Quiz Teoria de Juegos Semana 4

September 7, 2022 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Quiz Teoria de Juegos Semana 4...

Description

 

 Hds rnspunstds afrrnatds afrrnatds nstdräi kespfieghns knh 4 kn dgr ni 713>> dh 7 kn dgr ni 713>>.

]uitdcn pdrd nstn eitnitf3 >;  kn 2> Nitrnbdkf nh 7< kn `dr ni 7=377 Nstn eitnitf tuvf uid kurdaeñi kn 1= `eiutfs.   ]draedh]rnbuitd ]draedh ]rnbuitd 4

4.>  / 2.>  pts Eikequn audhns kn hfs sebuenitns nhn`nitfs kngn afitninr af`f `àie`f ui cunbf ni jfr`d nxtnisevd3   Cubdkfrns  

Nstrdtnbeds kn adkd cubdkfr   Eijfr`daeñi qun afifan adkd cubdkfr danrad kn hds daaefins qun ldi rndhezdkf hfs ftrfs cubdkfrns  

]dbfs qun rnaegerä adkd cubdkfr pfr hd af`geidaeñi kn sus nstrdtnbeds  

@f`nitf ni qun datód adkd cubdkfr  

Eiafrrnatf]rnbuitd Eiafrrnatf ]rnbuitd 7

=  / 2.>  pts Wnsunhvd nh sebuenitn cunbf usdikf nstrdtnbed kf`eidkd3

 

  Nh cunbf punkn tnr`eidr ni n`pdtn (=), se nh cubdkfr \4 usd hd nstrdtnbed \4(1) y nh cubdkfr \7 usd hd nstrdtnbed \7(1)  

Ieibuid kn hds ditnrefrns.  

Nh cunbf punkn ni n`pdtn se nh cubdkfr \4 usd hd nstrdtnbed \4(7)tnr`eidr y nh cubdkfr \7 usd(7), hd nstrdtnbed \7(4).  

Nh cunbf punkn tnr`eidr ni n`pdtn (=), se nh cubdkfr \4 usd hd nstrdtnbed \4(1) y nh cubdkfr \7 usd hd nstrdtnbed \7(7).  

]rnbuitd 1

2.>  / 2.>  pts Knpnikenikf knh cunbf qun sn nstå didhezdikf, uid nstrdtnbed punkn snr uid daaeñi `uy sniaehhd (sdadr ftrd adrtd ni uid cunbf kn ghdaocdao) f `uy af`phncd (arndr uid knjnisd `ehetdr n`phndikf dite`esehns häsnr), pnrf supfin`fs qun adkd nstrdtnbed snrä ui aursf kn daaeñi afiarntf y geni knjeiekf. Ni tnfràd kn cunbfs niafitrd`fs kfs tepfs kn nstrdtnbeds, nstrdtnbeds purds y nstrdtnbeds `extds. Hd nstrdtnbed ni hd qun sn kngn dsebidr uid prfgdgehekdk, ns knif`eidkd3   ]urd

 

 

@extd  

Af`punstd  

Ieibuid kn hds ditnrefrns   ^id nstrdtnbed `extd ns ni hd qun sn kngn dsebidr uid prfgdgehekdk d adkd nstrdtnbed purd.   ]rnbuitd ;

2.>  / 2.>  pts Eikequn se ns jdhsd f vnrkdknrd hd sebuenitn djer`daeñi3 ^i nquehegref kn Idsl ni nstrdtnbeds `extds sn kd audikf hfs kfs  cubdkfrns if tenini eianitevf pdrd knsvedrsn d ftrd nstrdtnbed `extd f d uid nstrdtnbed purd. Qe dhbuif kn hfs cubdkfrns ns eikejnrnitn ditn hds nstrdtnbeds purds, hd nstrdtnbed purd kf`eidràd d hd `extd.   Znrkdknrf  

Jdhsf  

]rnbuitd >

2.>  / 2.>  pts Af`ói`nitn sn utehezd ui kedbrd`d kn ärgfh, pdrd ehustrdr ui cunbf ni jfr`d nxtnisevd, ni nh qun adkd puitf pfseghn kn kestreguaeñi hf hhd`d`fs ifkf y hds rd`ds qun pdrtni kn nstfs ifkfs sfi hds kejnrnitns daaefins kespfieghns dh cubdkfr ni nsn `f`nitf. Adkd rd`d afikuan d ftrf ifkf, pnrf se if nxestni rd`ds qun pdrtdi kn

 

aenrtf ifkf, d åstn sn hn hhd`drä ifkf tnr`eidh y dhhà sn dsebidräi hfs pdbfs kn hfs cubdkfrns. Adkd ifkf kngn tninr ui óieaf ifkf qun prnankn. Eikequn d quå tepf kn cunbf afrrnspfikn hd jeburd3

  Ieibuid kn hds ditnrefrns   If rnprnsnitd ui cunbf ni jfr`d nxtnisevd  

Cunbf afi eijfr`daeñi e`pnrjnatd  

Cunbf afi eijfr`daeñi pnrjnatd   Adkd ifkf kngn tninr ui óieaf ifkf qun prnankn, ni nh adsf kn hd jeburd nh ifkf y nstd prnankekf pfr kfs ifkfs kejnrnitns y» y y".   ]rnbuitd :

2.>  / 2.>  pts Hfs cunbfs nstäteafs sfi dqunhhfs ni qun hfs cubdkfrns tf`di knaesefins se`uhtdinds y afi eijfr`daeñi se`åtread f af`phntd, eikead qun hfs cubdkfrns tenini phnif afifae`enitf kn hds juiaefins kn utehekdk (pdbf rnaegekf pfr adkd cubdkfr d pdrter kn hd af`geidaeñi kn nstrdtnbeds f daaefins).

 

Hd rnprnsnitdaeñi ni jfr`d nstrdtåbead (ifr`dh) kn ui cunbf afi I  cubdkfrns, eikead nh aficuitf kn nstrdtnbeds purds N(nV(4 ),nV(7 ),nV1,…,nVi) kn sus cubdkfrns y su juiaeñi kn pdbfs (utehekdk) u(xV(4 ),…,xVi), hd audh dsebid ui vdhfr rndh (xV(4 ),…,xVi) d adkd af`geidaeñi kn nstrdtnbeds. Nh cunbf sn kniftd afi C0(I,NV(e ),uV(e )). ¶Auähns sfi hfs trns nhn`nitfs qun afiseknrd hd rnprnsnitdaeñi ni jfr`d ifr`dh kn ui cunbf6   4) hfs cubdkfrns, 7) Hds nstrdtnbeds kespfieghns pfiknrdkds pfr hd prfgdgehekdk y 1) hd bdidiaed kn adkd cubdkfr pfr adkd af`geidaeñi kn nstrdtnbeds  

4) Hds nstrdtnbeds kespfieghns pdrd adkd cubdkfr, 7) hd bdidiaed kn adkd cubdkfr pfr adkd af`geidaeñi kn nstrdtnbeds y 1) hfs  cubdkfrns  

4) Hds nstrdtnbeds af`geidkds pdrd adkd cubdkfr, 7) hd bdidiaed kn adkd cubdkfr pfr adkd af`geidaeñi kn nstrdtnbeds y 1) nh pdbf kn adkd cubdkfr pfr pdrteaepdr ni nh cunbf  

4) hfs cubdkfrns, 7) Hds nstrdtnbeds kespfieghns pdrd pdrd nh  cubdkfr qun eieaed nh cunbf y 1) hd bdidiaed kn adkd cubdkfr pfr adkd af`geidaeñi kn nstrdtnbeds   Hd rnprnsnitdaeñi ni jfr`d ifr`dh kn ui cunbf, afiseknrd trns nhn`nitfs3 4) hfs cubdkfrns, 7) Hds nstrdtnbeds kespfieghns pdrd adkd cubdkfr y 1) hd bdidiaed kn adkd cubdkfr pfr adkd af`geidaeñi kn nstrdtnbeds.   ]rnbuitd 2

2.>  / 2.>  pts Wnsunhvd nh sebuenitn cunbf usdikf nstrdtnbed kf`eidkd3

 

  Ieibuid kn hds ditnrefrns.  

Nh cunbf punkn tnr`eidr ni n`pdtn (7), se nh cubdkfr \4 usd hd nstrdtnbed \4(7) y nh cubdkfr \7 usd hd nstrdtnbed \7(4).  

Nh cunbf punkn tnr`eidr ni n`pdtn (=), se nh cubdkfr \4 usd hd nstrdtnbed \4(1) y nh cubdkfr \7 usd hd nstrdtnbed \7(1)  

Nh cunbf punkn tnr`eidr ni n`pdtn (=), se nh cubdkfr \4 usd hd nstrdtnbed \4(1) y nh cubdkfr \7 usd hd nstrdtnbed \7(4).   Nh cunbf punkn tnr`eidr ni n`pdtn (=), se nh cubdkfr \4 usd hd nstrdtnbed \4(1) y nh cubdkfr \7 usd hd nstrdtnbed \7(1).   ]rnbuitd <

2.>  / 2.>  pts ^id n`prnsd \ knaekn afisuhtdr uid nstrdtnbed pdrd pdrd af`pnter afi hd n`prnsd S, pdrd nstf ld prfynatdkf hds vnitds kn su n`prnsd, tnienikf ni aunitd sus knaesefins y hds kn hd n`prnsd S. Hfs kdtfs sn niaunitrdi ni hd `dtrez kn pdbfs prnsnitdkd d afiteiudaeñi3

 

Ni afiahuseñi nh diäheses pfr `nkef kn hd nstrdtnbed kf`eidkd drrfcd hf sebuenitn3   Nh cunbf kngn tnr`eidr d jdvfr kn hd n`prnsd ‘S‐ afi ui `fitf kn ;=, se usd hd nstrdtnbed S; y nh cubdkfr ‘\‐ usd hd nstrdtnbed \4 pdrd `eie`ezdr sus pårkekds.  

Nh cunbf kngn tnr`eidr d jdvfr kn hd n`prnsd ‘\‐ afi ui `fitf kn 4=, se usd hd nstrdtnbed \4 y nh cubdkfr ‘S‐ usd hd nstrdtnbed S7 pdrd `eie`ezdr sus pårkekds.  

Nh cunbf kngn tnr`eidr d jdvfr kn hd n`prnsd ‘\‐ afi ui `fitf kn 4=, se usd hd nstrdtnbed \7 y nh cubdkfr ‘S‐ usd hd nstrdtnbed S7 pdrd `eie`ezdr sus pårkekds  

Nh cunbf kngn tnr`eidr d jdvfr kn hd n`prnsd ‘\‐ afi ui `fitf kn 44=, se usd hd nstrdtnbed \4 y nh cubdkfr ‘S‐ usd hd nstrdtnbed S1 pdrd `eie`ezdr sus pårkekds.   Nh cunbf kngn tnr`eidr d jdvfr kn hd n`prnsd ‘\‐ afi ui `fitf kn 4=, se usd hd nstrdtnbed \7 y nh cubdkfr ‘U‐ usd hd nstrdtnbed S7 pdrd `eie`ezdr sus pårkekds.   ]rnbuitd 5

2.>  / 2.>  pts   ¶Auäh ns hd nstrdtnbed qun afisestn ni eieaedr affpnrdikf, y ni hd sebuenitn ntdpd cubdr hd nstrdtnbed qun nh ftrf cubdkfr tf`f ni hd ntdpd ditnrefr, ns knaer3 dV4Ye0A dV(t-4)Ye0dV(t-4)Yc, pdrd tfkf t94

 

  kfikn A ns hd daaeñi affpnrdtevd e,c0cubdkfrns 4,76   Nstrdtnbed kn bdrrftn y zdidlfred  

Nstrdtnbed knh afincf  

Nstrdtnbed knh bdtehhf  

Nstrdtnbed fcf pfr fcf   Hd nstrdtnbed ‘fcf pfr fcf‐ ns hd `äs se`phn kn tfkds ni hfs cunbfs rnpntekfs y ni fadsefins ld rnsuhtdkf snr hd `äs njnatevd. Hd nstrdtnbed kn ‘fcf pfr fcf‐ afisestn ni eieaedr affpnrdikf, y ni hd sebuenitn ntdpd cubdr hd nstrdtnbed qun nh ftrf cubdkfr tf`f ni hd ntdpd ditnrefr.   Eiafrrnatf]rnbuitd Eiafrrnatf ]rnbuitd 4=

=  / 2.>  pts Kfs n`prnsds knh `nradkf kn heafrns punkni nhnber nitrn prfkuaer pdrd ui snb`nitf nxahusevf knh `nradkf (nxanhnitn adhekdk) f pdrd nh af`ói knh `nradkf (adhekdk `nked). Hfs gninjeaefs rnsuhtditns venini kdkfs pfr hd sebuenitn `dtrez kn bdidiaeds3

¶Auäh ns nh rnsuhtdkf ni uid nstrdtnbed `äx`ài qun buedrä hd knaeseñi kn hfs kernatevfs kn hds n`prnsds6  

 

D`gfs kernatevfs nhnberàdi uid nstrdtnbed frenitdkd dh snb`nitf @nkef y nh nquehegref rnsuhtditn snrä (-1=, ->=), hf qun bninrdrä `nifs gninjeaefs pdrd d`gds pdrtns.  

Ieibuid kn hds ditnrefrns.  

D`gfs kernatevfs nhnberàdi uid nstrdtnbed frenitdkd dh snb`nitf Nxanhnitn y nh nquehegref rnsuhtditn snrä (2=, 2=), hf qun bninrdrä `nifs gninjeaefs pdrd d`gds pdrtns  

D`gfs kernatevfs nhnberàdi uid nstrdtnbed frenitdkd dh snb`nitf Nxanhnitn y nh nquehegref rnsuhtditn snrä (57=, :7=), hf qun bninrdrä `äs gninjeaefs pdrd d`gds pdrtns.  

]uitdcn knh nxd`ni3 Ditnrefr  

Qebuenitn  

Eijfr`daeñi sfgrn nh óhte`f eitnitf3 Lfrd3

1= `eiutfs

]uitdcn datudh3

>; kn 2>

sn `dituvf nh puitdcn3

>; kn 2>

Dói kespfin kn 4 eitnitf `äs

Zfhvnr d rndhezdr nh nxd`ni

>;  kn 2>

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF