Pump+Turbine_ foundation design spreadsheet
Short Description
Dynamic analysis and design of pump and turbine foundation...
Description
FOR CONSTRUCTION
0A
10.10.25
MVR
0
09.09.18
MVR
Rev
Date
Prepared
P.C
S.B
ISSUED FOR CONSTRUCTION
P.C
H.B.J
ISSUED FOR CONSTRUCTION
Checked
Approved
Details of Revision
Owner
Owner’s Engineer Contractor
Sub-Supplier
Project
PC
1 x 660 MW CIREBON COAL FIRED POWER PLANT
T07119 UAS Code VE04
Date
Name
Scale
Unit Code
Title
KKS Code
P1 Prepared Checked Approved Dept.
09.09.18
MVR
09.09.18
P.C
09.09.18
S.B
UMA
ANALYSIS & DESIGN OF BOILER FEED PUMPTURBINE DRIVEN(A)
Reg. No. 161008 Rev. 0A
CIVIL
Document No.
Page-No.
T07119-VE04-P1UMA-161008
ANALYSIS & DESIGN CALCULATION FOR PUMP + TURBINE FOUNDATION
Designed By
Checked By
Approved By
M V REDDY
P.CHATTOPADHYAY
S.B
CONTENTS SECTION
PAGE NO.
1
SCOPE
2
2
DESIGN PHILOSOPHY
2
3
DATA
2
4
STATIC DESIGN OF PUMP FOUNDATION & DYNAMIC LOADS INPUT & DESIGN LIMITS
3
5
ECCENTRICITY CHECK
7
6
PRELIMINARY PILE CAPACITY CHECK
7
CALCULATION OF SPRING CONSTANTS & DAMPING RATIOS
9
8
CALCULATION OF FREQUENCIES & AMPLITUDES
13
9
PILE CAPACITY CHECK
16
REINFORCEMENT CALCULATION
18
10
8
APPENDIX-A
LOAD INPUT
A
APPENDIX-B
REFERENCES
B
2 of 17
3 of 17
CIREBON (695 MW x1 DESIGN OF Boiler Feed Pump - Turbine Driven
Designed By
Checked By
Approved By
M V REDDY
P.Chattopadyay
S.B
1.0 SCOPE: This document covers the Static & Dynamic analysis for Boiler Feed Pump Foundation (Turbine Driven) of the Project 660 MW Coal Fired Power Plant at Cirebon, Indonesia.
2.0 DESIGN PHILOSOPHY: The pump and turbine are mounted on acommon rectangular block foundation resting on piles. The block foundation is designed for the pump and turbine weight as per vendor drawing.
3.0 DATA: 3.1 Material Data Concrete Design Compr. Strength of concrete F'c
=
27.5
N/mm2
Grade of concrete for Spun Pile
=
27.5
N/mm2 (Cylindrical strength)
c w
=
25
KN/m3
Unit weight of water
=
10
KN/m3
Concrete cover for foundations
Cc
=
75
mm
fy
=
410
N/mm2
=
78.5
KN/m3
=
19
KN/m3
Unit weight of concrete
Reinforcement Yield Strength of steel unit weight of steel
3.2 Soil Data Unit weight of soil
s
(From Geo tech report )
3.3 Ground water table: Water level is assumed to be at finished grade elevation for critical effect.
4 of 17
ANALYSIS & DESIGN CALCULATION FOR PUMP + TURBINE FOUNDATION Checked By
Designed By
Approved By
M V REDDY
4.0 STATIC DESIGN OF PUMP FOUNDATION 4.1. DESIGN DATA 4.1.1 Block Dimensions: LB
Length in X-direction Length in Z-direction Height of the Block Above HPP Depth of Foundation from HPP Total Height of Block
BB HB_AG D HB
= =
7.90 3.00
m m
= =
0.1 1.20
m m
=
1.3
m
4.1.2 Pump Data: Length of the skid in X-direction Width of the skid in Z-direction
LS BS
= =
3.771 m 2.34 m
286 91.9
Ht.of the skid in Y-direction
HS
= =
0.27 m 18
10.5
= = =
25 2.946 m 2.20 m
31 83
=
1.21 m
48
No. of anchor bolts Anchor Bolts Dia C/c distance bet. far end bolts along length,L a C/C distance bet. far end bolts along width,B a
Mz Z
hS
CL of Discharge
Height of shaft from u/s of skid
4.13
Y CL of Pump hs
BB
Ba Bs
Hs HB_AG HPP
HB
LS LB
La
D
X
X Mx
PLAN VIEW
SECTION VIEW
4.1.3 Motor Data: Length of block in X-direction Width of the block in Z-direction Ht.of the Shaft from u/s of skid
Lt Bt Htb
= = =
2.985 m 2.34 m 1.21 m
4 of 17
ANALYSIS & DESIGN CALCULATION FOR PUMP + TURBINE FOUNDATION Checked By
Designed By
Approved By
M V REDDY 4.1.4 Unit Weights: Unit weight of concrete
c
=
25 kN/m³
Unit weight of Water Unit weight of soil(Saturated)
w s
= =
10 kN/m³ 18 kN/m³
4.2 STATIC LOADS 4.2.1 Pump Weight: Pump Weight,
Pp
=
8165 kg Ppr = 2450 = 4414 kg = 363 kg Total weight of pump, W P = Pp + Pb + Po W cf1 Weight of concrete fill inside the skid Pump rotor Weight, Pb Base Weight, Po Other
kg
=
80.10 kN
= =
24.03 kN 43.30 kN 3.56 kN
=
= 150.99 kN > 22.27 KN = 3.771 x 2.335 x 0.267 x 2 = 58.8 KN
4.2.2Motor Weight: Pp Turbine Package We Turbine rotor Weight,
=
Gear Box rotor Weight,
8392 kg Ppr = 2517 Ppr = 0
kg
= =
82.33 kN 24.69 kN
kg
=
0.00
=
100
mm =
0.1
m
=
50
mm =
0.05
m
kN
4.3 PRELIMINARY FOUNDATION CHECK: 4.3.1 Check for Plinth Size: Minimum bolt edge distance, Dmin Minimum edge of skid to concrete,Cmin Therefore Min. plinth length required Min. plinth length required
= ( 2 x Dmin ) + La+ Lt = ( 2 x 0.1 ) + 9.116 = 6.131 m ( 2 x C ) + L = = ( 2 x 0.05 ) + 6.756 = m 6.856 min s+Lt = Max of the above = 6.856 m <
7.9
m
3
m
Hence O.K Min. plinth width required Min. plinth width required
= ( 2 x Dmin ) + W a = ( 2 x Cmin ) + Bs
= ( 2 x 0.1 ) + 2.2 = ( 2 x 0.05 ) + 2.335
= Max of the above
= = =
2.4 2.435
m m
m < 2.435 Hence O.K
4.3.2 Check for Foundation Depth: Min. foundation depth
= 0.60 + L/30 = 0.863 m
( Where L is greater of length or width in meters ) < 1.3 m Hence O.K
5 of 17
ANALYSIS & DESIGN CALCULATION FOR PUMP + TURBINE FOUNDATION Checked By
Designed By
Approved By
M V REDDY 4.3.3 Check for Foundation Weight: WP
Total weight (Pump+Turb) Foundation weight, W f
= 233.32 kN = (7.9 x 3 x 1.3 x 25 ) = 770.25 KN > 3 times the pump weight+Turb. Fdn Block Wt.) 3.30126
Total Vertical force
FY
Hence O.K
= W P + W cf1 + W f + W t = 150.99 + 58.8 + 770.25 +82.33
=
1062.37
KN
=
1158.45
KN
= Mx_I = Σ'0.25 x 150.99 x (1.21 + 0.1 + 1.2 ) = Mz_I
=
145.38
KNm
= Σ'0.25 x 150.99 x (1.21 + 0.1 + 1.2 )
=
145.38
KNm
Total Vertical force with 50% impact load = FY + 50% W P+25% WT Fyi
= 1062.37 + 0.5 x 150.99 +0.25 x 82.33
Moment due to impact load (i.e.25% of (pump +turbine) weight acting at shaft level) Total Mom in Long. Direction at Bottom of base Total Mom in Tran. Direction at Bottom of base
MX Mz
6 of 17
ANALYSIS & DESIGN CALCULATION FOR PUMP + TURBINE FOUNDATION Checked By
Designed By
Approved By
M V REDDY 4.4 DYNAMIC LOADS INPUT & DESIGN LIMITS 4.4.1 Pump data: Dynamic forces from vendor data** S.No Description Rotor weight kN 1 2
Pump Shaft
24.03 0.00
Speed (rpm)
Dynamic force* kN
Vertical Fy (kN)
Longitudinal Fx (kN)
Lateral Fz (kN)
Rocking T (kNm)
1780 0
7.13 0.00
0 0
0 0
0 0
0 0
0
0
0
0
3 Motor 24.69 1800 7.41 * Dynamic force (kN) = (Rotor weight )x(Rotor speed,r.p.,m) / 6000
4.4.2 Soil & Pile parameters for Dynamic loads
(From Geo tech report Table 1)
Soil Dynamic Shear Modulus( G ) Dynamic Shear Modulus( Gf ) for embedment Poisson ratio of soil,
=
368732
= =
121437 0.35
Soil internal damping ratio (D)
=
0.03
Pile Type of Pile
=
KN/m2 KN/m2
Drilled Concrete end bearing
Diameter of pile Number of piles considered
d n
= =
0.45 8
m
Length of Piles Spacing between piles, X-dir Spacing between piles, Z-dir
l ax az
= =
m m m
Edge Distance from Central Line of Pile Allowable Compression load
e
= =
15 2.4 2.3
m
P T
= =
0.35 445
L
=
Allowable Tension load Allowable lateral load
> 3 Dp - OK > 3 Dp - OK
kN kN
289 222
kN
4.4.3 Alloawable limits for design
of LB
Allowable eccentricity of C.G.in X-direction,x Allowable eccentricity of C.G.in Z-direction,z
= =
5% 5%
C.G.in Y-direction,y
=
Below TOC
Damped Natural Frequencies shall be less than or more than
= =
0.8 1.2
Allowable peak-to-peak amplitude
=
Range of shear modulus (G) values to consider
=
of BB
16 microns 0.5
to
= =
0.05 x 7.9 0.05 x 3
= =
0.395 0.15
m m
=
1.3
=
1.3
m
= =
0.8 x 1780 1.2 x 1780
= =
1424 2136
rpm rpm
Fig 3.7 of Arya, Neil & Pincus 1
7 of 17
ANALYSIS & DESIGN CALCULATION FOR PUMP + TURBINE FOUNDATION Checked By
Designed By
Approved By
M V REDDY
5 ECCENTRICITY CHECK (Eccentricity of C.G. of machine+foundation system to be checked in all 3 directions w.r.t. C.G of foundation) 5.1 COMPUTATION OF CG OF BASE BLOCK
Elements pump
Area (m2) Ai
Dimensions(m) Lxi Lzi Lyi -
Coordinates of CG of elements xi(m) zi(m) yi(m)
-
-
2.23
1.42
2.42
-
-
5.61 3.95
1.50 1.50
2.53 1.60
3.00
1.30
23.7
3.95
1.50
23.7
15.74 5.917
C.G. of Foundation ,x dir-, X
=
C.G. of Foundation ,z dir-, Z C.G. of Foundation ,y dir-, Y
= =
AiXi/Ai AiZi/Ai
Motor Base Plate Foundation Block 7.90
Total
Static moment of area Ai*Xi Ai*Zi Ai*Yi -
-
-
0.65
93.6
35.6
15.4
7.19
93.6
35.55
15.4
AiYi/Ai
=
93.615 / 23.7
=
3.950
m
= =
35.55 / 23.7 15.405 / 23.7
= =
1.500 0.650
m m
5.1 COMPUTATION OF CG OF MACHINE & FOUNDATION BLOCK
Elements Pump
Mass mi Wi (kN) kNsec2/m 80.10 8.17
Coordinates of CG Static moment of mass of elements (kNSec2) xi zi yi mixi mizi miyi 2.23 1.42 2.42 18.219 11.58 19.76
Weight
Base Plate Motor
43.30 82.33
4.41 8.39
3.95 5.61
1.50 1.50
1.60 2.53
17.42 47.093
6.62 12.6
7.04 21.18
Foundation Block
770.25
78.52
3.95
1.50
0.65
310.15
117.8
51.04
Total
975.98
99.49
15.74
5.92
7.19
393
149
99
Combined C.G. in X direction,xo Combined C.G. in Z direction,zo Combined C.G. in Y direction,yo
= =
mi.xi/mi mi.zi/mi
=
mi.yi/mi
=
392.88567/99.49
=
3.95
m
= =
148.55689/99.49 99.02058/99.49
= =
1.49 1.00
m m
5.2 ECCENTRICITY OF CG OF FOUNDATION SYSTEM W.R.T. PILE GROUP (check with limits in 4.4.3)
C.G. OF Pile group in X-direction, Xp
=
C.G. OF Pile group in Z-direction, Zp
=
Eccentricity in X direction (x-x0)
Eccentricity in Z direction (z-z0)
in Y direction, y0
3.950 1.500 = =
3.95 - 3.95 0.00
m
<
0.395
m
Hence OK
= =
1.5 - 1.49 0.01
m
<
0.15
m
Hence OK
=
1.00
<
1.3
m
Hence OK
8 of 17
ANALYSIS & DESIGN CALCULATION FOR PUMP + TURBINE FOUNDATION Checked By
Designed By
Approved By
M V REDDY
6 PRELIMINARY PILE CAPACITY CHECK 6.1 PILE GROUP CONFIGURATION Pile No
X-coord of Z-coord of pile from pile from origin, x(m) origin, z(m)
Distance b/w pile & pile group C.G
Xg2
Zg2
Xg2+Zg2
xg
zg
1 2
0.35 2.75
0.35 0.35
-3.600 -1.200
-1.150 -1.150
12.96 1.44
1.3 1.3
14.28 2.76
3 4
5.15 7.55
0.35 0.35
1.200 3.600
-1.150 -1.150
1.44 12.96
1.3 1.3
2.76 14.28
5 6 7
0.35 2.75 5.15
2.65 2.65 2.65
-3.600 -1.200 1.200
1.150 1.150 1.150
12.96 1.44 1.44
1.3 1.3 1.3
14.28 2.76 2.76
8 9
7.55
2.65
3.600
1.150
12.96
1.3
14.28
31.60
12.00
57.60
10.58
10 11 12 13 14 15 16 17 Total
C.G of pile group in x-direction w.r.t origin
x1
=
Σx/n
C.G of pile group in Z-direction w.r.t origin Distance b/w pile and pile group C.G
z1 xg zg
= = =
Σz/n x-x1 z-z1
M.I of pile group about C.G x-x M.I of pile group about C.G y-y Section modulus of pile group abt X axis
Ixp Izp
= =
Iyp zxp
=
Section modulus of pile group abt Z axis
zzp
Distance b/w pile and pile group C.G M.I of pile group about C.G z-z
6.2 PILE CAPACITIES Max. compression load on each pile (Due to Mxi)
Max. compression load on each pile (Due to Mzi)
Max. Tension load on each pile (Due to Mxi)
Max. Tension load on each pile (Due to Mzi)
Max Lateral Load
= =
=
12 / 8
Σxg2 Σzg2
= =
57.60
m2
Σxg2+Σzg2 Σxg2/xg, max
= =
10.580 68.18 57.6 / 3.6
m2 m2
Σzg2/zg, max
=
10.58 / 1.15
m
= 16.000 = 9.200
m m
m
m
Fyi / n + MXi / ZXp
= = =
Fyi / n + Mzi / Zzp
= =
Fyi / n - MXi / ZXp
=
135.72
= =
Fyi / n - Mzi / ZXp
=
129.00
=
= 3.950 = 1.500
m
= = =
= =
68.18 = 31.6 / 8
1158.45 / 8 + 145.38295 / 16 153.89 < 445x50% = kN
223 kN Safe
1158.45 / 8 + 145.38295 / 9.2 160.61 < 445x50% = kN
223 kN Safe
1158.45 / 8 - 145.38295 / 16 <
kN
-289.00
kN
Safe
-289.00
kN
Safe
1158.45 / 8 - 145.38295 / 9.2 <
kN
25% of (Pump weight +Turbine Weight +Foundation Weight) 0.25 x (312.94 + 667+4310 )/17 31.36
<
kN
222 kN Safe
7 CALCULATION OF SPRING CONSTANTS & DAMPING RATIOS 7.1 PILE PROPERTIES Young's modulus of the pile material
Area of cross section of pile
Ep
Ap
=
4700 (fck)0.5
=
2.46.E+07
= =
3.1416 / 4 x (0.45^2) 0.159
kN/m2
m2 9 of 17
ANALYSIS & DESIGN CALCULATION FOR PUMP + TURBINE FOUNDATION Designed By
Checked By
Approved By
M V REDDY
10 of 17
ANALYSIS & DESIGN CALCULATION FOR PUMP + TURBINE FOUNDATION Checked By
Designed By
Approved By
M V REDDY ro
The equivalent radius of pile
= = =
Moment of inertia of the pile
= =
Ip
Shear wave velocity of soil, (From Geo tech report Table 1)
(Ap/)0.5 (0.159 / 3.1416)^0.5 0.225 m d4)/64 3.1416 / 64 x (0.45^4)
=
0.0008
=
448
25.0 kN/m3
Unit weight of pile material
p
=
Compression wave velocity in pile
Vc
= =
L/ro
= =
dependant factor for coeffieicients
a0
= = = =
fx,i
Pile stifness factor
m/sec
(EP *g/P)0.5 (24647008 x 9.81 / 25 )^0.5
= Pile slenderness
m4
3109.9 m/sec (15)/(0.23) 66.67 2* f * ro / (G*g/s)0.5 2x3.1415x1780x0.225 / (448.284 ) 5.61 Table below (Appendix-B at pile tip) Fig.5-1a &Table 5-2 of Arya, Neil & Pincus f11,1 f11,2 f7,1 f7,2
G
L/ro
Vs/Vc
f18,1
f18,2
f9,1
f9,2
1.00G 0.50G
0.35 0.35 0.35
66.67 66.67
0.1441 0.1019
0.035 0.023
0.05 0.03
0.0291 0.0185
0.069 0.0438
0.399 0.3490
0.2785 0.2430
-0.077 -0.0582
-0.112 -0.0848
66.67 66.67
0.1144 0.1257
0.0290 0.035
0.0400 0.05
0.0238 0.0291
0.0564 0.069
0.3740 0.399
0.2608 0.2785
-0.0676 -0.077
-0.0984 -0.112
0.89G 66.67 0.1360 1.00G 0.35 66.67 0.1441 Pile cap stiffness factor
0.0365 0.038
0.055 0.06 Sx,i
0.0344 0.0816 0.4245 0.29625 0.0397 0.0942 0.45 0.314 = Table below (Appendix-B at pile tip)
-0.087 -0.097
-0.1265 -0.141
0.63G 0.76G
0.35 0.35
S1
S2
Su1
Su2
0.350
2.7
6.7
4.1
10.5
Table 5-1 of Arya, Neil & Pincus S S2 2.5
1.8
7.1.1 Individual Pile Spring constants & Damping constants (Equations 5-5, 5-6, 5-12, 5-13, 5-18, 5-19, 5-21 & 5-24 of Arya et al. - Refer Appendix-B) Mode of Vibration Vertical Y
Horizontal, X,Z
Rocking
Cross stiffness
Individual Pile Spring constant K
Individual Pile Damping constant C
1
1 y
y
= (Ep*Ap/ro)*f18,1 = 24647008 x 0.159 / 0.225 x 0.035
= =
= 609602.66 K1x
= 437.1 C1x
kN/m
(Ep*Ap/Vs)*f18,2 24647008 x 0.159 / 448.284 x 0.05
= (Ep* Ip/ro3)* f11,1 = 24647008x0.0008 / 0.225^3 x 0.0291
= =
= 50373.21 K1 = (Ep*Ip/ro)*f 7,1
= 59.95 C1 = (Ep*Ip/Vs)*f7,2
kN/m
(Ep*Ip/ro2*Vs)*f11,2 (24647008x0.0008 /(0.225^2x448.284))x0.069
= 24647008x0.0008 / 0.225 x 0.399
=
= 34965.89 K1x = (Ep*Ip/ro2)*f 9,1
= 12.25 C1xθ
kNm/radian
kN-sec/m
(24647008 x 0.0008 / 448.284) x 0.2785
= =
(Ep*Ip/roVs)*f
= 24647008x0.0008 / 0.225^2 x -0.077 = -29990.24
=
-21.89
kNm/radian
kN-sec/m
kNm-sec 9,2
(24647008x0.0008 /(0.225x448.284))x-0.112 kNm-sec
11 of 17
ANALYSIS & DESIGN CALCULATION FOR PUMP + TURBINE FOUNDATION Checked By
Designed By
Approved By
M V REDDY 7.2 PILECAP PROPERTIES Area of pile cap
A
= =
7.9 X 3 23.70
m2
Effective depth of pilecap below FGL
h
= =
1.2 - 75/1000 1.125
m
The Equivalent radius of pilecap
rc
= =
(A/)0.5 (23.7 / 3.1416)^0.5
Depth to radius ratio
h/rc
= =
2.75 1.125 / 2.75
= 0.409 7.2.1 Pilecap Spring constant & Damping constant (Equations 5-10, 5-11, 5-16, 5-17, 5-122 & 5-25 of Arya et al. - Refer Appendix-B) Mode of vibration Vertical, Y Kfy = Gf*h*S1
Pilecap Damping constant Cfy =
=
= 121437 x 1.125 x 4.1 = 560128.16 Kf = Gf rc2 h SØ1+
(h*rc)*(Gfxf/g)0.5 *S2
= 1.125x2.75 x (121437x18/9.81)^0.5 x6.7 = 9784 kN.sec/m Cfx
kN/m
(h*rc)*(Gf*f/g)0.5 * Su2
= 1.125x2.75 x (121437x18/9.81)^0.5 x10.5 = 15334 kN.sec/m Cf
kN/m
=
Gf rc2 h [(h/rc)2/3+(Yc/rc)2-(h/rc)*(Yc/rc)] Su1
h rc3 (Gf f/g)0.5 * {S2+[(h/rc)2/3+(Yc/rc)2-(h/rc)*(Yc/rc)] Su2}
= 121437x2.75^2 x 1.125x2.5+ 121437x2.75^2"x1.125x
= 1.125x2.75^3x(121437x18/9.81)^0.5x (1.8+(0.409^2/3+(1/2.75)^2-0.409x(1/2.75))x10.5)
[(0.409^2/3+(1/2.75)^2-0.409x(1/2.75)]x4.1 = 2749231.13 kNm/radian
=
7.3 MASS MOMENTS OF INERTIA AND INERTIA RATIOS Elements
m
Pilecap Spring constant
= 121437 x 1.125 x 2.7 = 368864.89 f horizontal K x X,Z = Gf*h*Su1
Rocking
m
mass mi
mass moment of inertia of individual elements abt its own axis
kNsec2/m
Ix = mi /12 *(Lyi2+Lzi2)
Iy = mi /12 *(Lxi2+Lzi2)
Iz = mi /12 *(Lxi2+Lyi2)
PUMP
8.17
-
-
BP Turbine
4.41 8.39
-
-
-
Foundation Block
78.52
69.948
Total
99.49
69.948
24432.47
kNm-sec
(Table 4.6 of Arya, Neil & Pincus) Distance between common C.G. & C.G. of individual elements (m) xoi zoi yoi
Mass moment of inertia of whole system about common CG Ix = mi* (yoi2+zoi2)
Iy = mi* (xoi2+zoi2)
Iz = mi* (xoi2+yoi2)
-1.418
16.47
24.214
40.598
1 -1.525
14.201 19.513
78.598 23.204
73.217 42.715
0.35
9.627
0.01
9.619
59.81
126.02
166.15
xo - xi
zo - zi
yo - yi
1.72
0.073
-
3.95 -1.663
1.49 -0.01
467.259
419.428
0
-0.01
467.259
419.43
12 of 17
ANALYSIS & DESIGN CALCULATION FOR PUMP + TURBINE FOUNDATION Checked By
Designed By
Approved By
M V REDDY
Mass Moment of Inertia of the whole system about each Mass Moment of Inertia of the whole system about axis passing through the common C.G. & perpendicular each axis passing through the centroid of the base to the plane of vibration area & perpendicular to the plane of vibration Iox
Ioz
Ioy
=
1/12 x mi(lyi2+lzi2)+mi(yoi2+zoi2)
= =
69.948 + 59.812 129.8 kN sec2-m 2 1/12 x mi(lxi +lyi2)+mi(xoi2+yoi2)
= = = = =
= =
129.76 + 99.49 x 1^2 kN sec2-m 229.3 2 Ioz + m.yo
419.428 + 166.149
=
585.6 kN sec2-m 2 1/12 x mi(lxi +lzi2)+mi(xoi2+zoi2)
=
585.577 + 99.49 x 1^2 kN sec2-m 685.1
Iz =
Iy =
467.259 + 126.024
x = Iox/Ix = 129.76 / 229.25 = 0.566 z = Ioz/Iz = 585.577 / 685.067
Iox + m.yo2
Ix =
=
0.855
Ioy =
kN sec2-m
593.28
= 593.28 kN sec2-m Mass moment of inertia effective against rocking excitation , I
=
229.25
kN sec2-m
Mass moment of inertia effective against cross excitation ,I
=
593.28
kN sec2-m
Effective Mass for translation (both Vertical and Horizontal) excitation ,m c
=
99.49
kN sec2/m
7.4 PILEGROUP PROPERTIES (Equations 5-8, 5-9, 5-20 & 5-23 of Arya et al. - Refer Appendix-B) A Interaction factor for piles =
3.78
Mode of vibration
Ratio between moments of inertia
=
6.31
Pile group - Spring constants, Damping constants & Damping ratios k Spring constant
Vertical, Y
Damping constant Damping ratio Spring constant
horizontal X,Z
Damping constant Damping ratio
g y
1 f = n ky /αA+ky
=
(8x609602.66) /3.78 + 368864.89
= Cyg 1 0.5 f = n cy /αA +cy Dyg = (cyg) / [2(kygmc)0.5]
1290164.36
kN/m
= =
(8x437.1) /(3.78)^0.5 + 9784.47 1798.56 kN.sec/m
=
1798.56 /(2x1290164.36x99.49)^0.5 0.11
=
<
0.150
*
kxg 1 f = n kx /αB+kx
= =
(8x50373.21) /6.31 + 560128.16 63864.61 kN/m
=
(8x59.95) /(6.31)^0.5 + 15333.87 190.93 kN.sec/m
Cxg 1 0.5 f = n cx /αB +cx
= Dxg = (cxg) / [2(kxgmc)0.5]
190.93 /(2x63864.61x99.49)^0.5
= =
0.05
<
0.150
*
kg
Spring constant
= ΣN (K1+Ky1zr2+Kx1Yc2-2 Yc K1x)+Kf Zr1 = 1.49 - 0.35 = 1.140 m Zr2 = 3 - 1.49 - 0.35 = 1.160 m = 8x34965.89 + 8x609602.66x(10.58) + 8x50373.21x1^2 - 8x2x1x-29990.24 + 2749231.13 = Cg
Rocking
55508556.91
kNm/radian
Damping constant
= ΣN (C1ψ+Cy1zr2+Cx1Yc2-2 Yc C1xψ)+Cfψ = 8x12.25+8x437.1x(10.58)+8x59.95x1^2-8x2x1x-21.89+24432.47 kNm-sec = 62356.5 Dg
Damping ratio
= (cg) / [2(kgI)0.5] = 62356.45 /(2x55508556.91x229.25)^0.5 =
0.39
>
0.100
* 13 of 17
ANALYSIS & DESIGN CALCULATION FOR PUMP + TURBINE FOUNDATION Checked By
Designed By
Approved By
M V REDDY
7.5 SUMMARY OF SPRING CONSTANTS AND DAMPING RATIOS Mode of vibration Vertical Y (kN/m)
Spring constant 1290164.36
Damping ratio* 0.11
Horizontal X(kN/m) Rocking (kN/m/rad)
63864.61 55508556.91
0.05 0.10
8 CALCULATION OF FREQUENCIES & AMPLITUDES 8.1 CALCULATION OF DYNAMIC FORCES (if vendor data is not available) Location No Description
Rotor weight kN
Speed w(rpm)
Dynamic force kN
1 2
PUMP G BOX
24.03 0.00
1780 0
7.129 0.000
3
Turb
24.69
1800
7.407
Point of Application at Shaft Combined C.G of machine and Location foundation X(m) Y(m) Z(m) Xo (m) Yo (m) Zo(m) 2.230 2.418 1.417 3.950 1.000 1.490 5.61 2.525 1.500 3.950 1.490 1.000 5.61
2.525
1.500
3.950
1.000
1.490
8.1.1 Dynamic forces Rocking (Due to Rocking (due Lateral translation) to shaft ecentricity)
No
Description
Lateral translation Fz(kN)
Longitudinal translation* Fx(kN)
Vertical translation Fy(kN)
Mψ1 (kNm)
Mψ2 -kNm
1 2
PUMP G BOX
7.129 0.000
0.000 0.000
7.129 0.000
10.629 0.000
0.520 0.000
7.407 14.536
0.000 0.000
7.407 14.536
11.370 21.999
0.074 0.594
3 Turb Total transmitted force =
* Longitudinal translation not considered since it is usually lesser than that of Lateral translation 8.2 CALCULATION OF NATURAL FREQUENCIES Resonance frequency mr [n (1-2D2)0.5]
Undamped Natural frequency, n [ (60/2π)x(K/m)0.5]
Mode of Vibration Vertical Horizontal
(60/(2x3.14))x(1290164.36/99.49)^0.5 (60/(2x3.14))x(63864.61/99.49)^0.5
= =
1087 242
(1087x(1-2x0.112252932901 = (242x(1-2x0.053559846919 =
1073 241
Rocking
(60/(2x3.14))x(55508556.91/229.25)^0.5
=
4699
(4699x(1-2x0.1^2)^0.5
4652
=
8.3 CALCULATION OF FREQUENCY RATIO ,MAGNIFICATION FACTOR ,DISPLACEMENT,AMPLITUDE , TRANSMISSIBLITY FACTOR AND TRANSMITTED FORCE (Table 1.4 of Arya, Neil & Pincus) (Since the machine will operate at constant speed, formulae associated with sinusoidal force of constant amplitude are used in the dynamic analysis) Mode of Vibration
Frequency ratio, r
Magnification factor, M
Transmissiblity factor, Tr
Transmitted force/moment
Displacement response, Ax
n
1/((1-r2)2+(2Dr)2)0.5
(1+(2Dr)2)0.5 / [(1-r2)2+(2Dr)2]0.5
FtrTrFo
M(Fo/K)
Vertical,Y Horizontal,X
1.638 7.355
0.589 0.019
0.604 0.019
8.782 kN 0.000 kN
7 Micron 0 Micron
Horizontal,Z
7.355 0.379
0.019 1.137
0.019 1.159
0.275 kN 26.196 kNm
4 Micron 4.6E-07 radians
Rocking,
14 of 17
ANALYSIS & DESIGN CALCULATION FOR PUMP + TURBINE FOUNDATION Checked By
Designed By
Approved By
M V REDDY
8.4 FORCES & AMPLITUDES FOR VARIOUS ROTOR POSITIONS 8.4.1 Dynamic loads - In-phase & 180 degrees out-of-phase Rotor Position
Load Case
Lateral Translation
Longitudinal Translation
Vertical Translation
Rocking (Due to Translation Force)
Rocking (Due to shaft eccentricity)
Pitching
Twisting
Fz(kN)
Fx(kN)
Fy(kN)
MØ' (kNm)
MØ2 (kNm)
Mψ1 (kNm)
M1 (kNm)
In Phase In Phase
1 2
14.536 -
-
14.536
21.999 -
0.594487
0.000
-
Out of Phase Out of Phase
3 4
7.129 -
-
7.129
10.109 -
0.520417
12.260
12.262 -
8.4.2 Transmitted Force (Ftr) on Foundation due to various Rotor positions Rotor Position
Load Case
Lateral Translation
Longitudinal Translation
Vertical Translation
Rocking (Due to Translation Force)
Rocking (Due to shaft eccentricity)
Fz(kN)
Fx(kN)
Fy(kN)
MØ' (kNm)
MØ2 (kNm)
In Phase In Phase
1 2
0.275 -
-
8.782
25.507 -
0.689
Out of Phase Out of Phase
3 4
0.135 -
-
4.307
11.721 -
0.603
-
8.4.3 Amplitudes Translation Displacement Due to Fz Due to Fx Due to Fy ( micron ) ( micron ) ( micron )
Rotational Displacement
Rotor Position
Load Case
In Phase
1
4
-
-
4.51E-07
Due to M2 (Rad) -
In Phase Out of Phase
2 3
2
-
7 -
2.07E-07
1.20E-08 -
Out of Phase
4
-
-
3
-
0
Due to M1 (Rad)
8.4.4 Total Amplitudes Calculation Mode of Vibration
Phase
Amplitude Calculations
Vertical Ky
In phase
AY+Ø*X/2
= 7+0E-06x7.9/2
=
7
<
Horizontal Kx
Out of phase In phase
AY+Ø*X/2 AX
= 3+0x7.9/2 = 0
= =
3 0.00
< <
Horizontal Kz
Out of phase In phase
AX Az+ψYC Az+ψYC
= 0 = 4+0.5E-06x (2.418-1)
= =
0.00 4
= 2+0.2E-06x (2.418-1)
=
2
Out of phase
16 microns 16 microns
SAFE SAFE
< <
16 microns 16 microns 16 microns
SAFE SAFE
<
16 microns
SAFE SAFE
8.4.5 Summary of Frequncies and Amplitudes
S.No
Mode of Vibration
Natural Frequency fn, rpm
Allowable frequency,f m,rpm
Check for Frequency
Total Amplitude, (micron)
Check for Amplitude
1
Vertical Translation-Y
1087
-20% 1424
20% 2136
SAFE
7
SAFE
2 3
Longitudinal Translation -X Lateral Translation -Z
242 242
1424 1424
2136 2136
SAFE SAFE
0 4
SAFE SAFE
4
Rocking about z-axis
4870
1424
2136
SAFE
15 of 17
ANALYSIS & DESIGN CALCULATION FOR PUMP + TURBINE FOUNDATION Checked By
Designed By
Approved By
M V REDDY
8.5 CHECK FOR VARIOUS SHEAR MODULUS VALUES =
Shear Modulus values considered
0.50G
0.63G
0.76G
0.89G
1.00G
8.5.1 Individual Pile Spring Constants for Various G Values G
Vertical Ky KN/m
Horizontal kx KN/m
Translational kz KN/m
Rocking KØ1
0.50G 0.63G 0.76G
400596.04 505099.35 609602.66
32024.21 41198.71 50373.21
32024.21 41198.71 50373.21
30584.2 32775.04 34965.89
0.89G 1.00G
635728.49 661854.32
59547.71 68722.21
59547.71 68722.21
37200.55 39435.21
kNm/radian
8.5.2 Pile group Spring Constants for Various G Values G
Vertical Ky KN/m
Horizontal kx KN/m
Translational kz KN/m
Rocking KØ1
0.50G 0.63G
1032254.75 1301378.21
347840.19 440073.78
347840.19 440073.78
35781931.67 45075414.6
0.76G 0.89G
1570501.68 1673746.87
532307.37 624540.96
532307.37 624540.96
54368897.6 57028861.18
1.00G
1769614.77
705571.99
705571.99
59633840.13
kNm/radian
8.5.3 Summary of Frequencies for various 'G' values with check for Frequency Range Rocking, Vertical,Y Horizontal,X Horizontal,Z G 0.50G
rpm 973
Check
View more...
Comments