOL1 SOL2

+24V

03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

21

CNCA (TO MAIN CPU)

J3, J7

BKM3

7

0V 0V 0V

TB 14 15 16 17 18 19 20

J1, J2

BKM1

100A

PGEN2

CNIS (TO IBRC)

CR7B

CNIN 1

PGCP PGFLT PG TPDSC2 PGEN1

08 09 10 11 12 13

C1 33OuF BRD1

CR5A CR6

TPDSC1

01 02 03 04 05 06 07 08 09 10 11 12

RDI1

13 14 15 16 17 18 19 20 21 22

RDI5 RDI3 RDI4 RDI7 *HBK RDI2 RDI8

21 22 23 24

PGTB 23 24 25 26 27 28 29 30 31 32 33 34

RDO1

01 02 03 04 05 06

PSA1 PSA2 PSB1 PSB2 FSA1 FSA2 FSB1 FSB2 OT11 OT12 OT21 OT22 OT31 OT32 OT41 OT42 OT51 OT52 HBK1 HBK2 TP1 TP2 EOAT1 EOAT2

24PG OPG SVON *ROT PGC1 PGC2

CNIN (BRAKE)

+24E

3 BKP2 6 BKM3 9 100OUT1 12 EMG2

2 BKM1 5 BKP3 8 100B 11 EMG1

1 BKP1 4 BKM2 7 100A 10 100OUT2

EE-3287-500-015

12. SCHEMATICS

12–30 NOTES

MARO2P10203703E

12. SCHEMATICS

12–31

MARO2P10203703E

Figure 12–15. R-J2 P-200 Controller Total Circuit Diagram (ESTOP Wiring Detail) JRM10

+24V

CNOP

OPERATOR PANEL

+24V

(12)

(CRS1)

DEAD–MAN

(3)

R–J2 MAIN CPU

(16) (10)

ENABLE/ DISABLE

(11) KA1 EXEMG

KA2

PANEL E–STOP

ISB I.S. TEACH PENDANT

RV 0V

0V

+24V

0V

EMERGENCY CIRCUIT

CNPG

PURGE BOARD CR5 24V CR7

TPEMG

RV

OPEMG

RV 0V

KA4

0V

+24V

0V SVON

FENCE1 FENCE2 E–STOP1 E–STOP2 EMGIN1 EMGIN2 SVON1 SVON2 EMGOUT1 EMGOUTC EMGOUT2

EES1

11 12

(TBOP1)

OPTIONAL EXT ESTOP

ROBOT MECHANICAL UNIT

EES2 CR8

FROM XFMR

RV 0V

CR5 CR6 CR5

CNIN

PULSE CODER

100A CR7 100B CR7

(TBOP1)

BK1 – BK4

BRAKE

MOTOR

RV. RECEIVER FOR DI JRV1

JRV1

AXES CONTROL *BRAKON#1 * BRKALM

RV

JRF2

+24E HBKREL ROT OTREL

RV

OTRST RDICOM

DRDY EMERGENCY STOP PWMA/C/E, ENBL IS,GRDS,IR,GNDR MCON BRK1 +24E BRKON#1 BRKALM PD1–6/ PD1–6 PREQ1–6/ PREQ1–6 +5V,0V +24E HBKREL ROT OTREL OTRST +24E B RDICOM A

*BRAKON#2

CONTROL PCB

JS1 JS2 JS3 JS4 JS5 JS6

LOGIC FOR AMPLIFIER

+24E

0V OTREL ROT

ROTIN DIL1

0V

0V

0V

SVOUT BRKON#4 BRKON#3 BRK3

CRM15 DOOR INTERLOCK

CX4

+24V

SVU +24V

SVU CX4

+24V

RL–OT/HBK DIL2

0V

BRKON#2 SVON CRM16

CRM11

HBKREL

BRK2 +24E

0V

TO MOTOR PULSE CODER (I/F IS SAME AS R–J)

CRF1

MCCON RL–EMG

+24E

ESP

OPTION EE-3287-401 1

CX3

MCCOFF3

CX3

MCCOFF3

CONTROL CIRCUIT

2 MCCOFF4

0V

ESP

CONTROL CIRCUIT MCCOFF4

CRM9 CRR22

BRK1–3 100A

100A

POWER TRANSFORMER

BRK4

CRR21 100B

BRK5–7 100B

200R 200S 200T AC POWER INPUT

0V

BRAKE CONTROL CIRCUIT

200R 200S 200T AC1 AC2 AC3 CRR15

DC POWER SUPPLY ON/OFF CONTROL

200A 200B

CRR5

CRR20

CRR15

MCC

EE-3287-500-016

12. SCHEMATICS

12–32 NOTES

MARO2P10203703E

12. SCHEMATICS

12–33

MARO2P10203703E

Figure 12–16. R-J2 P-200 Controller Total Circuit Diagram (OP Panel Details)

OPERATOR PANEL FROM MAIN CPU (JRM3)

OPERATOR PANEL (CNOP) TXTP * TXTP RXTP * RXTP

(1) (2) (3) (4) +24V 0V

TXD1 RXD1 RTS1 CTS1 DSR1 DTR1 +24V (NOTE 1) 0V +24V: CNOP–19, 27 28, 37, 38 (NOTE 2) 0V: CNOP–11, 13, 15, 17, 20, 29, 31, 39, 41, 43, 45, 47,49 TXDA RXDA RTSA CTSA DSRA DTRA

(1) (14) (2) (15) (6,7) (17,19) (1)

(18) (16) (14) (12) (32) (30) (NOTE 1) (NOTE 2)

+24V

0V

(2) (3) (4) (5) (6) (20) (25) (7) (1)

+24V 0V

TXD1 RXD1 RTS1 CTS1 DSR1 DTR1 +24V 0V FG

(CRT3) (12) (13) (14) (15) (16) (17) (18) (20) (1) (3) (4) (5) (6) (7) (8)

+24V LED1: REMOTE SW4: C–START SW6: HOLD LED2: F–RESET LED1: BATTERY

(NOT USED) (NOT USED) LED3: TP ENABLE (NOT USED) F–RESET REMOTE HOLD USER PB1 (PGEN) (USER PB 2) (ON) CY START SW1: ON

RS–232–C 0V

(9)

TPOFF

(10,19) +24V (2,11)

+24V 0V

(CNPG) PGCP PGFLT PG

LED4 LED5 SW7

BKRL1 BKRL2 PGEN1 PGEN2 TPDSC1 TPDSC2

SW8

0V

SW7 +24V

(50) (48) (46) (44) (42) (40)

(2) (3) (4) (5) (6) (20) (25) (7) (1)

+24V 0V

TX485A *TX485A RX485A *RX485A

(CRS1) TXTP *TXTP RXTP TO TEACH PENDANT *RXTP +24V 0V FG (PORT1)

PDIO

PDO1 PDO2 PDO3 PDO4 PDO5 PDO6 PDO7 PDO8 PDI1 PDI2 PDI3 PDI4 PDI5 PDI6 PDI7

(14) (15) (16) (17)

(36) (35) (34) (33)

(PORT2) TXD1 RXD1 RTS1 CTS1 RS–232–C DSR1 DTR1 +24V 0V FG TX485A * TX485A RX485A * RX485A

FROM MAIN CPU EMGDM EMGEN EMGB1 EMGB2

(JRM10) (5) (6) (7) (8) KA1 +24V

0V

KA2

KA3

(12) (3) (16) (10) (11) (6,7) (18)

0V

FENCE1 FENCE2 ESTOP1 ESTOP2 TPEMG OPEMG

(10) (24)

(26)

SVON

(25)

0V

(TBOP1)

EMGIN1 EMGIN2 SVON1 SVON2

KA4

FG EXEMG

(CRS1)

+24V

EMGOUT1 EMGOUTC EMGOUT2 +24V 0V

(1) (2) (3)

TO BRAKE/PURGE BD

(TBOP1)

(CNHM) HM1

HOUR METER 1 2 3

4

SW1: ON ON COM OFF

EXON1 EXCOM EXOFF1

(21) (22) (23) SW2: OFF

(TBOP2)

(CNPG) OFF1 OFF2

EE-3287-500-017

12. SCHEMATICS

12–34 NOTES

MARO2P10203703E

12. SCHEMATICS

12–35

MARO2P10203703E

Figure 12–17. R-J2 P-200 Controller Total Circuit Diagram (Operator Panel) JRM10 (MAIN CPU I/F) HONDA PCR50 MALE 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

0V CTS1 0V DSR1 0V RXD1 0V CTSA 0V DSRA 0V RXDA RXTP RXTP TX485A RX485A 0V 0V +24V +24V +24V +24V +24V EMGB1 EMGB2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0V RTS1 0V DTR1 0V TXD1 0V RTSA 0V DTRA 0V TXDA TXTP TXTP RX485A TX485A ON OFF COM OPEMG EXEMG EMGDM EMGEN TPEMG SVON

RX485A RX485 TX485A TX485 24V 24V 0V DTRA 0V DSRA 0V CTSA 0V RTSA 0V RXDA 0V TXDA

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

19 20 21 22 23 24 25 26 27 28 29 30 31 32

REMOTE C–START HOLD FAULT BATTERY

= = = = = = =

PDI1

0V PDO1 PDO2 PDO3 PDO4 PDO5 PDO6 PDO7 +24V PDO8

1 2 3 4 5 6 7 8 9 10

PDO1 PDO2 PDO3 PDO4 PDO5 PDO6 PDO7

= FAULT = REMOTE = HOLD = PGEN = ON = C–START =

PDI1 PDI2 PDI3 PDI4 PDI5 PDI6 PDI7

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

FG TXD1 RXD1 RTS1 CTS1 DSR1 0V

01 02 03 04 05 06 07 08 09 10 11 12 13

TXTP TXTP RXTP RXTP EMGDM EMGEN EMGB1 EMGB2 TPEMG 0V CTS1 0V RTS1 0V RXD1 0V TXD1

PDI1 0V PDI2 PDI3 PDI4 PDI5 PDI6

08 09 10 11 12 13

PDI7 TPOFF +24V 0V PDO1 PDO2

01 02 03 04 05 06 07

EMON EMCOM EMOFF EMGIN1 EMGIN2 FENCE1 FENCE2

01 02 03 04 05 06 07

01 02 03 04 05 06 07 08 09 10 11 12 13

DTR1

+24V

PORT2 (RS–232–C: PORT–2) D–SUB 25P FEMALE

FG TXDA RXDA RTSA CTSA DSRA 0V

14 15 16 17 18 19 20

PDO3 PDO4 PDO5 PDO6 PDO7 +24V PDO8

SVON1 SVON2 ESTOP1 ESTOP2 EMGOUT1 EMGOUTC EMGOUT2

01 02 03 04 05 06 07

TXTP RXTP EMGDM

+24T +24T

08 09 10 11 12 13

EMGB1 EMGB2 EMGTP

14 15 16 17 18 19 20

14 15 16 17 18 19 20 21 22 23 24 25

DTRA

+24V

THIS CONNECTOR IS OPTION THIS CONNECTOR IS MOUNTED ON INTERNAL SIDE OF THE BOX

CRS1 (F) (TEACH PENDANT)

TBOP2 TERMINAL

TBOP1 TERMINAL

14 15 16 17 18 19 20 21 22 23 24 25

THIS CONNECTOR IS MOUNTED ON EXTERNAL SIDE OF THE BOX

PDIO(M) PANEL I/O 01 02 03 04 05 06 07

0V PDI2 PDI3 PDI4 PDI5 PDI6 PDI7 TPOFF +24V

1 2

24V 0V ON COM OFF OPEMG SVON EXEMG 24V 24V 0V DTR1 0V DSR1

JRM3 (MAIN CPU I/F) HONDA PCR–E20 MALE 11 12 13 14 15 16 17 18 19 20

PORT1 (RS–232–C: PORT–1) D–SUB 25P FEMALE

CNOP OPERATOR PANEL I/F (M)

CNPG (F) (PURGE I/F) TXTP RXTP EMGEN 0V 0V

01 02 03 04 05 06 07

TPDSC1 PGCP PGFLT PG TPDSC2 PGEN1

08 09 10 11 12 13

PGEN2

0V 0V 0V

14 15 16 17 18 19 20

OFF1 OFF2 BKRL1 BKRL2

CNHM HOUR METER 01 02 03

24V 0V SVON

OPERATOR PANEL

EE-3287-500-018

12. SCHEMATICS

12–36 NOTES

MARO2P10203703E

12. SCHEMATICS

12–37

MARO2P10203703E

Figure 12–18. R-J2 Controller P-200 Amplifier Configurations

P–155/P–200 CONVERSION

BOM EE–3287–500–001

SYSTEM R–J2

AMP1

AMP # PURGE CONTROL UNIT

SVU2–12/80 L(12A)= J4 M(80A)= J1 A06B–6089–H209

P–200 6 AXES CONTROL AMP SPEC.

CONTACT SIGNAL TRANSDUCER AMP 1 ON

AMP 2 ON

AMP 3 ON

OFF

OFF

OFF

FANUC AC SERVO AMPLIFIER C series

FANUC AC SERVO AMPLIFIER C series

FANUC AC SERVO AMPLIFIER C series

AMP2 SVU2–12/80 L(12A)= J5 M(80A)= J3 A06B–6089–H209

AMP3

AMP4

SVU1–12 J6

SVU1–130 J2

A06B–6089–H101

A06B–6089–H106

BOM EE–3287–500–002 DISCONNECT

I/O RACK

P–200 6+2 (DOOR OPENER) AXES CONTROL AMP SPEC.

EMG BOARD

AMP2

SVU2–12/80 SVU2–12/80 L(12A)=J4 L(12A)=J5 M(80A)=J1 M(80A)=J3 A06B–6089–H209 A06B–6089–H209

BOM EE–3287–500–003 AMP #

1”W X 4”H DUCT

ISB UNIT

AMP1

AMP # P–200 7 AXES CONTROL AMP SPEC.

AMP1

SVU2–12/80 L(12A)=J4 M(80A)=J1 A06B–6089–H209

AMP2

AMP3

AMP4

SVU2–12/80 SVU1–130 L(12A)=J6 J2 M(80A)=J7 A06B–6089–H209 A06B–6089–H106

AMP3

AMP4

SVU2–12/80 SVU1–12 SVU1–130 J2 L(12A)=J5 J6 M(80A)=J3 A06B–6089–H209 A06B–6089–H101 A06B–6089–H106

AMP5 SVU2–12/12 L(12A)=J7 M(12A)=J8 A06B–6089–H201

1 0

FANUC AC SERVO AMPLIFIERS

BATTERY PACK AMP 4 GRN/YEL 14 AWG.

MAIN PSU CPU

OPT

AMP 5

P–200 6+2 (HOOD–DECK) AXES CONTROL AMP SPEC.

AMP1

AMP2

AMP3

AMP4

SVU2–12/80 SVU2–12/80 SVU1–12 SVU1–130 L(12A)=J4 L(12A)=J5 J6 J2 M(80A)=J1 M(80A)=J3 A06B–6089–H209 A06B–6089–H209 A06B–6089–H101 A06B–6089–H106

AMP5 SVU2–80/80 L(80A)=J7 M(80A)=J8 A06B–6089–H208

STATUS

8

TO ISB GND BAR

BOM EE–3287–500–004 AMP #

BOM EE–3287–500–005 AMP # 1 1/2 ”W X 4”H DUCT

P–200 7+2 (DOOR OPENER) AXES CONTROL AMP SPEC.

AMP1

AMP2

AMP3

SVU2–12/80 L(12A)=J4 M(80A)=J1

SVU2–12/80 SVU2–12/80 L(12A)= J5 L(12A)=J6 M(80A)= J7 M(80A)=J3 A06B–6089–H209 A06B–6089–H209 A06B–6089–H209

AMP4 SVU1–130 J2

AMP5 SVU2–12/12 L(12A)= J8 M(80A)= J9

A06B–6089–H106 A06B–6089–H201

BOM EE–3287–500–006 AMP # USER TRANS.

CONTROLLER DOOR INSIDE VIEW

CONTROLLER FRONT VIEW

P–200 R–J2 ILLUSTRATED

P–200 7+2 (HOOD–DECK) AXES CONTROL AMP SPEC.

AMP1 SVU2–12/80

AMP2 SVU2–12/80

AMP3 SVU2–12/80

AMP4 SVU1–130

AMP5 SVU2–80/80

L(12A)=J6 J2 L(12A)= J8 L(12A)=J4 L(12A)= J5 M(80A)= J7 M(80A)=J1 M(80A)=J3 M(80A)= J9 A06B–6089–H209 A06B–6089–H209 A06B–6089–H209 A06B–6089–H106 A06B–6089–H208

CONTROLLER W/DOOR REMOVED

EE-3287-500-019

12. SCHEMATICS

12–38 NOTES

MARO2P10203703E

12. SCHEMATICS

12–39

MARO2P10203703E

Figure 12–19. R-J2 Robot Controller Cabinet Layout

PURGE CONTROL UNIT OVP DELTRON W112A 24V @ 1.2A ISB3ISB4 ISB5 ISB7 ISB9 ISB6 ISB8

AMP 5

AMP 6 AMP 1

AMP 2

CONTACT SIGNAL TRANSDUCER

AMP 3

ON

ON

ON

ON

ON

OFF

OFF

OFF

OFF

OFF

FANUC AC SERVO AMPLIFIER

FANUC AC SERVO AMPLIFIER

FANUC AC SERVO AMPLIFIER C series

FANUC AC SERVO AMPLIFIER C series

FANUC AC SERVO AMPLIFIER C series

DISCONNECT

I/O RACK

BOM EE–3287–500–007 1”W X 4”H DUCT EMG BOARD

AMP

1 MAINPSU CPU

0 FANUC AC SERVO AMPLIFIER

AMP 4

OPT

#

P–200 7+3 (OPENER) AXES CONTROL AMP SPEC.

AMP1 SVU2–12/80 L(12A)=J4 M(80A)=J1 A06B–6089–H209

AMP2

AMP3

AMP4

OPENER SIDE CABINET AMP5 AMP6

SVU2–12/80 L(12A)=J5 M(80A)=J3

SVU2–12/80 L(12A)=J6 M(80A)=J7

SVU1–130 J2

SVU1–80 J8 (RAIL)

SVU2–80/80 L(12A)=J9 M(12A)=J10

A06B–6089–H209

A06B–6089–H209

A06B–6089–H106

A06B–6089–H105

A06B–6089–H208

STATUS

8

1 1/2 ”W X 4”H DUCT

USER TRANS.

CONTROLLER WITH SIDE CABINET SHOWN WITH DOOR REMOVED

EE-3287-500-020

12. SCHEMATICS

12–40 NOTES

MARO2P10203703E

12. SCHEMATICS

12–41

MARO2P10203703E

Figure 12–20. P-200 R-J2 Controller FM Retrofit Package Cabinet Layout

CABINET LAYOUT 1 WARNING PURGE TIMER SET AT 5 MINUTES MODIFICATION WILL VOID FACTORY MUTUAL RESEARCH CORPORATION APPROVAL

SYSTEM R–J2 PURGE CONTROL UNIT

CONTACT SIGNAL TRANSDUCER ON

ON

ON

OFF

OFF

OFF

FANUC AC SERVO AMPLIFIER C series

FANUC AC SERVO AMPLIFIER C series

FANUC AC SERVO AMPLIFIER C series

DISCONNECT I.S. GND NOTE

I/O RACK AMP 1

AMP 2

AMP 3 1”W X 4”H DUCT EMG BOARD

ISB UNIT 1

MAINPSU CPU

0

OPT

3

FOR CONNECTION TO: CLASS I, II & III DIV. 1 GRP. C,D,E,F & G HAZ. LOC.

PER DWG.

EE–3287–550

STAMP NUMBER AS SHOWN

FANUC AC SERVO AMPLIFIER

BATTERY PACK

2000 SOUTH ADAMS RD. AUBURN HILLS, MI 48326

AMP 4

2 STATUS

8 GRN/YEL 14 AWG.

Factory Mutual System Approved

TO ISB GND BAR 1 1/2 ”W X 4”H DUCT 3

MODEL P–200 R–J2 MADE IN USA SERIAL NO. XXXX ASSEMBLY NO.EO–3287–XXX

SEE MECHANICAL ASSEMBLY FOR TAG NUMBER. VIEW LOCATED IN CIRCLE ”A” NOTE: ATTACH ALL TAGS WITH PERMANENT TYPE FOAM TAPE OR DRIVE RIVETS.

”A” 2 USER TRANS.

PLACE LABEL OVER ADJUSTMENT SCREW ON PURGE TIMER AFTER MFG. PURGE TESTING.

CONTROLLER DOOR INSIDE VIEW

CONTROLLER FRONT VIEW

CONTROLLER W/DOOR REMOVED

P–200 R–J2 ILLUSTRATED EE–3287–575

12. SCHEMATICS

12–42 NOTES

MARO2P10203703E

12. SCHEMATICS

12–43

MARO2P10203703E

Figure 12–21. P-200 R-J2 Robot Control Drawing Purge and Intrinsic Wiring sheet 1 DELTRON W112A

NON–HAZARDOUS LOCATION (250 VAC MAXIMUM)

120VAC 24VDC FROM POWER CONVEYOR SUPPLY

OPERATOR PANEL

INTRINSIC SAFETY BARRIER STAHL 9001/01–252–100–14

EE–3112–600 24V

24V

3 4

1 2

OVP UNIT

PANEL I/F

EMGIN1 EMGIN2

PURGE CIRCUITS CNPG

SOL1 SOL2

BRAKE CONTROL

CNIN FROM I/O

MAIN CPU RDI/RDO

CRM10

24V I/P SIG 24V

24V TO ACCUFLOW SIG

CNCA

HAZARDOUS LOCATION CLASS I, II & III DIVISION 1 GROUPS C D E F & G

ISB1

IS GND

3 4

1 2 CNPG

ISB2 OPTIONAL IS GND 7 4 8 ISB3 6 9 10 KHD2–SR–EX1.2S.P 11+24 P&F 12 7ISB4KFD2–SD–EX1.36 + 1 2 8 9 + +1 P&F 10 ISB5 7 +24 KHD2–CD–1.P32 2 8 8 +1 P&F 2 ISB6 Z787 7 +4 5 3 6

+1 2

A2 FLOW SWITCH

C2 CRR5 A3

ROBOT OVERTRAVEL SWITCH

C3 A4

SERVO TRANSFORMER

HAND BROKEN

C4

FOR PAINT R–J TYPE

A5

220V (43) 220 VAC

C5

220V (44)

P2 N2 P3 N3 P4 N4 P5

MISC. SWITCH (RDI2)

P6

A6 C6

AC S

0V G

3.) I.S. GROUND CONNECTION SHALL BE PER NEC(NFPA 70) SECTION 504–50 AND ANSI/ISA RP 12.6

HAND BRKN

ROBOT WIRE HARNESS SOLENOID CABLE EE–3287–323–001 EE–3287–348–001 M1 M4 SOL SOL PURGE

I.S. BATTERY PACK

I.S. GND

I/S GROUND

1

PRES. SW CABLE EE–3044–345–001 PS1 PS1

P1

TP DISCONNECT SWITCH

0V

+V

TRIGGER 2

O1 O4

M1 M4

N5

+24P

NOTES: 1.)ACCEPTABLE I.S. BATTERY PACKS: A05B–2363–C040 EE–3185–551

TRIGGER 1

IDEC IBRC6062R

CRR22

CNIS

FLOW METER

ISB6–1 ISB6–2 ISB6–4

8+ ISB8 Z728 P&F 7

BKP4 BKM4

UNIT

ISB5–2

FROM I/O

CRR21

R

I/P

ISB8–1 ISB8–2

N1

EE–3287–328–001 CBL

ISB4–1 ISB4–2 ISB5–1

FROM I/O

PRESSURE SWITCH

EE–3185–356–001 BYPASS SWITCH

N4

P1 P4

ISB7–1 ISB7–2

C1

2.) ALTERNATE I.S. BATTERY PACKS: A05B–2072–C181 A05B–2047–C182 SHALL BE USED PER EG–00127–SECTION VI

N1 ISB3–4 ISB3–6

+1 2

A1

+24VDC PSU

CONNECTION CABLE EE–3287–117–XXX

8+ ISB7 Z728 P&F 7

E–STOP PCB

FIRE ALARM

NOTICE NO REVISIONS WITHOUT PRIOR APPROVAL FROM FACTORY MUTUAL (FM)

FLOW SW CABLE EE–3044–340–001 FS1 FS1

M1 M4 ISTB 1 PSA1 2 PSA2 3 PSB1 4 PSB2 5 FSA1 6 FSA2 7 FSB1 8 FSB2 9 OT11 10 OT12 11 OT21 12 OT22 13 OT31 14 OT32 15 OT41 16 OT42 17 OT51 18 OT52 19 HBK1 20 HBK2 21 TP1 22 TP2 23 EOAT1 24 EOAT2

S1 S4

SOLENOID VALVE ROBOT PRESSURE SWITCH ROBOT FLOW SWITCH

EE–3287–324–001 BATT BATT ENCODER

I.S. GND X6 FOR PEDESTAL CABLE ROBOT PURGED CAVITY X7 FOR RAIL EE–3066–115–00X OPTIONAL CATRAC CABLE OPTIONAL DOOR OPENER DEVICE (FMRC APPROVED) MODEL Q–DRQ AK1AK2EE–3066–215–00XAK3 AK4 EE–3066–323–001 OPENER SOLENOID

AJ3

AJ4

AH1 AH2

AH3

AH4

AE1 AE2

AE3

AE4

AJ1 AJ2

EE–3066–322–001 OPENER PRESS SWITCH

EE–3066–321–001 OPENER FLOW SWITCH

EE–3066–316–001 ENCODER

I.S. GND

X2

N6

+ P–200 R–J2 MODELS

6 +

F1 F2 F3 F4 F5

ISB UNIT A05B–2308–C370

TO CRS1 (MAIN CPU)

MODEL

P–200–6–J2

MODEL

P–200–7–J2

MODEL

P–200–6+2–J2

MODEL

P–200–7+2–J2

MODEL

P–200–7+3–J2

I/S TEACH PENDANT A05B–2308–C300 FRAME GND.

EE-3287-550-001

12. SCHEMATICS

12–44 NOTES

MARO2P10203703E

12. SCHEMATICS

12–45

MARO2P10203703E

Figure 12–22. P-200 R-J2 Robot Control Drawing Purge and Intrinsic Wiring sheet 2

NON–HAZARDOUS LOCATION (250 VAC MAXIMUM)

DELTRON W112A

24V 24VDC POWER SUPPLY

120VAC FROM CONVEYOR

OPERATOR PANEL

INTRINSIC SAFETY BARRIER STAHL 9001/01–252–100–14

EE–3112–600 24V OVP UNIT

PURGE CIRCUITS

PANEL I/F

EMGIN1 EMGIN2

CNPG

3 4

SOL2 BRAKE CONTROL

CNIN

FROM I/O

24V I/P SIG 24V

MAIN CPU RDI/RDO

CRM10

TO ACCUFLOW CNCA

24V SIG

FROM I/O FROM I/O

E–STOP PCB

A1 C1

CRR21

7 4 8 6 9 ISB3 10 11+24 KHD2–SR–EX1.2S.P P&F 12 +1 7 8 ISB4 KFD2–SD–EX1.362 9 + +1 10 ISB5 2 P&F 7 +24 KHD2–CD–1.P32 8 +1 8 P&F 2 7 ISB6 Z787 5 +4 6 3 8 + ISB7 Z728 P&F + 1 7 2 8 + ISB8 Z728 P&F + 1 7 2

PRESSURE SWITCH

C2

FLOW SWITCH

CRR5 BKP4 BKM4

A3 C3

CNIS

ROBOT OVERTRAVEL SWITCH

A4 SERVO TRANSFORMER C4

FOR PAINT R–J TYPE

A5

220V (43) 220V (44)

220 VAC C5

HAND BROKEN

TP DISCONNECT SWITCH

P2 N2 P3 N3 P4 N4 P5 N5

+24P A6 0V C6

ISB3–6

MISC. SWITCH (RDI2)

P6

N4

P1

P4

EE–3185–356–001 BYPASS SWITCH EE–3287–328–001 CBL I/P UNIT

ISB4–1 ISB4–2 ISB5–1 ISB5–2

FLOW METER

ISB6–1 ISB6–2 ISB6–4

TRIGGER 1 TRIGGER 2

ISB7–1 ISB7–2 ISB8–1 ISB8–2

O1 O4

HAND BRKN ROBOT WIRE HARNESS SOLENOID CABLE EE–3287–323–001 EE–3287–348–001 M1 M4 PURGE SOL SOL SOLENOID VALVE PRES. SW CABLE EE–3044–345–001 M1 M4 PS1 PS1 ROBOT PRESSURE SWITCH FLOW SW CABLE EE–3044–340–001 M1 M4 FS1 FS1 ROBOT FLOW SWITCH

P1 N1

N1

ISB3–4

IZUMI IBRC6062R

A2

CRR22

CONNECTION CABLE EE–3287–117–XXX

ISB2 OPTIONAL

IS GND

SOL1

HAZARDOUS LOCATION CLASS I, II & III DIVISION 1 GROUPS C D E F & G

ISB1

IS GND 1 2

CNPG

NOTICE NO REVISIONS WITHOUT PRIOR APPROVAL FROM FACTORY MUTUAL (FM)

3 4

1 2

ISTB 1 PSA1 2 PSA2 3 PSB1 4 PSB2 5 FSA1 6 FSA2 7 FSB1 8 FSB2 9 OT11 10 OT12 11 OT21 12 OT22 13 OT31 14 OT32 15 OT41 16 OT42 17 OT51 18 OT52 19 HBK1 20 HBK2 21 TP1 22 TP2 23EOAT1 24EOAT2

BATT BATT S1 S4 EE–3287–324–001 ENCODER I.S. GND X6 FOR PEDESTAL CABLE ROBOT PURGED CAVITY X7 FOR RAIL EE–3067–115–00X OPTIONAL HOOD/DECK OPENER DEVICE OPTIONAL CATRAC CABLE (FMRC APPROVED) MODEL Q–HDQ AK3 AK4 AK1AK2 EE–3067–215–00X EE–3066–323–001 OPENER SOLENOID AJ1

AJ2

AJ3

AH1 AH2

AH3

AE1 AE2

AE3

AJ4

EE–3066–322–001

AH4

EE–3066–321–001

OPENER PRESS SWITCH OPENER FLOW SWITCH

EE–3066–316–001 AE4 ENCODER EE–3067–317–001OT OT

N6

OT OT

X2 OT OT

I.S. GND

NOTES: FIRE ALARM

1.) ACCEPTABLE I.S. BATTERY PACKS: A05B–2363–C040 EE–3185–551

+24VDC PSU

R

+V AC

S

0V G

2.) ALTERNATE I.S. BATTERY PACKS: A05B–2072–C181 A05B–2047–C182 SHALL BE USED PER EG–00127–SECTION VI

I.S. BATTERY PACK

1

+ P–200 R–J2 MODELS

6

+ F1F2F3F4F5

I.S. GND

3.) I.S. GROUND CONNECTION SHALL BE PER NEC(NFPA 70) SECTION 504–50 I/S AND ANSI/ISA RP 12.6

ISB UNIT A05B–2308–C370

MODEL

P–200–6–J2

MODEL

P–200–7–J2

MODEL

P–200–6+2–J2

MODEL

P–200–7+2–J2

MODEL

P–200–7+3–J2

TITLE:

GROUND

TO CRS1 (MAIN CPU)

I/S TEACH PENDANT A05B–2308–C300 FRAME GND.

EE-3287-550-002

12. SCHEMATICS

12–46 NOTES

MARO2P10203703E

12. SCHEMATICS

12–47

MARO2P10203703E

Figure 12–23. P-200 R-J2 Control Drawing Purge and Intrinsic Wiring Sheet 3 NON–HAZARDOUS LOCATION (250 VAC MAXIMUM)

DELTRON W112A

24V 24VDC 120VAC POWER FROM CONVEYOR SUPPLY

OPERATOR PANEL

INTRINSIC SAFETY BARRIER STAHL 9001/01–252–100–14

EE–3112–600 24V

3 4

1 2

OVP UNIT

IS GND

PANEL I/F

EMGIN1 EMGIN2

PURGE CIRCUITS CNPG

3 4

ISB2 OPTIONAL 7 4 8 ISB3 6 9 10 KHD2–SR–EX1.2S.P 11+24 P&F 12 7 ISB4 KFD2–SD–EX1.36 + 1 8 2 9 + +1 P&F 10 ISB5 2 7 +24 KHD2–CD–1.P32 8 8 +1 P&F 7 2 ISB6 5 +4 Z787 3 6 8 + ISB7 Z728 P&F +1 7 2 8+ +1 7 2 ISB8 Z728 P&F 8 +4 7 P&F 9 6 11 +24V 12 ISB9 KHD2–SR–EX1.P

SOL1

24V I/P FROM I/O SIG 24V

CNIN

MAIN CPU RDI/RDO

CRM10

TO ACCUFLOW24V SIG

CNCA

FROM I/O FROM I/O TO I/O +24V

E–STOP PCB

IDEC IBRC6062R

A1

PRESSURE SWITCH

C1 CRR21

A2 FLOW SWITCH

CRR22 C2

CRR5 BKP4 BKM4

A3 CNIS

ROBOT OVERTRAVEL SWITCH

C3 A4

SERVO TRANSFORMER FOR PAINT R–J2 TYPE

HAND BROKEN

C4 A5

220V (43) 220V (44)

220 VAC

C5

+24P

+V

NOTES: 1.)ACCEPTABLE I.S. BATTERY PACKS: A05B–2363–C040 EE–3185–551 2.) ALTERNATE I.S. BATTERY PACKS: A05B–2072–C181 A05B–2047–C182 SHALL BE USED PER EG–00127–SECTION VI

R S

AC

0V

3.) I.S. GROUND CONNECTION SHALL BE

G

PER NEC(NFPA 70) SECTION 504–50 AND ANSI/ISA RP 12.6

ISB3–4 ISB3–6

N1 N4 EE–3185–356–001 BYPASS SWITCH P1 P4

N1 P2 N2 P3 N3 P4 N4

MISC. SWITCH (RDI2)

P6

I/P UNIT

ISB4–1 ISB4–2 ISB5–1 ISB5–2

FLOW METER

ISB6–1 ISB6–2 ISB6–4

TRIGGER 1 TRIGGER 2

ISB7–1 ISB7–2 ISB8–1 ISB8–2

O1 O4 ROBOT WIRE HARNESS SOLENOID CABLE EE–3287–323–001 EE–3287–348–001 M1 M4 PURGE SOL SOL

N5

ISTB 1 PSA1 2 PSA2 3 PSB1 4 PSB2 5 FSA1 6 FSA2 7 FSB1 8 FSB2 9 OT11 10 OT12 11 OT21 12 OT22 13 OT31 14 OT32 15 OT41 16 OT42 17 OT51 18 OT52 19 HBK1 20 HBK2 21 TP1 22 TP2 23 EOAT1 24 EOAT2

M1 M4

M1 M4

FLOW SW CABLE SWITCH EE–3044–340–001 FS1 FS1 ROBOT FLOW SWITCH

S1 S4

EE–3287–324–001 BATT BATT ENCODER

I.S. GND

ROBOT PURGED CAVITY

EE–3186–115–1XX AG1 AK1

X6 FOR PEDESTAL X7 FOR RAIL

OPTIONAL P–10 DOOR OPENER DEVICE AG4

DOOR SENSOR

AK4 OPENER SOLENOID

AJ1

AJ4

AH1

AH4

OPENER PRESS SWITCH OPENER FLOW SWITCH

AL1 AM1 AN1 N6

ENCODER

X3

1+ P–200 R–J2 MODELS 6 + F1 F2 F3 F4 F5

I.S. GND I/S GROUND

HAND BRKN

SOLENOID VALVE

PRES. SW CABLE EE–3044–345–001 PS1 ROBOT PS1

I.S. GND

I.S. BATTERY PACK

EE–3287–328–001 CBL

PRESSURE

P5

C6

+24VDC PSU

CONNECTION CABLE EE–3287–117–XXX

P1

TP DISCONNECT SWITCH

A6

0V

FIRE ALARM

HAZARDOUS LOCATION CLASS I, II & III DIVISION 1 GROUPS C D E F & G

IS GND

SOL2 BRAKE CONTROL

APPROVAL FROM FACTORY MUTUAL (FM)

ISB1

1 2

CNPG

NOTICE NO REVISIONS WITHOUT PRIOR

ISB UNIT A05B–2308–C370

TO CRS1 (MAIN CPU)

MODEL MODEL MODEL MODEL MODEL

P–200–6–J2 P–200–7–J2 P–200–6+2–J2 P–200–7+2–J2 P–200–7+3–J2

I/S TEACH PENDANT A05B–2308–C300 FRAME GND.

EE-3287-550-003

12. SCHEMATICS

12–48 NOTES

MARO2P10203703E

12. SCHEMATICS

12–49

MARO2P10203703E

Figure 12–24. P-200 R-J2 Pedestal North American Purge, No PGS (Seal Off Req’d) Cable Layout 6 AXIS ROBOT HARNESS AND CABLE LAYOUT BATTERY IN CONTROLLER UPPER LEVEL BILL OF MATERIAL EE–3287–301–011 ROBOT ARM

CONNECTION CABLE SETS W/O PG UPPER LEVEL BOMS EE–3287–100– 005 EE–3287–100– 010 EE–3287–100– 015 EE–3287–100– 025

R–J2 CONTROLLER AMP 1 AMP 2 AMP 3

(L) (L) (L)

AXIS 4 AXIS 5 AXIS 6

4 4 4

PURGE BD (BK) BRAKES

T–14107

6

5M 10M 15M 25M

EE–3287–100– 035 35M EE–3287–100– 045 45M EE–3287–100– 055 55M

SEAL OFFS USED WITH NA PEDESTAL (NO PG FITTINGS)

A1 A4

MOTOR 13.5MM EE–3287–111–005 EE–3287–111–010 EE–3287–111–015 EE–3287–111–025 EE–3287–111–035 EE–3287–111–045 EE–3287–111–055

PULSE BAT MODEL a 0.5 POWER BRK

B1 B4

AXIS 6 A06B–0113–B078/0008

C1 C4 CRF1

AUX AXIS BD

T–14685

JF7

PURGE UNIT PGTB

24PG, 0PG 3

CABLE CLAMP SHIELD TO CHASSIS GROUND

AXIS 5

A06B–0373–B175

D1 D4

PULSE 19.8MM EE–3287–113–005 EE–3287–113–010 EE–3287–113–015 EE–3287–113–025 EE–3287–113–035 EE–3287–113–045 EE–3287–113–055

E1

PULSE BAT MODEL a 2/3000 POWER BRK

EE–3287–322–001 AXIS 4, 5 & 6 PWR & PULSE HARNESS

AXIS 4

EE–3044–401

EMG BD

PULSE BAT MODEL a 2/3000 POWER BRK

OUTER ARM GROUND

F1

A06B–0373–B175

PULSE & BATT MODELa 12/3000 POWER & BRK

INNER ARM GROUND

AXIS 3

A06B–0143–B175/0008

DC/DC CONVERTER H1 H4 AMP 1

(M)

AXIS 1

AMP 4

(M)

AXIS 2

PURGE BD (BK)

4

T–14379

12

BRAKES

4

MOTOR 21.0MM EE–3287–110– 005 EE–3287–110– 010 EE–3287–110– 015 EE–3287–110– 025 EE–3287–110– 035 EE–3287–110– 045 EE–3287–110– 055

J1 J4

PULSE & BATT MODEL a 22/3000 POWER & BRK

TURRET GROUND

AXIS 2

PULSE & BATT MODEL a 6/3000 POWER & BRK AXIS 1 A06B–0128–B175

EE–3287–321–001 AXIS 1, 2 & 3 PWR & PULSE HARNESS K1 K4

AMP 2

AXIS 3

8

NOT USED

T–14379

8

PURGE BD (BK) BRAKES

4

GND 6.9MM EE–3287–116–005 EE–3287–116–010 EE–3287–116–015 EE–3287–116–017 EE–3287–116–035 EE–3287–116–045 EE–3287–116–055

CONTROLLER GROUND TO ISTB

FS/PS

TO ISB1

SOL

TO ISB3

BYPASS

TO ISB4 TO ISB5 TO ISB6

I/P POWER I/P SIG FLOW MTR

TO ISB7

TRIG 1

TO ISB8

TRIG 2

TO ISTB

HBK BATTERY BATTERY BATTERY BATTERY

4 2 2 2

CONNECT SHIELD TO IS GND

3 2 I.S. GND

L1

SOL1 M1 M4 N1

BYPASS

O1 T–14685

2

2

MOTOR 21.0MM EE–3287–112–005 EE–3287–112–010 EE–3287–112–015 EE–3287–112–025 EE–3287–112–035 EE–3287–112–045 EE–3287–112–055

INTRINSIC 20.5MM EE–3287–117–005 EE–3287–117–010 EE–3287–117–015 EE–3287–117–017 EE–3287–117–035 EE–3287–117–045 EE–3287–117–055 EE–3287–117–030 EE–3287–117–033

P1

OPTIONAL BYPASS SW EE–3185–356–001

EE–3287–323–001 INTRINSIC DEVICE HARNESS

EE–3287–348–001

PS1

EE–3044–345–001

FS1

EE–3287–340–001

GROUNDING OF NON–IS SHIELDED CABLE AT CONTROLLER ENTRANCE

SOL1 PS1

50MM

FS1

GND CLAMP

P4

S1

S4

EE–3287–324–001 INTRINSIC BATTERY HARNESS AXIS 1–6 OPTIONAL

HND BROKEN

PG11 I/P

2 2 2

CABLE SHIELD

CABLE

R1

2 2

A06B–0148–B675

EE–3287–328–001 PG29

TRIG TRIG2 FLOW

I/P PROPORTIONAIR TRIGGER TRIGGER FLOW METER

EE-3287-001

12. SCHEMATICS

12–50 NOTES

MARO2P10203703E

12. SCHEMATICS

12–51

MARO2P10203703E

Figure 12–25. P-200 R-J2 Rail Robot North American Purge, PGS For Penetration Plate Cable Layout 7 AXIS ROBOT HARNESS AND CABLE LAYOUT BATTERY IN CONTROLLER, NA PURGE UPPER LEVEL BILL OF MATERIAL EE–3287–302–011 ROBOT ARM

CONNECTION CABLE SETS W/ (2) PG UPPER LEVEL BOMS EE–3287–102–105 5M EE–3287–102–110 10M EE–3287–102–115 15M EE–3287–102–125 25M EE–3287–102–135 35M EE–3287–102–145 45M EE–3287–102–155 55M

R–J2 CONTROLLER

AMP 1 AMP 2 AMP 3

(L) (L) (L)

AXIS 4 AXIS 5 AXIS 6

4 4 4

BRAKES

PURGE BD (BK)

T–14107

6

A1 A4

MOTOR 13.5MM EE–3287–111–105 EE–3287–111–110 EE–3287–111–115 EE–3287–111–125 EE–3287–111–135 EE–3287–111–145 EE–3287–111–155

PULSE BAT MODEL a 0.5 POWER BRK AXIS 6 A06B–0113–B078/0008

B1 B4 PG 29

OUTER ARM GROUND

PULSE BAT MODEL a 2 /3000 POWER BRK AXIS 5 A06B–0373–B175

C1 C4 T–14685

JF7

AUX AXIS BD

CABLE CLAMP SHIELD TO CHASSIS GROUND

24PG, 0PG PURGE BD PGTB

3

PULSE 19.8MM EE–3287–113–105 EE–3287–113–110 EE–3287–113–115 EE–3287–113–125 EE–3287–113–135 EE–3287–113–145 EE–3287–113–155

D1 D4 EE–3287–322–001 AXIS 4, 5 & 6 PWR & PULSE HARNESS

E1 PG 29

PULSE BAT MODEL a 2 /3000 POWER BRK AXIS 4 A06B–0373–B175

EE–3044–401

CRF1

EMG BD

F1

PULSE & BATT MODEL a 12/3000 POWER & BRK

INNER ARM GROUND

AXIS 3

A06B–0143–B175/0008

DC/DC CONVERTER H1 H4 AMP 1

(M)

AXIS 1

AMP 4

(M)

AXIS 2

PURGE BD (BK)

BRAKES

8

T–14379

8 4

MOTOR 21.0MM EE–3287–110–105 EE–3287–110 –110 EE–3287–110 –115 EE–3287–110 –125 EE–3287–110 –135 EE–3287–110 –145 EE–3287–110 –155

J1 J4

PULSE & BATT MODEL a 22 /3000 POWER & BRK AXIS 2 A06B–0148–B675

TURRET GROUND

PG 29

PULSE & BATT MODEL a 6 /3000 POWER & BRK

EE–3287–321–001 AXIS 1, 2 & 3 PWR & PULSE HARNESS K1 K4

AMP 2

(M)

AXIS 3

AMP 3

(M)

AXIS 7

PURGE UNIT

BRAKES

8

T–14379

8 4

AXIS 1

21.0MM MOTOR EE–3287–112 –105 EE–3287–112 –110 EE–3287–112 –115 EE–3287–112 –125 EE–3287–112 –135 EE–3287–112 –145 EE–3287–112 –155

PG 29 EE–3185–316–001

PULSE & BATT MODEL a 12 /3000 POWER & BK

EE–3287–339–001

AXIS 7 CONTROLLER GROUND

TO ISTB

FS/PS

TO ISB1

SOL

TO ISB3

BYPASS

TO ISB4

I/P POWER

TO ISB5

I/P SIG

TO ISB6

FLOW MTR

TO ISB7

TRIG 1

TO ISB8

TRIG 2

TO ISTB

HBK BATTERY BATTERY BATTERY BATTERY

GND 6.9MM EE–3287–116 –105 EE–3287–116 –110 EE–3287–116 –115 EE–3287–116 –125 EE–3287–116 –135 EE–3287–116 –145 EE–3287–116 –155

4 2 2 2

CONNECT SHIELD TO IS GND

2 3 2 2

I.S. GND

A06B–0143–B175/0008

PG 9 SOL1 M1

M4

N1

BYPASS

O1 T–14685

A06B–0128–B175

L1

INTRINSIC 20.5MM EE–3287–117– 005 EE–3287–117– 010 EE–3287–117– 015 EE–3287–117– 017 EE–3287–117– 035 EE–3287–117– 045 EE–3287–117– 055 EE–3287–117– 030 EE–3287–117– 033

P1 PG29

R1 S1

OPTIONAL BYPASS SW EE–3185–356–001

EE–3287–323–001 INTRINSIC DEVICE HARNESS

EE–3287–348–0001

PS1

EE–3044–345–001

FS1

EE–3287–340–001

SOL1 PS1 FS1

P4 R4 S4

EE–3185–344–001 EE–3287–324–001 INTRINSIC BATTERY HARNESS AXIS 1–6

2

OPTIONAL

2

HND BROKEN

PG11 I/P

2 2 2

NON–HAZARDOUS

HAZARDOUS

EE–3287–328–001 PG29

TRIG TRIG2 FLOW

I/P PROPORTIONAIR TRIGGER TRIGGER FLOW METER

EE-3287-002

12. SCHEMATICS

12–52 NOTES

MARO2P10203703E

12. SCHEMATICS

12–53

MARO2P10203703E

Figure 12–26. P-200 R-J2 Pedestal Robot PTB Purge, PGS For Penetration Plate Cable Layout CONNECTION CABLE SETS W/ 2 PG UPPER LEVEL BOMS

AMP 1 (L) AMP 2 (L) AMP 3 (L)

AXIS 4 AXIS 5 AXIS 6

4 4 4

PURGE BD (BK) BRAKES

EMG BD

T–14107

6

CRF1

AUX AXIS BD

T–14685

JF7

24PG, 0PG

PURGE UNIT PGTB

3

CLAMP SHIELD TO CHASSIS GROUND

5M 10M 15M 25M 35M 45M 55M

BOOTH WALL A1 A4

MOTOR 13.5MM EE–3287–111–105 EE–3287–111–110 EE–3287–111–115 EE–3287–111–125 EE–3287–111–135 EE–3287–111–145 EE–3287–111–155

PULSE BAT MODELa 0.5 POWER BRK AXIS 6 A06B–0113–B078/0008

B1 B4 PG29

EE–3185–601

PULSE 19.8MM EE–3287–113–105 EE–3287–113–110 EE–3287–113–115 EE–3287–113–125 EE–3287–113–135 EE–3287–113–145 EE–3287–113–155

PG29

C1

C3

EE–3185–602 C4

D1

D3

D4

E1

F1

PULSE BAT MODEL a 2 POWER BRK AXIS 5 A06B–0373–B175

OUTER ARM GROUND

PULSE BAT MODEL a 2 POWER BRK AXIS 4 A06B–0373–B175

EE–3287–322–001 AXIS 4, 5 & 6 PWR & PULSE HARNESS EE–3044–401

EE–3287–102 –105 EE–3287–102 –110 EE–3287–102 –115 EE–3287–102 –125 EE–3287–102 –135 EE–3287–102 –145 EE–3287–102 –155

R–J2 CONTROLLER

6 AXIS ROBOT HARNESS AND CABLE LAYOUT BATTERY IN CONTROLLER, PTB PURGE UPPER LEVEL BILL OF MATERIAL EE–3287–303–011 ROBOT ARM

PULSE & BATT MODELa 12 POWER & BRK

INNER ARM GROUND

AXIS 3

A06B–0143–B175/0008

DC/DC CONVERTER H1 H4 AMP 1 (M)

AXIS 1

AMP 4 (M)

AXIS 2

4

T–14379

12

PURGE BD (BK) BRAKES

4

MOTOR 21.0MM EE–3287–110 –105 EE–3287–110 –110 EE–3287–110 –115 EE–3287–110 –125 EE–3287–110 –135 EE–3287–110 –145 EE–3287–110 –155

J1 J4

PULSE & BATT MODELa 22 POWER & BRK AXIS 2 A06B–0148–B675

TURRET GROUND

PG29

PULSE & BATT MODELa 6 POWER & BRK

EE–3287–321–001 AXIS 1, 2 & 3 PWR & PULSE HARNESS K1 K4

AMP 2 (M)

AXIS 3

AMP 3 (M)

AXIS 7

8

T–14379

8

PURGE BD (BK) BRAKES

4

MOTOR 21.0MM EE–3287–112 –105 EE–3287–112 –110 EE–3287–112 –115 EE–3287–112 –125 EE–3287–112 –135 EE–3287–112 –145 EE–3287–112 –155

AXIS 1

L1

A06B–0128–B175

PG29

GROUNDING OF NON–IS SHIELDED CABLE AT CONTROLLER ENTRANCE GND 6.9MM EE–3287–116 –105 EE–3287–116 –110 EE–3287–116 –115 EE–3287–116 –125 EE–3287–116 –135 EE–3287–116 –145 EE–3287–116 –155

CONTROLLER GROUND TO ISTB

FS/PS

TO ISB1

SOL

TO ISB3

BYPASS

TO ISB4 TO ISB5

I/P POWER I/P SIG

TO ISB6 FLOW MTR TO ISB7

TRIG 1

TO ISB8

TRIG 2

TO ISTB

HBK BATTERY BATTERY BATTERY BATTERY

4 2 2 2

CONNECT SHIELD TO IS GND

2 3 2 2

I.S. GND

PG9

SOL1 M1 M4 N1 BYPASS O1

T–14685

INTRINSIC 20.5MM EE–3287–117– 005 EE–3287–117– 010 EE–3287–117–015 EE–3287–117–017 EE–3287–117–035 EE–3287–117–045 EE–3287–117–055 EE–3287–117–030 EE–3287–117–033

P1 PG29

OPTIONAL BYPASS SW EE–3185–356–001

EE–3287–323–001 INTRINSIC DEVICE HARNESS

EE–3287–348–001

SOL1

PS1

PRES. CONTROL UNIT

EE–3044–341–001 FS1

CABLE SHIELD

P4

R1 S1

S4

EE–3287–324–001 INTRINSIC BATTERY HARNESS AXIS 1–6 OPTIONAL

HND BROKEN

PG11

2

I/P

2

2

GND CLAMP CABLE

2

2

50MM

SOLENOID

NON–HAZARDOUS

HAZARDOUS

EE–3287–328–001

PG29

TRIG TRIG2 FLOW

I/P PROPORTIONAIR TRIGGER TRIGGER FLOW METER

EE-3287-003

12. SCHEMATICS

12–54 NOTES

MARO2P10203703E

12. SCHEMATICS

12–55

MARO2P10203703E

Figure 12–27. P-200 R-J2 Rail Robot PTB Purge, PGS For Penetration Plate

AXIS 4 AXIS 5 AXIS 6

4 4 4

PURGE BD (BK) BRAKES

EMG BD

T–14107

6

CRF1

AUX AXIS BD

T–14685

JF7 CLAMP SHIELD TO CHASSIS GROUND

24PG, 0PG 3

PURGE UNIT PGTB

ROBOT ARM

A1 A4

MOTOR 13.5MM EE–3287–111–105 EE–3287–111–110 EE–3287–111–115 EE–3287–111–125 EE–3287–111–135 EE–3287–111–145 EE–3287–111–155

PULSE BAT MODEL a 0.5 POWER BRK AXIS 6 A06B–0113–B078/0008

B1 B4 PG 29

PULSE 19.8MM EE–3287–113 –105 EE–3287–113 –110 EE–3287–113 –115 EE–3287–113 –125 EE–3287–113 –135 EE–3287–113 –145 EE–3287–113 –155

PG 29

C1

C3

D1

D3

E1

E3

EE–3185–601 EE–3185–602 EE–3185–603 C4 D4 E4

OUTER ARM GROUND

F1

PULSE BAT MODEL a 2 POWER BRK AXIS 5 A06B–0373–B175

EE–3287–322–001 AXIS 4, 5 & 6 PWR & PULSE HARNESS

EE–3044–401

R–J2 CONTROLLER

AMP 1 (L) AMP 2 (L) AMP 3 (L)

7 AXIS ROBOT HARNESS AND CABLE LAYOUT BATTERY IN CONTROLLER, PTB PURGE UPPER LEVEL BILL OF MATERIAL EE–3287–304–011

CONNECTION CABLE SETS W/ (2) PG UPPER LEVEL BOMS EE–3287–102–105 5M EE–3287–102–110 10M EE–3287–102–115 15M EE–3287–102–125 25M EE–3287–102–135 35M EE–3287–102–145 45M EE–3287–102–155 55M

PULSE BAT MODEL a 2 POWER BRK AXIS 4 A06B–0373–B175

PULSE & BATT MODEL a 12 POWER & BRK

INNER ARM GROUND

AXIS 3 A06B–0143–B175/0008

DC/DC CONVERTER H1 H4 AMP 1 (M)

AXIS 1

AMP 4

AXIS 2

PURGE BD (BK) BRAKES

8

T–14379

8 4

MOTOR 21.0MM EE–3287–110–105 EE–3287–110–110 EE–3287–110–115 EE–3287–110–125 EE–3287–110–135 EE–3287–110–145 EE–3287–110–155

J1 J4

PULSE & BATT MODELa 22 POWER & BRK AXIS 2 A06B–0148–B675

TURRET GROUND

PG 29

PULSE & BATT MODELa 6 POWER & BRK AXIS 1 A06B–0128–B175

EE–3287–321–001 AXIS 1, 2 & 3 PWR & PULSE HARNESS K1 K4

AMP 2 (M)

AXIS 3

AMP 3 (M)

AXIS 7

8

T–14379

8

PURGE BD (BK) BRAKES

4

MOTOR 21.0MM EE–3287–112 –105 EE–3287–112–110 EE–3287–112–115 EE–3287–112–125 EE–3287–112–135 EE–3287–112–145 EE–3287–112 –155

L1 PG 29 EE–3185–316–001

PULSE & BATT MODELa 12 POWER & BK

EE–3287–339–001

GROUNDING OF NON–IS SHIELDED CABLE AT CONTROLLER ENTRANCE

AXIS 7 A06B–0143–B175/0008 GND 6.9MM EE–3287–116 –105 EE–3287–116 –110 EE–3287–116 –115 EE–3287–116 –125 EE–3287–116–135 EE–3287–116–145 EE–3287–116–155

CONTROLLER GROUND TO ISTB

FS/PS

TO ISB1

SOL

TO ISB3

BYPASS

TO ISB4 I/P POWER TO ISB5

I/P SIG

TO ISB6 FLOW MTR TO ISB7

TRIG 1

TO ISB8

TRIG 2

TO ISTB

HBK BATTERY BATTERY BATTERY BATTERY

4 2 2 2

CONNECT SHIELD TO IS GND

2 3 2 2

I.S. GND

50MM PG 9

SOL M1 M4 N1 BYPASS O1

T–14685

INTRINSIC 20.5MM EE–3287–117– 005 EE–3287–117–010 EE–3287–117–015 EE–3287–117–017 EE–3287–117–035 EE–3287–117–045 EE–3287–117–055 EE–3287–117–030 EE–3287–117–033

P1 PG 29

R1

OPTIONAL BYPASS SW EE–3185–356–001

EE–3287–323–001 INTRINSIC DEVICE HARNESS

EE–3287–348–001

SOL1

EE–3044–341–001

CABLE SHIELD

CABLE

FS–810 DRUCKWACHTER

FS1

P4 R4

S1 S4

E–3185–344–001 EE–3287–324–001 INTRINSIC BATTERY HARNESS AXIS 1–6

2

OPTIONAL

HND BROKEN

PG11

2

I/P

2

EE–3287–328–001

2 2

GND CLAMP

SOLENOID

PS1

NON–HAZARDOUS

HAZARDOUS PG29

TRIG TRIG2 FLOW

I/P PROPORTIONAIR TRIGGER TRIGGER FLOW METER

EE-3287-004

12. SCHEMATICS

12–56 NOTES

MARO2P10203703E

12. SCHEMATICS

12–57

MARO2P10203703E

Figure 12–28. P-200 Controller Basic Process Option I/P Flow and Trigger TYPICAL INTRINSICALLY SAFE CABLE ROUTING SHIELD CONNECTS TO INTRINSICALLY SAFE GROUND EE–3287–117–XXX

NOTICE NO REVISIONS WITHOUT PRIOR APPROVAL FROM FACTORY MUTUAL (FM)

1

2

3

4

8

P–10 MAGNET

2ND TRIGGER

TRIGGER Z728

Z787 FLOW

I/P KFD2–CD–EX1.32

I/P POWER P&F KFD2–SD–EX1.36

DELTRON W112A

BYPASS LS

EE–3112–600

24V @ 1.2A

EE–3112–600–001

ISTB TERMINAL STRIP

ISB2 ISB1 ISB4

1’’

SEE DETAIL 1

6 7 INTRINSICALLY SAFE GROUND CONNECTION

IS GND P–200 CONTROLLER BACKPANEL

SOLENOID

ISB3

OVP

SOLENOID

PS

ISB5 ISB6 ISB7 ISB8 ISB9

IDEC IBRC

NOTES: FOR CABLE WIRING, SEE EE–3287–500 FOR CONTROLS WIRING, SEE EE–3287–500 AND APPLICATION PACKAGE

UPPER LEFT CORNER

MAINTAIN 50MM SPACING I.S. WIRING AND ALL OTHER CIRCUITS, INCL EE–3112–600 DETAIL 1

9

ZENER BARRIERS MOUNTED ON INSULATING BLOCK

EE–3287–510

12. SCHEMATICS

12–58 NOTES

MARO2P10203703E

12. SCHEMATICS

12–59

MARO2P10203703E

Figure 12–29. P-200 Controller Process Option Basic Option With Second Trigger

TYPICAL INTRINSICALLY SAFE CABLE ROUTING

NOTICE NO REVISIONS WITHOUT PRIOR APPROVAL FROM FACTORY MUTUAL (FM)

SHIELD CONNECTS TO INTRINSICALLY SAFE GROUND EE–3287–117–XXX

1

2

3

4

4

8

P–10 MAGNET

2ND TRIGGER

TRIGGER Z728

Z787 FLOW

ISB2

1’’

6

ISB4

ISB5

ISB1

ISB6 ISB7 ISB8 ISB9

SEE DETAIL 1

7

SOLENOID

ISB3

INTRINSICALLY SAFE GROUND CONNECTION

P–200 CONTROLLER BACKPANEL UPPER LEFT CORNER

IS GND

SOLENOID

I/P POWER P&F KFD2–SD–EX1.36 I/P KFD2–CD–EX1.32

DELTRON W112A

EE–3112–600

24V @ 1.2A

BYPASS LS

EE–3112–600–001

ISTB TERMINAL STRIP

IDEC IBRC

NOTES: FOR CABLE WIRING, SEE EE–3287–500 FOR CONTROLS WIRING, SEE EE–3287–500 AND APPLICATION PACKAGE MAINTAIN 50MM SPACING I.S. WIRING AND ALL OTHER CIRCUITS, INCL EE–3112–600

DETAIL 1

9

ZENER BARRIERS MOUNTED ON INSULATING BLOCK

EE–3287–511

12. SCHEMATICS

12–60 NOTES

MARO2P10203703E

12. SCHEMATICS

12–61

MARO2P10203703E

Figure 12–30. P-200 Controller Bypass Option TYPICAL INTRINSICALLY SAFE CABLE ROUTING SHIELD CONNECTS TO INTRINSICALLY SAFE GROUND

NOTICE NO REVISIONS WITHOUT PRIOR APPROVAL FROM FACTORY MUTUAL (FM)

EE–3287–117–XXX

2

3

4

1

P–10 MAGNET

Z728 TRIGGER

2ND TRIGGER

Z787 FLOW

I/P

I/P POWER

BYPASS LS KHD2–SR–EX1.P

DELTRON W112A

EE–3112–600

24V @ 1.2A

EE–3112–600–001

ISTB TERMINAL STRIP

ISB2

ISB1

OVP

SOLENOID

PS

SEE DETAIL 1

1’’

5

SOLENOID

ISB3

IDEC IBRC

INTRINSICALLY SAFE GROUND CONNECTION

IS GND

P–200 CONTROLLER BACKPANEL

NOTES: FOR CABLE WIRING, SEE EE–3287–500

UPPER LEFT CORNER

FOR CONTROLS WIRING, SEE EE–3287–500 AND APPLICATION PACKAGE MAINTAIN 50MM SPACING I.S. WIRING AND ALL OTHER CIRCUITS, INCL EE–3112–600 DETAIL 1

9

ZENER BARRIERS MOUNTED ON INSULATING BLOCK

EE–3287–512

12. SCHEMATICS

12–62 NOTES

MARO2P10203703E

12. SCHEMATICS

12–63

MARO2P10203703E

Figure 12–31. AccuFlow Counter Input Board

IC2

LS279 24V

+24V

A CLK D

5V

+5V

INTERFACE

47UF 25V 24V

24v 5V

SENSOR INTF

R1 3.3K + SIG

D1 1

6

5V R2 2.2K

1N4148

JP1

10K R3

C3 0.01UF

2

5

3

4

1

IC2

JP2

LS04

C

14 15 16 3 IC1 2 2 1/2 13 1 LS221 8

OPTO1 MOC5007 ( OR H11L1 )

PHOENIX MSTBA2.5/7–G W/ MATE MVSTBW2.5/7–ST

9 8 10 IC26 LS08

4

2 D IC2 4 3S Q 6 1 5 R A IC2 IC3 LS279 LS04 A

5V

0V

0V

– SIG

3

(25) 0.1UF BYPASS C5–C30

C2 0V

6 S Q7 D IC3 A 12 11 5 R IC26 13 LS08

5V

10UF 50V

C1 POWER SUPPLY

9 IC2 8 5V

16 3 5 A>B IC9 6 A=B LS85 7 AInput To Pilot Trigger Line Air Supply “T”

Air Input To Pilot Section

I/P Tranducer Assembly

Output To Gun Regulator Solenoid Trigger Valve

Quick Exhaust Gauge Port Plug Air Input To Regulator

Electrical Input

Quick Exhaust

Solenoid Trigger Valve Override Button

TRIGGER VALVE/REGULATOR ASSEMBLY EO-3150-122-000

12. SCHEMATICS

12–66 NOTES

MARO2P10203703E

12. SCHEMATICS

12–67

MARO2P10203703E

Figure 12–33. Color Changer 24 Color Moduclean

Paint Line Connection To Gun Transducer/Sensor

Purge Air And Solvent Connections

Paint Value Pilot Out Flowmeter

Paint Supply In Paint Supply Out

COLOR CHANGER 24 COLOR MODUCLEAN EO–3150–123–000

12. SCHEMATICS

12–68 NOTES

MARO2P10203703E

12. SCHEMATICS

12–69

MARO2P10203703E

Figure 12–34. Upper Gun Control Lines

Paint Line To Gun

UPPER GUN CONTROL LINES EO-3150-127-000

12. SCHEMATICS

12–70 NOTES

MARO2P10203703E

12. SCHEMATICS

12–71

MARO2P10203703E

Figure 12–35. Color Changer Lines 24 Color Pedestal

SEE NOTE 1

PS2 – [3/8 OD.] PS4 – [3/8 OD.] PS6 – [3/8 OD.] PS8 – [3/8 OD.] PS10 – [3/8 OD.] PS12 – [3/8 OD.] PS14 – [3/8 OD.] PS16 – [3/8 OD.] PS18 – [3/8 OD.] PS20 – [3/8 OD.] PS22 – [3/8 OD.] PS24 – [3/8 OD.] PR2 – [5/16 OD.] PR4 – [5/16 OD.] PR6 – [5/16 OD.] PR8 – [5/16 OD.] PR10 – [5/16 OD.] PR12 – [5/16 OD.] PR14 – [5/16 OD.] PR16 – [5/16 OD.] PR18 – [5/16 OD.] PR20 – [5/16 OD.] PR22 – [5/16 OD.] PR24 – [5/16 OD.] CP2 – [5/32 OD.] CP4 – [5/32 OD.] CP6 – [5/32 OD.] CP8 – [5/32 OD.] CP10 – [5/32 OD.] CP12 – [5/32 OD.] CP14 – [5/32 OD.] CP16 – [5/32 OD.] CP18 – [5/32 OD.] CP20 – [5/32 OD.] CP22 – [5/32 OD.] CP24 – [5/32 OD.]

TO PPCE

BOOTH WALL

TERMINATE INSIDE OF PAINT DROP BOX

ROBOT INTERFACE

TERMINATE INSIDE OF PAINT DROP BOX

COLOR CHANGER ASM. 24 COLOR CP6 COLOR PILOT 6 PR4 PAINT RETURN 4 PS2 PAINT SUPPLY 2

PAP – [5/32 OD.] CCAS – [3/8 OD.] CCSS – [3/8 OD.] PSP – [5/32 OD.] CP23 – [5/32 OD.] CP21 – [5/32 OD.] CP19 – [5/32 OD.] CP17 – [5/32 OD.] CP15 – [5/32 OD.] CP13 – [5/32 OD.] CP11 – [5/32 OD.] CP9 – [5/32 OD.] CP7 – [5/32 OD.] CP5 – [5/32 OD.] CP3 – [5/32 OD.] CP1 – [5/32 OD.] PS23 – [3/8 OD.] PS21 – [3/8 OD.] PS19 – [3/8 OD.] PS17 – [3/8 OD.] PS15 – [3/8 OD.] PS13 – [3/8 OD.] PS11 – [3/8 OD.] PS9 – [3/8 OD.] PS7 – [3/8 OD.] PS5 – [3/8 OD.] PS3 – [3/8 OD.] PS1 – [3/8 OD.] PR23 – [5/16 OD.] PR21 – [5/16 OD.] PR19 – [5/16 OD.] PR17 – [5/16 OD.] PR15 – [5/16 OD.] PR13 – [5/16 OD.] PR11 – [5/16 OD.] PR9 – [5/16 OD.] PR7 – [5/16 OD.] PR5 – [5/16 OD.] PR3 – [5/16 OD.] PR1 – [5/16 OD.]

PS1 PAINT SUPPLY 1 PR3 PAINT RETURN 3

CP5 COLOR PILOT 5

PLACE IN CABLE CARRIER BEFORE CLAMP

P–200

ROBOT INTERFACE

TERMINATE INSIDE OF PAINT DROP BOX

P–200

COLOR CHANGER LINES 24 COLOR PEDESTAL 000A EO3150–128– 000B

12. SCHEMATICS

12–72 NOTES

MARO2P10203703E

12. SCHEMATICS

12–73

MARO2P10203703E

Figure 12–36. Lower Gun Control Lines Pedestal

24 COLOR EO–3150–121–012 REF 12 COLOR EO–3150–129–001 REF 8 COLOR EO–3150–220–001 REF 4 COLOR EO–3150–221–001 REF

CLAMP

RP – [1/2 OD.] FA – [1/2 OD.]

AA – [1/2 OD.]

PD – [1/4 OD.]

Quick Exhaust

TERMINATE AT DUMP – [1/2 OD.] SOLVENT RECOVERY

BOOTH WALL

PTS – [3/8 OD.]

NOTE: MARK BOTH ENDS OF TUBING WITH LABLE SHOWN

TERMINATE AT EO–3150–122–000 TRIGGER VALVE/ REGULATOR ASM.

E-Stat Junction Box On Robot Base

ESTAT – [5/16 OD.]

Low Voltage E-Stat Cable To Cascade Amplifier On Gun

GROUND – [1/4 OD.] PT – [5/16 OD.] PR – [5/16 OD.] FM – [5/16 OD.] WW – [5/16 OD.]

TERMINATE AT EO–3150–122–000 TERMINATE AT 24 COLOR – EO–3150–123–000 TERMINATE AT EO–3150–127–000

EO3150–222–000A EO3150–222–000B

ERN/ECN E60586 E60586

L2 REV L1 L3 C 7.3 M [24 FT] 7.0 M [23 FT] 8.0 M [26 FT] C 15.3 M [50 FT] 15.0 M [44 FT] 16.1 M [53 FT]

LOWER GUN CONTROL LINES PEDESTAL

000A EO3150–222– 000B

12. SCHEMATICS

12–74 NOTES

MARO2P10203703E

12. SCHEMATICS

12–75

MARO2P10203703E

Figure 12–37. Lower Gun Control Lines Rail

AREA FOR PLACEMENT OF INLINE UNION

1:1 Ratio Boosters EO–3150–223–001 MOUNT OPPOSITE OF CABLE CARRIER

24 COLOR EO–3150–121–012 REF 12 COLOR EO–3150–129–001 REF 8 COLOR EO–3150–220–001 REF 4 COLOR EO–3150–221–001 REF RP – [1/2 OD.] FAS – [1/2 OD.]

FAS – [3/8 OD.]

FAP – [1/4 OD.] AAS – [1/2 OD.]

AAS – [3/8 OD.]

AAP – [1/4 OD.] MOUNT TO CABLE CARRIER

PD – [1/4 OD.] DUMP – [1/2 OD.] PTS – [3/8 OD.]

BOOTH WALL

TERMINATE AT SOLVENT RECOVERY PTS – [3/8 OD.]

TERMINATE AT EO–3150–122–000 TRIGGER VALVE/ REGULATOR ASM. CLAMP

ESTAT – [5/16 OD.] GROUND – [1/4 OD.]

AIR VALVE TO SHUTOFF

PT – [5/16 OD.] PR – [5/16 OD.] FM – [5/16 OD.] WW – [5/16 OD.]

PT – [5/16 OD.] PR – [5/16 OD.] FM – [5/16 OD.] WW – [5/16 OD.]

TERMINATE AT EO–3150–122–000

TERMINATE AT 24 COLOR – EO–3150–123–000 TERMINATE AT EO–3150–127–00012 COLOR – EO–3150–124–000 8 COLOR – EO–3150–125–000 4 COLOR – EO–3150–126–000

NOTE: MARK BOTH ENDS OF TUBING WITH LABLE SHOWN.

LOWER GUN CONTROL LINES RAIL EO3150–223–000A 000B

12. SCHEMATICS

12–76 NOTES

MARO2P10203703E

12. SCHEMATICS

12–77

MARO2P10203703E

Figure 12–38. Color Changer Rail 4 Color Lines

SEE NOTE 1 4.0 METERS [13.0 FT]

PS2 PS4

PS2 – [3/8 OD.] PS4 – [3/8 OD.]

TERMINATE INSIDE OF PAINT DROP BOX COLOR CHANGER ASM. 4 COLOR PR2 PR4

BOOTH WALL

TO PPCE

PR2 – [5/16 OD.] PR4 – [5/16 OD.]

CP2 CP4

CP2 – [5/32 OD.] CP4 – [5/32 OD.]

PAP CCAS TERMINATE INSIDE OFCCSS PAINT DROP BOX PSP

PAP – [5/32 OD.] CCAS – [3/8 OD.] CCSS – [3/8 OD.] PSP – [5/32 OD.]

CP3 CP1

CP3 – [5/32 OD.] CP1 – [5/32 OD.]

CP4 COLOR PILOT 4 PR2 PAINT RETURN 2 PS2 PAINT SUPPLY 2

PS1 PAINT SUPPLY 1 PR1 PAINT RETURN 1 CP3 COLOR PILOT 3

PS3 PS1

PS3 – [3/8 OD.] PS1 – [3/8 OD.]

PR3 PR1

PR3 – [5/16 OD.] PR1 – [5/16 OD.]

PLACE IN CABLE CARRIER BEFORE CLAMP

TERMINATE INSIDE OF PAINT DROP BOX

P–200 AREA FOR PLACEMENT OF INLINE UNIONS STAGER UNIONS THRU BRACKET

P–200

COLOR CHANGER LINES 4 COLOR RAIL EO3150–227–000A 000B

12. SCHEMATICS

12–78 NOTES

MARO2P10203703E

12. SCHEMATICS

12–79

MARO2P10203703E

Figure 12–39. FANUC R-J2 P-200 Single Stage Purge Paint Process Control With Connector Option 120VAC FROM CELL CONTROL PANEL (14 AWG YELLOW)

NEUTRAL FROM CELL CONTROL PANEL (14 AWG YELLOW)

8228

8200 (REF. NE–2000–411) (TERMINAL STRIP T2)

8201 RC 82011 [47]

8202

IPCBL–21 (REF)

8203

8204CR/SUPPRESSOR A1 A2 13 14

82011

8204

8229

14132 RC [3]

I/O POWER ENABLE (8222,SP,SP,SP)

8205

+24VDC

8209

0VDC

FROM CP6 CONNECTOR ON CPU POWER SUPPLY

CP6–1

8231 8232 8233

8236 8237

CP6–2

8238

8210

CP32–1 INSERT INTO FANUC I/O RACK CP32–2 RACK INTERFACE 82091 82092 8239 8211 0VDC +24VDC MODULE 16 AWG BLUE 16 AWG BLUE 8240 8212 RC 82091 82092 RC [04] [07] +5VDC JD1A PORT 8241 8213 ON INTERFACE MODULE 82141 .58214F CUT END OF CABLE AND TIE AMP 82142 THE FOLLOWING TOGETHER

8214

XGMF–09989

8215

[11]

AT FUSE TERMINAL: PINK/2 BLACK DOTS YELLOW/2 BLACK DOTS PINK/1 BLACK DOT

[11]

8232F 1 AMP [15]

82292 82321 8232SOL 82292 RC PP PP [15] PPCBL–1 PPCBL–2 [14]

ROBOT MAIN AIR SUPPLY VALVE (FIRE VALVE)

8243 8244

8217

8245

8218

8246

8219

8247

8220 8221

(5)

8222 (9)

8248 82091 I/O POWER ENABLE 8204CR 82231

+5VDC +24VDC

FLOWMETER INTERFACE MODULE

0VDC

82092

8249 8250

8252

8225

8253

8226

8254

TO LINE 8300

LEGEND RC TERMINAL IN ROBOT CONTROLLER PP TERMINAL IN PAINT PROCESS VALVE PANEL TERMINAL IN REMOTE EQUIPMENT DEVICE OUTSIDE THIS ENCLOSURE

8251

8224

82231 +24VDC

NOTES: 1. DC WIRES TO BE 16 AWG BLUE–TYPICAL. 2. NUMBERS IN BRACKETS [ ] ARE TERMINALS ON TERMINAL STRIP T1, UNLESS OTHERWISE NOTED.

8242

8216

8227

ON POWER INPUT UNIT (PIU)

8235

8207

8223

82291

0VDC

8234

8206

8208

FROM SPADE CONNECTORS

8230

IPCBL–6 (REF) 14132

+24F

INTERNAL DC WIRE TO BE 16 AWG BLUE–TYPICAL

82092 0VDC

TO LINE 8300

8255

FANUC R-J2 P-200 SINGLE STAGE PURGE PAINT PROCESS CONTROL WITH CONNECTOR OPTION NE–2200–47A SHT. 82

12. SCHEMATICS

12–80 NOTES

MARO2P10203703E

12. SCHEMATICS

12–81

MARO2P10203703E

Figure 12–40. FANUC R-J2 P-200 Single Stage Purge Paint Process Control With Connector Option

8300

FROM LINE 8227 FROM LINE 8327 82231 82092 +24VDC 8328 0VDC

FROM LINE 8227 82231 +24VDC

8301

8329

8302

8330

8303 8304 8305 8306

DC OUTPUT MODULE AOD16D SLOT 1

8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325

8332

1

8333 RED BLACK SOLENOID SOLENOID PIGTAIL–TYP. PIGTAIL–TYP.

11

2

83082

[16] [16] 8309F

PPCBL–3

[17] [17] 8310F 83101 [18] [18] 8311F 83111

PP 83092 PP

PPCBL–4 PPCBL–5

PP 83112

6

[19] [19] 8312F 83121

PPCBL–6

7

[20] [20] 8313F 83131

PP 83122 PP

PPCBL–7

83132

8

[21] [21] 8314F 83141

PPCBL–8

PP 83142

[22]

PPCBL–9

4 5

9

83081 83091

[22]

83102

PP

8308SOL

82092

APPLICATOR CLEANER PP SOLVENT PILOT (ACSP) 8309SOL PPCBL–10 APPLICATOR CLEANER (ACAP) AIR PILOT 8310SOL PURGE SOLVENT PILOT (PSP) 8311SOL PURGE AIR PILOT (PAP) 8312SOL PILOT DUMP (PD)

8336 8337 8338 8339 8340

SPARE

TO LINE 8411

SPARE SPARE

12 SPARE

13 SPARE

14 SPARE

15 SPARE

16 SPARE

17 SPARE

18 SPARE

19 SPARE

10

8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352

20

8353

1

SUPPLIED AS PART OF ROBOT PRODUCT REF. EE–3287–550

11

EE–3287–328–001 LOCATED INTRINSIC CABLE IN P–200 EE–3287–117–XXX ROBOT ARM

2 3

83361

8336F .5 AMP

ISB7 8

[23]

8336SOL ISB7–1

[23]

WHT P1

7

4

1 2

ISB7–2

GRN

PILOT TRIGGER (PT) SPARE

I.S. GROUND SPARE

5

82231 TO LINE 8328

82092 TO LINE 8328

NOTES: 1. NUMBERS IN BRACKETS [ ] ARE TERMINALS ON TERMINAL STRIP T1.

SPARE

6 SPARE

7 SPARE

8 SPARE

9 SPARE

12 SPARE

13 SPARE

14 SPARE

LEGEND RC TERMINAL IN ROBOT CONTROLLER PP TERMINAL IN PAINT PROCESS VALVE PANEL TERMINAL IN REMOTE EQUIPMENT DEVICE OUTSIDE THIS ENCLOSURE

15 SPARE

16 SPARE

17 SPARE

18 SPARE

19 SPARE

10 20

8354

8326 8327

DC OUTPUT MODULE AOD16D SLOT 2

8335

8308F

3

8334

ALL FUSES .5 AMP

8307 8308

8331

FROM LINE 8327 82092 0VDC

8355

82231 TO LINE 8400

82092 TO LINE 8400

FANUC R-J2 P-200 SINGLE STAGE PURGE PAINT PROCESS CONTROL WITH CONNECTOR OPTION NE–2200–47A SHT. 83

12. SCHEMATICS

12–82 NOTES

MARO2P10203703E

12. SCHEMATICS

12–83

MARO2P10203703E

Figure 12–41. FANUC R-J2 P-200 Single Stage Purge Paint Process Control With Connector Option

8400 8401 8402

NOTES: 1. TERMINATE THE SHIELD DRAIN WIRES AT TERMINALS 6 AND 16 ON THE ANALOG OUTPUT MODULE. AT THE TRANSDUCER END OF THE CABLE CUT THE DRAIN WIRE SHORT AND TAPE OR SHRINK WRAP.

8403 8404 8405 8406 8407

SUPPLIED AS PART OF ROBOT PRODUCT REF. EE–3287–550

8408

FROM LINE 8355 82231 82092 0VDC

+24VDC

ISB5

8409

7

8410

8

8411 8412 8413 8414 8415 8416 8417 8418 8419 8420

6(FG) 8

FLOW COMMAND

84061

(+) 10 18

ATOMIZING AIR

SHIELD

CLEAR 84071

(–) (+) 20 (–)

BLACK

CABLE C1 INTERNAL TO THIS PANEL

3. NOTE THAT CARD OUTPUTS ARE NOT ISOLATED, THEY SHARE A COMMON RETURN LINE THAT IS TIED TO 0VDC (OF THE 24VDC SUPPLY).

EE–3287–328–001 JUMPER

ANALOG OUTPUT MODULE ADA02A BELDEN CABLE SLOT 3 #8761–TYPICAL

SHEILD 1 RC [25] 84061 RC [26] 84071 RC [27]

9

1

10

2

ISB5–1 P1 ISB5–2

LOCATED IN P–200 ROBOT ARM 8403XDUCER 4–20 ma I/P PAINT PRESSURE TRANSDUCER

4. ALL WIRING NOT ACCOMPLISHED BY BELDEN CABLE #8761 OR TRANSDUCER PIGTAIL TO BE 16 AWG BLUE WIRE.

P1 ISB4 ISB4–1 1 7

P1

I.S. GROUND

INTRINSIC CABLE #EE–3287–117–XXX

2. (FG) TERMINALS 6 AND 16 ARE TIED TOGETHER INTERNALLY AT THE MODULE AND ARE BROUGHT TO ”FRAME GROUND” USING THE GROUND WIRE TERMINATED AT THE GROUND BAR.

P1

ISB4–2 2

5. TRANSDUCERS ARE SUPPLIED WITH 72” LONG PIGTAIL (RED/WHT, RED, GREEN, RED/YEL, AND RED/BLU CONDUCTORS).

8

6. NUMBERS IN BRACKETS [ ] ARE TERMINALS ON TERMINAL STRIP T1, UNLESS OTHERWISE NOTED.

I.S. GROUND 16(FG)

82092

82231

TO LINE 8500

LEGEND

8421

RC TERMINAL IN ROBOT CONTROLLER

8422

TERMINAL IN REMOTE EQUIPMENT

8423

DEVICE OUTSIDE THIS ENCLOSURE

8424 8425 8426 8427

FANUC R-J2 P-200 SINGLE STAGE PURGE PAINT PROCESS CONTROL WITH CONNECTOR OPTION SHT.84 NE–2200–47A

12. SCHEMATICS

12–84 NOTES

MARO2P10203703E

12. SCHEMATICS

12–85

MARO2P10203703E

Figure 12–42. Flow Meter Interface Circuitry FANUC R-J2 P-200 Single Stage Purge Paint Process Control With Connector Option ACCUFLOW COUNTER INPUT/ DC INPUT MODULE CONNECTIONS 8700 8701

SPARE SLOT SLOT 9

8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719

DC INPUT MODULE AID32B1 SLOT 10

DC INPUT MODULEFLOWMETER SIGNAL DESCRIPTION CONTACT–INPUT INTERFACE (SEE NOTE 2) CONTACT NUMBER 1 1–D6 PULSE COUNTER BIT 14 2 2–D3 PULSE COUNTER BIT 11 3 3–D0 PULSE COUNTER BIT 8 4 SPARE 4 5 SPARE 5 6 6–C3 PULSE COUNTER BIT 3 7 7–C0 PULSE COUNTER BIT 0 SPARE 8 8 SPARE 9 9 10 10–B6 PULSE PERIOD BIT 13 11 11–B3 PULSE PERIOD BIT 10 12–B0 12 PULSE PERIOD BIT 7 SPARE 13 13 SPARE 14 14 15 PULSE PERIOD BIT 2 15–A3 16 16–A0 NEW DATA AVAILABLE SPARE 17 17 SPARE 18 18 PULSE COUNTER BIT 12 19 19–D4 PULSE COUNTER BIT 9 20 20–D1 +24VDC 21 21 22 22–C6 PULSE COUNTER BIT 6 23 23–C4 PULSE COUNTER BIT 4 24 24–C1 PULSE COUNTER BIT 1 25 25 SPARE 26 26 SPARE 27 27–B4 PULSE PERIOD BIT 11 28 28–B1 PULSE PERIOD BIT 8 29 29 +24VDC 30 30–A6 PULSE PERIOD BIT 5 31–A4 31 PULSE PERIOD BIT 3 32 32–A1 PULSE PERIOD BIT 0 33 PULSE COUNTER BIT 15 33–D7 34 PULSE COUNTER BIT 13 34–D5 35 PULSE COUNTER BIT 10 35–D2 +24VDC 36 36 37 PULSE COUNTER BIT 7 37–C7 38–C5 38 PULSE COUNTER BIT 5 39 PULSE COUNTER BIT 2 39–C2 +24VDC 40 40 +24VDC 41 41 42 PULSE PERIOD BIT 14 42–B7 43 PULSE PERIOD BIT 12 43–B5 44 44–B2 PULSE PERIOD BIT 9 +24VDC 45 45 46 46–A7 PULSE PERIOD BIT 6 47 47–A5 PULSE PERIOD BIT 4 48 48–A2 PULSE PERIOD BIT 1 +24VDC 49 49 +24VDC 50 50

FLOWMETER INTERFACE MODULE +24V +5V 0V +24V

JUMPER

0V +SIG –SIG

POWER INPUT TO ACCUFLOW COUNTER INPUT PRINTED CIRCUIT BOARD (SEE SHEET 02 FOR CONNECTIONS) SUPPLIED AS PART OF ROBOT PRODUCT REF. EE–3287–550 FLOW METER LOCATED IN P–200 ROBOT ARM

ISB6 87091 BLACK 87101 WHITE

8

1 ISB6–1

87111 RED

5

ALPHA CABLE #5163C 18 AWG 3 CONDUCTOR

I.S. GROUND

A

+24V

B

0V

C

+SIG

NOTES:

P1 7

2 ISB6–2 P1 4 ISB6–4 P1

1. TERMINALS 3 AND 7 ON THE

INTRINSICALLY SAFE BARRIER (ISB) ARE TIED TOGETHER THROUGH THE ISB BUSS BAR.

EE–3287328–001 INTRINSIC CABLE #EE–3287–117–XXX

RC

LEGEND TERMINAL IN ROBOT CONTROLLER

PP TERMINAL IN PAINT PROCESS

VALVE PANEL TERMINAL IN REMOTE EQUIPMENT DEVICE OUTSIDE THIS ENCLOSURE

REFERENCE ONLY FLOWMETER INTERFACE CABLE–40 CM LONG #EE–1063–201–001

8720 8721 8722 8723 8724 8725 8726 8727

REFERENCE ONLY HONDA #MR–50LWF XGMF–00782

REFERENCE ONLY HONDA #MR–50LWM XGMF–00788

HONDA #MR–50RMA CONNECTOR

HONDA #MR–50RFA CONNECTOR

FLOW METERINTERFACE CIRCUITRY FANUC R-J2 P-200 SINGLE STAGE PURGE PAINT PROCESS CONTROL WITH CONNECTOR OPTION SHT. 087 NE–2200–47A

12. SCHEMATICS

12–86 NOTES

MARO2P10203703E

12. SCHEMATICS

12–87

MARO2P10203703E

Figure 12–43. I/O Rack Layout FANUC R-J2 P-200 Single Stage Purge Paint Control With Connector Option

82142 82091 +5VDC +24VDC

[11] 8214F .5 AMP [11]

PCB

JD1

82092 0VDC

FLOWMETER INTERFACE MODULE

82142

MAIN CPU

+5VDC FROM #XGMF–09989 CABLE PLUGGED INTO JD1A PORT +24VDC, 0VDC FROM CP5 CONNECTOR ON CPU POWER SUPPLY CABLES/WIRING BY FANUC WIRE AS SHOWN ON SHEET 082 In Robot Controller Converts Frequency Input To 32 bit Output

82141 RACK COMMUNICATION CABLE–1 METER

SLOT NUMBER 1

2

3

4

5

6

7

8

9

10

A O D 1 6 D

A O D 1 6 D

A D A 0 2 A

A D A 0 2 A

R E S E V E D

R E S E V E D

A O D 1 6 D

A O D 1 6 D

R E S E V E D

A I D 3 2 B 1

JD1A JD1B

CP32

A I F 0 1 A

RACK POWER CABLE

32 Bit Input Module Read Interface Module Output

Channel 1 = 200-100 Transducer Counts to 4-20 mA Conversion For I/P Transducer In P-200 Outer Arm

+24VDC, 0VDC FROM SPADE CONNECTORS ON POWER INPUT UNIT CABLE/WIRING BY FANUC WIRE AS SHOWN ON SHEET 082 82091 +24VDC

82092 0VDC

82291 +24VDC

82292 0VDC

TO MAIN AIR SUPPLY SOLENOID AS SHOWN ON SHEET 082

CP6 MAIN CPU PSU MODULE

POWER INPUT UNIT (PIU)

I/O RACK LAYOUT FANUC R-J2 P-200 SINGLE STAGE PURGE PAINT PROCESS CONTROL WITH CONNECTOR OPTION SHT. 089 NE–2200–47A

12. SCHEMATICS

12–88 40 NOTES

MARO2P10203703E

Index

13 CABLES

13

MARO2P10203703E

Topics In This Chapter Cables

CABLES 13–1

Page

The following section includes separate print cable sets for the P-200 robot. . . . 13–1

13. CABLES

13–2 NOTES

MARO2P10203703E

13. CABLES

13–3

MARO2P10203703E

Figure 13–1. P-200 Purge/Battery/Paint Connection Cable REV LEV.

65.0’’ 4.0’’

CABLE VERSION

A A A A A A A

0

8.0’’ MTW, 12’’ LONG BLACK, 20 AWG. MTW, 12’’ LONG

11

EE–3287–117–005 EE–3287–117–010 EE–3287–117–015 EE–3287–117–025 EE–3287–117–035 EE–3287–117–045 EE–3287–117–055

DIM (IN – MM)

295 492 689 1083 1476 1870 2264

IN IN IN IN IN IN IN

PG

7500 12500 17500 27500 37500 47500 57500

MM MM MM MM MM MM MM

REV LEV.

NO NO NO NO NO NO NO

A A A A A A A

CABLE VERSION

DIM (IN – MM)

EE–3287–117–105 EE–3287–117–110 EE–3287–117–115 EE–3287–117–125 EE–3287–117–135 EE–3287–117–145 EE–3287–117–155

295 492 689 1083 1476 1870 2264

IN IN IN IN IN IN IN

PG

7500 MM 12500 MM 17500 MM 27500 MM 37500 MM 47500 MM 57500 MM

YES YES YES YES YES YES YES

SEE NOTE 5

LABEL

A

IS GND

15

M1

14

1’’ TYP 1–PSA1 2–PSA2

WIRE COLOR/ NUMBER WHITE–1 BLUE–2 WHITE–3 ORANGE–4 WHITE–5 GREEN–6 WHITE–7 BROWN–8 WHITE–9 GRAY–10 RED–11 BLUE–12 RED–13 ORANGE–14 RED–15 GREEN–16 RED–17 BROWN–18 RED–19 GRAY–20 BLACK–21 BLUE–22 BLACK–23 ORANGE–24

TWIST WIRE TAG PAIR ISTB CONNECT POINT NO. 1 – PSA1 2 – PSA2 5 – FSA1 6 – FSA2 ISB1–3 ISB1–4 ISB3–4 ISB3–6 ISB4–1 ISB4–2 ISB5–1 ISB5–2 ISB6–1 ISB6–2 ISB6–4 SPARE ISB7–1 ISB7–2 ISB8–1 ISB8–2 19 – HBK1 20 – HBK2 SPARE SPARE

1 2 3 4 5 6 7 8 9 10 11 12

SIGNAL NAME PS1–P PS1–N FS1–P FS1–N PSOL–1 PSOL–2 BYPASS–1 BYPASS–2 I/P 24V + I/P 0V I/P + SIG I/P – SIG FLOW 24V FLOW 0V FLOW + SIG SPARE TRIG + SIG TRIG – SIG TRIG2 + SIG TRIG2 – SIG HND BRK + HND BRK – SPARE SPARE

320’’

5–FSA1 6–FSA2 ISB1–3 ISB1–4 ISB3–4 ISB3–6 ISB4–1 ISB4–2 ISB5–1 ISB5–2

24’’ 1

2

5 6

TYP. 10

ISB7–1

9

ISB7–2 ISB8–1

SEE DETAIL 3A 10

12

SPARE

TYP.

0V–1

BLACK–25 GREEN–26 BLACK–27 BROWN–28 BLACK–29 GRAY–30 YELLOW–31 BLUE–32

6V–1 0V–1 6V–2 0V–2 6V–3 0V–3 6V–4 0V–4

CONNECTION

POINT

7

8

TYP.

17

4

3

6

O1

11

TWO PLACES IF REQUIRED

INTRINSIC REV. EE–3287–117–XXX MFG. NAME

11

SPARE

1

4.0’’ TYP.

10

ISB8–2

12

SEE NOTE 1 SEE NOTE 4

8

SEE NOTE 3 DETAIL 3B

SEE NOTE 5

TYP.

ISB6–4

9 POS SOC

N1

7

SPARE

N1

3

SEE DETAIL 3B 10

8.0’’

TWIST PAIR NO.

5

4

4

6V–1

WIRE TAG

15 POS SOC

M1

16

WIRE COLOR/ NUMBER

4

3

ISB6–2

20–HBK2

3

2

ISB6–1

19–HBK1

SEE NOTE 5

BLACK SHIELD WIRE 20 AWG

4 POS SOC

O1

INTRINSIC REV. EE–3287–117–XXX MFG. NAME

P1

2 CABLE SPECIFICATION 16PR #20 AWG CABLE HYPALON JACKET MAX. CABLE O.D. = 20.5mm (0.805” MAX.) P/N=T–14685

4.0’’ TYP

3

6.0’’ TYP

15 POS SOC

P1

3

TUBING OVER BRAID TYP.

4

4

6 R1

6V–2

4 POS SOC

R1

0V–2

2

0V–3

14

3

1 2 3 4 5 6 7 8 9

WHITE–7 BROWN–8

1 2 3 4

YELLOW–31 16 BLUE–32 SHIELD 20 AWG KEY

BATTERY PACK

18

13

TYP

TYP

3. TYP. TERMINATION OF SHIELD TO SHIELD AND SHIELD TO CONDUCTOR. CONDUCTORS SOLDERED CONNECTION SHIELD BETWEEN SHIELDS SLEEVING BULK CABLE

3.0’’ TYP.

1.0’’ TYP.

DETAIL ”A”

1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBERIN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. 2. DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL LENGTH DIMENSIONS + 1/2 IN.

(2) WIRES PER CONTACT

BRAIDED SHIELD SHRINK TUBING

ASSEMBLY NOTES:

DETAIL ”B”

HND BRK+ HND BRK–

6 7 8 9 10

I/P 24V + I/P 0V I/P + SIG I/P – SIG FLOW 24V FLOW 0V FLOW +SIG SPARE TRIG + SIG TRIG – SIG TRIG2 +SIG TRIG2 –SIG

KEY SHIELD 20 AWG

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BLACK–25 GREEN–26 BLACK–27 BROWN–28 BLACK–29 GRAY–30 JUMPER JUMPER JUMPER JUMPER JUMPER JUMPER SHIELD KEY

6V–4 0V–4

13 14 15

6V–1 0V–1 6V–2 0V–2 6V–3 0V–3 6V–4 0V–4 6V–5 0V–5 6V–6 0V–6

20 AWG

SHIELD CONDUCTOR 20 AWG BLACK TYP SOLDERED CONNECTION BULK CABLE

CONDUCTORS

S1

5

NOTE: PINS 7 THRU 12 NOT SHOWN

SPARE SPARE

BLACK–21 11 BLUE–22 KEY SHIELD 20 AWG

1 2 3 4

15 POS SOC

S1

SHIELD 20 AWG BLACK–23 12 ORANGE–24 KEY

WHITE–9 GRAY–10 RED–11 BLUE–12 RED–13 ORANGE–14 RED–15 GREEN–16 RED–17 BROWN–18 RED–19 GRAY–20

PS1–P PS1–N FS1–P FS1–N PSOL–1 PSOL–2 20 AWG

BYPASS–1 BYPASS–2

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4

0V–4

SIGNAL NAME

WHITE–1 1 BLUE–2 WHITE–3 2 ORANGE–4 WHITE–5 3 GREEN–6 NUMBERD SHIELD PSOL–2 KEY

6V–4

15

TWISTED PAIR NUMBER

WIRE COLOR

1 2 3 4 5 6 13 14 15

6V–3

13

16

SOC/ PIN NO.

BRAIDED SHIELD SLEEVE TUBING

FOR INTRINSIC CABLE MARKING: APPLY 4” OF BLUE SHRINK TUBING UNDER CABLE I.D. LABELS AND ALSO AT 22’ INTERVALS AS REQ’D. 5. FOR CABLE EE–3287–117–105 ONLY, USE 200’’ FOR LEFT PG LOCATION

4.

EE-3278-117-005

13. CABLES

13–4 NOTES

MARO2P10203703E

13. CABLES

13–5

MARO2P10203703E

Figure 13–2. P-200 R-J2 Paint Control Robot Arm Cable Dual Trigger

REV LEV. A

CABLE VERSION EE–3287–328–001

DIM (IN – MM) 174 IN

PG

4420 MM YES

0

A

16’’

46’’

WIRE COLOR/ NUMBER

11 4

12 PIN #

WIRE COLOR/ NUMBER

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

WHITE BLACK WHITE BROWN WHITE RED WHITE ORANGE WHITE BLUE WHITE YELLOW KEY

TWIST PAIR NO. 1 2 3 4 5 6

TUBING

SIGNAL NAME I/P 24V I/P 0V I/P + SIG I/P – SIG FLOW 24V FLOW 0V FLOW + SIG SPARE TRIG + SIG TRIG – SIG TRIG2 +SIG TRIG2 –SIG

6 1 4 2

I/P

2 3’’ TYP

3

13

7

TYP. 8

9

10

5

1

SEE NOTE 1 SEE NOTE 4

4.0’’ TYP

4.0’’ TYP. P4 INTRINSIC EE–3287–328–XXX MFG. NAME REV.

6.0’’ TYP

15 PIN

SHIELD STOPS HERE

ASSEMBLY NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. 2.

DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL LENGTH DIMENSIONS + 1/2 IN.

3. TYP. TERMINATION OF SHIELD TO SHIELD AND SHIELD TO CONDUCTOR. SHIELD CONDUCTOR 20 AWG BLACK SOLDERED CONNECTION

WHITE BLUE

5

WIRE COLOR/ NUMBER

1 2

SIGNAL NAME I/P 24V I/P 0V I/P + SIG I/P – SIG

TWIST PIN PAIR NUMBER NO. 1 2

5

SIGNAL NAME TRIG + SIG TRIG – SIG

TWIST PIN NUMBER PAIR NO.

WHITE YELLOW

TRIG2

CABLE SPECIFICATION 9 PR #20 AWG CABLE HYPALON JACKET MAX. CABLE O.D. = 17.4mm (0.685” MAX.) P/N=T–11762

SEE NOTE 3

WIRE COLOR/ NUMBER

TRIG

INTRINSIC REV. EE–3287–328–XXX MFG. NAME REV.

SHIELD

CUT OF SPARE SPARES: WHITE GREEN 7 WHITE VIOLET 8 WHITE 9 GRAY

WHITE BLACK WHITE BROWN

TWIST PIN PAIR NUMBER NO.

1 2

6

SIGNAL NAME TRIG2 +SIG TRIG2 –SIG

6

FLOW

6’’

WIRE COLOR/ NUMBER WHITE RED WHITE ORANGE

TWIST PIN PAIR NUMBER NO. A B C

3 4

SIGNAL NAME FLOW 24V FLOW 0V FLOW + SIG SPARE

CUT OFF SPARE ORANGE WIRE

CUT OFF SPARE PAIRS: WHITE PAIR 7 GREEN WHITE PAIR 8 VIOLET WHITE PAIR 9 GRAY

BULK CABLE CONDUCTORS

BRAIDED SHIELD SLEEVE TUBING

4. FOR INTRINSIC CABLE MARKING:APPLY 4” OF BLUE SHRINK TUBING UNDER CABLE I.D. LABELS AND ALSO AT 22’ INTERVALS AS REQ’D.

EE-3287-328-001

13. CABLES

13–6 NOTES

MARO2P10203703E

13. CABLES

13–7

MARO2P10203703E

Figure 13–3. P-200 I/P Cable

REV

CABLE VERSION

A DIM

A

EE–3287–334–001

288 IN 7315MM

24 FT

A

EE–3287–334–002

600 IN 15240MM

50 FT

SUPERSEDED BY EE-3287-328-001

0

A

5 6’’

1’’ TYP WIRE COLOR/ NUMBER

WIRE TAG

BLK GREEN WHITE RED

0V –SIG +SIG 24V

SIGNAL NAME I/P 0V I/P –SIG I/P +SIG I/P 24V

24V 0V +SIG –SIG

4

2

3

1

TYP

3’’ TYP

TUBING OVER CABLE

12’’ 3’’

I/P EE–3287–334–00X MANUF REV

I/P EE–3287–334–00X MANUF REV

SEE NOTE 1

SHIELD (TO I.S. GND)

PIN #

WIRE COLOR/ NUMBER

1 2 3 4 5 6

BLK GREEN

I/P 0V I/P – SIG

WHITE

I/P + SIG

RED

I/P 24V

SIGNAL NAME

ASSEMBLY NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL.

2.

DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL LENGTH DIMENSIONS + 1/2 IN.

EE-3287-334-001 and 002

13. CABLES

13–8 NOTES

MARO2P10203703E

13. CABLES

13–9

MARO2P10203703E

Figure 13–4. P-200 Trigger Cable

REV

CABLE VERSION

A DIM

A

EE–3287–335–001

288 IN 7315MM

24 FT

A

EE–3287–335–002

600 IN 15240MM

50 FT

SUPERSEDED BY EE-3287-328-001

0

A

5

4

TYP WIRE COLOR RED BLK WHITE

WIRE TAG +SIG –SIG GND

SIGNAL NAME TRIG +SIG TRIG –SIG GND

3’’

0.5’’ +SIG –SIG GND

2

3

1

TYP 12’’

TUBING OVER CABLE

2’’ TYP TRIG EE–3287–335–00X MANUF REV

TRIG EE–3287–335–00X MANUF REV

SHIELD (TO I.S. GND)

PIN #

WIRE COLOR

SIGNAL NAME

1 2 3

RED BLK WHITE

TRIG + SIG TRIG – SIG GND

ASSEMBLY NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL.

2.

DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL LENGTH DIMENSIONS + 1/2 IN.

EE-3287-335-001 and 002

13. CABLES

13–10 NOTES

MARO2P10203703E

13. CABLES

13–11

MARO2P10203703E

Figure 13–5. P-200 Flow Detector Signal

REV

CABLE VERSION

A DIM

A

EE–3287–336–001

288 IN 7315MM

24 FT

A

EE–3287–336–002

600 IN 15240MM

50 FT

SUPERSEDED BY EE-3287-328-001

A

A

5 3’’ 0.5’’ WIRE COLOR RED BLACK WHITE

WIRE TAG 24V 0V +SIG

24V 0V

FLOW 24V FLOW 0V FLOW +SIG

+SIG

2

4 2’’

1 3

TUBING OVER CABLE 3’’ FLOW EE–3287–336–001 MANUF REV

FLOW EE–3287–336–00X MANUF REV

SHIELD (TO I.S. GND)

12’’ FLOW

PIN NUMBER A B C

WIRE COLOR RED BLACK WHITE

SIGNAL NAME FLOW 24V FLOW 0V FLOW + SIG

ASSEMBLY NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL.

2.

DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL LENGTH DIMENSIONS + 1/2 IN.

EE-3287-336-001 and 002

13. CABLES

13–12 NOTES

MARO2P10203703E

13. CABLES

13–13

MARO2P10203703E

Figure 13–6. Axes 1 and 2 Power Connection Cable

WIRE COLOR/ NUMBER BLUE/17 BLUE/18 BLUE/19 BLUE/20

WIRE TAG

SIGNAL NAME

BKP1

BKP1 BKM1 BKP1 BKM1

1BKP 1BKM 2BKP 2BKM

BKP1

BKM1 A

SEE NOTE 3 320’’ 24’’

BKM1

CONNECTOR LABEL

SOC/ PIN NO. 1 2 3

WIRE COLOR/ NUMBER

WIRE TAG

RED/1 WHITE/2 BLACK/3 GRN/YEL/4

1U 1V 1W 1G

RED/5 WHITE/6 BLACK/7 GRN/YEL/8

2U 2V 2W 2G

RED/9 RED/13 WHITE/10 WHITE/14 BLACK/11 BLACK/15 GRN/YEL/12 GRN/YEL/16

2U

1U

4

1V

5

AXIS 1 & 2 PWR/BRK H1

1W 1G

8 2U 2V 2W 2G

MOTOR REV. EE–3287–110–XXX MFG. NAME

MOTOR REV. EE–3287–110–XXX MFG. NAME

2U

16–#14 & 4–#18 AWG CONDUCTORS HYPALON JACKET MAX CABLE O.D.= 21.0 MM (0.825”) P/N=T–14379

2G

2W 2G

THIS GROUP HAS TWO WIRES PER TERMINAL

12 POS SOC

1” TYP 1” TYP.

6” TYP

12 POS SOC

RED/5 WHITE/6

2U 2V 2W

BLACK/7 GRN/YEL/8

NOT USED RED/9 WHITE/10 BLACK/11

4 AXIS 2 PWR/BRK J1

1W

1 3

PS95437–110–155

BLACK/3 GRN/YEL/4

11

2

AXIS 2 POWER/BRK J1

CABLE SPECIFICATION

2W

PS95437–110–155

1U

12

10

5

SIGNAL NAME

RED/1 WHITE/2

BLUE/17 BLUE/18 KEY PLUG

9

AXIS 1 POWER/BRK H1

2V

2V

6 7

WIRE COLOR/ NUMBER

GRN/YEL/12 RED/13

1V 1G

2G 1BKP 1BKM

2U 2V 2W 2G 2U

7

WHITE/14 BLACK/15

2W

8

GRN/YEL/16

2G

9 11

BLUE/19 BLUE/20 NOT USED

12

KEY PLUG

6

10

18 AWG

2V

2BKP

18 AWG

2BKM

ASSEMBLY NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. 2.

DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL LENGTH DIMENSIONS + / – 1/2 IN

3. FOR CABLE EE–3287–110–105, USE 200’’ FOR LEFT PG LOCATION

EE-3287-110-005

13. CABLES

13–14 NOTES

MARO2P10203703E

13. CABLES

13–15

MARO2P10203703E

Figure 13–7. Axes 4, 5, and 6 Motor Connection Cable

REV LEV.

0

DIM (IN – MM)

CABLE VERSION

PG

REV LEV.

CABLE VERSION

DIM (IN – MM)

PG

A

EE–3287–111–005

295

IN

7500

MM

NO

B

EE–3287–111–105

295

IN

7500

MM

YES

A

EE–3287–111–010

492

IN 12500

MM

NO

B

EE–3287–111–110

492

IN 12500

MM

YES

A

EE–3287–111–015

689

IN 17500

MM

NO

B

EE–3287–111–115

689

IN 17500

MM

YES

A

EE–3287–111–025

1083 IN 27500

MM

NO

B

EE–3287–111–125

1083 IN 27500

MM

YES

A

EE–3287–111–035

1476 IN 37500

MM

NO

B

EE–3287–111–135

1476 IN 37500

MM

YES

A

EE–3287–111–045

1870 IN 47500

MM

NO

B

EE–3287–111–145

1870 IN 47500

MM

YES

A

EE–3287–111–055

2264 IN 57500

MM

NO

B

EE–3287–111–155

2264 IN 57500

MM

YES

75’’ WIRE COLOR BLACK BLACK BLACK BLACK BLACK BLACK

5 6 11 12 17 18

WIRE TAG

SIGNAL NAME

BKP3 BKM3 BKP3 BKM3 BKP4 BKM4

4BKP 4BKM 5BKP 5BKM 6BKP 6BKM

BKP3 BKM3 BKP3 BKM3

A

BKP4 BKM4

SEE NOTE 4 320’’ CONNECTOR LABEL

24’’ 1’’ TYP AXIS NUMBER AXIS 4

AXIS 5

AXIS 6

WIRE COLOR BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK

1 2 3 4 7 8 9 10 13 14 15 16

WIRE TAG 4U 4V 4W 4G 5U 5V 5W 5G 6U 6V 6W 6G

4U 4V 4W

AXIS 4 & 5 POWER/BRK A1

4G

15 POS SOC

5U 5V 5W

MOTOR REV. EE–3287–111–XXX MFG. NAME

MOTOR REV. EE–3287–111–XXX MFG. NAME

AXIS 4 & 5 PWR/BRAKE A1

5G

CABLE SPECIFICATION 18C #18 AWG CABLE HYPALON JACKET MAX CABLE O.D.=13.5 MM (0.530”) P/N=T–14107

6U 6V 6W 6G

1’’ TYP 1’’TYP

ASSEMBLY NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. 2.

9 POS SOC

AXIS 6 POWER/BRK B1

6’’ TYP EXTRACTION TOOL: AMP #455822–2

AXIS 6 PWR/BRAKE B1

SOC/ PIN NO.

WIRE COLOR

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9

BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK KEY KEY

1 2 3 4 5 6 7 8 9 10 11 12

4U 4V 4W 4G 4BKP 4BKM 5U 5V 5W 5G 5BKP 5BKM

BLACK BLACK BLACK BLACK BLACK BLACK

13 14 15 16 17 18

6U 6V 6W 6G 6BKP 6BKM

SIGNAL NAME

KEY

DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL LENGTH DIMENSIONS + / – 1/2 IN

3. BUILD UP CABLE DIA. WITH 1/32 X 2” EPDM STRIP MATERIAL FOR PROPER PG FITTING DIA. A SMALL AMOUNT OF ADHESIVE SHOULD BE USED TO SECURE EPDM STRIP PRIOR TO APPLICATION OF SHRINK TUBING. RETAIN EPDM STRIP MAT’L WITH 6” OF SHRINK TUBING. 4. FOR CABLE EE–3287–111–105, USE 200’’ AS LEFT PG LOCATION

EE-3287-111-005 Through 155

13. CABLES

13–16 NOTES

MARO2P10203703E

13. CABLES

13–17

MARO2P10203703E

Figure 13–8. Axes 3 and 7 Power Connection Cable

REV LEV.

0

CABLE VERSION

DIM (IN – MM) MM

PG

REV LEV.

NO

B

EE–3287–112–105

295

IN

7500

MM

YES

CABLE VERSION

DIM (IN – MM)

PG

A

EE–3287–112–005

295 IN

7500

A

EE–3287–112–010

492 IN

12500 MM

NO

B

EE–3287–112–110

492

IN 12500

MM

YES

A

EE–3287–112–015

689 IN

17500 MM

NO

B

EE–3287–112–115

689

IN 17500

MM

YES

A

EE–3287–112–025

1083 IN 27500 MM

NO

B

EE–3287–112–125

1083

IN 27500

MM

YES

A

EE–3287–112–035

1476 IN 37500 MM

NO

B

EE–3287–112–135

1476

IN 37500

MM

YES

A

EE–3287–112–045

1870 IN 47500 MM

NO

B

EE–3287–112–145

1870 IN 47500

MM

YES

A

EE–3287–112–055

2264 IN 57500

NO

B

EE–3287–112–155

2264 IN 57500

MM

YES

MM

SEE NOTE 3

75’’ WIRE COLOR/ NUMBER BLUE/17 BLUE/18 BLUE/19 BLUE/20

WIRE TAG

SIGNAL NAME

BKP2 BKM2 BKP2 BKM2

3BKP 3BKM 7BKP 7BKM

BKP2 BKM2 BKP2 BKM2

A

CONNECTOR LABEL

SEE NOTE 3 320’’

1

1’’ TYP WIRE COLOR/ NUMBER RED/1 WHITE/2 BLACK/3 GRN/YEL/4 RED/5 WHITE/6 BLACK/7 GRN/YEL/8 RED/9 WHITE/10 BLACK/11

WIRE TAG

3G 3U

2 3

3U

4

3V

AXIS 3 PWR/BRK K1

3G 3U

3G 7U 7V

RED/13 WHITE/14 BLACK/15

7V 7W

GRN/YEL/16

7G

5 6 7 8

3V

AXIS 3 POWER/BRK K1

3W

12 POS SOC

MOTOR REV. EE–3287–112–XXX MFG. NAME

7U 7V 7W

CABLE SPECIFICATION 16–#14 & 4–#18 AWG CONDUCTORS HYPALON JACKET MAX CABLE O.D.= 21.0 MM (0.825”) P/N=T–14379 1’’ TYP

7G 7U 7V 7W 7G

1’’TYP 6’’ TYP

1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. 2.

RED/5 WHITE/6

3U

BLACK/7 GRN/YEL/8

3W

RED/9 WHITE/10 BLACK/11

5 6 7 8

ASSEMBLY NOTES:

3W

KEY PLUG

4 AXIS 7 PWR/BRK L1

BLACK/3 GRN/YEL/4

1 3

12 POS SOC

3U

11

2

AXIS 7 POWER/BRK L1

9

GRN/YEL/12 RED/13 WHITE/14 BLACK/15 GRN/YEL/16 KEY PLUG

10

NOT USED

11

BLUE/19 BLUE/20

12

SIGNAL NAME

RED/1 WHITE/2

12

10 MOTOR REV. EE–3287–112–XXX MFG. NAME

WIRE COLOR/ NUMBER

BLUE/17 BLUE/18 KEY PLUG

9

3G

3V 3W

7W 7G 7U

GRN/YEL/12

24’’

3W

3U 3V 3W

SOC/ PIN NO.

3V 3G 3V 3G 3BKP 3BKM

18 AWG

7U 7V 7W 7G 7U 7V 7W 7G

7BKP

18 AWG

7BKM

DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL LENGTH DIMENSIONS + / – 1/2 IN

3. FOR CABLE EE–3287–112–105, USE 200’’ FOR LEFT PG LOCATION

EE-3287-112-005 Through 155

13. CABLES

13–18 NOTES

MARO2P10203703E

13. CABLES

13–19

MARO2P10203703E

Figure 13–9. EE-3287-113-005 through 155 Pulse Cable

13. CABLES

13–20 NOTES

MARO2P10203703E

13. CABLES

13–21

MARO2P10203703E

Figure 13–10.

P-200 R-J2 Purge/Battery Connection Cable

REV LEV.

0 65.0’’ 4.0’’

8.0’’

IS GND

CABLE VERSION

DIM (IN – MM)

PG

REV LEV.

CABLE VERSION

DIM (IN – MM)

PG

A

EE–3287–115–005

295

IN

7500

MM

NO

B

EE–3287–115–105

295

IN

7500

MM

YES

A

EE–3287–115–010

492

IN

12500

MM

NO

B

EE–3287–115–110

492

IN

12500

MM

YES

A

EE–3287–115–015

689

IN

17500

MM

NO

B

EE–3287–115–115

689

IN

17500

MM

YES

A

EE–3287–115–025

1083

IN

27500

MM

NO

B

EE–3287–115–125

1083

IN

27500

MM

YES

A

EE–3287–115–035

1476

IN

37500

MM

NO

B

EE–3287–115–135

1476

IN

37500

MM

YES

A

EE–3287–115–045

1870

IN

47500

MM

NO

B

EE–3287–115–145

1870

IN

47500

MM

YES

A

EE–3287–115–055

2264

IN

57500

MM

NO

B

EE–3287–115–155

2264

IN

57500

MM

YES

SEE NOTE 6

CONNECTOR LABEL A

SEE NOTE 6 320’’

1’’ TYP 1–PSA1

WIRE COLOR/ NUMBER WHITE–1 BLUE–2 WHITE–3 ORANGE–4 WHITE–5 GREEN–6 WHITE–7 BROWN–8 WHITE–9 GRAY–10 RED–11 BLUE–12 RED–13 ORANGE–14 RED–15 GREEN–16

TWIST WIRE TAG PAIR ISTB NO. CONNECT POINT 1 – PSA1 1 2 – PSA2 5 – FSA1 2 6 – FSA2 ISB1 – 3 3 ISB1 – 4 GND 4 GND GND 5 GND GND 6 GND GND 7 GND PARK–P 8 PARK–N

SIGNAL NAME PS1–P PS1–N FS1–P FS1–N PSOL–1 PSOL–2 OT1–P OT1–N OT2–P OT2–N OT3–P OT3–N XOTP XOTN CRASHP CRASHN

24’’

2–PSA2

M1

5–FSA1 6–FSA2

ISB1–3

ISB1–4

15 POS SOC

M1

GND GND GND GND GND

TIE–WRAP SPARES

GND GND

4.0’’ TYP. INTRINSIC REV. EE–3287–115–XXX MFG. NAME

PARK–P PARK–N

9 POS SOC

N1

GND

N1

INTRINSIC REV. EE–3287–115–XXX MFG. NAME

R1

8.0’’ 6V–1

WIRE COLOR/ NUMBER RED–17 BROWN–18 RED–19 GRAY–20 BLACK–21 BLUE–22 BLACK–23 ORANGE–24 BLACK–25 GREEN–26 BLACK–27 BROWN–28 BLACK–29 GRAY–30

WIRE TAG 6V–1 0V–1 6V–2 0V–2 6V–3 0V–3 6V–4 0V–4 6V–5 0V–5 6V–6 0V–6 6V–7 0V–7

TWIST PAIR NO. 9 9 10 10 11 11 12 12 13 13 14 14 15 15

CONNECTION POINT

6V–2 0V–2 6V–3

4.0’’ TYP

6.0’’ TYP

4 POS SOC

R1

S1

0V–3

BATTERY PACK

6V–4

15 POS SOC

S1

0V–4 6V–5 0V–5

3.0’’ TYP.

ASSEMBLY NOTES:

6V–6 0V–6 6V–7

CUT SPARE WIRES AT STRIP BACK PR–16 YELLOW–31 & BLUE–32

CABLE SPECIFICATION 16PR #20 AWG CABLE HYPALON JACKET MAX. CABLE O.D. = 20.5mm (0.805” MAX.) P/N=T–14685

0V–1

0V–7

1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. 2.

1.0’’ TYP.

SOC/ PIN NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 1 2 3 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

WIRE SIGNAL TWISTED PAIR NAME NUMBER COLOR PS1–P 1 PS1–N FS1–P 2 FS1–N PSOL–1 3 PSOL–2 OT1–P 4 OT1–N OT2–P 5 OT2–N OT3–P 6 OT3–N SHIELD PSOL–2N KEY SHIELD 18 AWG XOT–P 7 XOT–N CRASH–P 8 CRASH–N SHIELD 18 AWG SHIELD 18 AWG

WHITE–1 BLUE–2 WHITE–3 ORANGE–4 WHITE–5 GREEN–6 WHITE–7 BROWN–8 WHITE–9 GRAY–10 RED–11 BLUE–12

18 AWG RED–13 ORANGE–14 RED–15 GREEN–16

KEY 6V–7 0V–7 SHIELD KEY 6V–1 0V–1 6V–2 0V–2 6V–3 0V–3 6V–4 0V–4 6V–5 0V–5 6V–6 0V–6 SHIELD

15

BLACK–29 GRAY–30

18 AWG 9 10 11 12 13 14 18 AWG

RED–17 BROWN–18 RED–19 GRAY–20 BLACK–21 BLUE–22 BLACK–23 ORANGE–24

BLACK–25 GREEN–26 BLACK–27 BROWN–28

KEY

CUT SPARE WIRES AT STRIP BACK PR–16 YELLOW–31 & BLUE–32

EXTRACTION TOOL: AMP # 455822–2

DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL LENGTH DIMENSIONS + 1/2 IN.

3. TYP. TERMINATION OF SHIELD TO SHIELD AND SHIELD TO CONDUCTOR.

CONDUCTORS SHIELD SLEEVING DETAIL ”A”

SOLDERED CONNECTION BETWEEN SHIELDS BULK CABLE

BRAIDED SHIELD SHRINK TUBING DETAIL ”B”

SHIELD CONDUCTOR 18 AWG BLACK (2) SOLDERED CONNECTION BULK CABLE

CONDUCTORS

4. FOR INTRINSIC CABLE MARKING: APPLY 4” OF BLUE SHRINK TUBING UNDER CABLE I.D. LABELS AND ALSO AT 22’ INTERVALS AS REQ’D. 5. BUILD UP CABLE DIA. WITH 1/32 X 2” EPDM STRIP MATERIAL FOR PROPER PG FITTING DIA. A SMALL AMOUNT OF ADHESIVE SHOULD BE USED TO SECURE EPDM STRIP PRIOR TO APPLICATION OF SHRINK TUBING. RETAIN EPDM STRIP MAT’L WITH 2” OF BLUE SHRINK TUBING. 6. FOR CABLE EE–3287–115–105, USE 200’’ FOR LEFT PG LOCATION

BRAIDED SHIELD SLEEVE TUBING

EE-3287-115-005 through 155

13. CABLES

13–22 NOTES

MARO2P10203703E

13. CABLES

13–23

MARO2P10203703E

Figure 13–11.

P-200 Robot Ground Cable

REV LEV.

CABLE VERSION

DIM (IN – MM)

PG

REV LEV.

CABLE VERSION

DIM (IN – MM)

PG

A

EE–3287–116–005

295

IN

7500

MM

NO

B

EE–3287–116–105

295

IN

7500

MM

YES

A

EE–3287–116–010

492

IN

12500

MM

NO

B

EE–3287–116–110

492

IN

12500

MM

YES

A

EE–3287–116–015

688

IN

17500

MM

NO

B

EE–3287–116–115

688

IN

17500

MM

YES

A

EE–3287–116–025

1083

IN

27500

MM

NO

B

EE–3287–116–125

1083

IN

27500

MM

YES

A

EE–3287–116–035

1476

IN

37500

MM

NO

B

EE–3287–116–135

1476

IN

37500

MM

YES

A

EE–3287–116–045

1870

IN

47500

MM

NO

B

EE–3287–116–145

1870

IN

47500

MM

YES

A

EE–3287–116–055

2264

IN

57500

MM

NO

B

EE–3287–116–155

2264

IN

57500

MM

YES

SEE NOTE 4

SEE NOTE 4 320’’ 24’’

GROUND REV. EE–3287–116–XXX MFG. NAME

GROUND REV. EE–3287–116–XXX MFG. NAME

1” TYP. CABLE SPECIFICATION #8 AWG TINNED COPPER GRN W/2 CO–EXTRUDED YELLOW STRIPS MAXCABLE O.D.=6.9 MM (0.27 ”) P/N=#XP0845168–165 NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. 2. REF. ENGINEERING GUIDELINE EG–00084 FOR CABLE FABRICATION SPECIFICATIONS. 3. SEE LENGTH CHART FOR CABLE VERSION REVISION LEVEL. DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL DIMENSIONS +/– 0.5’’ 4. FOR CABLE EE–3287–116–105, USE 200’’ FOR LEFT PG LOCATION

EE-3287-116-005 through 155

13. CABLES

13–24 NOTES

MARO2P10203703E

13. CABLES

13–25

MARO2P10203703E

Figure 13–12. Axes 1, 2, and 3 Power and Pulse Harness

CONNECTOR LABEL

C4

PIN NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

11’’ TWISTED PAIR #

WIRE TYPE & COLOR

BRAIDED SHIELD

SLEEVE TYPE

2 POS SOC

4 5 6 7

6 TWISTED PAIRS 20 AWG 41/36 TINNED COPPER BLACK PVC INS

2 POS SOC

CONN 2

2 POS SOC

CONN 3 NO SHIELD CONNECTION AT THESE CONNECTORS

8

EXTRACTION TOOL: AMP #455822–2 9 (2) 18 AWG WIRES CONNECTED TO THE BRAID

EXTRACTION TOOL: AMP #455822–2 22’’

PWR–1

J4 PWR–2

K4 PWR–3

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

SIGNAL NAME 1U 1V 1W 1G 2U 2V 2W 2G 1BKP 1BKM

WIRE COLOR BLACK1 BLACK2 BLACK3 GRN/YEL4 BLACK5 BLACK6 BLACK7 GRN/YEL8 BLACK9 BLACK10

2U 2V 2W 2G 2U 2V 2W 2G 2BKP 2BKM

KEY PLUG BLACK11 BLACK12 BLACK13 GRN/YEL14 BLACK15 BLACK16 BLACK17 BLACK18 BLACK19 BLACK20 KEY PLUG

3U 3V 3W 3G 3U 3V 3W 3G 3BKP 3BKM

BLACK21 BLACK22 BLACK23 GRN/YEL24 BLACK 25 BLACK 26 BLACK 27 GRN/YEL28 BLACK 29 BLACK 30

SLEEVE TYPE

BLACK EXPANDO

CONDUCTOR SIZE 16 AWG 16 AWG 16 AWG 16 AWG 16 AWG 16 AWG 16 AWG 16 AWG 18 AWG 18 AWG

23’’ 24’’

BLACK EXPANDO

BLACK EXPANDO

A

SEC. E–E PULSE 3 ENCODER CONNECTOR

GUIDE KEY CABLE RUN

SEC. D–D AXIS 2 POWER CONNECTOR 24–10S

150’’

SIGNAL NAME

PWR–3

A B C D

3U 3V 3W 3G

BRK–3

A B

3BKP 3BKM

PULSE–3

A D F G J N S R

3D 3*D 3RQ 3*RQ 5V 0V 0VA 6VA SHIELD

PULSE–3 2 PIN

E

SHIELDED

1 2

6VA 0VA

A B C D E F G

2U 2U 2V 2V 2W 2W 2G

BRK–2

A B

2BKP 2BKM

PULSE–2

A D F G J N S R

2D 2*D 2RQ 2*RQ 5V 0V 0VA 6VA SHIELD

BATT–2

1 2

6VA 0VA

PWR–1

A B C D

1U 1V 1W 1G

BRK–1

A B

1BKP 1BKM

PULSE–1

A D F G J N S R

1D 1*D 1RQ 1*RQ 5V 0V 0VA 6VA SHIELD

1 2

6VA 0VA

E

6” LG BRANCH

BATT–3

PWR–2

120’’ GROUND 2 GROUND 1

0’’

45’’

40’’

GROUND 1

113’’

95’’ PWR/PULSE 1–3 EE–3287–321–001 MFG NAME REV

23’’ 24’’

12 POS

D 113’’ BRK–2

H4

PWR 1&2

PIN

C

EXPANDO OVER CONDUCTORS

CABLE RUN

22’’

B A

10SL–3

12 POS

2 PIN

BATT–2

23’’ PIN

115’’

PWR–1

K4

18–10S

B

EXPANDO OVER CONDUCTORS

PWR–3

A

18–10

CABLE RUN

24’’

A

113’’

GUIDE KEY

TYPICAL FOR POWER AND BRAKE

SEC. B–B AXIS 1 POWER CONNECTOR

113’’

B

115’’

BRK–1 FRONT VIEW OF SOCKETS

TYP

GUIDE KEY CABLE RUN

C

EXPANDO OVER SHIELD OVER CONDUCTORS TYPICAL FOR PULSE 113’’

20–29SW

ASSEMBLY NOTES:

2 PIN

SHIELDED

10SL–3S TYP BATT–1

BATT–1

6” LG BRANCH

C 115’’

PULSE–1

SEC. A–A PULSE 1 AND PULSE 2 ENCODER CONNECTOR

WIRE COLOR COND. QTY. & SIZE OR PAIR # BLK 21 & 25 BLK 22 & 26 BLK 23 & 27 G/Y 24 & 28

(1) 18 AWG (1) 18 AWG

8

TWISTED PAIRS 20 AWG 19/ 32 600V BLACK PTFE INS

3

SHIELDED 20 AWG PTFE BLACK WIRE JUMPERS

BLK 5 & 11 BLACK 15

BLACK 17 G/Y 8,14,18

(2) 16 AWG (1) 16 AWG (2) 16 AWG (1) 16 AWG (2) 18 AWG (1) 18 AWG (3) 16 AWG

BLACK 19 BLACK 20

(1) 18 AWG (1) 18 AWG

BLK 6 &12 BLACK 16 BLK 7 & 13

TWISTED PAIRS 20 AWG 19/ 32 600V BLACK PTFE INS

6 7 2

SLEEVE TYPE

(2) 16 AWG (2) 16 AWG (2) 16 AWG (2) 16 AWG

BLACK 29 BLACK 30

9

BRAIDED SHIELD

SHIELDED 20 AWG PTFE BLACK WIRE JUMPERS

BLACK EXPANDO

36 AWG TINNED COPPER BRAID

BLACK EXPANDO

36 AWG TINNED COPPER BRAID

20–29S

SHIELDED

BRK 1 ,2 & 3 BRAKE CONNECTOR

22’’

115’’

PULSE–2

SEC. C–C

J4

PWR–2

D

115’’

113’’

GUIDE KEY 23’’ 24’’

12 POS

115’’

PWR–2

TYPICAL 3 PLACES

POWER WIRE = 16 AWG 19/ 29 600V UL1199 PTFE W/BLK OR GRN/YEL INS. BRAKE WIRE = 18 AWG 19/ 30 600V UL1199 PTFE W/BLK INS.

1. ALL LENGTH DIMENSIONS + 1/2 IN. 2. SPECIFIC WIRE, LABELS, SHIELD AND SLEEVE MATERIAL NOT CALLED OUT ON BOM. 3. HARNESS ASS’Y. LABEL TO BE ATTACHED AS SHOWN WITH ALL INFORMATION INDICATED.

20–29S POTTED BACKSHELL SEE NOTE 5

BATT–3

SPLIT POINTS COVER W/TAPE WRAP CONNECT SHIELDS SEE NOTE 4B

PIN

16 AWG 16 AWG 16 AWG 16 AWG 16 AWG 16 AWG 16 AWG 16 AWG 18 AWG 18 AWG

SOC/PIN NO.

10SL–3S

148’’ 130’’

GUIDE KEY

C4

15 PIN

22’’ 16 AWG 16 AWG 16 AWG 16 AWG 16 AWG 16 AWG 16 AWG 16 AWG 18 AWG 18 AWG

CONNECTOR LABEL

150’’

148’’

20–29SW

D

H4

PIN NO.

CABLE RUN

C

CONNECTOR LABEL

22–22S

4’’

11’’

11’’ BLACK EXPANDO

F BACKSHELL

BRK–3

10’’ 36 AWG TINNED COPPER BRAID

POTTED

F 22–22S

CONN 1 10’’

1D 1*D 1RQ 1*RQ 2D 2*D 2RQ 2*RQ 3D 3*D 3RQ 3*RQ SHIELD SHIELD

B

C

0V SIGNAL NAME

150’’

SEC. F – F AXIS 3 POWER CONNECTOR

10’’

3 2

148’’

GUIDE KEY

EXPANDO OVER SHIELD OVER CONDUCTORS

CONN 3

150’’

PWR–3

B

5V

CABLE RUN

A

0V

BLACK EXPANDO

148 GROUND 2

B

1

36 AWG TINNED COPPER BRAID

FRONT VIEW OF SOCKETS

F

2

3 TWISTED PAIRS 20 AWG 19 /32 600V BLACK PTFF INS

SHELL/KEY ASSEMBLY POSITION

D

2

SLEEVE TYPE

A

5V

BRAIDED SHIELD

G

1

0V

WIRE TYPE & COLOR

C

5V 1

2 CONN 2

TWISTED PAIR #

E

1

SIGNAL NAME

D

CONN 1

SOCKET NO.

EXPANDO OVER SHIELD OVER CONDUCTORS

CONNECTOR LABEL

A

BLK1 BLK2 BLK3 GRN/YEL4

(1) 16 AWG (1) 16 AWG (1) 16 AWG (1) 16 AWG

BLACK 9 BLACK 10

(1) 18 AWG (1) 18 AWG

4

TWISTED PAIRS 20 AWG 19/ 32 600V BLACK PTFE INS

5 1

SHIELDED 20 AWG PTFE BLACK WIRE JUMPERS

BLACK EXPANDO

36 AWG TINNED COPPER BRAID

20–29S TYP POTTED BACKSHELL SEE NOTE 5

A

4. TERMINATION OF SHIELD TO CONDUCTOR & SHIELD TO SHIELD SHIELD CONDUCTOR 18 AWG BLACK SOLDERED CONNECTION COVER W/SHRINK TUBING SLEEVING CONDUCTORS

CONDUCTORS SHIELD SLEEVING

SOLDERED CONNECTION BETWEEN SHIELDS

5. HEIGHT OF POTTED CONNECTORS

SLEEVING 1.75’’ MAX

BRAIDED SHIELD SLEEVE TUBING

DETAIL ”A”

BRAIDED SHIELD

DETAIL ”B”

TAPE WRAP TRUNK TO LEGS

EE-3287-321-001

13. CABLES

13–26 NOTES

MARO2P10203703E

13. CABLES

13–27

MARO2P10203703E

Figure 13–13. Axes 4, 5, and 6 Power Harness

5V

1

2 0V

2 1

5V

CONN 6

36 AWG TINNED COPPER BRAID

2 POS SOC

0V

2 POS SOC

D4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TWISTED WIRE TYPE BRAIDED PAIR # & COLOR SHIELD

4D 4*D 4RQ 4*RQ 5D 5*D 5RQ 5*RQ 6D 6*D 6RQ 6*RQ

SLEEVE DESCRIP

6 7 8

6 TWISTED PAIRS 20 AWG 19/ 32 UL1199 600V BLACK PTFE

36 AWG TINNED COPPER BRAID

2 POS SOC

1’’ CONN 6

BLACK EXPANDO

12’’ 13’’

15 POS PIN

CONNECTOR LABEL

14’’ CONNECT SHIELD SEE NOTE 4

1

BLACK

1

4U

2

BLACK

2

4V

3

BLACK

3

4W

4

BLACK

4

5

BLACK

5

4G

WIRE TYPE & COLOR

6

BLACK

6

BLACK

7

5U

8

BLACK

8

5V

9

BLACK

9

5W

GRN/YEL

10

BLACK

10

5G

11

BLACK

11

5BKP

12

BLACK

12

5BKM

13’’

14’’ A4

GRN/YEL

7

4BKM

12’’ 15 POS PIN

18 AWG 19/30 UL1199 600V BLACK PTFE

4BKP

SLEEVE DESCRIP

BLACK EXPANDO

12’’ 9 POS PIN

13’’

EXPANDO OVER CONDUCTORS

A4

SIGNAL NAME

PULSE 5

PULSE 5

6’’ LG BRANCH BATT 5

2 PIN BATT 5

CONNECTOR LABEL

PIN NO. A1 A2 A3 B3 A4 B4 A5 A6 B6 1 2

204’’

202’’

PULSE 6

(2) 18AWG WIRES CONNECTED TO THE BRAID

SOC/ PIN CONDUCTOR NUMBER NO.

1 8 5 6 12 13 14 10 N/C 1 2

202’’

30’’

CONNECTOR LABEL

PIN NO.

TYP 5MM

D4

9

SHIELD SHIELD

2 PIN

4’’

4 5

BATT 4

6’’ LG BRANCH

CONN 5

0’’

SIGNAL NAME

PULSE 4

BATT 4

1’’

PULSE 4

204’’

202’’

CONN 4

0’’

CONNECTORSOC/ PIN LABEL NO.

1 8 5 6 12 13 14 10 N/C 1 2

GROUND

GROUND WIRE #8 AWG 168/30 TINNED COPPER FLEXIBLE POLYETHYLENE JACKET GREEN WITH TWO CO–EXTRUDED YELLOW STRIPES 180 APART BRAND REX #XP0845168–165

BLACK EXPANDO

3 2

PIN NO.

CONNECTOR LABEL

210’’

EXPANDO OVER SHIELD OVER CONDUCTORS

1 0V

3 TWISTED PAIRS 20 AWG 19/ 32 UL1199 600V BLACK PTFE

SLEEVE DESCRIP

35’’

SPLIT POINTS SPLICE SHIELDS APPLY TAPE WRAP SEE NOTE 4

PULSE 6

6’’ LG BRANCH

165’’

BATT 6

2 PIN

PWR/PULSE 4–6 EE–3287–322–001 MFG NAME REV

130’’

BATT 6

24’’ LENGTH OUTSIDE HARNESS

14’’ B4

13

EXPANDO OVER CONDUCTORS

5V

1 2

CONN 5

TWISTED WIRE TYPE BRAIDED PAIR # & COLOR SHIELD

GROUND

CONN 4

SIGNAL NAME

EXPANDO OVER SHIELD OVER CONDUCTORS

CONNECTORSOC/ PIN LABEL NO.

DISCARD RETAINING SCREWS SUPPLIED WITH BACKSHELL AND REPLACE WITH ITEM 13. USE O–RING ITEM 14 AS RETAINER FOR CONNECTOR MTG SCREWS (INTERNAL TO SHELL). NOTE: SCREW THREAD SHOULD NOT EXCEED 5mm BEYOND CONNECTOR FACE.

CONNECTOR LABEL

TYP 17–PLACES 202’’

PWR 4

204’’

PWR 5

PWR 5

14 15

KEY

202’’

EXTRACTION TOOL: AMP 455822–2

204’’

PWR 6 PWR 6

CONNECTOR LABEL

B4

SOC/ PIN CONDUCTOR NUMBER NO.

SIGNAL NAME

1

BLACK

13

6U

2

BLACK

14

6V

3

BLACK

15

4

BLACK

16

5

BLACK

17

6BKP

6

BLACK

18

6BKM

7

KEY

8

KEY

9

WIRE TYPE & COLOR

4RQ

4*RQ 4D 4*D 6VA 0VA SHIELD 6VA 0VA

SIGNAL NAME 0V 5V 5RQ

5*RQ 5D 5*D 6VA 0VA SHIELD 6VA 0VA

SIGNAL NAME 0V 5V 6RQ

6*RQ 6D 6*D 6VA 0VA SHIELD 6VA 0VA

SLEEVE DESCRIP

GRN/YEL

TWISTED PAIR #

3 PAIRS 20 AWG 19/ 32 UL1199 600V PTFE

1 5 4

BRAIDED SHIELD

SLEEVE TYPE

36 AWG TINNED COPPER BRAID

BLACK EXPANDO

BRAIDED SHIELD

SLEEVE TYPE

36 AWG TINNED COPPER BRAID

BLACK EXPANDO

BRAIDED SHIELD

SLEEVE TYPE

36 AWG TINNED COPPER BRAID

BLACK EXPANDO

SHIELDED 20 AWG PTFE BLACK WIRE JUMPERS

TWISTED PAIR #

WIRE TYPE & COLOR 3 PAIRS 20 AWG 19/ 32 UL1199 600V PTFE

2 7 6

SHIELDED 20 AWG PTFE BLACK WIRE JUMPERS

TWISTED PAIR #

WIRE TYPE & COLOR 3 PAIRS 20 AWG 19/ 32 UL1199 600V PTFE

3 9 8

SHIELDED 20 AWG PTFE BLACK WIRE JUMPERS

BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

18 AWG TINNED PTFE

EXPANDO

WIRE TYPE & COLOR

CONDUCTOR SOC/ NUMBER PIN NO.

BLACK

6W 6G

0V 5V

1 2 3 4 5 6 1 2 3 4 5 6 A1 A2 A3 B1 B2 B3

202’’ PWR 4

SIGNAL NAME

SIGNAL NAME 4U 4V 4W 4G 4BKP 4BKM 5U 5V 5W 5G 5BKP 5BKM 6U 6V 6W 6G 6BKP 6BKM

WIRE TYPE & COLOR BLACK BLACK BLACK GRN/YEL BLACK BLACK BLACK BLACK BLACK GRN/YEL BLACK BLACK BLACK BLACK BLACK GRN/YEL BLACK BLACK

SLEEVE TYPE

BLACK EXPANDO

19/30 COPPER

TERMINATION OF SHIELD TO CONDUCTOR AND SHIELD TO SHIELD

18 AWG 19/30 UL1199 600V BLACK PTFE

SHIELD CONDUCTOR 14 AWG BLACK SOLDERED CONNECTION COVER W/SHRINK TUBING SLEEVING

CONDUCTORS

BRAIDED SHIELD SLEEVE TUBING

DETAIL ”A”

CONDUCTORS SHIELD SLEEVING

SOLDERED CONNECTION BETWEEN SHIELDS SLEEVING

BRAIDED SHIELD

TAPE WRAP ,TRUNK TO LEGS

DETAIL ”B”

EE-3287-322-001

13. CABLES

13–28 NOTES

MARO2P10203703E

13. CABLES

13–29

MARO2P10203703E

Figure 13–14.

Purge Control Cable

EE-3287-323-001

13. CABLES

13–30 NOTES

MARO2P10203703E

13. CABLES

13–31

MARO2P10203703E

Figure 13–15. Six Axis Battery Harness

202’’ 204’’ TAPE WRAPPED SPLIT POINT SHIELDS SPLICED SEE DET 4B

BATT AXIS 4

CONNECTOR LABEL

SOC

BATT

202’’ 204’’

160’’

BATT

202’’ 204’’

TAPE WRAPPED SPLIT POINT SHIELDS SPLICED SEE DET 4B

15 PIN MINI 0’’

1’’

3’’

5’’

S4

BATT

CONNECTOR LABEL

S4

PIN NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SIGNAL NAME 6V–1 0V–1 6V–2 0V–2 6V–3 0V–3 6V–4 0V–4 6V–5 0V–5 6V–6 0V–6 SHIELD

1 2 3

4 5

BRAIDED SHIELD

2 POS SOC

CONNECTOR LABEL

TWISTED PAIRS 20 AWG 19/ 32 UL 1199 600V PTFE BLACK

BATT AXIS 3

AXIS 1

140’’ 2 POS SOC

BATT AXIS 2

TYP. END POINT OF SHIELD & SLEEVE SHIELD STOPS BEFORE SLEEVE.

6

EXTRACTION TOOL: AMP # 455822–2 36 AWG TINNED COPPER BRAID

6V–5

2

0V–5

1

6V–6

2

0V–6

3 PAIRS 20 AWG 19/ 32 UL 1199 600V PTFE BLACK

36 AWG TINNED COPPER BRAID

105’’ BATT AXIS 2

BATT

WIRE TYPE & COLOR

1

BRAIDED SHIELD

6

AXIS 6

TYP. END POINT OF SHIELD/JACKET

SEE NOTE 4, DETAIL A FOR SHIELD CONNECTION

TWISTED PAIR NUMBER

0V–4

WIRE TYPE & COLOR

EXTRACTION TOOL: AMP # 455822–2

80’’

INTRINSICALLY SAFE

EE–3287–324–001 REV –– MANUF

2

SOC

105’’

TYP 7 PLACES 0

6V–4

5

AXIS 5

BATT AXIS 6

2 POS SOC

1

TWISTED PAIR NUMBER

SOC

BLUE EXPANDO OVER BRAID SHIELD OVER CONDUCTORS, TYP.

BATT AXIS 1

SIGNAL NAME

4

AXIS 4

BATT AXIS 5

SOC/ PIN NO.

SOC/ PIN NO.

SIGNAL NAME

1

6V–1

2

0V–1

1

1

6V–2

2

0V–2

1

6V–3

2

0V–3

2

BATT AXIS 3

TWISTED PAIR NUMBER

WIRE TYPE & COLOR

BRAIDED SHIELD

3 PAIRS 20 AWG 19/ 32 UL 1199 600V PTFE BLACK

36 AWG TINNED COPPER BRAID

3

6 18AWG BLK

TERMINATION OF SHIELD TO CONDUCTOR AND SHIELD TO SHIELD SHIELD CONDUCTOR 14 AWG BLACK SOLDERED CONNECTION COVER W/SHRINK TUBING SLEEVING

CONDUCTORS

BRAIDED SHIELD SLEEVE TUBING DETAIL ”A”

SOLDERED CONNECTION BETWEEN SHIELDS

CONDUCTORS SHIELD SLEEVING

SLEEVING

BRAIDED SHIELD DETAIL ”B”

TAPE WRAP TRUNK TO LEGS

EE-3287-324-001

13. CABLES

13–32 NOTES

MARO2P10203703E

13. CABLES

13–33

MARO2P10203703E

Figure 13–16. Purge Flow Switch Arm Cable

REV LEVEL

CABLE VERSION EE–3287–340–001

A

DIM. A 18 IN 457 MM

PG

NO

A

0 2’’ CONNECTOR LABEL FS1

PIN NO. 1 2

WIRE COLOR BLUE BLACK

SIGNAL NAME FS1/NO FS1/C

FLOW SWITCH

SLEEVE COLOR & MAT’L LT. BLUE EXPANDO

2 PIN

FS1 REV. EE–3287–340–001 MANUF. NAME

CUT OFF SPARE RED WIRE

1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. SEE LENGTH CHART FOR REV LEVEL DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION.

EE-3287-340-001

13. CABLES

13–34 NOTES

MARO2P10203703E

13. CABLES

13–35

MARO2P10203703E

Figure 13–17. Solenoid Cable

REV LEVEL B

CABLE VERSION

DIM. A 18 IN 457 MM

EE–3287–348–001

PG

CONNECTOR LABEL

PIN NO.

WIRE COLOR

SIGNAL NAME

RED BLACK

PSOL–1 PSOL–2

NO 1 2

SOL1

A

0 9” 2”

CONNECTOR LABEL

INTRINSICALLY SAFE

2 PIN

SOL1

SOL REV. EE–3287–348–XXX MFG. NAME

SOL1 SOL1

SOC/ PIN NO. 1 2 3

WIRE COLOR

SIGNAL NAME

RED BLACK NC

PSOL–1 PSOL–2

SEE NOTE 1 NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. SEE LENGTH CHART FOR REV LEVEL DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION.

EE-3287-348-001

13. CABLES

13–36 NOTES

MARO2P10203703E

13. CABLES

13–37

MARO2P10203703E

Figure 13–18. Purge Pressure Switch Cable

REV LEVEL

A

CABLE VERSION EE–3044–345–001

DIM. A

PG

18 IN 457 MM

NO

A 0

2’’ 9’’ PS1 N.O.

2’’ CONNECTOR LABEL

PIN NO.

WIRE COLOR

SIGNAL NAME

SLEEVE COLOR & MAT’L

PS1

1 2

RED BLACK

PS1–P PS1–N

BLUE PVC

INTRINSICALLY SAFE

2 PIN

PRES SW REV. EE–3044–345–XXX MFG. NAME

PS1

PS1 COM

CONNECTOR LABEL

WIRE COLOR

SIGNAL NAME

PS1 N.O.

RED

PS1–P

PS1 COM

BLACK

PS1–N

ASSEMBLY NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. 2.

SYMBOL DENOTES DIMENSIONS IN INCHES.

EE-3287-345-001

13. CABLES

13–38 NOTES

MARO2P10203703E

13. CABLES

13–39

MARO2P10203703E

Figure 13–19. R-J2 Robot Bypass Switch Arm Cable (Optional)

CABLE VERSION EE–3185–356–001

DIM. A

PG

60 IN 1524 MM

NO

A

0 CONNECTOR LABEL

BYPASS

PIN NO. 1 2 3 4 5 6 7 8 9

WIRE COLORS BLACK BLUE

SIGNAL NAME

SLEEVE COLOR & MAT’L

1’’

COM N.O. SHIELD AND BLACK EXPANDO

SHIELD

INTRINSICALLY SAFE

9 PIN

BYPASS

BYPASS REV. EE–3185–356–XXX

EE–3185–356–XXX MFG. NAME

3.00” RED

INTRINSICALLY SAFE

BYPASS REV.

3.00”

N.C.

BYPASS

MFG. NAME

3.00” SEE NOTE 1

3.00”

TYP. NO SHIELD CONNECTION AT THIS END

NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION.

R-J2 Robot Bypass Switch Arm Cable EE-3185-356-001

13. CABLES

13–40 NOTES

MARO2P10203703E

Page41

14 OPENERS AND OPTIONS

14

MARO2P10203703E

OPENERS AND OPTIONS 14–1

Topics In This Chapter

Page

Openers and Options

14–1 14–3 14–51 14–81

The following section includes schematics and cable drawings. . . . . . . . . . . . . . .  P-10 door opener and P-15 hood and deck opener. . . . . . . . . . . . . . . . . . . . .  Integral Pump Control (Option) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Brake Release Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14. OPENERS AND OPTIONS

14–2 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS MARO2P10203703E

14–3 Figure 14–1. P-10 Door Opener Electrical Layout

UPPER LEVEL BOM DOOR OPENER INTERCONNECTION CABLES FOR US EE–3186–101–105 EE–3186–101–110 EE–3186–101–115 EE–3186–101–125 EE–3186–101–135 EE–3186–101–145 EE–3186–101–155

R–J2 CONTROLLER CONNECTIONS

DOOR OPENER ARM CABLES UPPER LEVEL BOM EE–3186–301–001

PURGED AXIS 3 CAVITY

OUTER ARM a6/3000

DC/DC EE–3044–401

A06B–0128–B175

PWR INPUT UNIT AXIS 2

EE–3044–401

INNER ARM a6/3000 A06B–0128–B175

MOTOR/BRAKE

JF9 INNER ARM JF10 OUTER ARM

PURGE CONTROL 24VPG 0V PG UNIT

3

SENSOR OUTPUT

ISRR

EOAT1 EOAT2

BYPASS OUTPUT

ISRR

EOAT5 EOAT6

PURGE CONTROL ISTB

3 4 7 8

PURGE BARRIER

6V BATTERY

0V

PSB1 PSB2 FSB1 FSB2 ISB2–3 ISB2–4

3 3

ENCODER SIGNALS (17.4 MM DIA) EE–3186–112–105 EE–3186–112–110 EE–3186–112–115 EE–3186–112–125 EE–3186–112–135 EE–3186–112–145 EE–3186–112–155

INTRINSICALLY SAFE (17.4 MM DIA) EE–3186–115–105 EE–3186–115–110 EE–3186–115–115 IS EE–3186–115–125 GND EE–3186–115–135 EE–3186–115–145 EE–3186–115–155 GROUND CABLE (6.8MM) EE–3287–116–105 EE–3287–116–110 EE–3287–116–115 EE–3287–116–125 EE–3287–116–135 EE–3287–116–145 EE–3287–116–155

NOTE: I.S. GROUND IS A SEPARATE INTRINSICALLY SAFE GROUND AT THE PURGE CONTROL UNIT

PG29

PULSE AD1 AD4

EE–3186–314–001

AE1 AE4

EE–3186–315–001

AF1 AF4

EE–3186–316–001

REFERENCE SOL VALVE SHOWN ON MECH BOM

BYPASS EE–3185–356–001

OUTER ARM

EE–3186–351–001

SOL2 PURGE VALVE

EE–3186–323–001 LINK

REFERENCE PRES SW SHOWN ON MECH BOM

PS2 SWITCH PRESSURE

FLOW SW ASSY

FS2 FLOW SWITCH

EE–3066–322–001

EE–3186–340–001

AN1 AN4

AUX AXIS BD

EE–3186–313–001

AM1AM4

6

JF8 RAIL

PG29

EE–3186–312–001

AL1 AL4

BKP BKM

AB1 AB4 AC1 AC4

EE–3186–319–001

AK1 AK4

MOTOR POWER (16.9 MM DIA.) EE–3186–111–105 EE–3186–111–110 EE–3186–111–115 EE–3186–111–125 EE–3186–111–135 EE–3186–111–145 EE–3186–111–155

4

EE–3186–311–001

AJ1 AJ4

4

AA1 AA4

AH1 AH4

4

AG1 AG4

AMP 5 AXIS 1 RAIL AMP 6 (L) L AXIS 2 INNER ARM TERMS AMP 6 (M) M AXIS 3 OUTER ARM TERMS PURGE BD

EE–3186–333–001 MAGNET SWITCH SEE NOTE 1

CRANK

INNER INTERNAL ARM GND WIRE EE–3158–316–001 GND WIRES (2) EE–3158–316–001 (2) EE–3158–316–002 AXIS 3 AXIS 2

PG29 AXIS 1

AXIS 1 RAIL a6/3000 A06B–0128–B675–0008

PG9

NOTES 1. CABLES EE–3186–319–001 AND EE–3186–333–001 NEED TO BE SOLDERED TO THE BREAKAWAY JOINT PINS AS SHOWN HERE SOLDER AND SOLDER AND COVER W/ SHRINK COVER W/ SHRINK EE-3186-319-001

2. SPARE SPRING CONTACT PART NUMBER HDWMO0000046590

EE-3186-333-001

EE-3186-001

14. OPENERS AND OPTIONS

14–4 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS MARO2P10203703E

14–5 Figure 14–2. P-10 Door Opener Euro Electrical Layout

UPPER LEVEL BOM DOOR OPENER INTERCONNECTION CABLES FOR US EE–3186–102–105 EE–3186–102–110 EE–3186–102–115 EE–3186–102–125 EE–3186–102–135 EE–3186–102–145 EE–3186–102–155

R–J2 CONTROLLER CONNECTIONS

DOOR OPENER ARM CABLES UPPER LEVEL BOM EE–3186–301–001

PURGED CAVITY

AXIS 3 OUTER ARM a6/3000 A06B–0128–B175

DC/DC EE–3044–401 PWR INPUT UNIT

AXIS 2 INNER ARM a6/3000 A06B–0128–B175 MOTOR/BRAKE

JF9 INNER ARM JF10 OUTER ARM

PURGE CONTROL 24VPG 0V PG UNIT

3

SENSOR OUTPUT

ISRR

EOAT1 EOAT2

BYPASS OUTPUT

ISRR

EOAT5 EOAT6

3 4 7 8

PSB1 PSB2 FSB1 FSB2

PURGE CONTROL ISTB

PURGE BARRIER

6V BATTERY

0V

ISB2–3 ISB2–4

3 3

ENCODER SIGNALS (17.4 MM DIA) EE–3186–112–105 EE–3186–112–110 EE–3186–112–115 EE–3186–112–125 EE–3186–112–135 EE–3186–112–145 EE–3186–112–155

PG29

PULSE AD1 AD4

EE–3186–314–001

AE1 AE4

EE–3186–315–001

AF1 AF4

EE–3186–316–001

REFERENCE SOL VALVE SHOWN ON MECH BOM JUMPER REMOVED HR2151 PRES & FLOW SWITCHES

INTRINSICALLY SAFE (17.4 MM DIA) EE–3186–115–105 EE–3186–115–110 EE–3186–115–115 IS EE–3186–115–125 GND EE–3186–115–135 EE–3186–115–145 EE–3186–115–155 GROUND CABLE (6.8MM) EE–3287–116–105 EE–3287–116–110 EE–3287–116–115 EE–3287–116–125 EE–3287–116–135 EE–3287–116–145 EE–3287–116–155

NOTE: I.S. GROUND IS A SEPARATE INTRINSICALLY SAFE GROUND AT THE PURGE CONTROL UNIT

BYPASS EE–3185–356–001

SOL2 PURGE VALVE PR

OUTER ARM

EE–3186–351–001

OP4 FL 5 6

EE–3186–348–001 EE–3186–340–001 4 5 6 7

7

LINK AN1 AN4

AUX AXIS BD

EE–3186–313–001

AM1AM4

6

JF8 RAIL

PG29

EE–3186–312–001

AL1 AL4

BKP BKM

AB1 AB4 AC1 AC4

EE–3186–319–001

AK1 AK4

MOTOR POWER (16.9 MM DIA.) EE–3186–121–105 EE–3186–121–110 EE–3186–121–115 EE–3186–121–125 EE–3186–121–135 EE–3186–121–145 EE–3186–121–155

4

EE–3186–311–001

AJ1 AJ4

4

AA1 AA4

AH1 AH4

4

AG1 AG4

AMP 5 AXIS 1 RAIL AMP 6 (L) L AXIS 2 INNER ARM TERMS AMP 6 (M) M AXIS 3 OUTER ARM TERMS PURGE BD

EE–3186–333–001 MAGNET SWITCH SEE NOTE 1

CRANK

INNER INTERNAL ARM GND WIRE EE–3158–316–001 GND WIRES (3) EE–3186–326–001 (1) EE–3186–326–002 AXIS 3 AXIS 2

PG29 AXIS 1 RAIL a6/3000 A06B–0128–B675–0008

PG9

NOTES 1. CABLES EE–3186–319–001 AND EE–3186–333–001 NEED TO BE SOLDERED TO THE BREAKAWAY JOINT PINS AS SHOWN HERE SOLDER AND SOLDER AND COVER W/ SHRINK COVER W/ SHRINK EE-3186-319-001

AXIS 1

2. SPARE SPRING CONTACT PART NUMBER HDWMO0000046590

EE-3186-333-001

EE-3186-002

14. OPENERS AND OPTIONS

14–6 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS MARO2P10203703E

14–7 Figure 14–3. P-200 Plus P-10 or P-15 Controller Bypass Package

TYPICAL INTRINSICALLY SAFE CABLE ROUTING SHIELD CONNECTS TO INTRINSICALLY SAFE GROUND

2

3

4

1

P–10 or P–15 PARTS SENSE

2ND TRIGGER

TRIGGER

FLOW

I/P

I/P POWER

P–10 or P–15 BYPASSLS KFD2–SR–Ex1.W.LB

W112A

BYPASS LS KFD2–SR–Ex1.W.LB

DELTRON

EE–3112–600

24V @ 1.2A

EE–3112–600–001

ISTB TERMINAL STRIP

ISB2 ISB1 ISB3 ISB10

1’’

5

SOLENOID

OVP

SOLENOID

PS

IDEC IBRC

INTRINSICALLY SAFE GROUND CONNECTION P–200 CONTROLLER BACKPANEL UPPER LEFT CORNER

IS GND NOTES: FOR CABLE WIRING, SEE EE–3287–500 FOR CONTROLS WIRING, SEE EE–3287–500 AND APPLICATION PACKAGE MAINTAIN 50MM SPACING I.S. WIRING AND ALL OTHER CIRCUITS, INCL EE–3112–600

EE-3287-513

14. OPENERS AND OPTIONS

14–8 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS MARO2P10203703E

14–9 Figure 14–4. P-10 or P-15 Power Connection Cable

REV LEV.

CABLE VERSION

DIM (IN – MM)

PG

C

EE–3186–111–105

295

IN

7500

MM

YES

C

EE–3186–111–110

492

IN

12500

MM

YES

C

EE–3186–111–115

689

IN

17500

MM

YES

C

EE–3186–111–125

1083

IN

27500

MM

YES

C

EE–3186–111–135

1476

IN

37500

MM

YES

C

EE–3186–111–145

1870

IN

47500

MM

YES

C

EE–3186–111–155

2264

IN

57500

MM

YES

SEE NOTE 3

A

CONNECTOR LABEL

0 CONTROLLER CONNECTING POINT BKP4

BKM4

WIRE COLOR/ NUMBER RED/1 BLACK/3 WHITE/2 WHITE/4

WIRE TAG

65’’

SIGNAL NAME

320’’ 16’’

TYP 3 PL

1BKP

BKP4

1BKM

BKP4

2BKP

BKM4

BKM4

2BKM

BKP4

RED/5

BKP4

3BKP

BKM4

GREEN/6

BKM4

3BKM

RED/1 WHITE/2

BKP4

RED/5

BKM4

GREEN/6

4

BLACK/3

10

WHITE/4

19’’ 11

5

6

1V

CONNECTOR LABEL 12 POS SOC

1W OPENER POWER

1G 2U L

OPENER POWER

EE–3186–111–XXX

EE–3186–111–XXX

MFG. NAME

MFG. NAME

REV

AB1

INNER

REV

2V L

12 POS SOC

2W L

CONTROLLER CONNECTING POINT AMPLIFIER 5

AMPLIFIER 6

AMPLIFIER 6

WIRE COLOR/ NUMBER RED/7 WHITE/8 BLACK/9 GREEN/10 RED/11 WHITE/12 BLACK/13 GREEN/14 RED/15 WHITE/16 BLACK/17 GREEN/18

WIRE TAG

SIGNAL NAME

1U

1U

1V 1W 1G

1V

2U

2V 2W 2G 3U 3V 3W 3G

TYP SEE NOTE 1

2G L 3U M

9

3V M

TYP

2

2U

L

2V

L

2W

L

2G

M

3U

M

3V

M

3W

M

3G

TYP

3

1

7

10 TYP

INNER AB1

AC1

OUTER

8

CABLE SPECIFICATION 12–#14 & 6–#18 AWG CONDUCTORS HYPALON JACKET 1’’TYP. MAX CABLE O.D.= 16.9 MM (0.665”) P/N=T–13038

1G L

TWO PLACES

3W M 3G M

1W

AA1

AA1

RAIL 1U

TYP

RAIL

6’’ TYP

1’’ TYP

12 POS SOC

CONNECTOR LABEL

OUTER AC1

ASSEMBLY NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. 2.

SOC/ PIN NO. 1 2 3 4 5 6 7 8 9 10 11 12

SOC/ PIN NO. 1 2 3 4 5 6 7 8 9 10 11 12

SOC/ PIN NO. 1 2 3 4 5 6 7 8 9 10 11 12

WIRE COLOR/ NUMBER

SIGNAL NAME

RED/7 WHITE/8 BLACK/9 GREEN/10

1U 1V 1W 1G

RED/1 WHITE/2

1BKP 1BKM

18 AWG

KEY PLUG

WIRE COLOR/ NUMBER RED/11 WHITE/12 BLACK/13 GREEN/14

BLACK/3 WHITE/4

SIGNAL NAME 2U 2V 2W 2G

2BKP 2BKM

18 AWG

KEY PLUG

WIRE COLOR/ NUMBER

SIGNAL NAME

RED/15 WHITE/16 BLACK/17 GREEN/18

3U 3V 3W 3G

RED/5 GREEN/6

3BKP 3BKM

18 AWG

DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL LENGTH DIMENSIONS + 1/2 IN.

3. FOR CABLE EE–3186–111–105, USE 200 INCHES FOR LEFT PG LOCATION.

EE-3186-111-105 thru 155

14. OPENERS AND OPTIONS

14–10 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS MARO2P10203703E

14–11 Figure 14–5. P-10 or P-15 European Shielded Power Connection Cable E60766

REV LEV.

CONTROLLER CONNECTING POINT

WIRE COLOR/ NUMBER BLUE/17

BKP4

BLUE/18

BKM4

BLUE/19 BLUE/20

SIGNAL NAME

WIRE TAG

1BKP

BKP4

1BKM

0

2BKP

BKM4

CABLE VERSION

DIM (IN – MM) 7500

A

EE–3186–121–105

295

IN

MM

YES

A

EE–3186–121–110

492

IN

12500

MM

YES

A

EE–3186–121–115

689

IN

17500

MM

YES

A

EE–3186–121–125

1083

IN

27500

MM

YES

A

EE–3186–121–135

1476

IN

37500

MM

YES

A

EE–3186–121–145

1870

IN

47500

MM

YES

A

EE–3186–121–155

2264

IN

57500

MM

YES

SEE NOTE 3

CONNECTOR LABEL

RED/13

BKP4

3BKP

BKM4

WHITE/14

BKM4

3BKM

108’’

AA1

320’’

65’’

16’’

BKP4 BKM4 BKP4 BKM4

TYP 3 PL 4

BLUE/17 BLUE/18 BLUE/19 BLUE/20

2’’

CONNECTOR LABEL

AA1

2’’

RAIL

1V OPENER POWER EE–3186–121–XXX MFG. NAME REV

OPENER POWER EE–3186–121–XXX MFG. NAMEREV

AB1

INNER INNER

2V L

12 POS SOC

2W L

AMPLIFIER 5

AMPLIFIER 6

AMPLIFIER 6

RED/1 WHITE/2 BLACK/3

3U M

SIGNAL NAME

1U

3V M

TYP

2

1U

GREEN/4

1V 1W 1G

RED/5 WHITE/6 BLACK/7 GREEN/8 RED/9 WHITE/10 BLACK/11 GREEN/12

2U

L

2U

2V 2W 2G 3U 3V 3W 3G

L

2V

L

2W

L

2G

M

3U

M

3V

M

3W

M

3G

TYP

3

1

AC1

OUTER

8 12 POS SOC

10 TYP

BLUE/18

1BKP 1BKM

18 AWG

KEY PLUG

6’’ TYP

1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. 2.

DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL LENGTH DIMENSIONS + 1/2 IN.

WIRE COLOR/ NUMBER

SIGNAL NAME 2U 2V 2W 2G

RED/5 WHITE/6 BLACK/7 GREEN/8

BLUE/19 BLUE/20

2BKP 2BKM

18 AWG

KEY PLUG

1’’ TYP

CONNECTOR LABEL

ASSEMBLY NOTES: CUT OFF BLACK/15 AND GREEN/16

7

CABLE SPECIFICATION 16–#14 & 4–#18 AWG CONDUCTORS SHIELDED W/HYPALON JACKET 1’’TYP. MAX CABLE O.D.= 16.9 MM (0.665”) P/N=T–14847

1V 1G

TWO PLACES

3W M 3G M

1W

AB1

TYP SEE NOTE 1 9

2G L

SOC/ PIN NO. 1 2 3 4 5 6 7 8 9 10 11 12

12 POS SOC

1G

WIRE TAG

BLUE/17

WHITE/14

2U L

WIRE COLOR/ NUMBER

GREEN/4

1U 1V 1W 1G

6

1W

CONTROLLER CONNECTING POINT

RED/1 WHITE/2 BLACK/3

SIGNAL NAME

RED/13

1U

TYP

5

WIRE COLOR/ NUMBER

10

19’’ 11

SOC/ PIN NO. 1 2 3 4 5 6 7 8 9 10 11 12

RAIL

A

2BKM

BKP4

PRODUCTION RELEASE11/96 BWBF

PG

OUTER AC1

SOC/ PIN NO. 1 2 3 4 5 6 7 8 9 10 11 12

WIRE COLOR/ NUMBER

SIGNAL NAME

RED/9 WHITE/10 BLACK/11 GREEN/12

3U 3V 3W 3G

RED/13

3BKP 3BKM

WHITE/14

18 AWG

CUT OFF BLACK/15 AND GREEN/16

3. FOR CABLE EE–3186–111–105, USE 200 INCHES FOR LEFT PG LOCATION.

EE-3186-121-105 thru 155

14. OPENERS AND OPTIONS

14–12 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS MARO2P10203703E

14–13 Figure 14–6. P-10 or P-15 Axis 1 Rail Power/Brake Cable

SEC. B–B REV LEVEL

CABLE VERSION

B

EE–3186–311–001

DIM. A

PG

60 IN 1524 mm

NO

A

CABLE RUN

B C

10SL–3S GUIDE KEY

A

0

10’’ 8

3.0”

9 LABEL

BRAKE AXIS 1

BRAKE AXIS 1

SOC/ PIN NO.

WIRE COLOR/ NUMBER

WIRE GAGE

SIGNAL NAME

A

BLK

18 AWG

1BKP

B

BLK

18 AWG

1BKM

C

2 SIGNAL NAME

1

BLK

14 AWG

2

BLK

14 AWG

1V

3

BLK

14 AWG

1W

4

GRN/YEL

14 AWG

1G

4

5

1U

B

3.0” 1’’

6

B 6

AA4 AXIS 1 PWR EE–3186–311–001 MANUF. REV.

12 POS PIN

5

AA4

3

7

POWER AXIS 1

LABEL

7

TYP.

8 9

BLK

18 AWG

1BKP

10

BLK

18 AWG

1BKM

1

11

HEAT SHRINK

2

10

POWER AXIS 1

11 12

KEY PLUG

A

SOC/ PIN NO.

WIRE COLOR/ NUMBER

WIRE GAGE

SIGNAL NAME

A

BLK

14 AWG

B

BLK

14 AWG

1V

C

BLK

14 AWG

1W

D

GRN/YEL

14 AWG

1G

1U

A

NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. 2. SEE LENGTH CHART FOR CABLE VERSION REVISION LEVEL. 3.

SEC. A–A 18–10S

DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION.TOL +/– 0.5’’

4.WIRE SPECIFICATION NOT SHOWN ON BOM 14 AWG PTFE TEFLON, UL1199 BLACK, FINE STRANDED 18 AWG PTFE TEFLON, UL1199 BLACK, FINE STRANDED

CABLE RUN

C

WIRE GAGE

B

WIRE COLOR

D

PIN NO.

A

LABEL

GUIDE KEY

EE-3186-311-001

14. OPENERS AND OPTIONS

14–14 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS MARO2P10203703E

14–15 Figure 14–7. P-10 or P-15 Axis 2 Inner Arm Power/Brake Cable

REV LEVEL

CABLE VERSION

B

EE–3186–312–001

DIM. A 24 IN 610 mm

PG

SEC. B–B

NO

C B

CABLE RUN

A

GUIDE KEY

0

A 10’’ 8

3.0”

9

BRAKE AXIS 2

LABEL

BRAKE AXIS 1

SOC/ PIN NO.

WIRE COLOR/ NUMBER

WIRE GAGE

SIGNAL NAME

A

BLK

18 AWG

2BKP

B

BLK

18 AWG

2BKM

C

2 3 WIRE COLOR

WIRE GAGE

BLK

14 AWG

2

BLK

14 AWG

2V

3

BLK

14 AWG

2W

14 AWG

2G

GRN/YEL

B 6

7

2U AB4 AXIS 2 PWR EE–3186–312–001 MANUF. REV.

12 POS PIN

POWER AXIS 2

LABEL

5 6

11

7 8 18 AWG

2BKP

10

BLK

18 AWG

2BKM

11

KEY PLUG

12

POWER AXIS 2

HEAT SHRINK

NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL.

A

WIRE SIGNAL GAGE NAME

A

BLK

14 AWG

B

BLK

14 AWG

2V

C

BLK

14 AWG

2W

14 AWG

2G

D BLK

9

2

1

WIRE COLOR/ NUMBER

GRN/YEL

2U

A

2. SEE LENGTH CHART FOR CABLE VERSION REVISION LEVEL. 3. 4.

DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. TOL +/– 0.5’’ WIRE SPECIFICATION NOT SHOWN ON BOM

SEC. A–A 20–15S

CABLE RUN

14 AWG PTFE TEFLON, UL1199 BLACK, FINE STRANDED 18 AWG PTFE TEFLON, UL1199 BLACK, FINE STRANDED

C

AB4

SOC/ PIN NO.

D

4

B

10

1’’

SIGNAL NAME

1

TYP.

3.0”

B

PIN NO.

5

A

LABEL

4

GUIDE KEY

EE-3186-312-001

14. OPENERS AND OPTIONS

14–16 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS MARO2P10203703E

14–17 Figure 14–8. P-10 or P-15 Axis 3 Outer Arm Power/Brake Cable

REV LEVEL

B

CABLE VERSION EE–3186–313–001

DIM. A 36 IN 914 mm

PG NO

SEC. B–B A B

CABLE RUN C

10SL–3S

GUIDE KEY 0

A 10’’ 8

3.0”

9

BRAKE AXIS 3

LABEL

WIRE GAGE

SIGNAL NAME

1

BLK

14 AWG

2

BLK

14 AWG

3V

3

BLK

14 AWG

3W

14 AWG

3G

4

GRN/YEL

3

5

B

3.0”

BRAKE AXIS 3

B

B

BLK BLK

SIGNAL NAME

18 AWG

3BKP

18 AWG

3BKM

C

3U

1.0’’

6 AC4 AXIS 3 PWR EE–3186–313–001 REV. MANUF.

12 POS PIN

5 6

7

POWER AXIS 3

7 8 18 AWG

3BKP

BLK

18 AWG

3BKM

11

KEY PLUG

12

KEY PLUG

11 NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL.

1

HEAT SHRINK

2 10 LABEL

TYP.

A

A

SOC/ PIN NO.

WIRE GAGE 14 AWG

C

BLK BLK BLK

D

GRN/YEL

A B

POWER AXIS 3

WIRE COLOR/ NUMBER

SIGNAL NAME 3U

14 AWG

3V

14 AWG

3W

14 AWG

3G

2. SEE LENGTH CHART FOR CABLE VERSION REVISION LEVEL. 3.

DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION.TOL. +/– 0.5’’

4. WIRE SPECIFICATION NOT SHOWN ON BOM 14 AWG PTFE TEFLON, UL1199 BLACK, FINE STRANDED

SEC. A–A 18–10S C

BLK

D

9 10

B

AC4

4

WIRE GAGE

A

LABEL

WIRE COLOR

WIRE COLOR/ NUMBER

A

2 PIN NO.

SOC/ PIN NO.

CABLE RUN

18 AWG PTFE TEFLON, UL1199 BLACK, FINE STRANDED GUIDE KEY

EE-3186-313-001

14. OPENERS AND OPTIONS

14–18 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS MARO2P10203703E

14–19 Figure 14–9. P-10 or P-15 Axis 1 Encoder Cable

SEC. A–A REV LEVEL

B

CABLE VERSION EE–3186–314–001

DIM. A

PG

74 IN 1879 MM

NO

CABLE RUN

20–29SW SHELL/KEY ASSEMBLY POSITION

0

CONNECTOR LABEL

PIN NO.

WIRE COLOR

1

WHITE

1D

2

ORANGE

1*D

SIGNAL NAME

14’’

PAIR NO.

3

4

1

3.0’’

5

3

AD4

1

1.0” TYP

4

6

20GA BLK

7

WHITE

8

YELLOW

SHIELD 1RQ 1*RQ

9 PIN

CONNECT SHIELDS TOGETHER

COVER WITH SHRINK

1.5’’ TYP

CONN1

PIN NO.

WIRE COLOR

SIGNAL NAME

1

WHITE

5V

2

GRAY

0V

PAIR NO.

2 POS SOC

CONN1

3

7

8

11

9

12

AD4

2

KEY

A

SEE NOTES 1&2

5

9

CONNECTOR LABEL

CABLE SPECIFICATION 3 PAIRS 20 AWG SHIELDED HYPALON JACKET MAX. CABLE OD = 0.365’’ (9.27MM) BRAND REX T–13981

13

15

3 FT LENGTH WHT/GRAY PAIR FROM ITEM 1 W/BRAID SHIELD & EXPANDO SLEEVE CABLE SPECIFICATION 1 PAIR 20 AWG SHIELDED 2 PVC JACKET MAX CABLE OD = 0.245’’(6.22MM) BRAND REX T–13103

10

SOC/ PIN NO.

1.0” TYP. AXIS 1 PULSE EE–3186–314–001 MFG. NAME REV.

TYP. CONNECTOR LABEL

PIN NO. 1

AL4

WIRE COLOR BROWN

2

BLACK

3

20GA BLK

4

SIGNAL NAME 6V–1 0V–1

PAIR NO. PAIR 1 CABLE 2

4 POS PIN 5

AL4

A 6

SHIELD

SHIELD FROM THIS LEG CONNECTED TO PIN 3

14

NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL.

A

A B C D E F G H J K L M N P R S T

WIRE COLOR/ NUMBER

SIGNAL NAME

TWIST PAIR NO.

WHITE

1D

1

ORANGE

1*D

1

WHITE YELLOW

1RQ 1*RQ

2

WHITE

5V

3

GRAY

0V

3

6V–1 0V–1

PAIR 1 CABLE 2

BROWN BLACK

SHIELDS NOT CONNECTED AT THIS END

DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. TOL +/– 0.5’’ 2. SEE LENGTH CHART FOR CABLE VERSION REVISION LEVEL. 3. TERMINATION OF SHIELD TO CONDUCTOR SHIELD CONDUCTOR 20 AWG BLACK SOLDERED CONNECTION

CONDUCTORS

BRAIDED SHIELD SHRINK TUBING DETAIL ”A”

EE-3186-314-001

14. OPENERS AND OPTIONS

14–20 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS MARO2P10203703E

14–21 Figure 14–10. P-10 or P-15 Axis 2 Pulse Cable

SEC. A–A REV LEVEL

CABLE VERSION

A

EE–3186–315–001

DIM. A 24 IN 610 MM

PG

CABLE RUN

NO

20–29SW SHELL/KEY ASSEMBLY POSITION

0 CUT OFF PAIR 3, WHITE/GRAY CONNECTOR LABEL

AE4

CONNECTOR LABEL CONN2

CONNECTOR LABEL AM4

PIN NO. 1 2 3 4 5 6 7 8 9 PIN NO. 1 2

PIN NO. 1 2 3 4

WIRE SIGNAL COLOR NAME 2D WHITE 2*D ORANGE KEY 20GA BLK SHIELD 2RQ WHITE 2*RQ YELLOW

3

4

5

A

1.0” TYP.

1

SEE NOTE 3 9 PIN

WIRE COLOR BROWN BLACK 20GA BLK

SIGNAL NAME 5V 0V

SIGNAL NAME 6V–2 0V–2 SHIELD

12 2

2

PAIR NO.

7

8

CABLE SPECIFICATION 2 1 PAIR 20 AWG W/SHIELD PVC JACKET MAX OD = 0.245’’ (6.22MM) BRAND REX T–13103

11 SEE NOTE 3

TYP. 4 POS PIN

1

CABLE SPECIFICATION 1 PAIR 20 AWG W/SHIELD PVC JACKET MAX OD = 0.245’’ (6.22MM) BRAND REX T–13103

5

9

10

1.0” TYP. SEE NOTE 4 AXIS 2 PULSE EE–3186–315–001 MFG. NAME REV.

CONN2

1

PAIR NO.

SEE NOTES 1&2

AE4

2 POS SOC WIRE COLOR BROWN BLACK

CABLE SPECIFICATION 1 3 PAIRS 20 AWG W/ SHIELD HYPALON JACKET MAX OD = 0.365”(9.27MM) BRAND REX T–13981

4’’

PAIR NO.

THIS SHIELD NOT CONNECTED

AM4

A

NOTES:

6

13

1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL.

A

SOC/ PIN NO. A B C D E F G H J K L M N P R S T

WIRE COLOR/ NUMBER WHITE

SIGNAL NAME 2D

TWIST PAIR NO. PR 1 CABLE 1

ORANGE

2*D

CABLE 1

PR 1

WHITE YELLOW

2RQ 2*RQ

CABLE 1

PR 2

BROWN

5V

CABLE 2

PR 1

BLACK

0V

CABLE 2

PR 1

BROWN BLACK

6V–2 0V–2

CABLE 3

PR 1

DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. 2. SEE LENGTH CHART FOR CABLE VERSION REVISION LEVEL. 3. TERMINATION OF SHIELD TO CONDUCTOR SHIELD CONDUCTOR 20 AWG BLACK SOLDERED CONNECTION

CONDUCTORS

BRAIDED SHIELD SHRINK TUBING DETAIL ”A”

4. AE4 AND CONN2 SHIELDS CONNECTED TO EACH OTHER, BUT NOT CONNECTED TO ANY PIN. THIRD SHIELD, AM4, NOT CONNECTED AT THIS END

EE-3186-315-001

14. OPENERS AND OPTIONS

14–22 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS MARO2P10203703E

14–23 Figure 14–11. P-10 or P-15 Axis 3 Pulse Coder Cable

SEC. A–A REV LEVEL

CABLE VERSION EE–3186–316–001

A

DIM. A 36 IN 914 MM

PG

CABLE RUN

NO

20–29SW SHELL/KEY ASSEMBLY POSITION

3 0

4 CUT OFF 3RD PAIR, WHITE/GRAY PIN SIGNAL CONNECTOR WIRE NO. NAME LABEL COLOR 1 3D WHITE 2 3*D ORANGE 3 4 5 AF4 6 20GA BLK SHIELD 7 3RQ WHITE 3*RQ 8 YELLOW 9

CONNECTOR LABEL CONN3

PIN NO. 1 2

WIRE COLOR BROWN BLACK

SIGNAL NAME 5V 0V

5

16’’

PAIR NO. 1

CABLE SPECIFICATION 3 PAIRS 20 AWG W/ SHIELD HYPALON JACKET 1 MAX OD = 0.365”(9.27MM) BRAND REX T–13981

12’’ 1.0” TYP.

AF4

9 PIN

CABLE SPECIFICATION

PVC JACKET MAX OD = 0.245’’ (6.22MM) BRAND REX T–13103

2 POS SOC

PAIR NO.

7

1

4 POS PIN

CONN3

8

2

11

AN4

WIRE SIGNAL COLOR NAME BROWN 6V–3 BLACK 0V–3 20GA BLK SHIELD

PAIR NO. 1

5

CABLE SPECIFICATION 1 PAIR 20 AWG W/SHIELD PVC JACKET MAX OD = 0.245’’ (6.22MM) BRAND REX T–13103

10

1.0” TYP. SEE NOTE 4 AXIS 3 PULSE EE–3186–316–001 MFG. NAME REV.

THIS SHIELD NOT CONNECTED

AN4

SEE NOTE 3

PIN NO. 1 2 3 4

9

2 1 PAIR 20 AWG W/SHIELD

TYP.

CONNECTOR LABEL

SEE NOTES 1&2 12

SEE NOTE 3

2

A

6

13

A

NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL.

A

SOC/ PIN NO. A B C D E F G H J K L M N P R S T

WIRE COLOR/ NUMBER

SIGNAL NAME

WHITE

3D

CABLE 1

PR 1

ORANGE

3*D

CABLE 1

PR 1

WHITE YELLOW

3RQ 3*RQ

CABLE 1

PR 2

BROWN

5V

CABLE 2

PR 1

BLACK

0V

CABLE 2

PR 1

6V–3 0V–3

CABLE 3

PR 1

BROWN BLACK

TWIST PAIR NO.

DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. TOL +/– 0.5” 2. SEE LENGTH CHART FOR CABLE VERSION REVISION LEVEL. 3. TERMINATION OF SHIELD TO CONDUCTOR SHIELD CONDUCTOR 20 AWG BLACK SOLDERED CONNECTION

CONDUCTORS

BRAIDED SHIELD SHRINK TUBING DETAIL ”A” 4. AF4 & CONN3 SHIELDS CONNECTED TO EACH OTHER BUT NOT CONNECTED TO ANY PIN AN4 SHIELD NOT CONNECTED THIS END

EE-3186-316-001

14. OPENERS AND OPTIONS

14–24 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS MARO2P10203703E

14–25 Figure 14–12. P-10 or P-15 Purge Flow Switch

REV LEVEL A

CABLE VERSION

DIM. A 24 IN 610 MM

EE–3186–340–001

PG NO

1 SEE NOTE 1

0

4

FS1

PIN NO. 1 2 3 4

WIRE COLOR BLUE BLACK

SIGNAL NAME FS1/NO FS1/C

SLEEVE COLOR & MAT’L LT. BLUE EXPANDO

A

EXPANDO OVER BRAIDED SHIELD

2’’ CONNECTOR LABEL

6

5

AH4 INTRINSICALLY SAFE EE–3186–340–001 MANUF. NAME REV.

4 PIN

SHIELD

FLOW SWITCH

CONNECT SHIELD WITH 20 AWG BLACK WIRE CUT OFF SPARE RED WIRE

2

3 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. SEE LENGTH CHART FOR REV LEVEL DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION.

EE-3186-340-001

14. OPENERS AND OPTIONS

14–26 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS MARO2P10203703E

14–27 Figure 14–13. P-10 or P-15 European Purge Connect Arm Cable

REV LEVEL

CABLE VERSION EE–3186–341–001

B

DIM. A 24 IN 610 MM

PG NO

A

0 CONNECTOR LABEL

PIN NO.

WIRE COLORS

SIGNAL NAME

1 2 3 4

BLACK1 BLACK2

PS1–P PS1–N

SLEEVE COLOR & MAT’L

3” TYP 4 PIN

BLUE EXPANDO

1.0”

AH1

4 5 6 7

INTRINSICALLY SAFE

EE–3186–341–00X REV. MFG. NAME

CONNECTOR LABEL

PIN NO. 1 2 3 4

WIRE COLORS BLACK3 BLACK4

SIGNAL NAME FS1–P FS1–N

SLEEVE COLOR & MAT’L BLUE EXPANDO

SEE NOTE 1

WIRE LABEL 4 5 6 7

SIGNAL NAME PS1–P PS1–N FS1–P FS1–N

AJ1

4 PIN

20 AWG WIRE SHIELD CONNECTION

SHIELD

WIRE SPEC: 20 AWG, 19/ 32, UL1199, 600V, PTFE INSULATION

WIRE COLOR/ NUMBER BLACK/1 BLACK/2 BLACK/3 BLACK/4

EXPANDO OVER BRAIDED SHIELD

3 4

8 1

2

SHIELD AND EXPANDO OVER WIRES

5

7 TYP

6 CRIMP FERRULE TO WIRE

NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. 2. SEE LENGTH CHART FOR CABLE VERSION REVISION LEVEL. 3. SPECIFIC CONDUCTOR PART NUMBER NOT CALLED OUT ON BILL OF MATERIALS WIRE SPEC: 20 AWG, 19/ 32, UL1199, 600V, PTFE INSULATION

EE-3186-341-001

14. OPENERS AND OPTIONS

14–28 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS MARO2P10203703E

14–29 Figure 14–14. P-10 or P-15 European Solenoid Cable

REV LEVEL

CABLE VERSION EE–3186–348–001

A

DIM. A 24 IN 610 MM

PG NO

A

0 CONNECTOR LABEL AK1

PIN NO.

WIRE COLOR

SIGNAL NAME

1 2 3 4

BROWN BLACK

PSOL–1 PSOL–2

9”

CONNECTOR LABEL

2” SHIELD

SOL1

SOC/ PIN NO. 1 2 3

WIRE COLOR

SIGNAL NAME

BROWN BLACK NC

PSOL–1 PSOL–2

INTRINSICALL Y SAFE

4 PIN

SOL REV. EE–3148–348–XXX MFG. NAME

AK1

SOL1

TUBING OVER DRAIN WIRE

2

3

7 5

6

SEE NOTE 1 NOTES:

1

7

4

BRAND REX T–13103 2 COND 20 AWG SHIELDED

1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBERIN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. SEE LENGTH CHART FOR REV LEVEL DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION.

EE-3186-341-001

14. OPENERS AND OPTIONS

14–30 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS MARO2P10203703E

14–31 Figure 14–15. P-10 or P-15 Sensor Splitout Cable

REV A

CABLE VERSION EE–3186–351–001

DIM. A

PG

8 IN 203 mm

NO

A

0

CONNECTOR LABEL 4

3

2

7 1.0 in.

AG4 SENSOR

1 2 3 4 5 6 7 8 9

BLUE–1 BLUE–2 BLUE–3 BLUE–4 BLUE–5 BLUE–6

SENSOR–1 SENSOR–2 EOAT–1 EOAT–2 BYPASS–1 BYPASS–2

4.0 in.

8

1 SENSOR

PIN NO.

WIRE COLORS

SIGNAL NAME

5

SENSOR

9 POS SOC

1 2 3 4 5 6 7 8 9

BLUE–1 BLUE–2 BLUE–3 BLUE–4

SENSOR–1 SENSOR–2 EOAT–1 EOAT–2

SHIELD

AG4 SENSOR

9 PIN

INTRINSICALLY SAFE

4

EE–3186–351–001 MANUF REV

5

6 CONNECTOR LABEL

PIN NO.

WIRE COLORS

SIGNAL NAME

SHIELD BYPASS

9 POS SOC BYPASS

1 2 3 4 5 6 7 8 9

BLUE–5 BLUE–6 KEY PIN KEY PIN SHIELD KEY PIN KEY PIN

BYPASS–1 BYPASS–2

EE-3186-351-001

14. OPENERS AND OPTIONS

14–32 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS MARO2P10203703E

14–33 Figure 14–16. P-10 or P-15 End of Arm Tool Cable

REV CABLE VERSION B

DIM. A 144 IN EE–3186–317–001 3658 MM

PG YES

0

A

48’’

8

CONNECTOR LABEL

PIN NO.

WIRE COLORS

SIGNAL NAME

BROWN BLACK

EOAT–1 EOAT–2

10

1

6

7

11

9

4

5

1’’

AG4

1 2 3 4 5 6 7 8 9

INTRINSICALLY SAFE

9 PIN

CONNECTOR LABEL

INTRINSICALLY SAFE

AG4 REV. EE–3186–317–XXX MFG. NAME

SENSOR REV. EE–3186–317–XXX MFG. NAME

3.00” APPLY LABEL OVER 3” OF BLUE SHRINK TUBING, TYP. BOTH ENDS

SEE NOTE 1

3.00” TYP.

WIRE COLORS

SIGNAL NAME

SENSOR

SENSOR 3.00”

PIN NO.

3.00”

1 2 3

BROWN BLACK SHIELD

EOAT–1 EOAT–2

SHIELD

2

3

CABLE SPECIFICATION ONE PAIR 20 AWG W/SHIELD HYPALON JACKET MAX. CABLE O.D. = 6.22mm (0.245in) BRAND REX T–13103 NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBERIN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL LENGTH DIMENSIONS +/– 0.5’’ 2. BUILD UP CABLE DIA. WITH 1/32 X 2” EPDM STRIP MATERIAL FOR PROPER PG FITTING DIA. A SMALL AMOUNT OF ADHESIVE SHOULD BE USED TO SECURE EPDM STRIP PRIOR TO APPLICATION OF SHRINK TUBING. RETAIN EPDM STRIP MAT’L WITH 2” OF BLUE SHRINK TUBING.

EE-3186-317-001

14. OPENERS AND OPTIONS

14–34 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS MARO2P10203703E

14–35 Figure 14–17. P-10 Magnet Sensor Breakaway Cable

REV CABLE VERSION A

DIM. A 144 IN EE–3186–319–001 3658 MM

PG YES

0

A 48’’

6

CONNECTOR LABEL

PIN NO.

WIRE COLORS

SIGNAL NAME

BROWN BLACK

EOAT–1 EOAT–2

8

1

4

5

7

1’’

AG4

1 2 3 4 5 6 7 8 9

INTRINSICALLY SAFE

INTRINSICALLY SAFE

SENSOR REV. EE–3186–319–XXX MFG. NAME

9 PIN 3.00”

SENSOR REV. EE–3186–319–XXX MFG. NAME

3.00” APPLY LABEL OVER 3” OF BLUE SHRINK TUBING, TYP. BOTH ENDS

SEE NOTE 1

3.00” TYP.

SENSOR

3.00”

2.0in. STRIP BACK OUTER SHEATH

SHIELD

2

3

CABLE SPECIFICATION TWO CONDUCTOR 20 AWG. CABLE BRAID SHIELD BROWN HYPALON JACKET MAX. CABLE O.D. = 6.68mm (0.263in) BELDEN #8402

NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBERIN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL LENGTH DIMENSIONS +/– 0.5’’ 2. BUILD UP CABLE DIA. WITH 1/32 X 2” EPDM STRIP MATERIAL FOR PROPER PG FITTING DIA. A SMALL AMOUNT OF ADHESIVE SHOULD BE USED TO SECURE EPDM STRIP PRIOR TO APPLICATION OF SHRINK TUBING. RETAIN EPDM STRIP MAT’L WITH 2” OF BLUE SHRINK TUBING.

EE-3186-319-001

14. OPENERS AND OPTIONS

14–36 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS MARO2P10203703E

14–37 Figure 14–18. P-10 or P-15 Solenoid Cable

REV LEVEL B

CABLE VERSION EE–3186–323–001

DIM. A 24 IN 610 MM

PG NO

A

0

CONNECTOR LABEL 9’’ CONNECTOR LABEL

AK4

PIN NO.

WIRE COLOR

SIGNAL NAME

1 2 3 4

BROWN BLACK

PSOL–1 PSOL–2

SHIELD

SOL1 2’’

4 PIN

4’’

AK4 INTRINSICALLY SAFE EE–3186–323–XXX MFG. NAME REV

AK4

SOC/ PIN NO.

WIRE COLOR

1 2 3

BROWN BLACK NC

SIGNAL NAME PSOL–1 PSOL–2

SOL1

CONNECT SHIELD W/ 20AWG BLACK

2

3

7 5

6

SEE NOTE 1

1

7

4

2 COND 20 AWG SHIELDED HYPAON JACKET B–R T–13103

NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. SEE LENGTH CHART FOR REV LEVEL DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. TOL +/– 0.5’’

EE-3186-323-001

14. OPENERS AND OPTIONS

14–38 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS MARO2P10203703E

14–39 Figure 14–19. Ground Cable M5 to M5 Stud

REVISION

CABLE VERSION

B B

EE–3186–326–001 EE–3186–326–002

DIM. A 10 IN 254 MM 16 IN 406 MM

(2) PLACES (2) PLACES

2

2 3

4

1

M5 STUD

M5 STUD EE–3186 –326–001 REV MANUF

0.5’’ 1.0in. TYP.

NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL DIMENSIONS +/– 0.5’’

EE-3186-326-001

14. OPENERS AND OPTIONS

14–40 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS MARO2P10203703E

14–41 Figure 14–20. P-10 Breakaway Magnet Sensor

REV

CABLE VERSION

DIM A

PG

A

EE–3186–333–001

24 IN NO 610 MM

0

A

2

3

1

2.0in. STRIP BACK OUTER SHEATH INTRINSICALLY SAFE

SENSOR EE–3186–333–001 MANUF REV APPLY LABEL OVER 3’’ OF BLUE SHRINK

NOTE: CABLE COMES WITH PROX SW

NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. TOL +/– 0.5’’

EE-3186-333-001

14. OPENERS AND OPTIONS

14–42 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS MARO2P10203703E

14–43 Figure 14–21. P-15 Hood/Deck Opener Electrical Layout Domestic Version

UPPER LEVEL BOM DOOR OPENER INTERCONNECTION CABLES FOR US

HOOD DECK OPENER ARM CABLES UPPER LEVEL BOM EE–3715–301–001

EE–3186–101–105 EE–3186–101–110 EE–3186–101–115 EE–3186–101–125 EE–3186–101–135 EE–3186–101–145 EE–3186–101–155

R–J2 CONTROLLER CONNECTIONS

PURGED CAVITY

AXIS 3 OUTER ARM a6/3000 A06B–0128–B175

DC/DC EE–3044–401 PWR INPUT UNIT

AXIS 2 INNER ARM a6/3000 A06B–0128–B175 MOTOR/BRAKE AA1 AA4 EE–3186–311–002

6

JF8 RAIL AUX AXIS BD

SENSOR OUTPUT

ISRR

EOAT1 EOAT2

BYPASS OUTPUT

ISRR

EOAT5 EOAT6

3 4 7 8

PSB1 PSB2 FSB1 FSB2

PURGE BARRIER

ISB2–3 ISB2–4

PURGE CONTROL ISTB

ENCODER SIGNALS (17.4 MM DIA)

JF9 INNER ARM JF10 OUTER ARM

PURGE CONTROL 24VPG 0V PG UNIT 220VAC

6V BATTERY 0V

3 3

PG29

EE–3186–112–105 EE–3186–112–110 EE–3186–112–115 EE–3186–112–125 EE–3186–112–135 EE–3186–112–145 EE–3186–112–155

3

PG29

EE–3186–312–001

AC1 AC4

EE–3186–313–001

PULSE AD1 AD4

EE–3186–314–002

AE1 AE4

EE–3186–315–001

AF1 AF4

EE–3186–316–001

REFERENCE SOL VALVE SHOWN ON MECH BOM REFERENCE PRES SW SHOWN ON MECH BOM FLOW SW ASSY

INTRINSICALLY SAFE (17.4 MM DIA) IS

GND

EE–3186–115–105 EE–3186–115–110 EE–3186–115–115 EE–3186–115–125 EE–3186–115–135 EE–3186–115–145 EE–3186–115–155

NOTE: I.S. GROUND IS A SEPARATE INTRINSICALLY SAFE GROUND AT THE PURGE CONTROL UNIT

PS2 SWITCH PRESSURE FS2 FLOW SWITCH

PG9

ARM OUTER

LINK EE–3186–351–001 EE–3186–323–001

EE–3066–322–001

EE–3186–340–001

CRANK

INNER INTERNAL ARM GND WIRE EE–3158–316–001 GND WIRES (1) EE–3186–326–004 (3) EE–3186–326–003 AXIS 3 AXIS 2

AXIS 1

PG29

GROUND CABLE (6.8MM) EE–3287–116–105 EE–3287–116–110 EE–3287–116–115 EE–3287–116–125 EE–3287–116–135 EE–3287–116–145 EE–3287–116–155

SOL2 PURGE VALVE

BYPASS EE–3185–356–001

AN1 AN4

4

AB1 AB4

AM1AM4

EE–3186–111–105 EE–3186–111–110 EE–3186–111–115 EE–3186–111–125 EE–3186–111–135 EE–3186–111–145 EE–3186–111–155

AL1 AL4

4

EE–3186–317–001

AK1 AK4

BKP BKM

MOTOR POWER (16.9 MM DIA.)

AJ1 AJ4

L TERMS M TERMS

AH1 AH4

4

EE–3186–331–001 MAGNET SWITCH

AG1 AG4

AMP 5 AXIS 1 RAIL AMP 6 (L) AXIS 2 INNER ARM AMP 6 (M) AXIS 3 OUTER ARM PURGE BD

EE–3044–401

AXIS 1 RAIL a6/3000 A06B–0128–B675–0008

P–15 HOOD/DECK OPENER ELECTRICAL LAYOUT DOMESTIC VERSION EE–3715–001

14. OPENERS AND OPTIONS

14–44 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS MARO2P10203703E

14–45 Figure 14–22. P-15 Hood/Deck Opener Electrical Layout European Version

UPPER LEVEL BOM DOOR OPENER INTERCONNECTION CABLES FOR US

HOOD/DECK OPENER ARM CABLES UPPER LEVEL BOM EE–3715–302–001

EE–3186–102–105 EE–3186–102–110 EE–3186–102–115 EE–3186–102–125 EE–3186–102–135 EE–3186–102–145 EE–3186–102–155

R–J2 CONTROLLER CONNECTIONS

PURGED CAVITY

AXIS 3 OUTER ARM a6/3000 A06B–0128–B175

DC/DC EE–3044–401

PWR INPUT UNIT

MOTOR/BRAKE

4

MOTOR POWER (16.9 MM DIA.)

AUX AXIS BD

INNER ARM

EE–3186–112–105 EE–3186–112–110 EE–3186–112–115 EE–3186–112–125 EE–3186–112–135 EE–3186–112–145 EE–3186–112–155

JF10 OUTER ARM

PURGE CONTROL UNIT

24VPG 0V PG

3

220VAC

SENSOR OUTPUT BYPASS OUTPUT

BYPASS EE–3185–356–001

PG29

AD1 AD4

EE–3186–314–002

AE1 AE4

EE–3186–315–001

AF1 AF4

EE–3186–316–001

REFERENCE SOL VALVE SHOWN ON MECH BOM

SOL2 PURGE VALVE

EOAT1 EOAT2

ISRR

EOAT5 EOAT6

3 4 7 8

PSB1 PSB2 FSB1 FSB2

PURGE BARRIER

ISB2–3 ISB2–4

6V BATTERY 0V

3 3

INTRINSICALLY SAFE (17.4 MM DIA) IS GND

EE–3186–115–105 EE–3186–115–110 EE–3186–115–115 EE–3186–115–125 EE–3186–115–135 EE–3186–115–145 EE–3186–115–155

BOOTH WALL NOTE: I.S. GROUND IS A SEPARATE INTRINSICALLY SAFE GROUND AT THE PURGE CONTROL UNIT

EE–3186–348–001

OP 4 FL 5 6 7

4 5 6 7

EE–3186–341–001

CRANK

INTERNAL INNER GND WIRE ARM EE–3158–316–001 GND WIRES (1) EE–3186–326–004 (3) EE–3186–326–003 AXIS 3 AXIS 2

PG29

GROUND CABLE (6.8MM) EE–3287–116–105 EE–3287–116–115 EE–3287–116–110 EE–3287–116–125 EE–3287–116–135 EE–3287–116–145 EE–3287–116–155

JUMPER REMOVED HR2151 PRES & FLOW SWITCHES

OUTER ARM

EE–3186–351–001

LINK PR

ISRR

PURGE CONTROL ISTB

EE–3186–313–001

PULSE

ENCODER SIGNALS (17.4 MM DIA)

JF9

AC1 AC4

EE–3186–317–001

AN1 AN4

JF8 RAIL

PG29

EE–3186–312–001

AM1AM4

EE–3186–121–105 EE–3186–121–110 EE–3186–121–115 EE–3186–121–125 EE–3186–121–135 EE–3186–121–145 EE–3186–121–155

6

EE–3186–311–002

AB1 AB4

AL1 AL4

PURGE BD

AA1 AA4

AK1 AK4

BKP BKM

MAGNET SWITCH

4

AJ1 AJ4

L TERMS M TERMS

EE–3186–331–001 EE–3044–401

AH1 AH4

AMP 6 (L) AXIS 2 INNER ARM AMP 6 (M) AXIS 3 OUTER ARM

AXIS 2 INNER ARM a6/3000 A06B–0128–B175

4

AG1 AG4

AMP 5 AXIS 1 RAIL

PG9

AXIS 1 RAIL a6/3000 A06B–0128–B675–0008

AXIS 1

P–15 HOOD/DECK OPENER ELECTRICAL LAYOUT EUROPEAN VERSION EE–3715–002

14. OPENERS AND OPTIONS

14–46 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS MARO2P10203703E

14–47 Figure 14–23. P-15 Opener End of Arm Tooling Cable

REV B

CABLE VERSION EE–3186–317–001

DIM. A 144 IN 3658 MM

PG YES

0

A 48’’

8

CONNECTOR LABEL

AG4

PIN NO. 1 2 3 4 5 6 7 8 9

WIRE COLORS

SIGNAL NAME

WHITE BLACK

EOAT–1 EOAT–2

10

6

1

7

9

11

4

5

1’’ INTRINSICALLY SAFE SENSOR REV. EE–3186–317–XXX MFG. NAME

INTRINSICALLY SAFE AG4 REV. EE–3186–317–XXX MFG. NAME

9 PIN 3.00”

3.00”

SEE NOTE 1

APPLY LABEL OVER 3” OF BLUE SHRINK TUBING, TYP. BOTH ENDS

SHIELD 2

3.00” TYP.

CONNECTOR LABEL

PIN NO.

WIRE COLORS

SIGNAL NAME

SENSOR

1 2 3

WHITE BLACK SHIELD

EOAT–1 EOAT–2

SENSOR

3.00”

3

NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. ALL LENGTH DIMENSIONS +/– 0.5’’ 2. BUILD UP CABLE DIA. WITH 1/32 X 2” EPDM STRIP MATERIAL FOR PROPER PG FITTING DIA. A SMALL AMOUNT OF ADHESIVE SHOULD BE USED TO SECURE EPDM STRIP PRIOR TO APPLICATION OF SHRINK TUBING. RETAIN EPDM STRIP MAT’L WITH 2” OF BLUE SHRINK TUBING.

CABLE SPECIFICATION ONE PAIR 20 AWG W/SHIELD HYPALON JACKET MAX. CABLE O.D. = 6.68mm (0.263in) BELDEN #8402

OPENER END OF ARM TOOLING CABLE EE–3186–317–001

14. OPENERS AND OPTIONS

14–48 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS MARO2P10203703E

14–49 Figure 14–24. P-15 Part Present Proximity Cable

REV

CABLE VERSION

A

EE–3186–331–001

DIM A IN 24 610 MM

PG NO

0

A

2 PIN # 1 2 3

3

4

5

1

WIRE SIGNAL COLOR NAME BROWN + SIGNAL BLUE – SIGNAL UNUSED INTRINSICALLY SAFE SENSOR EE–3186–331–001 MANUF REV

APPLY LABEL OVER 3’’ OF BLUE SHRINK

NOTE: CABLE COMES WITH PROXIMITY SWITCH

NOTES: 1. PART NUMBER SHOWN ON CABLE LABEL MUST CORRESPOND TO THE LENGTH AND VERSION NUMBER IN TABLE. VENDOR NAME AND REVISION LEVEL MUST ALSO BE INCLUDED ON CABLE LABEL. DENOTES LENGTH MEASUREMENT POINTS. SEE TABLE FOR DIMENSION. TOL +/– 0.5’’ PART PRESENT PROXIMITY CABLE EE–3186–331–001

14. OPENERS AND OPTIONS

14–50 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS

14–51

MARO2P10203703E

Figure 14–25. Integral Pump Control Drawing Index and System Index

ROBOT CONTROLLER (RC)

24VDC CONDUIT

VARIABLE RATIO 2K SINGLE STAGE PAINT PROCESS CONTROL

PAINT PROCESS VALVE PANEL

ANALOG CONDUIT

INTRINSIC CABLE NE–2000–977–XXX

ELECTROSTATIC POWER SUPPLY (E–STAT UNIT)

E–STAT CABLE CONDUIT JUNCTION BOX BOOTH WALL

P–200 PURGE CAVITY E–STAT CABLE CES2 (PARAFLEX)

NE–2000–977–003 EXPLOSIONPROOF JUNCTION BOX (ROBOT TURET)

SUPPLIED WITH COLLISION DETECTION UNIT

MAC VALVE P–200 ROBOT UPPER ARM

E–STAT CABLE CES3 (PARAFLEX)

PUMP REGULATOR BLOCK

COLLISION DETECT MOUNTING PLATE

WRIST PLATE GROUND

APPLICATOR

NE–2000–477

14. OPENERS AND OPTIONS

14–52 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS

14–53

MARO2P10203703E

Figure 14–26. Integral Pump Control I/O Rack Layout

MAIN CPU PCB

JD1

109

RACK COMMUNICATION CABLE–1 METER

SLOT NUMBER

JD1A A I F JD1B 0 1 A

1

2

3

4

5

A O D 1 6 D

A O D 1 6 D

A D A 0 2 A

A D A 0 2 A

R E S E V E D

CP32

6 A A D 0 4 A

7

8

9

10

A O D 1 6 D

A O D 1 6 D

R E S E V E D

R E S E V E D

109 109 109 109 109 109 109

RACK POWER CABLE +24VDC, 0VDC FROM SPADE CONNECTORS ON POWER INPUT UNIT CABLE/WIRING BY FANUC WIRE AS SHOWN ON SHEET 082

82091 82092 +24VDC 0VDC

82291 82292 +24VDC 0VDC

TO MAIN AIR SUPPLY SOLENOID AS SHOWN ON SHEET 082

109 109 CP6 MAIN CPU PSU MODULE

POWER INPUT UNIT (PIU)

I/O RACK LAYOUT NE–2000–477

14. OPENERS AND OPTIONS

14–54 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS

14–55

MARO2P10203703E

Figure 14–27. Integral Pump Control Controller Layout

TERMINAL STRIP T1

124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

FUSE

FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE

FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE FUSE

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

SPARE SPARE SPARE 82091 (+24VDC) 82091 (+24VDC) SPARE 82092 (0VDC) 82092 (0VDC) 82092 (0VDC) 82092 (0VDC) 8214F (+5VDC) 82231 (+24VDC) 82231 (+24VDC) 82292 (0VDC) 8232F (+24VDC) 8308F (ACSP) 8309F (ACAP) 8310F (LPSP) 8311F (LPAP) 8312F (RS1P) 8313F (RS2P) 8314F (RPSP) 8315F (RAP) 8316F (RPBP) 8317F (RPDP) 8318F (HS1P) 8319F (HS2P) 8320F (HPSP) 8321F (HAP) 8322F (HPBP) 8323F (HPDP) 8336F (PT) 8344F (MHP) 8345F (MRP) 8346F (HP1) 8347F (HP2) 8348F (HP3) SPARE SHEILD 1 84121 (CLEAR) 84131 (BLACK) 84141 (CLEAR) 84151 (BLACK) SHEILD 2 SHEILD 3 84401 (CLEAR) 84411 (BLACK) 85121 (CLEAR) 85131 (BLACK) SHEILD 5 SPARE 8608F (CP1) 8609F (CP2) 8610F (CP3) 8611F (CP4) 8612F (CP5) 8613F (CP6) 8614F (CP7) 8615F (CP8) 8616F (CP9) 8617F (CP10) 8618F (CP11) 8619F (CP12) 8620F (CP13) 8621F (CP14) 8622F (CP15) 8623F (CP16) 8636F (CP17) 8637F (CP18) 8638F (CP19) 8639F (CP20) 8640F (CP21) 8641F (CP22) 8642F (CP23) 8643F (CP24)

8204CR

124 124 124 124

ANALOG INPUT CABLE ROUTING

124 PURGE CONTROL UNIT

CONTACT SIGNAL TRANSDUCER

MOUNT TERMINAL STRIP T1 TO SIDE WALL INSIDE OF ROBOT CONTROLLER.

DISCONNECT

AMP 1

AMP 2

AMP 3

COMM. SLOT SLOTSLOTSLOTSLOTSLOTSLOTSLOTSLOTSLOT MODULE 1 2 3 4 5 6 7 8 9 10

2” W X 4” H DUCT

CABLE ROUTING

EMG BOARD MAIN PSU CPU

AREA RESERVED FOR SYSTEM INTEGRATION

CABLE ROUTING

OPT

AMP 4

1 1/2 ”W X 4”H DUCT

TB2

CONTROLLER INTERIOR VIEW LEFT SIDE I/O POWER ENABLE

CONTROLLER W/DOOR REMOVED CONTROLLER LAYOUT NE–2000–477

14. OPENERS AND OPTIONS

14–56 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS

14–57

MARO2P10203703E

Figure 14–28. Top Hat Option Drawing Index and System Layout

2K PUMP CAVITY

PUMP PRESSURE CONTROL BLOCK

PUMP #1

2K PURGED CAVITY

RJ–2 ROBOT CONTROLLER

PUMP #2

UPPER ARM CAVITY PT VALVE

NEW PULSECODER & MOTOR POWER HARNESS NE–2000–996–401 100

NEW BATTERY CABLE NE–2000–977–004

CURRENT ROBOT DC/DC CONVERTER

100 ROBOT ARM

DUAL DC/DC CONVERTER MOUNTING BRACKET 100 NE–2000–396–103 ADDED JUMPER

100 EE–3044–403–001 ADDED DC/DC

MOTOR POWER CABLE NE–2000–996–005 THRU 055 (REF.)

ROBOT BASE PURGED CAVITY INTRINSIC CABLE NE–2000–977–005 THRU 055 (REF.)

DC/DC DC/DC

9 PIN

9 PIN

15 PIN AXIS 3

100 CONVERTER EE–3044–401

P/I TRANSDUCER AND TRIGGER CABLE NE–2000–977–003

PULSE CABLE NE–2000–996–205 THRU 255 (REF.)

4 PIN

100 15 PIN ROUTED THRU PROCESS CAT–TRACK

NE–2000–396

14. OPENERS AND OPTIONS

14–58 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS

14–59

MARO2P10203703E

Figure 14–29. Side Saddle Option Drawing Index and System Layout

UPPER ARM

RJ–2 ROBOT CONTROLLER

PT VALVE

DUAL DC/DC CONVERTER 100 MOUNTING BRACKET NE–2000–396–103 PILOT TRIGGER CABLE NE–2000–977–002

100

JUMPER EE–3044–403–001

100

ADDED DC/DC CONVERTER EE–3044–401

ROBOT DC/DC CONVERTER

DC/DC

ROBOT PURGED CAVITY 4 PIN

100

MOTOR POWER CABLE NE–2000–996–005 THRU 055 (REF.)

INTRINSIC CABLE NE–2000–977–005 THRU 055 (REF.)

DC/DC

100

ROUTED THRU PROCESS CAT–TRACK

PULSE CABLE NE–2000–996–205 THRU 255 (REF.)

9 PIN

9 PIN

15 PIN AXIS 3

15 PIN 4 PIN

P/I TRANSDUCER AND BATTERY CABLE NE–2000–977–001

MOTOR POWER & PULSECODER HARNESS NE–2000–996–400

100

VACULOCK HOSE PUMP PRESSURE CONTROL BLOCK

PUMP #1

PG 2K PURGED CAVITY

2K PUMP CAVITY

PUMP #2

NE–2000–397

14. OPENERS AND OPTIONS

14–60 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS

14–61

MARO2P10203703E

Figure 14–30. Top Hat and Side Saddle Option Drawing Index and System Layout

R–J2 ROBOT CONTROLLER

2K SYSTEM (INTRINSIC CABLE: NE–2000–977–005 THRU 055) CONTROL (POWER CABLE: NE–2000–996–005 THRU 155) REF. CABLES (PULSE CABLE: NE–2000–996–205–355)

B

ROBOT DC TO DC CONVERTER REF. P–200 PURGED CAVITY

DC/DC

DC TO DC CONVERTER JUMPER REF.

DC/DC

B ADDED DC TO DC CONVERTER REF.

B

2K TOP HAT ROBOT CABLES

MOTOR/ PULSE HARNESS: NE–2000–996–401 BATTERY CABLE: NE–2000–977–004 INTRINSIC PROCESS CABLE: NE–2000–977–003

or 2K SIDE SADDLE ROBOT CABLES

MOTOR/ PULSE HARNESS: NE–2000–996–400 BATTERY/INTRINSIC CABLE: NE–2000–977–001 TRIGGER CABLE: NE–2000–977–002

REFERENCE NE–2000–396

B REFERENCE NE–2000–398

2K PUMP ASSEMBLY

NE–2000–496 and

NE–2000–498

14. OPENERS AND OPTIONS

14–62 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS

14–63

MARO2P10203703E

Figure 14–31. Top Hat and Side Saddle Option Cable and Wiring Diagram

E–STOP PCB

IPC AMP 5

CRR20

CRX4 JS2B JS1B

CRR20 SIGNAL WIRE NAME COLOR BLUE1 ESP

+24V

AMP 1

CRX4 AMP 4 CRX4 SIGNAL PIN WIRE NAME # COLOR 1 2 BLUE2 ESP 3

D AMP 1 CRX4 SIGNAL PIN WIRE NAME # COLOR 1 2 BLUE2 ESP 3

CRX4

AMP 2

D AMP 2 CRX4 SIGNAL PIN WIRE NAME # COLOR 1 2 BLUE2 ESP 3

CRX4

AMP 3

D

CRX4

AMP 3 CRX4 SIGNAL PIN WIRE NAME # COLOR 1 2 BLUE2 ESP 3

24V INTERLOCK HARNESS #NE–2000–996–003 104

AXIS BOARD TO AMPLIFIER CABLE #XGMF–10064

AUX AXIS BOARD

104

JV13 JV14

BLUE2

AMP 5 (IPC) CRX4 SIGNAL PIN WIRE # COLOR NAME 1 2 BLUE2 ESP BLUE1 3 +24V

JF13 JF14

PIN # 1 2 3 4 5 6

AMP 4

FROM PUMP 2 MOTOR ENCODER FROM PUMP 1 MOTOR ENCODER 2K PUMP PULSE CABLE #NE–2000–996–2XX (REFERENCE ONLY)

NE–2000–496 and

NE–2000–498

14. OPENERS AND OPTIONS

14–64 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS

14–65

MARO2P10203703E

Figure 14–32. Top Hat and Side Saddle Option Purge and Intrinsic Wiring Control Drawing VARIABLE RATIO 2K PURGE AND INTRINSIC WIRING CONTROL DRAWING HAZARDOUS LOCATION CLASS I, II & III IDEC IBRC 6062RFM DIVISION 1 GROUPS C D E F & G RELAY BARRIER P1 PRESSURE SWITCH N1 ISTB

NON–HAZARDOUS LOCATION (250 VAC MAXIMUM) A1 C1 OPERATOR PANEL

A2

PURGE CIRCUITS

FLOW SWITCH

C2

PANEL I/F

CNPG EMGIN1 EMGIN2

CNPG

A3

BRAKE CONTROL

N3

A4

CNIN

MAIN CPU CRM10

P3

CNIS

CNCA

A5

+24P 0V

A6 SOL1

N4 P5

TP DISCONNECT SWITCH

C5 220 VAC

P4

HAND BROKEN

C4 RDI/RDO

N2

ROBOT OVERTRAVEL SWITCH

C3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P2

N5 P6

MISC. SWITCH (RDI2)

C6

PSA1 PSA2 PSB1 PSB2 FSA1 FSA2 FSB1 FSB2 OT11 OT12 OT21 OT22 OT31 OT32 OT41 OT42 OT51 OT52 HBK1 HBK2 TP1 TP2 EOAT1 EOAT2

NOTICE NO REVISIONS WITHOUT PRIOR APPROVAL FROM FACTORY MUTUAL (FM)

CONNECTION CABLE NE–2000–977–XXX ROBOT PURGED CAVITY

ROBOT WIRE HARNESS EE–3287–323–001

PRES. SW CABLE EE–3044–345–001 PS1 PS1 ROBOT PRESSURE SWITCH FLOW SW CABLE EE–3044–340–001 FS1 FS1 ROBOT FLOW SWITCH SOLENOID CABLE EE–3287–348–001 SOL SOL PURGE SOLENOID VALVE

M1 M4

M1 M4

M1 M4

S1

EE–3287–324–001 BATT S4

BATT ENCODER

N6

R1

R1

N1

N4

O1

O4

NE–2000–977–001 BATT

EE–3185–356–001

3 4

1 2

P–200–6+2J2+2K / P–200–6–2KT P–200–6L+2J2+2K / P–200–6L–2KT P–200 SIDE SADDLE MOUNTED P–200 R–J2 MODELS CONTROLLER / ROBOT

X6 FOR ROBOT

P–200–6LJ2+2K / P–200–6L–2KS P–200–6+2J2+2K / P–200–6–2KS

X2 FOR ENCODER 2K PUMPS

P–200–6L+2J2+2K / P–200–6L–2KS

INTRINSIC SAFETY BARRIER ISB1 STAHL 9001/01–252–100–14 CRR21

P–200 R–J2 MODELS CONTROLLER / ROBOT P–200–6J2+2K / P–200–6–2KT P–200–6LJ2+2K / P–200–6L–2KT

P–200–6J2+2K / P–200–6–2KS BATT

SOL2

E–STOP PCB

P–200 TOP HAT MOUNTED

BYPASS SWITCH

I.S. GROUND

CRR22 CRR5 I.S. BATTERY PACK

BKP4 BKM4

1

6

+

+

I.S. GROUND

SERVO TRANSFORMER FOR PAINT R–J TYPE

DELTRON W112A

220V (43)

120VAC FROM CONVEYOR

220V (44)

24VDC POWER SUPPLY

FROM I/O

7 8

24V

8 7 5 6

TO I/O 24V TO I/O 24V TO I/O FIRE ALARM

24V TO I/O

+24VDC PSU

B

7 8 9 10 11 +24 12

EE–3112–600 24V 24V OVP UNIT

1 3

ISB3 KHD2–SR–EX1.2S.P P&F ISB7 P&F Z728

+ 1 2

ISB3–1 ISB3–3

HAND BRKN

P1

ISB7–1 ISB7–2

8533ISB P&F Z787

+ 1 2 +4 3

8533ISB–1 8533ISB–2 8533ISB–4

8 7 5 6

8538ISB P&F Z787

+ 1 2 +4 3

8538ISB–1 8538ISB–2 8538ISB–4

8 7 5 6

8543ISB P&F Z787

+ 1 2 +4 3

8543ISB–1 8543ISB–2 8543ISB–4

8 7 5 6

8548ISB P&F Z787

+ 1 2 +4 3

8548ISB–1 8548ISB–2 8548ISB–4

TRIGGER 1 PUMP #1 UNDER PRESSURE PUMP #1 OVER PRESSURE PUMP #2 UNDER PRESSURE PUMP #2 OVER PRESSURE

+V R AC S

I.S. GROUND

0V G

TO CRS1 (MAIN CPU)

ISB UNIT A05B–2308–C370 I.S. GROUND

FRAME GROUND

P4

NE–2000–977–002

NOTES: 1. ACCEPTABLE I.S. BATTERY PACKS: A05B–2363–C040 EE–3185–551 2. ALTERNATE I.S. BATTERY PACKS: A05B–2072–C181 A05B–2047–C182 SHALL BE USED PER EG–00127–SECTION VI 3. I.S. GROUND CONNECTION SHALL BE PER NEC(NFPA 70) SECTION 504–50 AND ANSI/ISA RP 12.6

NE–2000–977–001

F1F2F3 F4 F5

I/S TEACH PENDANT A05B–2308–C300 NE–2000–498–500 and NE–200–496–500

14. OPENERS AND OPTIONS

14–66 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS

14–67

MARO2P10203703E

Figure 14–33. Top Hat and Side Saddle Options Cable Layout Diagram 6 AXIS ROBOT HARNESS AND CABLE LAYOUT ROBOT ARM

R–J2 CONTROLLER AXIS 4 AXIS 5 AXIS 6

PURGE BD (BK) BRAKES

EMG BD

4 4 4

MOTOR 13.5MM EE–3287–111– 005 EE–3287–111–010 EE–3287–111–015 EE–3287–111–025 EE–3287–111–035 EE–3287–111–045 EE–3287–111–055

6

CRF1

C1

CABLE CLAMP SHIELD TO CHASSIS GROUND

PULSE BAT AXIS 6 POWER BRK

C4

D1 D4

PULSE 19.8MM EE–3287–113–005 EE–3287–113–010 EE–3287–113–015 EE–3287–113–025 EE–3287–113–035 EE–3287–113–045 EE–3287–113–055

AUX AXIS BD JF7

24PG, 0PG PURGE UNIT PGTB 3

A1 A4 B1 B4

OUTER ARM GROUND

E1

F1 F2 GROUNDING OF NON–IS SHIELDED CABLE AT CONTROLLER ENTRANCE

CONNECTION CABLE SETS UPPER LEVEL BOMS

50MM GND CLAMP

CABLE SHIELD

DC/DC CONVERTERS

INNER ARM GROUND

EE–3044–401

CABLE

F1

PULSE BAT AXIS 5 POWER BRK

PULSE BAT AXIS 4 POWER BRK

EE–3287–322–001 AXIS 4, 5 & 6 PWR & PULSE HARNESS

EE–3044–401

AMP 1 (L) AMP 2 (L) AMP 3 (M)

SEAL OFFS USED WITH NA PEDESTAL (NO PG FITTINGS)

TURRET GROUND

PULSE & BATT AXIS 3 POWER & BRK

PULSE & BATT AXIS 2 POWER & BRK

H1H4 AMP 1 (M) AMP 4 (M)

AXIS 1 AXIS 2

PURGE BD (BK) BRAKES

4

MOTOR 21.0MM EE–3287–110– 005 EE–3287–110– 010 EE–3287–110– 015 EE–3287–110– 025 EE–3287–110– 035 EE–3287–110– 045 EE–3287–110– 055

12 4

J1 J4

EE–3287–321–001 AXIS 1, 2 & 3 PWR & PULSE HARNESS

PULSE BAT PUMP 1 POWER BRK

K1 K4 AMP 2 (M)

AXIS 3

AMP 5 (L)

PUMP 1

AMP 5 (M)

PUMP 2

PURGE BD (BK) BRAKES

8

MOTOR 21.0MM NE–2000–996–005 NE–2000–996–010 NE–2000–996–015 NE–2000–996–025 NE–2000–996–035 NE–2000–996–045 NE–2000–996–055

4 4 4

AUX AXIS BD JF13 AUX AXIS BD JF14 CABLE CLAMP SHIELD TO CHASSIS GROUND

CONTROLLER GROUND

(SEE SHEET 004)

PULSE 17.4MM NE–2000–996–205 NE–2000–996–210 NE–2000–996–215 NE–2000–996–225 NE–2000–996–235 NE–2000–996–245 NE–2000–996–255

6.9MM GND EE–3287–116– 005 EE–3287–116– 010 EE–3287–116– 015 EE–3287–116– 025 EE–3287–116– 035 EE–3287–116– 045 EE–3287–116– 055 INTRINSIC 20.5MM NE–2000–977–005 NE–2000–977–010 B NE–2000–977–015 NE–2000–977–025 NE–2000–977–035 NE–2000–977–045 NE–2000–977–055

PULSE & BATT AXIS 1 POWER & BRK

2K1 2K1

NE–2000–401 PUMPS 1 & 2 PWR & PULSE HARNESS

5M

NE–2000–896–005

10M

NE–2000–896–010

15M

NE–2000–896–015

25M

NE–2000–896–025

35M

NE–2000–896–035

45M

NE–2000–896–045

55M

NE–2000–896–055

CONNECTION CABLE SETS UPPER LEVEL BOMS 5M

NE–2000–898–005

10M

NE–2000–898–010

15M

NE–2000–898–015

25M

NE–2000–898–025

35M

NE–2000–898–035

45M

NE–2000–898–045

55M

NE–2000–898–055

PULSE BAT PUMP 2 POWER BRK

2K2 2K2

R1 R1

S1 S4

NE–2000–977–004 INTRINSIC BATTERY HARNESS PUMPS 1 & 2

EE–3287–324–001 INTRINSIC BATTERY HARNESS AXIS 1–6 NE–2000–896–005 THRU –055 NE–2000–898–005 THRU –055

14. OPENERS AND OPTIONS

14–68 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS

14–69

MARO2P10203703E

Figure 14–34. Top Hat Option Intrinsic Connections

R–J2 ROBOT CONTROLLER

IDEC IBRC 6062RFM RELAY BARRIER

A1

P1

PRESSURE SWITCH

C1

N1

A2

P2

FLOW SWITCH

C2 A3

N2 P3

ROBOT OVERTRAVEL SWITCH

C3

N3

A4

P4

HAND BROKEN

C4 A5

N4 P5

TP DISCONNECT SWITCH

C5 A6

N5 P6

MISC. SWITCH (RDI2)

C6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

ISTB PSA1 PSA2 PSB1 PSB2 FSA1 FSA2 FSB1 FSB2 OT11 OT12 OT21 OT22 OT31 OT32 OT41 OT42 OT51 OT52 HBK1 HBK2 TP1 TP2 EOAT1 EOAT2

INTRINSIC CONNECTION CABLE NE–2000–977–XXX

NOTES:

ROBOT WIRE HARNESS ROBOT PURGED CAVITY EE–3287–323–001 PRES. SW CABLE EE–3044–345–001 M1 M4 PS1 PS1 ROBOT

1. SIGNAL NAMES IN THE PRODUCT CABLE EE–3287–323–001 WILL NOT MATCH SIGNAL NAMES ON THE INTRINSIC CABLE NE–2000–977–XXX OR THE PROCESS CABLE NE–2000–977–003.

PRESSURE SWITCH

M1 M4

FLOW SW CABLE EE–3044–340–001 FS1 FS1 ROBOT

M1 M4

SOLENOID CABLE EE–3287–348–001 SOL SOL PURGE

FLOW SWITCH

SOLENOID VALVE

S1

N6

S4

R1

R1

EE–3287–324–001 BATT

NE–2000–977–004 BATT

BATT ENCODER

X6 FOR ROBOT

ENCODER

X2 FOR 2K PUMPS

BATT

INTRINSIC SAFETY BARRIER ISB1 STAHL 9001/01–252–100–14 N1

N4

EE–3185–356–001

O1

O4

O1

3 4

1 2

BYPASS SWITCH

I.S. GROUND

I.S. BATTERY PACK

1

6

+

+

I.S. GROUND 7 1 8 ISB3 3 9 10 KHD2–SR–EX1.2S.P 11 +24 P&F 12 7 8 8 7 5 6

ISB7 P&F Z728

+ 1 2

ISB3–1 ISB3–3

O4 HAND BRKN

P1

ISB7–1 ISB7–2

8533ISB P&F Z787

+ 1 2 +4 3

8533ISB–1 8533ISB–2 8533ISB–4

8 7 5 6

8538ISB P&F Z787

+ 1 2 +4 3

8538ISB–1 8538ISB–2 8538ISB–4

8 7 5 6

8543ISB P&F Z787

+ 1 2 +4 3

8543ISB–1 8543ISB–2 8543ISB–4

8 7 5 6

8548ISB P&F Z787

+ 1 2 +4 3

8548ISB–1 8548ISB–2 8548ISB–4

P4

P4

P4 TRIGGER 1 PUMP #1 UNDER PRESSURE PUMP #1 OVER PRESSURE PUMP #2 UNDER PRESSURE PUMP #2 OVER PRESSURE

I.S. GROUND

C

NE–2000–977–003 ROBOT WIRE HARNESS EE–3287–323–001 (MUST BE REV. D) SEE NOTE 1.

NE–2000–896–005 THRU –055

14. OPENERS AND OPTIONS

14–70 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS

14–71

MARO2P10203703E

Figure 14–35. Side Saddle Option Intrinsic Connections

R–J2 ROBOT CONTROLLER IZUMI IBRC6062R

A1

P1

PRESSURE SWITCH

C1

N1

A2

P2

FLOW SWITCH

C2 A3

N2 P3

ROBOT OVERTRAVEL SWITCH

C3

N3

A4

P4

HAND BROKEN

C4 A5

N4 P5

TP DISCONNECT SWITCH

C5 A6

N5 P6

MISC. SWITCH (RDI2)

C6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

ISTB PSA1 PSA2 PSB1 PSB2 FSA1 FSA2 FSB1 FSB2 OT11 OT12 OT21 OT22 OT31 OT32 OT41 OT42 OT51 OT52 HBK1 HBK2 TP1 TP2 EOAT1 EOAT2

INTRINSIC CONNECTION CABLE NE–2000–977–XXX ROBOT PURGED CAVITY ROBOT WIRE HARNESS PRES. SW CABLE EE–3287–323–001 EE–3044–345–001 M1 M4 PS1 PS1 ROBOT PRESSURE SWITCH

M1 M4

FLOW SW CABLE EE–3044–340–001 FS1 FS1 ROBOT

M1 M4

SOLENOID CABLE EE–3287–348–001 SOL SOL PURGE

FLOW SWITCH

SOLENOID VALVE

S1

S4

EE–3287–324–001 BATT

BATT ENCODER

N6

R1

R1

NE–2000–977–001 BATT

BATT

ENCODER X2 FOR

2K PUMPS

INTRINSIC SAFETY BARRIER ISB1 STAHL 9001/01–252–100–14 N1

N4

O1

O4

P1

P4

EE–3185–356–001

3 4

1 2

X6 FOR ROBOT

BYPASS SWITCH

I.S. GROUND

I.S. BATTERY PACK

1

6

+

+

I.S. GROUND 7 1 8 9 ISB3 3 10 KHD2–SR–EX1.2S.P 11+24 P&F 12 ISB7 7 + 1 P&F Z728 8 2 8 + 1 8533ISB 7 2 5 +4 P&F Z787 6 3 8 + 1 8538ISB 7 2 5 +4 P&F Z787 6 3 8 + 1 8543ISB 7 2 5 +4 P&F Z787 6 3 8 + 1 8548ISB 7 2 5 +4 P&F Z787 6 3

ISB3–1 ISB3–3

HAND BRKN ISB7–1 ISB7–2

NE–2000–977–002 TRIGGER 1

8533ISB–1 8533ISB–2 8533ISB–4

PUMP #1 UNDER PRESSURE

8538ISB–1 8538ISB–2 8538ISB–4

PUMP #1 OVER PRESSURE

8543ISB–1 8543ISB–2 8543ISB–4

PUMP #2 UNDER PRESSURE

8548ISB–1 8548ISB–2 8548ISB–4

PUMP #2 OVER PRESSURE

I.S. GROUND

NE–2000–977–001

NE–2000–898–005 THRU –055

14. OPENERS AND OPTIONS

14–72 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS

14–73

MARO2P10203703E

Figure 14–36. Top Hat and Side Saddle Options Axis 3, Pumps 1 and 2 Motor Power Cable Reference

WIRE COLOR/ NUMBER BLUE/17 BLUE/18

WIRE TAG

SIGNAL NAME

BKP2 BKM2

3BKP 3BKM

BKP2 BKM2

CONNECTOR LABEL

3U 3V WIRE COLOR/ NUMBER

WIRE TAG

3W

RED/1 WHITE/2 BLACK/3 GRN/YEL/4 RED/5 WHITE/6 BLACK/7 GRN/YEL/8 RED/9 WHITE/10 BLACK/11 GRN/YEL/12 RED/13 WHITE/14 BLACK/15 GRN/YEL/16

3U 3V 3W 3G 3U 3V 3W 3G P1U P1V P1W P1G P2U P2V P2W P2G

3U

3G AXIS 3 PWR/BRK K1

3V

104

AXIS 3 POWER/BRK K1

3W 3G MOTOR REV. NE–2000–996–XXX MFG. NAME

P1U P1V P1W P1G P2U P2V P2W

12 POS SOC

MOTOR REV. NE–2000–996–XXX MFG. NAME

CABLE SPECIFICATION 16–#14 & 4–#18 AWG CONDUCTORS HYPALON JACKET MAX CABLE O.D.= 21.0 MM (0.825”) P/N=T–14379

PUMP #1 & #2 PWR 2K1

PUMP #1 & #2 POWER 2K1

9 POS SOC

SOC/ PIN NO. 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9

WIRE COLOR/ NUMBER RED/1 WHITE/2 BLACK/3 GRN/YEL/4 RED/5 WHITE/6 BLACK/7 GRN/YEL/8 BLUE/17 BLUE/18 KEY PLUG KEY PLUG RED/9 WHITE/10 BLACK/11 GRN/YEL/12

SIGNAL NAME

3BKM

RED/13 WHITE/14 BLACK/15 GRN/YEL/16

P2G

NE–2000–898–005THRU –055 NE–2000–896–005THRU –055

14. OPENERS AND OPTIONS

14–74 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS

14–75

MARO2P10203703E

Figure 14–37. Top Hat and Side Saddle Options Pumps 1 and 2 Pulse Cable Reference

CONN LABEL

JF13

PIN NO.

WIRE COLOR

SIGNAL NAME

PAIR NO.

1 2 3 4 5 6

WHITE BLACK

P1D P1*D

1 PIN PIN

WHITE BROWN

P1RQ P1*RQ

JF14

PIN NO.

WIRE COLOR

SIGNAL NAME

PAIR NO.

1 2 3 4 5 6

WHITE RED

P2D P2*D

3 PIN PIN

WHITE ORANGE

P2RQ P2*RQ

CONN LABEL

2 PIN PIN

CONN LABEL

105

JF13

4

PUMP 1+2 PULSE NE–2000–996–XXX MFG. NAME REV.

JF14

PUMP 1+2 PULSE NE–2000–996–XXX MFG. NAME REV.

CABLE SPECIFICATION CABLE O.D.=17.4MM (.685”) BLACK HYPALON JACKET P/N=T–11762 9 PAIR #20 AWG

2K2

9 POS SOC

2K2

PIN NO.

WIRE COLOR

SIGNAL NAME

1 2 3 4 5 6 7 8 9

WHITE BLACK WHITE BROWN WHITE RED WHITE ORANGE #18 BLK

P1D P1*D P1RQ P1*RQ P2D P2*D P2RQ P2*RQ SHIELD

PAIR NO. 1 2 3 4

PIN

NE–2000–898–005THRU –055 NE–2000–896–005THRU –055

14. OPENERS AND OPTIONS

14–76 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS

14–77

MARO2P10203703E

Figure 14–38. Top Hat and Side Saddle Options Intrinsic Cable Reference

IS GND

1–PSA1

1 2–PSA2 5–FSA1

WIRE WIRE TAG TWIST COLOR/ PAIR ISTB NUMBER CONN. POINT NO. WHITE–1 1 – PSA1 BLUE–2 2 – PSA2 WHITE–3 5 – FSA1 ORANGE–4 6 – FSA2 WHITE–5 ISB1–3 GREEN–6 ISB1–4 ISB3–1 WHITE–7 ISB3–3 BROWN–8 WHITE–9 8533ISB–1 GRAY–10 8533ISB–4 RED–11 8533ISB–2 BLUE–12 8538ISB–2 8538ISB–1 RED–13 ORANGE–14 8538ISB–4 8543ISB–1 RED–15 GREEN–16 8543ISB–4 RED–17 8543ISB–2 BROWN–18 8548ISB–2 8548ISB–1 RED–19 GRAY–20 8548ISB–4 BLACK–21 19 – HBK1 BLUE–22 20 – HBK2 BLACK–23 ISB7–1 ORANGE–24 ISB7–2

1 2 3 4 5 6 7 8 9 10 11 12

2 SIGNAL NAME PS1–P PS1–N FS1–P FS1–N PSOL–1 PSOL–2 BYPASS–1 BYPASS–2 P1US P1UR P1UG P1OG P1OS P1OR P2US P2UR P2UG P2OG P2OS P2OR HND BRK + HND BRK – TRIG +SIG TRIG –SIG

6–FSA2 ISB1–3

3 SOC/ LABEL PIN NO.

ISB1–4 ISB3–1

4 ISB3–3 8533ISB–1

M1

5 8533ISB–4

N1

1 2 5 8

WHITE–7 4 BROWN–8 SHIELD 20 AWG KEY

O1

1 2 3 4

BLACK–21 HND BRK+ 11 BLUE–22 HND BRK– KEY SHIELD 20 AWG

P1

WHITE–9 1 P1US 5 GRAY–10 2 P1UR RED–11 3 P1UG 6 BLUE–12 4 P1OG RED–13 5 P1OS 7 6 ORANGE–14 P1OR RED–15 7 P2US 8 GREEN–16 8 P2UR RED–17 9 P2UG 9 10 BROWN–18 P2OG RED–19 11 P2OS 10 12 GRAY–20 P2OR TRIG +SIG 13 BLACK–23 12 TRIG –SIG 14 ORANGE–24 SHIELD 20 AWG 15

R1

1 2 3 4

8538ISB–1

N1

9 POS SOC

8543ISB–1

8 8543ISB–4 8543ISB–2

106

9 8548ISB–2

O1

8548ISB–1

10 8548ISB–4

INTRINSIC REV. NE–2000–977–XXX MFG. NAME

INTRINSIC REV. NE–2000–977–XXX MFG. NAME

4 POS SOC

19–HBK1

11 20–HBK2 ISB7–1

12 ISB7–2

WIRE CONNECTIONTWIST COLOR/ PAIR POINT NUMBER NO. BLACK–25 13 GREEN–26 BLACK–27 BATTERY 14 BROWN–28 PACK BLACK–29 15 GRAY–30 YELLOW–31 BLUE–32

16

CABLE SPECIFICATION 16PR #20 AWG CABLE HYPALON JACKET MAX. CABLE O.D. = 20.5mm (0.805” MAX.) P/N=T–14685

P1

15 POS SOC

6V–1

WIRE TAG 6V–1 0V–1 6V–2 0V–2 6V–3 0V–3 6V–4 0V–4

0V–1 6V–2

R1

4 POS SOC

0V–2 6V–3 0V–3 6V–4 0V–4

S1

PS1–P PS1–N FS1–P FS1–N PSOL–1 PSOL–2

M1 6

7

SIGNAL NAME

WHITE–1 1 BLUE–2 WHITE–3 2 ORANGE–4 3 WHITE–5 NUMBERD GREEN–6 PSOL–2AME SHIELD 20 AWG KEY

8538ISB–2

8538ISB–4

TWISTED PAIR NUMBER

1 2 3 4 5 6 13 14

15 POS SOC

8533ISB–2

WIRE COLOR

15 POS SOC S1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BYPASS–1 BYPASS–2

YELLOW–31 16 BLUE–32 SHIELD 20 AWG KEY

6V–4 0V–4

BLACK–25 GREEN–26 BLACK–27 BROWN–28 BLACK–29 GRAY–30

6V–1 0V–1 6V–2 0V–2 6V–3 0V–3

JUMP TO 1 JUMP TO 2 JUMP TO 3 JUMP TO 4 JUMP TO 5 JUMP TO 6 SHIELD KEY

13 14 15

6V–4 0V–4 6V–5 0V–5 6V–6 0V–6 20 AWG

NE–2000–898–005THRU –055

14. OPENERS AND OPTIONS

14–78 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS

14–79

MARO2P10203703E

Figure 14–39. Integral Pump Control Process Flow Diagram FANUC SERVO MOTOR & BAYSIDE GEAR

ENCLOSURE PURGE RETURN PURGE TO ROBOT

3CC/REV PUMP

FANUC SERVO MOTOR & BAYSIDE GEAR

HAZARDOUS LOCATION CLASS I, II & III DIVISION I GROUPS C D E F & G

3CC/REV PUMP

HPBP HARDENER PUMP BYPASS

SAMES BYPASS BLOCK 5/32” O.D.

RESIN PUMP BYPASS (RPBP)

0–100 PSI PRESS TRANS.

5/32” O.D.

RESIN INLET PILOT (IPTR)

0–500 PSI PRESS. TRANS. (TYP)

0–500 PSI PRESS. TRANS. (TYP)

0–100 PSI PRESS. TRANS.

FROM PPVP

GEAR PUMP ASSEMBLY FANUC #NO–2000–810

5/32” O.D.

HARDENER INLET PILOT (IPTH) HARDENER PUMP BYPASS (HPBP)

5/32” O.D.

AIR SUPPLY

SOLVENT SUPPLY

5/32” O.D.

MBAP

5/32” O.D. PILOT

AIR SUPPLY

5/32” O.D.

RS1P

3/8” O.D.

3/8” O.D.

5/32” O.D.

RAP

AIR SUPPLY 1/4” O.D.

SOLVENT SUPPLY

3/8” O.D.

3/8” O.D. 5/16” O.D.

3/8” O.D.

3/8” O.D.

MBRP CP2

MBSP

SOLVENT SUPPLY

5/32” O.D.

5/32” O.D.

RESIN SUPPLY

RESIN SUPPLY

RESIN RETURN

RESIN RETURN

CP1

5/32” O.D.

RESIN SUPPLY

5/32” O.D.

MBHP

HARDENER SUPPLY 5/16” O.D. TEFLON

5/16” O.D. TEFLON

3/8” O.D. 5/16” O.D.

5/16” O.D. FROM AIR SUPPLY 5/16” O.D. TEFLON

HAP 3/8” O.D.

HP1 3/8” O.D.

5/32” O.D.

AIR SUPPLY

5/32” O.D.

SOLVENT SUPPLY

5/32” O.D.

5/32” O.D.

HARDENER SUPPLY

SPARE

HS1P 3/8” O.D.

MIX TUBE SEE SYSTEM DRAWING FOR CORRECT QUANTITY OF VALVES & LOCATION

HP2

PAINT 5/16 O.D. TEFLON

APPLICATOR

5/16” O.D. TEFLON

COLOR VALVE ASSEMBLY

PT

SPRAY GUN

FANUC P–200 ROBOT INTERIOR OF OUTER ARM

14. OPENERS AND OPTIONS

14–80 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS

14–81

MARO2P10203703E

Figure 14–40. P-200 Brake Release Option Package

MOUNT SWITCHES AND RC’S ON ALTERED COVER PLATE MOUNT TERMINALS AND RELAY ON HEAT EXCHANGER

PURGE UNIT

BLU–17

AXIS 3

BKP2

BLUE–18

CABLE EE–3287–120–XXX

AXES 1 & 2

CABLE EE–3287–121–XXX

AXES 4,5,6

CABLE EE–3287–122–XXX

AXES 3 & 7

BKM2

AXIS 2

BLK–5 BLK–6 BLK–11 BLK–12 AXIS 6 NOT USED BLUE–17

BKM1

AXIS 5 BKP1

BKP3 BKM3 BKP3 BKM3

BKM1

BLU–19 BLU–20

BKM

BKP

BKP

BKM

BKP

BKM

BKM

BKP

BKM

BKP

BKP

OPENER CONNECTIONS BKM

ISB UNIT

BKP1

TO PURGE BRAKE BOARD

AXIS 4

AXIS 1

BLU–18

BKM2

BKP2

AXIS 7

BATTERY PACK

BLUE–20 BLUE–19

ROBOT CABLE CONNECTION

INSTALLATION OF CONTROLLER WIRING

EE–3287–516

14. OPENERS AND OPTIONS

14–82 NOTES

MARO2P10203703E

14. OPENERS AND OPTIONS

14–83

MARO2P10203703E

Figure 14–41.

LABEL

P-200 Brake Release Wiring Diagram

SEE EE–3287–516–001 FOR PLATE MODIFICATION DETAILS SWITCH 3

4

PURGE CONTROL PCB A16B–1310–0601

BRAKE RELEASE KEYSWITCH CNPG

RC NETWORK

SW 1 = P–200 1, 4, 5, 7 BKRL1

SW 2 = P–200 AXIS 2

SW4

SW3

SW2

14

51606 51605

51609 51608

51612 51611

51615 51614

RAIL 1

RELAY SOCKET

2

9

END END BARR ANC TERM SCR NUT WASH LABEL

EMG1 EMG2 EES1

5

6

7

8

9

12 51604

PURGE BD BRAKE TB 3 BKP1

51605

4

BKM1

51607

5

BKP2

51608

6

BKM2

51610

7

BKP3

51611

8

BKM3

51613

9

BKP4

51614

10 BKM4

51602

0V

FORK TERM

18 AWG WIRE BLUE

+24E

BKRL2

SW 4 = P–10

SW1

15

8

17

SW 3 = P–200 AXIS 3 LABEL

CNIS SH1A

16

CNIN 11

CR5A

12

24V CR7B

CR5B

51601

BRDC CR7B

16 CR5B R7 100

17 EES2 CR8

C1 33OuF

BRD2 51604

CR5A CR6

51605

51611

51608

OF SWITCHES

BKM

BKP

BKM

BKP

BKM

BKP

BKM

BKP

BKM

BKP

BKM

1 5

BKP

2 6

6

7

8

9

10 11 12

9

BKM1

24V

BKP2 BKM2

51615

51613

51612

BRDC 51603

BRD2

BKP4 BKM4 100OUT1

TERM

3 BKP

P–200 AXES 4 + 5

4 BKM

0V

CNIN 1

100OUT2

2 3

5

51607

4

6

51608

5

7

51610

6

8

51611 51613

9

9

P–200 AXIS 2 6 BKM

10

SW2 RC 7 BKP CR1

P–200 AXIS 3

51612 8 BKM

3

11 SW3 RC

51614

7

D4 DS1

D5

D6 CR1

CR7B

BOARD

4

CR7A 100B

51609

10 CR7A

100A

5 BKP

CR1 4

2

10

13

RC

TB 3

CR8

PURGE/BRAKE

9

1 BKP P–200 AXES 1 + 7 2 BKM

SW1

0V

51601

5

51610

– 13

4

51609

+ 14

3

51607

4

2

51606

10

51604

11

1

51606

51615

51614

12

51612 51603 51609 51602

51614

CR1 RELAY

51602

51606

CR7B

BKP1 BK TB

CR1

51605

CR7A

1

SEE SHT FOR CABLE HOOKUP 3 7

13 CR1

CR6

REAR VIEW

8

14

51603

8

9 BKP 51615

12

OPENER AXIS 1 10 BKM 11 BKP OPENER AXES 2 + 3 12 BKM SW4 RC

WIRING DIAGRAM

SCHEMATIC

EE–3287–516

14. OPENERS AND OPTIONS

14–84 NOTES

MARO2P10203703E

Page85

A TRANSPORTATION AND INSTALLATION

MARO2P10203703E

A

TRANSPORTATION AND INSTALLATION A–1 This appendix includes information on transporting and installing an R-J2 controller.

Topics In This Chapter

Page

Transportation

The controller is transported by a crane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–2

Installation

Installation and Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Installation Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Assembly During Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Adjustment and Checks at Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A–3 A–3 A–4 A–5

A. TRANSPORTATION AND INSTALLATION

A–2

A.1 TRANSPORTATION

MARO2P10203703E

The controller is transported by a crane. Attach a rope to the eye bolts at the top of the controller, as shown in Figure A–1. Figure A–1. Transportation

Î Î ÎÎÏ Ï Î Ï Ï Î

A. TRANSPORTATION AND INSTALLATION

A–3

MARO2P10203703E

A.2 INSTALLATION

A.2.1 Installation Area

When you install the controller, allow the space for maintenance as shown in Figure A–2. Figure A–2. Installation Area

Controller

Controller

Controller

A. TRANSPORTATION AND INSTALLATION

A–4

MARO2P10203703E

A.2.2 Assembly During Installation

Figure A–3. Assembly During Installation

Î Î

ÏÏÎ Î Î Ï ÎÎ ÎÎ Intrinsically safe teach pendant

ISB

Mechanical unit connection cables (5)

Peripheral device connection cable

Input power cable

A. TRANSPORTATION AND INSTALLATION

A–5

MARO2P10203703E

A.2.3 Adjustment and Checks at Installation Procedure A–1 Adjustment and Checks at Installation STEP ACTION 1

Visually check the inside and outside of the controller.

2

Verify that the screwed terminal is connected properly.

3

Check that the connectors and printed circuit boards are inserted correctly.

4

Check transformer tap setting.

5

Connect the controller unit and mechanical unit cables.

6

Turn the breaker or disconnect off and connect the input power cable.

7

Check the input power voltage.

8

Press the EMERGENCY STOP button on the operator panel and turn the power on. Check the output voltage.

9

Check the interface signals between the control unit and mechanical unit.

10

Check the parameters. If necessary, set them.

11

Release the EMERGENCY STOP button on the operator panel. Turn on the controller.

12

Check the movement along each axis in the manual jog mode.

13

Check the end effector interface signals.

14

Check the peripheral device control interface signals.

ITEM #

Q’TY SERVICE NOTES

A. TRANSPORTATION AND INSTALLATION

A–6

MARO2P10203703E

The physical characteristic of the C-Size R-J2 controller are provided in Table A–1. Table A–1.

Item

Physical Characteristics

Model

Specifications/Condition

Transformer

All models

Three-phase 220, 240, 380, 415, 460, 480, 500, 550, or 575 V +10% –15%, 50/60 +/–1 Hz

Input power source capacity

All models

7.5 kVA + 1.1 kVA for optional user transformer

Average power consumption

All models

3.5KW nominal – path dependent (During rapid acceleration, the unit will temporarily require two times the continuous rated power value.)

Permissible ambient temperature

All models

0 degrees C to 45 degrees C

Permissible ambient humidity

All models

75% RH or less, non-condensing, up to 95% RH for a limited period (within one month)

Surrounding gas

All models

No corrosive gas. When you use the robot in an environment with a high concentration of dust or coolant, consult with your FANUC Robotics sales representative.

Vibration

All models

0.5 G or less. When you use the robot in a location subject to serious vibration, consult with your FANUC Robotics sales representative.

Weight of control unit

C cabinet

About 300 kg (660 lbs)

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF