Quad Copter

June 13, 2019 | Author: Mark Lymer Lazaro | Category: Quadcopter, Unmanned Aerial Vehicle, Electric Motor, Aerospace, Entertainment (General)
Share Embed Donate


Short Description

Download Quad Copter...

Description

QUADROTOR UAV

August 30, 2009

August 30

Quadrot or UAV

2009

 This paper describes a four rotor vertical-take-off-andver tical-take-off-andlanding unmanned aerial vehicle, commonly known as a Quadrotor, designed for objective completion in an urban environment. The assumptions, assumptions, proposed design and project methodology is described in detail.

Proposal

1

August 30, 2009

QUADROTOR UAV

 Table of Contents LIST OF FIGURES.................................................. ............................................................................. ...................................................... ................................4 .....4 ABSTRACT....................................................................................................................4 I.

INTROD INTRODUCT UCTION ION... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ....... ......... .......... .......... ......... ....5 5

GOAL.........................................................................................................................5 PERSONAL S TATEMENT OF INTEREST.......................................................................................5 UNMANNED AERIAL VEHICLES..............................................................................................5 PREVIOUS RESEARCH WITH UAVS........................................................................................6  THE INTERNATIONAL AERIAL ROBOTICS COMPETITION ...................................................................7  Abstract...............................................................................................................7 Notional Mission............................................... Mission.......................................................................... ....................................................7 .........................7

PAPER ORGANIZATION..................................................... ................................................................................ ..................................................9 .......................9 II.

STAGES STAGES OF DESIGN DESIGN AND CONSTRUC CONSTRUCTION. TION....... ........... ........... ............ ............ .................1 ...........10 0

S TAGES OF THESIS WORK .................................................... ............................................................................... ............................................10 .................10 Research............................................................................................................10 Inertial Navigation System...................................................................... System................................................................................. ...........11 11 Manual Flight.................................................... Flight........................................................................................... ....................................... ..........11 .......... 11 Flight Model for Stabilization............................ Stabilization....................................................... ..................................................11 .......................11 Ground Station Communication.............. Communication......................................... ...........................................................11 ................................11 Preplanned Flight............................................... Flight.......................................................................... ................................................ ..................... 11 Collision Sensing Array......................................................................................11 Object Identification.................................. Identification............................................................. .........................................................12 ..............................12 Object Acquisition..................................... Acquisition................................................................ ....................................................... ............................ ..12 Objective Planning..................... Planning................................................ ........................................................................ ............................................. 12

S TAGES OF QUADROTOR DESIGN........................................................................................12 MODULAR DESIGN.........................................................................................................13 Naming convention.................... convention............................................... ...................................................... ............................................. .................. 14

III. DESIGN DESIGN CONSIDERA CONSIDERATIONS TIONS...... ............ ............ ........... ....................... ..................................... .....................15 ..15

IARC REQUIREMENTS ....................................................................................................15  JUSTIFICATION OF QUADROTOR ...........................................................................................16 IV. QUADROTOR QUADROTOR BASICS... BASICS......... ........... ........... ............ ............ ................. .............................. ...........................17 ........17 V.

QUADROTOR QUADROTOR COMPONENT COMPONENTS.... S.......... ............ ............ ............ .......................... ................................1 ............19 9

 TRANSMITTER/RECEIVER.................................................... ............................................................................... ...............................................20 ....................20 ROTOR S YSTEM............................................................................................................21 DC Motors............................................... Motors.......................................................................... ................................................. ...................... ..........21 .......... 21 Contra Rotating Blades......................................... Blades...................................................................................... ............................................. 22 Electronic Speed Controllers................... Controllers.............................................. ...........................................................22 ................................22

BATTERY.................................................... ............................................................................... ................................................................23 .....................................23 MICROCONTROLLER PLATFORM...........................................................................................24 SENSORS...................................................................................................................24 Inertial Navigation System...................................................................... System................................................................................. ...........25 25 Distance Measuring Sensors.............................................................................. Sensors.............................................................................. 27

BUILDING MATERIAL.......................................................................................................29 2

QUADROTOR UAV

August 30, 2009

VI. PC INTERFACE INTERFACE..... ........... ............ ............ ............ ........... ........... ............ ............ ............ ........... ........... ................. ...........30 30

COMMUNICATION ...........................................................................................................30 USER INTERFACE..................................................... ................................................................................ ......................................................31 ...........................31 IDE.....................................................................................................................31 Live Display.......................................................................................................31

PROGRAMMING ISSUES....................................................................................................32  JAUS TERMINAL..........................................................................................................32 VII. OVERVIEW OVERVIEW OF TESTING TESTING EQUIPMENT EQUIPMENT AND TOOLS...... TOOLS......................... ........................33 .....33

 TESTING EQUIPMENT ......................................................................................................33 Motor Thrust Test-Bench................... Test-Bench.............................................. ...................................................... ......................................33 ...........33 Power Management............................................................ Management................................................................................. ..................... ..........35 .......... 35 Tethered Flight Rig............................................................................................36

 TOOLS......................................................................................................................36 VIII. QUADROTOR DESIGN AND CONSTRUCTION................. CONSTRUCTION.......................... ................. ............37 ....37

S TAGE 1: MANUAL QUADROTOR FLIGHT...............................................................................37 Procedure of Stage 1.........................................................................................37 Construction of the Quadrotor...........................................................................37 Testing...............................................................................................................38 Verification of Stage Completion.......................................................................38

S TAGE 2: PREPLANNED FLIGHT PATH...................................................................................39 Procedure of Stage 2.........................................................................................39  Adding the XBee communication system..........................................................39 Flight Controller.............................................................. Controller....................................................................................... ......................... ..........39 .......... 39 Testing...............................................................................................................39 Verification of Stage Completion.......................................................................40

S TAGE 3: OBSTACLE AVOIDANCE.......................................................................................41 Stage Considerations............... Considerations.......................................... ...................................................... ......................................... ....................41 ......41 Verification of Stage Completion.......................................................................41

S TAGE 4: OBJECTIVE PLANNING.........................................................................................42 Stage Considerations............... Considerations.......................................... ...................................................... ......................................... ....................42 ......42 Verification of Stage Completion.......................................................................42

IX. FINANCES. FINANCES...... ........... ............ ............ ............ ........... ........... ............ ............ ............ ........... ....................... ......................43 ....43

S TAGE 1...................................................................................................................43 S TAGE 2...................................................................................................................44 S TAGE 3 AND 4.............................................. 4......................................................................... .............................................................44 ..................................44 X.

TIMELINE. TIMELINE....... ........... ........... ............ ............ ............ ........... ........... ............ ............ ............ .................. ......................46 ..........46

XI. CONCLUSIO CONCLUSION..... N........... ............ ........... ........... ............ ............ ................... ................................. ............................47 ........47 XII. WORKS CITED.... CITED.......... ............ ............ ............ ............ ............ ............ ........... ....................... .............................4 ...........48 8

Error: Reference source not found

3

August 30, 2009

QUADROTOR UAV

List of Figures FIGURE 1: ELECTRONIC COMMUNIQUÉ.............. COMMUNIQUÉ ............................ ............................. ............................. ............................ ...........................8 .............8 FIGURE 2: STAGES OF RESEARCH.........................................................................................10 RESEARCH .........................................................................................10 FIGURE 3: QUADROTOR STAGES.............. STAGES ............................. ............................. ............................ ................................................12 ..................................12 FIGURE 4: MODULAR DESIGN............. DESIGN ........................... ............................. ............................. ............................. ........................................13 .........................13 FIGURE 5: NAMING CONVENTION............. CONVENTION ........................... ............................ ............................. .................................................14 ..................................14 FIGURE 6: QUADROTOR BODY DIAGRAM............. DIAGRAM ........................... ............................. ............................. .....................................17 .......................17 FIGURE 7: QUADROTOR RENDERING.............. RENDERING ............................ ............................. ............................. ............................ ............................19 ..............19 FIGURE 8: SPEKTRUM DX6I (14).............. (14) ............................ ............................. ............................. .................................................20 ...................................20 FIGURE 9: TOWERPRO BRUSHLESS OUTRUNNER 2410-09 (17).............................................21 (17) .............................................21 FIGURE 10: CONTRA ROTATING EPP1045 (15)......................................................................22 (15) ......................................................................22 FIGURE 11: TURNIGY PLUSH 18A SC (19) ........................... .......................................... ...................................................22 ....................................22 FIGURE 12: TURNIGY 4000MAH (19).............. (19) ............................ ............................. ............................. ............................ .............................23 ...............23 FIGURE 13: ARDUINO MEGA (21).............. (21) ............................. ............................. ............................ ............................. ..................................24 ...................24 FIGURE 14: IMU 6 DEGREES OF FREEDOM - V4 WITH BLUETOOTH CAPABILITY (22) ..............25 FIGURE 15: IMU 5 DEGREES OF FREEDOM (23).....................................................................26 (23) .....................................................................26 FIGURE 16: GYRO BREAKOUT BOARD - DUAL 500 DEGREE/SEC (24)....................................26 (24) ....................................26 FIGURE 17: COMPASS MODULE WITH TILT COMPENSATION - HMC6343 (25) ........................26 FIGURE 18: MAXBOTIC LV-EZ1 (26)............. (26) ........................... ............................. ............................. ............................ ...............................27 .................27 FIGURE 19: SHARP GP2Y0A02YK0F (27)............. (27) ............................ ............................. ............................ ......................................28 ........................28 FIGURE 20: HOKUYO URG-04LX (29)............ (29)........................... ............................. ............................ ....................................... ......................... .....28 FIGURE 21: CARBON FIBER SQUARE TUBES (30) ............................ ........................................... .......................................29 ........................29 FIGURE 22: DATA TRANSMISSION.............. TRANSMISSION ............................ ............................. ............................. ............................ .................................30 ...................30 FIGURE 23: XBEE PRO 50MW SERIES 2.5 RPSMA (33) ...........................................................31 FIGURE 24: XBEE EXPLORER USB (36)..................................................................................32 (36) ..................................................................................32 FIGURE 25: MOTOR TEST BENCH............... BENCH ............................. ............................. ............................. ............................ ............................. ...................33 ....33 FIGURE 26: FC22 COMPRESSION LOAD CELL (38) .................................................................34 FIGURE 27: MAXPRO BATTERY MONITOR 3S (39) ..................................................................35 FIGURE 28: TETHERED RIG RENDER............ RENDER ........................... ............................. ............................ ............................. ...............................36 ................36 FIGURE 29: STAGE 1 COSTS............. COSTS ............................ ............................. ............................ ............................. ..........................................43 ...........................43 FIGURE 30: STAGE 2 COSTS............. COSTS ............................ ............................. ............................ ............................. ..........................................44 ...........................44 FIGURE 31: PROPOSED TIMELINE............... TIMELINE ............................. ............................ ............................. .......................................... ........................... .....46 FIGURE 32: PROPOSED TIMELINE

Abstract

4

QUADROTOR UAV

August 30, 2009

  This paper describes describes a four rotor rotor vertical-ta vertical-take-of ke-off-and f-and-lan -landing ding unmanned unmanned aerial vehicle, commonly known as a Quadrotor, designed for objective completion in an urban environment. environment. The assumptions, assumptions, proposed design and and project methodology methodology is described in detail.

I. In Intr trod oduc ucti tion on  This section introduces the overall project and the concepts that are involved.

Goal To design and build a small UAV that is capable of competing in the International Aerial Robotics Competition 6th Mission.

Personal Statement of Interest  The future future of technology technology always lies in making making things smarter. smarter. Unmanned Unmanned aerial aerial vehicles (UAVs) are the next stage stage in aviation. While human pilots pilots will always exist, UAVs provide unparallel performance for dangerous situations, both for military and civilian applications. applications. While this is certainly certainly a lucrative field, my my interest in UAVs is not based on finances. finances. I decided on this topic because because I wanted to build build something. I wanted a project that will challenge me to design and implement an entire system, encompas encompassing sing a range range of topic topics. s. This projec projectt will requir require e substantia substantiall work in a vari variet ety y of engi engine neer erin ing g fiel fields ds.. Whil While e my expe expert rtis ise e is prim primar aril ily y in comp comput uter er engineering, designing digital systems, this project will allow me to expand my knowl knowledg edge e into into a wide wide range range of applic applicati ations ons in aerody aerodynam namics ics,, guida guidance nce and navigation, and intelligent systems. I cannot fathom a more comprehensive topic topic to get a chance to study a little bit of everything than in the interdisciplinary field of  robotics.

Unmanned Aerial Vehicles  The unmanned aerial vehicle is the future future of aviation technology. technology. After decades of  research research and testing, testing, the UAV industry industry has finally finally started started to take off. In the last decade, the funding for UAV research, and especially VTOL UAVs, has increased drama dramatic ticall ally. y. In the next decade, decade, accordi according ng to a recent recent market market study study by Teal Group, Group, UAV spending will will more than double to $8.7 billion billion annually(). annually(). This study poin points ts to the the grow growin ing g dema demand nd of UAVs UAVs in the the inte intell llig igen ence ce,, surv survei eill llan ance ce,, and and reconnaissance sectors, especially in the US, which is predicted to account for 72% of worldwide UAV funding(). Of the UAV market, market, VTOL vehicle design design is the fastest growing sector sector (). Military use has historically been the most common common application application for UAVs; however, VTOL vehicles have recently been introduced to the civilian sector. sector. Civilian Civilian applicat applications ions for VTOL vehicles vehicles include include aerial photograph photography, y, fire suppression, search and rescue missions and surveillance. One of the greatest advantages of VTOL vehicles is its high maneuverability, due to its ability to hover and to fly fly at low altitudes. This allows the vehicle vehicle to fly through narrow corridors and small openings, making it ideal for flight in urban and crowded envi enviro ronm nmen ents ts.. The The most most comm common on VTOL VTOL UAV UAV desi design gn mimic mimicss the the shap shape e of a helicopter, providing providing excellent control control and maneuverability. maneuverability. While this design design has been been studie studied d extens extensive ively, ly, it often often suffer sufferss from from comple complex x mechan mechanics ics and a low 5

August 30, 2009

QUADROTOR UAV

payload capacity(). The four rotor helicopter commonly known as a Quadrotor or Quadcopter has been increasingly been used. This design boasts a number of  advantages over the traditional helicopter design(). The Quadrotor does not use any actuator control to change the direction of the thrust; rather it uses differential thrust to maneuver. This greatly simplifies the mechanical design of the vehicle. In contrast to the one large rotor with a traditional helicopter, the Quadrotor uses four smaller rotors for thrust. The smaller size reduces the possible damage to surroundings in the incident of a breakage and increases the response time associated with rotor drag. The simple design also lends itself well to reducing the aerodynamic complexity. One of the greatest advantages of the Quadrotor design however is the ability to support a heavier payload than other designs, making it ideal for carrying large cameras, powerful computers or communication devices. However, compared to other VTOL designs, the Quadrotor consumes a great deal of  power to stay aloft, which drastically limits flight time. In the RC hobbyist market, the most common designs are only capable of flight times under 20 minutes. However, for these short flights, no other design can match the stability and maneuverability of a Quadrotor, indoors or outdoors.

Previous Research with UAVs A plethora of research groups are using the Quadrotor design as a test bed for a multitude of projects. Some of the more common uses are in developing control systems, improved autonomous control, sensor arrays and surveillance equipment. Prominent groups include the Autonomous System Laboratory at Eidgenössische  Technische Hochschule Zurich (ETH Zurich) in Switzerland (), the Stanford STARMAC group () in California, the Australian National University (ANU) X-4 Flyer Project ()(), and many others. Hoffman et al () provide an excellent review describing many of  these designs and their respective innovations. The numerous amount of published work using the Quadrotor design is indicative of the variety of topics involved. While the majority of the published work deals with control systems and sensor arrays, many papers have been published on developing accurate aerodynamic modeling(), improving the design ()() and developing point to point real-time communication between two Quadrotor vehicles(). In addition to published works, the hobbyist community has documented a great deal of work in regards to developing cheaper home built Quadrotors for personal use.

6

QUADROTOR UAV

August 30, 2009

 The International Aerial Robotics Competition   The International Aerial Robotics Competition (IARC) () is an international competition sponsored by the Association for Unmanned Vehicle Systems International (AUVSI)(). AUVSI sponsors a number of student competitions, including competitions for unmanned ground and underwater vehicles. The annual International Aerial Robotics Competition will celebrate its 20 th year of competition with the 6th Mission. In this new 6th mission, a small UAV will be launched to infiltrate a hostile building. Once inside, the UAV is to find and acquire a specific small object without being detected by video surveillance. This is to simulate a covert operation for military usage.   These competitions are designed to be challenging and generally beyond the abilities of the current technology. The 4th mission lasted for 8 years, and was never fully completed. Even in the best of circumstances, it is unlikely that the project described in this proposal will be capable of competing in the IARC. The project will be undertaken with the intent of entering the IARC; however, the decision of  whether or not to enter will not be decided until a much later date. Even if this project is not capable of entering the IARC, the undertaking of this project will provide research opportunities in the field of unmanned aerial vehicles, inertial navigation systems, wireless communication, and collision avoidance algorithms and sensors.

Abstract The 6th mission for the International Aerial Robotics Competition (IARC) will move the challenge to yet a higher level of autonomous aerial robotic behavior. The past two decades have seen a revolution in navigation technologies for operations in the open, but there is still much to be done in the area of indoor navigation. The goal is to create a small aerial robot capable of fully autonomous flight through a confined environment. In performing this task, the state-of-the-art in indoor  navigation, vehicle design and integration, and flight control will be  pushed to a higher level. The 5th Mission of the IARC required collegiate teams to create fully  autonomous flying robots capable of negotiating a rather sterile environment. The new 6th Mission picks up where the 5th Mission left  off by demonstrating the fully autonomous aerial robotic behaviors necessary to more rapidly negotiate culturally-cluttered confined internal spaces of a structure once it has been penetrated by an air  vehicle, and intelligently interact with physical items encountered.

Notional Mission Credible and actionable human intelligence (HUMINT) reports have been received from a mole within the Hesamic Republic of Nari’s Intelligence Organization. These reports indicate that highly sensitive information detailing plans to sabotage banking interests of a global organization may be stored in a security office located in the remote town of Rafq. A

7

August 30, 2009

QUADROTOR UAV

breach in security has been identified which may allow a small autonomous air vehicle to penetrate perimeter defenses so that the sensitive information can be stolen by the global organization in order  to preempt any actions by the Nari government which would be deemed damaging to these unnamed global interests. Before his untimely death, the mole was able to describe a number of  features within the Nari Intelligence Organization’s security compound and the desired target. Figure 1: Electronic Communiqué contains the electronic communiqué that is believed to contain reliable intelligence (NEC Pivot machine translation). 1. THE NARI SECURITY COMPOUND IS SURROUNDED BY RAISED TENSION [analyst: a high voltage] ELECTRIC FENCE WITH AN INNER RAZOR TELEGRAPH EXTENT [analyst: razor wire boundary or perimeter]. 2. THE BUILDING IS CONSIDERED SECURE, BUT HAS VIDEO ÃOEBERWKöN [analyst: unreadable] AT VARIOUS POINTS. VIDEO IS MONITORED BY GUARDS IN AN ADJACENT COMPOUND 300 METERS TO THE SOUTH. 3. CERTAIN HALLWAYS INTERNAL THE SECURITY COMPOUND GET LASER “TRIPWIRES” WHICH ABLE TO BE DEACTIVATED MANUALLY. THE LASER BEAMS, IN CASE BROKEN IN TWO, INITIATE AN LOUD HEARING [analyst: audible] ALARM. 4. EVERYONE’S FLOORS HOLD PRESSURE-FEELING üBERKIDEN [analyst: unreadable; perhaps “switches”] THAT ARE MADE TO LIVE [analyst: armed or switched on] AT THE EVENING OF EACH WORK DAY. 5. A UNMARRIED GUARD [analyst: sole or single guard] PATROLS THE SECURITY COMPOUND ON A 10-MINUTE ROTATION. HE CAN BE SEEN WALKING ÃÜJ ƑÂRS [analyst: unreadable] THE COMPOUND AND THEN ONCE EVERY 10 MINUTES, ENTERING THE COMPOUND FOR A SECURITY INSPECTION LASTING ABOUT 15 MINUTES. HE THEN EXITS PRESENT EIFGäNGE THE ENCLOSURE TO üBIRPRüFEN BEING EXTENT. BEGINNING THE ENCLOSURE KöNND ONLY BEING ACHIEVED WHEN THE GUARD AM OUT. ENTRANCE WAY OUT. [analyst: entering the compound can only be achieved when the guard is outside] INGRESS/EGRESS MUST OCCUR IN BELOW 10 MINUTES TO AVOID DETECTION. 6. THERE ARE SEVERAL OFFICES WITHIN THE COMPOUND. THE SECURITY OFFICE CAN BE FIND BY OBSERVING DIRECTIONAL SIGNS AND IS UNIQUELY IDENTIFIED BY A SIGN OVER THE DOOR. 7. ONE TWINKLE DRIVE CONTAIN HURTFUL INFORMATION [analyst: a flash drive containing sensitive or damaging information] OF INTEREST TO OUR GLOBAL MASTERS AM OTHERWISE KEPT ON THE TOP THE LAYERS OF PAPERS IN THE CHIEF OF SECURITY’S IN-BOX EXISTING ON HIS DESK. 8. A SINGLE UPPER STORY WINDOW IS BROKEN AND REMAINS OPEN ON THE STAGE [analyst: level or floor] BELONGING THE CHIEF OF SECURITY OFFICE. END OF TRANSCRIPT (RECEIVED 31 JULY 2009; NOK KUNDI SATNODE)

Figure 1: Electronic Communiqué

8

QUADROTOR UAV

August 30, 2009

TASK: Penetrate the Nari Intelligence Organization’s security office and remove the flash drive without detection. An identical flash drive must  replace the original drive to delay detection of the missing data. The covert mission must be conducted without compromise of the organizations funding the mission, therefore no identifying markings or  information that can be traced back to the organizations shall be incorporated onto or into systems which may be compromised or  captured should the mission fail. The priority of mission options is as follows:

Clean Mission: Covert ingress; flash drive swap; covert egress; delivery of flash drive to your handler (Judge). Requires mission completion in under 10 minutes to avoid notice by patrolling guard. Dirty Mission: Detection upon entry: Covert ingress fails, alarms activated; flash drive swap; rapid egress; delivery of flash drive to your  handler (Judge). Vehicle has tmisson to complete the mission and avoid guards which have been alerted.

tremaining5 minutes from alarm activation if alarm activation is at tmission
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF