Progetto Di Un Capannone in Acciaio - Relazione

August 5, 2022 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Progetto Di Un Capannone in Acciaio - Relazione...

Description

 

  LBAECTb’ DI IMHGHMGPIB 

Aerse di AEQTPWZIEMII IM BAAIBIE AEQTPWZIEM

B.B. 0>0> ‑ 0>02

^PEHGTTE DI WM AB^BMMEMG IMDWQTPIBCG

^PEL. BKBDIE ACBWDIE 

Qtudgmtg: Hibmcuab Abppgcce 

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce

IMDIAG 2. HGMGPBCITB’ 

1

2.2 Pgcbziemg hgmgrbcg succg strutturg .................................................................................................................. 1 2.0 Merkbtivb di rilgrikgmte................................................................................................................................. 1 2.1 Abrbttgristiaog dgi kbtgribci ............................................................................................................................ 1 2.1.2Baaibiedbabrpgmtgrib............................................................................................................................... 1 2.1.0@uccembturb................................................................................................................................................. 1 2.1.1Abcagstruz 2.1.1Ab cagstruzze ze.......................................... .................. ........................................... ............................................ ............................................ ........................................... ...................................... ................ 4 2.1.4Baaibiedbagkgmtebrkbte....................................................................................................................... 4 0. BMBCIQI DGI ABPIAOI  

0.2 0.0 0.1 0.4

7

^gse preprie ..................................................................................................................................................... 7 Abriae db mgvg .................................................................................................................................................. 7 Abriae db vgmte ................................................................................................................................................ 7 Abrrepemtg ....................................................................................................................................................... <

1. AE^GPTWPB 

8

1.2 Kbmte di aepgrturb.......................................................................................................................................... 1.0 Brabrgaai ........................................................................................................................................................... 1.0.2Qaogkbstbtiae........................................................................................................................................... 1.0.0AbcaecedgccgseccgaitbziemibhciQtbtiCikitgWctiki.................................................................................... 1.0.1\griliaogdirgsistgmzb................................................................................................................................

8 8 8 8 ?

1.0.4AbcaecedgccgseccgaitbziemibhciQtbtiCikitgdiQgrvizie............................................................................. 9 ? 1.0.7\griliaogdidglerkb`icitî.......................................................................................................................... 1.0. 02

4.7.4MedeD...................................................................................................................................................... 00 4.7.7MedeG...................................................................................................................................................... 01 4.7. MedeR............................................ .................... ............................................ ............................................ ............................................ ........................................... ....................................... ..................0? 4.7.22MedeP.................................................................................................................................................... 1> 4.7.20MedeQ.................................................................................................................................................... 12 4.< \griliab bhci Qtbti Cikitg di Gsgraizie .............................................................................................................. 10 7. APEAIGPG PEK^ITPBTTB   11  14  22.2.4Pgsistgmzbbaekprgssiemgdgcc'bcb 22.2.4Pgsistgm zbbaekprgssiemgdgcc'bcbgdgcc'bmikbdgccbaecemmb gdgcc'bmikbdgccbaecemmb ........................................................... 82 22.0 \griliab kekgmte rgsistgmtg dgc aeccghbkgmte......................................................................................... 82 22.1 \griliab b tbhcie ............................................................................................................................................ 81 22.4 \griliab bmaerbhhie tirblemdi ....................................................................................................................... 81 22.7 Dikgmsiembkgmte g vgriliab dgc pcimte im abcagstruzze ............................................................................. 81 22.< \griliab tgmsiemi suc tgrrgme ........................................................................................................................ 8< 22.8 \griliab b pumzembkgmte ............................................................................................................................ 8< 22.? Aeccghbkgmte aecemmb - pibstrb .................................................................................................................. 8<

0

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce

2. HGMGPBCITB’  2.2 

Pgcbziemg hgmgrbcg succg strutturg

C’epgrb ehhgtte di prehgttbziemg ï um abpbmmemg imdustribcg b strutturb pertbmtg im baaibie cg aui dikgmsiemi di kgmsiemi seme ?>k di cumhogzzb g 1>k di cbrhogzzb. C’bctgzzb ï di 2>,94k bc aecke g di d i 2>,>k bccb hremdb. Cb aepgrturb ï rgbcizzbtb aem pbmmgcci butepertbmti lemebsser`gmti g aei`gmtbti dispesti su um’erditurb di brabrgaai dispesti aem imtgrbssg 4k. Gssi pehhibme su abpribtg di cuag 1>k (imtgrbssg 4k) aestituitg db trbvi rgtiaecbri tipe Keomiï b kbhcig rghecbri di 1k b cere vectb aeccghbtg bccg aecemmg imabstrbtg im dirgziemg trbsvgrsbcg g imagrmigrbtg im dirgziemg cemhitudimbcg. Bcc’imtgrme dgc abpbmmemg ï prgvistb cb rgbcizzbziemg di um abrrepemtg (vib di aersb bccb quetb q uetb 7,>k). Qi prgvgdg cb rgbcizzbziemg di aemtrevgmti di lbcdb im gmtrbk`g cg dirgziemi g aemtrevgmti vgrtiabci im dirgziemg cemhitudimbcg pgr c’irrihidkgmte dgccb strutturb g cb trbskissiemg dghci slerzi erizzemtbci bccg lemdbziemi. Cg pbrgti pgrikgtrbci seme aestituitg db pbmmgcci tipe sbmdwiao lemebsser`gmti g aei`gmtbti. Cb strutturb sbrî aestruitb b Herizib. 2.0 

Merkbtivb di rilgrikgmte rilgrikgmte

Cg vgriliaog seme svectg uticizzbmde ic kgtede dghci stbti cikitg (Q.C.). Cg umitî di kisurb uticizzbtg seme qugccg dgc Qistgkb Imtgrmbziembcg. Cg aemvgmziemi di sghme pgr hci bssi seme qugccg ripertbtg mgcc’GA1: c’bssg lertg ï imdiabte aem y-y, c’bssg dg`ecg aem z-z. Hci gcgkgmti strutturbci mem gsprgssbkgmtg ripertbti mgccb rgcbziemg seme stbti aekumqug abcaecbti g dikgmsiembti sgaemde i aritgri seprb aitbti. Bmbcehbkgmtg cg vgriliaog aog mem risuctbme gspciaitbtg si imtgmdeme aekumqug seddislbttg. Tutti i abcaeci g cg vgriliaog seme rgdbtti im aemlerkitî bccb merkbtivb me rkbtivb vihgmtg im kbtgrib, gd im pbrtiaecbrg: -  Dgargte Kimistgribcg 28 Hgmmbie 0>2? ‑ – Bhhiermbkgmtedgccg«Merk  Bhhiermbkgmtedgccg«Merkgtgamiaogpgrcgaestruziemi¶‛ gtgamiaogpgrcgaestruziemi¶‛ -  Airaecbrg 02 Hgmmbie 0>29, m.8 A.Q.CC.^^. ‑ –Istruziemipgrc’bppciabziemgdgcc’«Bhhiermbkgmtedgccg –Merkgtgamiaogpgrcgaestruziemi‛¶diauibcdgargt –Merkgtgamiaogpgrc gaestruziemi‛¶diauibcdgargtekimistgribcg28hgmmbie ekimistgribcg28hgmmbie0>2?‛ 0>2?‛ -  Gureaediag 1 ‑–^rehgttbziemgdgccgstrutturgimbaaibie‛ -  AMP 2>>02-?7 ‑ –Qtrutturgdibaaibiepgrbppbrgaaoidiseccgvbkgmte‛

  2.1 

Abrbttgristiaog dgi kbtgribci

2.1.2  Baaibie db abrpgmtgrib

^gr tutti hci gcgkgmti si prgsarivg c’uticizze di um baaibie Q177X (MTA0>2? §22.1.I_), aog ob cg sghugmti abrbttgristiaog: G ; 0>>> M/kk0  l ttff ; 72> M/kk0  l yyff ; 177 M/kk0  αK> ; 2,>7 αK2 ; 2,>7 αK0 ; 2,07 2.1.0  @uccembturb

^gr cg hiumziemi `uccembtg g pgr i tirblemdi si prgsarivg c’uticizze di `uccemi di acbssg ?.? bd bctb rgsistgmzb aem cg sghugmti abrbttgristiaog: t` ; ?>> M/kk0  l t` l yy`` ; M/kk0 

1

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce

αK0 ; 2,07 αK8 ; 2,2> 2.1.1  Abcagstruzze

^gr cb lemdbziemg si prgsarivg c’uticizze di abcagstruzze A07/1>, aog ob cg sghugmti abrbttgristiaog: Paf ; 1> M/kk0  l af ; >,?1*Paf ; 07 M/kk0  0 l ak ak ; l aaff + ?; 11 M/kk   l aadd ; >,?7*l aaff/2,7 ; 24,22 M/kk0  0/1 l atk ; 0,7< M/kk0  atk ; >,1*(Paf) 0 l aatf tf ; >,8*l atk atk ; 2,89 M/kk   >,1 0 Ga ; 00>>>*(l ak ak/2>)  ; 12.448 M/kk   αa ; 07 fM/k1  ηau ; 1,7 ‾ 2.1.4  Baaibie db agkgmte brkbte

^gr cb rgbcizzbziemg dgcc’brkbturb dgi pcimti di lemdbziemg si prgsarivg c’uticizze di baaibie @47>A, aog ob cg sghugmti abrbttgristiaog: G ; 0>>> M/kk0  l yyff ; 47> M/kk0  l d ; 192 M/kk0 

4

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce

0. BMBCIQI DGI ABPIAOI 0.2 ^gse preprie ^gr tutti hci gcgkgmti strutturbci im baaibie si ï aemsidgrbte um pgse spgailiae dgc kbtgribcg:   s   8?,7

fM  1

 

k

0.0 Abriae db mgvg Qgaemde cg imdiabziemi dgccb merkbtivb vihgmtg (§1.4) ic abriae db mgvg si abcaecb sgaemde cb rgcbziemg: q s   i  qsf  ag  at    devg: γi   qsf ag   at  

aeglliaigmtg di lerkb vbcerg abrbttgristiae di rilgrikgmte aeglliaigmtg di gspesiziemg aeglliaigmtg tgrkiae

Gssgmde c’epgrb db rgbcizzbrsi im ^revimaib di Herizib aog riabdg mgccb zemb II, i pbrbkgtri g ic abriae db mgvg risuctbme gssgrg: Zemb

II

qsf,> VfM/k0[ qsf VfM/k0[ ag  at  γI  qs2 VfM/k0[

2,>> 2,>> 2 2 >,? >,?

0.1 Abriae db vgmte Qgkprg im rilgrikgmte bccb merkbtivb vihgmtg (§1.1) c’gquivbcgmtg prgssiemg stbtiab devutb bcc’bziemg dgc vgmte ï gspriki`icg bttrbvgrse cb rgcbziemg:  l

 q`  ag  a l   

devg: q`  ag al  

prgssiemg aimgtiab di rilgrikgmte aeglliaigmtg di gspesiziemg aeglliaigmtg di bttrite

Cb prgssiemg aimgtiab di rilgrikgmte, im lumziemg dgccb zemb, ï gsprgssb dbccb rgcbziemg: q` 

2 0

   v`0  

devg: v`  ς

vgceaitî di rilgrikgmte dgmsitî dgcc’brib bssumtb pbri b 2.07 fh/k1 

Ic aeglliaigmtg di gspesiziemg, im lumziemg dgccb acbssg di gspesiziemg, ï gsprgsse dbccb rgcbziemg:

7

 

^rehgtte di um abpbmmemg imdustribcg

0 ag ( z )  f r  at  cm

 z 

z     8  at  cm     z>  z > 

ag ( z )  ag ( zkim )

Hibmcuab Abppgcce

z  zkim    z  zkim  

Ic site dgcc’epgrb riabdg mgccb zemb 2 aem acbssg di gspesiziemg III pgr aui si dgtgrkimbme i pbrbkgtri riaoigsti g si abcaecb cb prgssiemg dgc vgmte. Zemb

2

Abtgherib di gspesiziemg

III

v`,> Vk/s[ b> Vk[ fb V2/s[ bs Vk[ v` Vk/s[ q` VfM/k0[ ag  ap,sep  ap,set  ad  al   at 

07 2>>> >,>2 2>> 07 >,192 0,29< >,? ->,4 2 2 2

f r  z> Vk[ zkim Vk[ z Vk[

>,0 >,2 7 2>,94

0.4 Abrrepemtg Qi rikbmdb bc abpitece 8.  

<

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce

1. AE^GPTWPB 1.2 Kbmte di aepgrturb ^gr cb aepgrturb si ï sagcte um pbmmgcce aei`gmtbte dgmekimbt dgmekimbte e Zgrefcbss Peel, predette db PX^.

Dbcc’bmbcisi dgi abriaoi si riabvb aog sette c’gllgtte dgccb mgvg g dgc pgse preprie dgc pbmmgcce (>,2,9 kc. C’ipetgsi prehgttubcg di brabrgaai dispesti ehmi 4k, su aui bmdrbmme bd bppehhibrsi i pbmmgcci di aepgrturb, ï quimdi vgriliabtb. 1.0 Brabrgaai 1.0.2 Qaogkb stbtiae

Hci brabrgaai, im bssgmzb di imlerkbziemi succb cere cumhogzzb, vgmheme abcaecbti b lbverg di siaurgzzb sgaemde ume saogkb di trbvg sgkpciagkgmtg bppehhibtb.

Bc limg di rispgttbrg cg suaagssivg vgriliaog di dglerkb`icitî g cg bmaerb più vimaecbmti vgriliaog di imstb`icitî, si bdettbme prelici cbkimbti I^G 24>. 1.0.0 Abcaece dgccg seccgaitbziemi bhci Qtbti Cikitg Wctiki

I abriaoi hrbvbmti suhci brabrgaai seme: Hf2 ; >,2,208 fM/k 

pgse dgc kbmte di aepgrturb pgse dgcc’brabrgaaie

0

R f ; >,? fM/k  

abriae db mgvg

C’bziemg di abcaece pgr hci brabrgaai agmtrbci ï dgtgrkimbtb sgaemde cb rgcbziemg:

8

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce

L ; α ∙ H + α ∙ H + α ∙ R ; 4,407 fM/ fM/kk  ^eiaoé cb lbcdb prgsgmtb um’imacimbziemg β pbri b 1,¾, hci brabrgaai su`isaeme umb lcgssiemg dgvibtb6 `isehmb quimdi saekperrg c’bziemg di abcaece mgccg dug aekpemgmti primaipbci:

L, ; L ∙ aesβ ; 4,42< fM/k   L, ; L ∙ simβ ; >,08? fM/k   Ic abriae devute bc pgse dgc kbmte di aepgrturb g bcc’bziemg dgc vgmte hrbvbmtg suhci brabrgaai di `erde ï pbri bccb kgtî dgc abriae dghci brabrgaai agmtrbci. Qi gllgttugrî cb vgriliab di rgsistgmzb prgmdgmde um brabrgaaie agmtrbcg aekg rilgrikgmte, kgmtrg cb vgriliab di stb`icitî vgrrî gllgttubtb bmaog succ’brabrgaaie di `erde. Cg seccgaitbziemi pgr c’brabrgaaie più seccgaitbte risuctbme:

K,  ; 4,9>  1  0,4>>fM / k

?

 

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce

1.0.7 \griliaog di dglerkb`icitB’

Aem i vbceri bppgmb abcaecbti si vbcutb cb lrgaaib im kgzzgrib sgaemde cb rgcbziemg:   

  q  c 4 7 1?4 G  J 

 

^eiaoé cb seccgaitbziemg ï `ibssibcg ï mgagssbrie abcaecbrg cb lrgaaib cumhe i dug bssi primaipbci g quimdi dgtgrkimbrg cb lrgaaib risuctbmtg. Gssb dgvg gssgrg aemlremtbtb aem i vbceri cikiti ikpesti dbcc’MTA 0>2? §4.0.4.0.2 ripertbti ripertbti mgccb lihurb im sghuite, dirgttbkgmtg gstrbt gstrbttb tb dbccb merkb.

Cb vgriliab ï bkpibkgmtg seddislbttb gssgmde: g ssgmde:

   c ; 0>kk  δ ; δ + δ ; 27, 9 81kk 3     δ ; 8,28, 7  2  

   CT  

2



 l     CT

  CT

    CT

CT ,>

   

0 CT 

 

2 0 0CT     CT 

 l  2  >, 7  ((2 2  f a )  (2 (2  0  ( CT   >, ?) 0 )

Ic lbtterg aerrgttive fa tigmg aemte dgcc’gllgttivb distri`uziemg dgc abriae, ripertbte im tb`gccb 4.0._ dgccb MTA0>2?:

Cb Airaecbrg gspciabtivb pgr c’bppciabziemg dgcc’MTA 0>2? (§A4.0.4.2.1.1.0) riaoigdg cb vgriliab dgccg sghugmti disuhubhcibmzg pgr vgriliabrg hci gcgkgmti bcc’imstb`icitî lcgsse-tersiembcg:

2>

 

^rehgtte di um abpbmmemg imdustribcg

 M  Gd   K 2   y  B  l yf  M  Gd   K 2

 f yy   f zy 

  z  B  l yf

Hibmcuab Abppgcce

 K  y , Gd   K 2 

    K      f  yz   z , Gd K2   2 Xz  l yf 

 CT  Xy  l yf  K  y , Gd   K 2   CT  Xy  l yf

    K      f  zz   z , Gd K2   2 Xz  l yf 

 

I aeglliaigmti f seme riabvb`ici dbccb tb`gccb sghugmtg trbttb dbccb Airaecbrg di aui seprb:

Devg i aeglliaigmti βky, βkz g βCT vgmheme riabvbti dbccb tb`gccb A4.0.\I dgccb stgssb airaecbrg:

I aeglliaigmti ψ x g ψ y seme lermiti dbccb dbccb merkbtivb (§4.0.4.2.1.2)aem cg sghugmti gsprgssiemi:  M ar , y    y 

 0  G  J  y

 M ar , z  

c >0

 B  l  y

 

  z  

   y 



2

   z  

 y      0 y

c >0

 B  l  y

 

 M ar , z   z  >, 7  2   z   z  >, 0    z 0 

 M ar , y  y  >, 7  2   y    y  >, 0    y0 



 0  G  J  z 

0 y

2

 z   0z   z 0

Mgccg tb`gccg sghugmti si ripertbme cg vgriliaog, sgaemde qubmte bppgmb ripertbte, pgr c’brabrgaaie di `erde, aog prgsgmtb ce slerze merkbcg kbssike bsseaibte , g ic prike brabrgaaie imtgrme. Bc limg di seddislbrg cg vgriliaog, petrg``g gssgrg mgagssbr mgagssbrie ie cikitbrg cb cuag ci`grb di imlcgssiemg imsgrgmde um gcgkgmte di irrihidikgmte bd umirg dug brabrgaai bdibagmti im aerrispemdgmzb dgccb cere kgzzgrib. Tbcg irrihidikgmte puð gssgrg rgbcizzbte aem prelici sgkpciai (A, C,…).

22

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce

4. AB^PIBTB 4.2 Qaogkb di abcaece Cb abpribtb, dgc tipe Keomiï, ï kedgccbtb sgaemde ume saogkb di trbvbturb rg rgtiaecbrg tiaecbrg aesã db bvgrg secbkgmtg slerze merkbcg mgccg bstg aekpemgmti cb abpribtb. ^gr qugste ketive im lbsg di prehgttbziemg si ï sagcte aekg cbrhogzzb dgccg kbhcig umb cumhogzzb pbri bccc’imtgrbssg trb hci brabrgaai. Im qugste kede i abriaoi dgccb aepgrturb seme trbskgssi bccb abpribtb im aerrispemdgmzb dgi medi. Cb abpribtb aeprg c’imtgrb cuag di 1>k g bctgzzb vbrib`icg. Mgccb lihurb sghugmtg si ripertbme cg mukgrbziemi uticizzbtg mgc abcaece pgr cg bstg g pgr i medi.

^gr mgagssitî di trbsperte cb abpribtb ï divisb im 1 aemai di 9k pgr cg gstrgkitî g 20 pgr cb pbrtg agmtrbcg, rgbcizzbti im elliaimb aem aeccghbkgmti sbcdbti. I 1 aemai vgrrbmme pei kemtbti im epgrb uticizzbmde dgi aeccghbkgmti `uccembti. I medi ehhgtte di aeccghbkgmti `uccembti seme i medi D, O, R g W. ^gr ic dgttbhcie dgccg kedbcitî di aeccghbkgmte si rikbmdb bc rgcbtive abpitece. 4.0 Abcaece dgccg seccgaitbziemi bhci Qtbti Cikitg Wctiki Cb lerzb db bppciabrg bc mede m ede ï dbtb dbccb sekkb dgccb rgbziemg dgcc’brabrgaaie, dgtgrk dgtgrkimbtb imbtb im prgagdgmzb, g ic pgse preprie dgccb abpribtb ripbrtite bi medi sgaemde cg brgg di imlcugmzb. Mem aemesagmde bmaerb i prelici aog vgrrbmme uticizzbti pgr rispgttbrg cg vgriliaog riaoigstg g, di aemsghugmzb, mem petgmde vbcutbrg c’gllgttive pgse preprie dgccb abpribtb, si ï sagcte di gllgttubrg umb prikb stikb dgc pgse bssghmbmde b tuttg cg bstg dgi prelici W^M 20> baaeppibti. Rugstb sagctb si rivgcb b lbverg di siaurgzzb sg, depe bvgr eppertumbkgmtg sagcte i prelici im `bsg bccg seccgaitbziemi abcaecbtg g im `bsg b tuttg cg vgriliaog mgagssbrig, ic pgse dgccb abpribtb muevbkgmtg abcaecbte sbrî kimerg dgc pgse stikbte imizibckgmtg. Im abse aemtrbrie sbrî mgagssbrie riabcaecbrg cb abpribtb aem ic hiuste pgse.Mgcc’ipetgsi bppgmb dgsarittb ic pgse dgccb abpribtb ï pbri b 12,?0?fM aog ripbrtite mgi medi gquivbcg bd um abriae di 1,74fM mgi medi agmtrbci g 2,88fM mgi medi di gstrgkitî. Rugstg lerzg vbmme b sekkbrsi bccb rgbziemg dgcc’brabrgaaie pbri b 21,07fM pgr i medi agmtrbci g . 4.1 Qagctb dgi prelici Bc limg di rispgttbrg tuttg cg vgriliaog aemsidgrbtg mgi sghugmti pbrbhrbli si dgaidg di bdettbrg i sghugmti prelici b A, baaeppibti cumhe c’bmikb, pgr i divgrsi gcgkgmti aestitugmti cb abpribtb: Deppie W^M 2>> Deppie W^M ?> Deppie W^M 4> Deppie C x1>x<

aerrgmtg supgrierg aekprgsse aerrgmtg imlgrierg tgse kemtbmti aekprgssi dibhembci tgsg

21

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce

Tbcg sagctb aekpertb um pgse dgccb abpribtb di 27,2kk dispestg im kbmigrb tbcg db dividgrg ehmi simhecb bstb im 1 abkpi di ghubcg cumhogzzb. I vbceri di seccgaitbziemg, dgtgrkimbtg aem c’busicie dgc seltwbrg di abcaece bhci gcgkgmti limiti QB^0>>>, seme ripertbti mgi pbrbhrbli sghugmti mgccg tb`gccg di vgriliab dghci gcgkgmti:

Im resse seme rbpprgsgmtbti hci slerzi merkbci di aekprgssiemg g im `cu qugcci di trbziemg. 4.4 \griliaog bhci Qtbti Cikitg Wctiki 4.4.2 \griliaog di rgsistgmzb

C’MTA 0>2? (§ 4.0.4.2.0) riaoigdg cb vgriliab dgccg sghugmti rgcbziemi:  M  Gd   M t , Pd   2    M  Gd  2  M a , Pd 

rispgttivbkgmtg pgr gcgkgmti tgsi g aekprgssi. Mgc mestre abse:  B l   yf   M t , Pd M pc , Pd M a , Pd .    K > 







Imectrg, pgr hci gcgkgmti tgsi, ï db vgriliabrg cb rgsistgmzb b retturb dgccb sgziemg mgttb, dgpurbtb dgi leri aem:  M u ,Pd  

>,9  Bmgt  l tf  

.

  K 0

Tbcg vgriliab vgrrî gsghuitb bc kekgmte dgc dikgmsiembkgmte g dgccb vgriliab dgi aeccghbkgmti `uccembti. Qi ribssukg mgccb sghugmtg tb`gccb cb vgriliab di rgsistgmzb pgr hci gcgkgmti dgccb abpribtb: QECCGAITBZIEMI G \GPILIAOG DGCCG BQTG AEK^/TPBZ C Vk[ Mgd VfM[ B Vkk0[ Mrd VfM[ \GPILIAB AQ2 W ^M2>> AEK^PGQQIEMG 1.>>< -24 920.?78 EF AQ0 W^M2>> AEK^PGQQIEMG  1.>>< -04>.82< 08>> 920.?78 EF AQ1 W^M2>> AEK^PGQQIEMG  1.>>< -091.18> 08>> 920.?78 EF AQ4 W^M2>> AEK^PGQQIEMG  1.>>< -120.9>7 08>> 920.?78 EF AQ7 W^M2>> AEK^PGQQIEMG  1.>>< -1>7.49< 08>> 920.?78 EF AQ< W^M2>> AEK^PGQQIEMG  1.>>< -1>7.49< 08>> 920.?78 EF AQ8 W^M2>> AEK^PGQQIEMG  1.>>< -120.9>7 08>> 920.?78 EF AQ? W^M2>> AEK^PGQQIEMG  1.>>< -091.18> 08>> 920.?78 EF AQ9 W^M2>> AEK^PGQQIEMG  1.>>< -04>.82< 08>> 920.?78 EF AQ2> W^M2>> AEK^PGQQIEMG  1.>>< -24 920.?78 EF AI2 W^M?> QABPIAB 1.>>> >.>>> 00>> 841.?2> EF Bstb

   I    P    E    I    P    G    ^    W    Q    I    T    M    G    P    P    E    A

   T    M    G    P  AI0    P AI1    E    A

AI4

^relice

W^M?>  W^M?> 

TPBZIEMG TPBZIEMG

1.>>> 1.>>>

24.02?

00>> 00>>

841.?2> 841.?2>

W^M?> 

TPBZIEMG

1.>>>

090.8>

841.?2>

24

EF EF EF

 

^rehgtte di um abpbmmemg imdustribcg

   I    T    M    B    T    M    E    K

   I    C    B    M    E    H    B    I    D

Hibmcuab Abppgcce

AI7

W^M?> 

TPBZIEMG

1.>>>

120.0>

841.?2>

AI<

W^M?> 

TPBZIEMG

1.>>>

120.0>

841.?2>

AI8

W^M?> 

TPBZIEMG

1.>>>

090.8>

841.?2>

AI?

W^M?> 

TPBZIEMG

1.>>>

04>.02?

00>>

841.?2>

TPBZIEMG

AI9

W^M?> 

1.>>>

24>

841.?2>

AI2> K2

W^M?>  W^M4>

QABPIAB 1.>>> AEK^PGQQIEMG  2.047>

>.>>> -99.217

00>> 2040

841.?2> 429.924

K0

W^M4>

AEK^PGQQIEMG  2.411?

->9

2040

429.924

K1

W^M4>

AEK^PGQQIEMG  2.4

2040

429.924

K4

W^M4>

AEK^PGQQIEMG  2.?221

K7

W^M4>

K< K8 K?

-27.?>2

2040

429.924

0.>>>>

2

AEK^PGQQIEMG  2.?221

-27.?>2

2040

429.924

W^M4>

AEK^PGQQIEMG  2.4

2040

429.924

W^M4>

AEK^PGQQIEMG  2.411?

->9

2040

429.924

K9 D2

W^M4> AEK^PGQQIEMG  2.047> Cx1>x< TPBZIEMG 1.2?>7

-99.217 288.801

2040 2>00

429.924 147.711

D0

Cx1>x00

147.711

D1

Cx1>x

00

147.711

D4

Cx1>x8

000

147.711

D7

Cx1>x44

-2>.4?4

2>00

147.711

TPBZIEMG

D<

Cx1>x44

-2>.4?4

2>00

147.711

D8

Cx1>x8

000

147.711

D?

Cx1>x

00

147.711

D9

Cx1>x00

147.711

D2>

Cx1>x<

TPBZIEMG

1.2?>7

288.801

2>00

147.711

EF EF EF EF EF EF EF EF EF EF EF EF EF EF EF EF EF EF EF EF EF EF EF EF EF

4.4.0 \griliaog di stb`icitB’

Qgaemde cb Airaecbrg gspciabtivb pgr c’bppciabziemg dgcc’MTA 0>2? (§A4.0.4.2.1.2.7) umb sgziemg aekpestb db gcgkgmti rbvviaimbti aeccghbti kgdibmtg abcbstrgcci e ik`etiturg i k`etiturg puð gssgrg vgriliabtb aekg um’bstb sgkpciag sg cb distbmzb trb hci gcgkgmti di aeccghbkgmte rispgttb cg prgsariziemi ripertbtg mgccb tb`gccb sghugmtg (Tb`gccb 4.0.III). Im abse mghbtive ï mgagssbrie vgriliabrg hci gcgkgmti riaerrgmde bd umb smgccgzzb gquivbcgmtg dgccb sgziemg aekpestb, uticizzbmde merkg di aekprevbtb vbciditî aekg c’GA1.

Bstb

ikim Vk[

\GPILIAB IMQTB@ICITÎ 27*ikim Vk[

b Vk[

   I    P    E    I    P    G    ^    W    Q    I    T    M    G    P    P    E    A

AQ2 AQ0 AQ1 AQ4 AQ7 AQ< AQ8 AQ? AQ9

>.>248 >.>248 >.>248 >.>248 >.>248 >.>248 >.>248 >.>248 >.>248

>.00>7 >.00>7 >.00>7 >.00>7 >.00>7 >.00>7 >.00>7 >.00>7 >.00>7

2.>>0 2.>>0 2.>>0 2.>>0 2.>>0 2.>>0 2.>>0 2.>>0 2.>>0

\GPILIAB MEM EF MEM EF MEM EF MEM EF MEM EF MEM EF MEM EF MEM EF MEM EF

   P   I    P   T    E   M    A   G

AQ2> AI2 AI0 AI1

>.>248 >.>211 >.>211 >.>211

>.00>7 >.2997 >.2997 >.2997

2.>>0 2.>>> 2.>>> 2.>>>

MEM EF MEM EF MEM EF MEM EF

27

 

^rehgtte di um abpbmmemg imdustribcg

AI4 AI7 AI< AI8 AI? AI9 AI2> K2 K0 K1 K4 K7 K< K8 K? K9 D2 D0 D1 D4 D7 D< D8 D? D9 D2>

   I    T    M    B    T    M    E    K

   I    C    B    M    E    H    B    I    D

Hibmcuab Abppgcce

>.>211 >.>211 >.>211 >.>211 >.>211 >.>211 >.>211 >.>2>4 >.>2>4 >.>2>4 >.>2>4 >.>2>4 >.>2>4 >.>2>4 >.>2>4 >.>2>4 >.>>8< >.>>8< >.>>8< >.>>8< >.>>8< >.>>8< >.>>8< >.>>8< >.>>8< >.>>8<

>.2997 >.2997 >.2997 >.2997 >.2997 >.2997 >.2997 >.27 >.27 >.27 >.27 >.27 >.27 >.27 >.27 >.27 >.224> >.224> >.224> >.224> >.224> >.224> >.224> >.224> >.224> >.224>

2.>>> 2.>>> 2.>>> 2.>>> 2.>>> 2.>>> 2.>>> >.427> >.4889 >.74>? >.1? >.? >.4889 >.427> 2.>0 2.>?08 2.2>?1 2.21 2.8.49 >.49 >.49 >.49 >.49 >.49 >.49> >.49> >.49> >.49> >.49> >.49> >.49> >.49>

2.8>9 2.8>9 2.8>9 2.8>9 2.8>9 2.8>9 2.4?1 2.8> ?4,1M⁄kk kk  t  l  

ï cb rgsistgmzb di prehgtte b tbhcie6 ï cb rgsistgmzb b retturb dgcc’baaibie dgc `uccemg6 ï c’brgb rgsistgmtg b tbhcie dgc `uccemg6 ï ic dibkgtre mekimbcg dgc `uccemg6 ï ce spgsserg dgccb pibstrb aeccghbtb6 ï cb rgsistgmzb b retturb dgccb pibstrb6

 ï pbri b:  ï pbri b:

β ; kim kim ∙  6    6 2  β ; kim kim ∙   ∐ >,07 >,0766    6 2  f ; kim kim 0,?∙  ∐ 2,860, 8 6 0,7  fabriae6 ; kim kim 2,4∙  ∐2,  ∐ 2,860, 8 6 0,7 

pgr `uccemi imtgrmi mgccb dirgziemg dgc abriae6 pgr `uccemi imtgrmi mgccb dirgziemg dgc abriae6

pgr `uccemi di `erde im dirgziemg pgrpgmdiaecbrg bc pgr `uccemi imtgrmi im dirgziemg pgrpgmdiaecbr pgrpgmdiaecbrg g bc abriae6

2?

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce

Imectrg ï riaoigste ic rispgtte dgccg distbmzg kimikg dbi `erdi g trb i `uccemi aekg ripertbte im tb`gccb.

Devg d> ï ic dibkgtre mekimbcg dgc lere di bccehhibkgmte dgc `uccemg, pbri b 21kk im qugste abse. Ic tbhcie bhgmtg vigmg abcaecbte aekg cb lerzb trbskgssb divise ic mukgre di `uccemi  gd ic mukgre di sgziemi di tbhcie :

m

m  L,  ; (∙ ) 

Cg rgsistgmzb dgccg bstg vb bmaog vgriliabtb im aerrispemdgmzb dgi leri uticizzbmde c’brgb mgttb aekg prgagdgmtgkgmtg prgagdgmtgkg mtg ripertbte bc abpitece 4.4.2. 4.7.2 Mede B

Mgc mede B aemvgrheme cg sghugmti bstg, di aui si ripertbme ce slerze bssibcg, ic prelice uticizzbte, ic prehgtte dgccb sbcdbturb, c’gvgmtubcg prehgtte dgcc’umiemg `uccembtb qubmde prgsgmtg g ic prehgtte dgc lbzzecgtte (tgmgmde aemte dgccb cumhogzzb dgi aerdemi di sbcdbturb, dgccb dillusiemg dghci slerzi mgc pibtte g ce spgsserg di qugste): BQTB

TI^E

^PELICE

ma 

MQd VfM[

AQ2 D2

Qbcdbte Qbcdbte

W^M2>> Cx1>x<

4 4

-241> .>>> 270.?><

Mgd VfM[ d2 Vkk[ d0 Vkk[ L2 VfM[ L0 VfM[ ma

288.801 02.8 1?.04> 221.0.>>> .>>> 214. 74.>97? 1>.8?1 .>>> 17.>>> 017.988 0  s Vkk[ MPd,2 VfM[ MPd,0 VfM[

177.>> 2.>7 2>.>>> 477.027 129.988

\GPILIAB \GPILIAB

EF EF

\GPILIAB

EF

\GPILIAB

EF

Ic prehgtte dgc aeccghbkgmte lcbmhibte trb cb abpribtb g c b aecemmb vgrrî aemsidgrbte suaagssivbkgm suaagssivbkgmtg, tg, umb vectb dgtgrkimbte ic prelice dgccb aecemmb. 4.7.0 Mede @

Mgc mede @ aemvgrheme cg sghugmti bstg, di aui si ripertbme ce slerze bssibcg, ic prelice uticizzbte, ic prehgtte dgccb sbcdbturb, c’gvgmtubcg prehgtte dgcc’umiemg dgcc’umiemg `uccembtb qubmde prgsgmtg g ic prehgtte dgc lbzzecgtte (tgmgmde aemte dgccb cumhogzzb dgi aerdemi di sbcdbturb, dgccb dillusiemg dghci slerzi mgc pibtte g ce spgsserg di qugste): BQTB

TI^E

^PELICE

ma 

MQd VfM[

AQ2 AQ0 D0 K2

Qbcdbte Qbcdbte Qbcdbte Qbcdbte

W^M2>> W^M2>> Cx1>x< W^M4>

4 4 4 4

-24

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce

^rehgtte sbcdbturb: AQ2 

AQ0

^IBQTPB

Mgd VfM[ ma b Vkk[ ckim Vkk[ c^rehgtte Vkk[ τ⸘ VM/kk0[

-24> 17.>1> .>>> 270.?><

Mgd VfM[ ma b Vkk[ ckim Vkk[ c^rehgtte Vkk[ τ⸘ VM/kk0[

-04>.82< 4 4.>>> 78.4?2 8>.>>> 024.907

o2 Vkk[ o0 Vkk[ o1 Vkk[ o4 Vkk[ `gll,2 Vkk[ skim,2 Vkk[

2>>.>>> 2>>.>>> .>>> 4>.>>> 214.> 17.879 0>.14? 4>.>>> 07.>>> 011.9?7 0>> 01..>>> 274.?9? 0  s Vkk[ MPd,2 VfM[ MPd,0 VfM[ MPd,1 VfM[ MPd,4 VfM[

24>.427 7.>82 ?1.>94 4.2?0 94 4.> 2.>7 2>.>>> 477.027 484.817 0?>.918 021.12?

\GPILIAB \GPILIAB \GPILIAB \GPILIAB

EF EF EF EF

\GPILIAB

EF

\GPILIAB

EF

\GPILIAB

D0

EF

K2

4.7.1 Mede A

Mgc mede A aemvgrheme cg sghugmti bstg, di aui si ripertbme ce slerze bssibcg, ic prelice uticizzbte, ic prehgtte dgccb sbcdbturb, c’gvgmtubcg prehgtte dgcc’umiemg dgcc’umiemg `uccembtb qubmde prgsgmtg g ic prehgtte dgc lbzzecgtte (tgmgmde aemte dgccb cumhogzzb dgi aerdemi di sbcdbturb, dgccb dillusiemg dghci slerzi mgc pibtte g ce spgsserg di qugste): BQTB

TI^E

^PELICE

ma 

MQd VfM[

AQ0 AQ1 D1 K0

Qbcdbte Qbcdbte Qbcdbte Qbcdbte

W^M2>> W^M2>> Cx1>x< W^M4>

4 4 4 4

-04>,82< -091.18 9

02

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce

^rehgtte sbcdbturb: AQ0 

AQ1

^IBQTPB

Mgd VfM[ ma b Vkk[ ckim Vkk[ c^rehgtte Vkk[ τ⸘ VM/kk0[

-04>.82< 4 4.>>> 78.4?2 8>.>>> 024.907

Mgd VfM[ ma b Vkk[ ckim Vkk[ c^rehgtte Vkk[ τ⸘ VM/kk0[

-091.18 4 4.>>> 8>.>77 ?>.>>> 009.297

o2 Vkk[ o0 Vkk[ o1 Vkk[ o4 Vkk[ `gll,2 Vkk[ skim,2 Vkk[

2>>.>>> 2>>.>>> .>>> 4>.>>> 24>.427 7.>82

l vw VM/kk 0[

0 2.>7 2>.>>> 484.817 494.077 0?>.918 291.89?

\GPILIAB \GPILIAB \GPILIAB \GPILIAB

EF EF EF EF

\GPILIAB

EF

\GPILIAB

D1

EF

K0

Mgd VfM[ d2 Vkk[ d0 Vkk[ L2 VfM[ L0 VfM[ ma b Vkk[ c2,kim Vkk[ c0,kim Vkk[ c2 Vkk[ c0 Vkk[ τ⸘ VM/kk0[ 0 l vw vw VM/kk [

41.10> 04.>> 0>..>>> 044.478

Mgd VfM[ d2 Vkk[ d0 Vkk[ L2 VfM[ L0 VfM[ ma

04 4 4.>>> 9.??8 0>.>>> 209.1??

o2 Vkk[ o0 Vkk[ o1 Vkk[ `gll,2 Vkk[ skim,2 Vkk[ `gll,0 Vkk[

2>>.>>> .>>> 4>.>>> 24> 8.9?0 4.740 4>.>>> 0>.>>> 70.008 0.911 72.748 0.18< 177.>> 2.>7 2>.>>> 494.077 0?>.918 284.08?

\GPILIAB \GPILIAB \GPILIAB

EF EF EF

\GPILIAB

EF

\GPILIAB

EF

\griliab `uccembturb: Ic mede D prgsgmtb bmaog um aeccghbkgmte `uccembte mgagssbrie b aeccghbrg dug gstrgkitî dgc aerrgmtg supgrierg lbagmti pbrtg di dug aemai sgpbrbti dbccb abpribtb. Ic aeccghbkgmte g rgbcizzbte aem um aeprihiumte di dikgmsiemi 1>>xx24 kk su gmtrbk`i i prelici g um pibtte peste trb i dug prelici di spgsserg 2> kk. \GPILIAB B TBHCIE m¾ `uccemi m¾ licg m¾ sgz. tbhcie Lv,Qd  VfM[ Lv,Pd VfM[

? 2 4 1> 2?.>>> 11.>>> 1>> 0>.>>> 1>.>>> 17.>>> >.>>> >.70? 0.7>> 1>.>> 070>.>> 120.9>7 907.144

\GPILIAB

EF

\GPILIAB ^IBQTPB AE^PIHIWMTE Bsgz Vkk0[ Bmgttb Vkk0[ MGd VfM[ Mu,Pd  VfM[

2.>>> 20.>>> 120.9>7 4 W^M2>> Cx1>x< W^M4>

4 4 4 4

-120.9>7 -1>7.49< 04

01

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce

^rehgtte sbcdbturb: AQ4 

AQ7

^IBQTPB

Mgd VfM[ ma 

-120.9>7 4

Mgd VfM[ ma 

-1>7.49< 4

o2 Vkk[ o0 Vkk[

2>>.>>> 2>>.>>>

b Vkk[ ckim  Vkk[ c^rehgtte Vkk[ τ⸘ VM/kk0[ 0 l vw vw VM/kk [

4.>>> 84.80> ?>.>>> 044.478 0>> 80.972 ?>.>>> 01?. 8.9?0 4.740

Mgd VfM[ ma  b Vkk[ ckim Vkk[ c^rehgtte Vkk[ τ⸘ VM/kk0[ 0 l vw vw VM/kk [

-42.4>4 4 4.>>> 9.??8 4>.>>> > 4>.>>> 24 2.>7 2>.>>> 494.077 494.077 0?>.918 021.12?

c2 Vkk[ c0 Vkk[ τ⸘ VM/kk0[ 0 l vw vw VM/kk [

4>.>>> 0>.>>> 70.008 0> W^M2>> W^M4>

4 4 4

-1>7.49< -1>7.49< 27.49< 4

Mgd VfM[ ma

-1>7.49< 4

Mgd VfM[ ma

2>.>>> 2>>.>>>

b Vkk[ ckim Vkk[ c^rehgtte Vkk[ τ⸘ VM/kk0[ 0 l vw vw VM/kk [

4.>>> 80.972 ?>.>>> 01?. 80.972 ?>.>>> 01?. 1.92> 0>.>>> 72.287 0  s Vkk[ MPd,2 VfM[ MPd,0 VfM[ MPd,1 VfM[

4>.>>> 24 2.>7 2>.>>> 494.077 494.077 284.08?

\GPILIAB \GPILIAB \GPILIAB

EF EF EF

4.7.8 Mede M

Mgc mede M aemvgrhg umb secb bstb, pgrbctre sabriab. Ic aeccghbkgmte bccb aecemmb ï gsghuite kgdibmtg `uccembturb im lere bsecbte.

07

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce

4.7.? Mede E

Mgc mede E aemvgrheme cg sghugmti bstg, di aui si ripertbme ce slerze bssibcg, ic prelice uticizzbte, ic prehgtte dgccb sbcdbturb, c’gvgmtubcg prehgtte dgcc’umiemg `uccembtb qubmde prgsgmtg g ic prehgtte dgc lbzzecgtte (tgmgmde aemte dgccb cumhogzzb dgi aerdemi di sbcdbturb, dgccb dillusiemg dghci slerzi mgc pibtte g ce spgsserg di qugste): BQTB

TI^E

^PELICE

ma 

MQd VfM[

AI2 AI0 D2 K2

Qbcdbte Qbcdbte Qbcdbte Qbcdbte

W^M?> W^M?> Cx1>x< W^M4>

4 4 4 4

> 244

^rehgtte sbcdbturb: AI2 

AI0

^IBQTPB

Mgd VfM[ ma  b Vkk[ ckim Vkk[

> 4 4.>>> >.>>>

Mgd VfM[ ma  b Vkk[ ckim Vkk[

24>> 14.977

o2 Vkk[ o0 Vkk[ o1 Vkk[ o4 Vkk[

?>.>>> ?>.>>> .>>> 4>.>>>

c^rehgtte  Vkk[ 0[ τ  VM/kk

c^rehgtte  Vkk[ 0[ τ  VM/kk

0 l vw vw VM/kk [

4>.>>> >.>>> 0>> 270.4?> 0 221.0> 74.>9< 1>.8?1 .>>> 1>.>>>

Mgd VfM[ ma  b Vkk[ ckim Vkk[ c^rehgtte Vkk[ τ⸘ VM/kk0[ 0 l vw vw VM/kk [

gll,2 s`kim,2  Vkk[ Vkk[ `gll,0 Vkk[ skim,0 Vkk[ `gll,1 Vkk[ skim,1 Vkk[ `gll,4 Vkk[ skim,4 Vkk[ 0 l yf yf VM/kk [ αK>  s Vkk[ MPd,2 VfM[ MPd,0 VfM[ MPd,1 VfM[ MPd,4 VfM[

2>1.>94 >.>>> 224.7 2>.>>> 14?.77< 1?8.79< 129.988 021.12?

\GPILIAB \GPILIAB

EF EF

τ⸘ VM/kk00[ l vw vw VM/kk [

017.988 0>> 01..>>> 274.?9? 0 W^M?> Cx1>x< W^M4>

4 4 4 4

24.02? 228.4?0 >9

^rehgtte sbcdbturb: AI0 

AI1

^IBQTPB

Mgd VfM[ ma  b Vkk[ ckim Vkk[

24>> 14.977

Mgd VfM[ ma  b Vkk[ ckim Vkk[

04>.02? 4 4.>>> 78.1.>>> ?>.>>> .>>> 4>.>>>

c^rehgtte Vkk[ τ⸘ VM/kk0[ 0 l vw vw VM/kk [

.>>> 270.4?> 0.>>> 2?8. 0 84.?87 40.8 4 4.>>> 17.879 0>.14? 7>.>>> 1>.>>>

Mgd VfM[ ma  b Vkk[ ckim Vkk[ c^rehgtte Vkk[ τ⸘ VM/kk0[ 0 l vw vw VM/kk [

>9 4 4.>>> 2.>>> 241.8 W^M?> Cx1>x< W^M4>

4 4 4 4

04>.02? 090.8>

Mgd VfM[ ma b Vkk[

42.4>4 4 4.>>>

o2 Vkk[ o0 Vkk[ `gll,2 Vkk[

?>.>>> 4>.>>> 20>> 00?.804 0.>>> 209.1?? 0  s Vkk[ MPd,2  VfM[ MPd,0  VfM[

2.>7 2>.>>> 40xx24 kk su gmtrbk`i i prelici g um pibtte peste trb i dug prelici di spgsserg 2> kk. \GPILIAOG BQTB AI1 \GPILIAB B TBHCIE

m¾ `uccemi m¾ licg m¾ sgz. tbhcie Lv,Qd  VfM[ Lv,Pd VfM[

? 2 4 1>.>08 44.2

\GPILIAB

EF

\GPILIAB BC PILECCBKGMTE g2,kim Vkk[ g0,kim Vkk[ p2,kim Vkk[ p0,kim Vkk[ g2 Vkk[ g0 Vkk[ p2 Vkk[ p0 Vkk[ β f Lv,Qd VfM[ Lv,Pd VfM[

2?.>>> 2?.>>> 11.>>> 1>> 0>.>>> 1>.>>> 17.>>> >.>>> >.70? 0.7>> 1>.>08 47.00>

\GPILIAB

EF

\GPILIAB BQTB IM ^PEQQIKITÎ DGI LEPI 0 Bsgz Vkk [ Bmgttb Vkk0[ MGd VfM[ Mu,Pd  VfM[

08>>.>> 070>.>> 04>.02? 907.144

\GPILIAB

EF

\GPILIAB ^IBQTPB AE^PIHIWMTE Bsgz Vkk0[ Bmgttb Vkk0[ MGd VfM[ Mu,Pd  VfM[

2.>>> 20.>>> 04>.02? 4  m, ; . ∙, Qi dgaidg di uticizzbrg 1 `uccemi. Cb lerzb bhhiumtivb mgi `uccemi`briagmtriae più gstgrmi ï db tbdibhembcg: dbtb dbcc’gquici`rie bccb retbziemg gd ï dirgttb pgrpgmdiaecbrk pgrpgmdiaecbrkgmtg gmtg bcc’bssg dgccb

m. ∙ L ∙ d ; K  db aui si ob:

L ; .  ∙(− ) ∙ p  Devg ic tgrkimg

. ∙ −   rbpprgsgmtb ic `rbaaie `rbaaie dgc kekgmte devute bccb lerzb bhhiumtivb rispgtte rispgtte ic 

`briagmtre dgc sistgkb di `uccemi. I `uccemi obmme bmaog cb lerzb devutb bccb trbziemg dgccb dibhembcg, aog ï im dirgziemg cemhitudimbcg. ^gr gsghuirg cb vgriliab ï mgagssbrie prgmdgrg cb risuctbmtg dgccg dug lerzg:

L,  ;     + L 

09

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce

\GPILIAOG BQTB D1 \GPILIAB B TBHCIE

\GPILIAB BC PILECCBKGMTE

\GPILIAB BQTB IM ^PEQQIKITÎ DGI LEPI Bsgz Vkk0[ Bmgttb Vkk0[ MGd VfM[ Mu,Pd  VfM[

2>00.>> ? 7.>?2 0 2.>7> 1 2

g2,kim Vkk[ g0,kim Vkk[ p2,kim Vkk[ p0,kim Vkk[ g2 Vkk[ g0 Vkk[

27.> 27.> 0?.> 12.0>> 07.>>> 07.>>>

Lbhh VfM[ Lv,Qd  VfM[ Lv,Pd VfM[

4.>> >.>>> >.729 0.7>>

Bsgz Vkk0[ Bmgttb Vkk0[ MGd VfM[

410.?0> W^M?> Cx1>x< W^M4>

4 4 4 4

090.8>> 00?.804

Mgd VfM[ m a  b Vkk[ ckim Vkk[ c^rehgtte Vkk[ τ⸘ VM/kk0[

120.0>> 84.7.>>> 02.>>> ?>.>>> .>>> 4>.>>> 20>> 0>.>>> 70.008 02 4 4.>>> 1.881 0>.>>> 49.18? 0  s Vkk[ MPd,2 VfM[ MPd,0 VfM[ MPd,1 VfM[ MPd,4 VfM[

212.9.911 72.748 >.9>8 177.>> 2.>7 2>.>>> 40 Cx1>x< Cx1>x< W^M4>

4 4 4 4 4

090.8>> 00?.804

Mgd VfM[ ma  b Vkk[ ckim Vkk[ c^rehgtte Vkk[ τ⸘ VM/kk0[

120.0>> 84.7.>>> 02.>>> ?>.>>> .>>> .>>> 4>.>>> 212.9 >.728 72.748 >.94> 177.>> 2.>7 2>.>>> 440.?78 284.08?

\GPILIAB \GPILIAB \GPILIAB \GPILIAB \GPILIAB

EF EF EF EF EF

\GPILIAB

EF

\GPILIAB

D7

EF

D<

Mgd VfM[ d2 Vkk[ d0 Vkk[ L2 VfM[ L0 VfM[ ma  b Vkk[ c2,kim Vkk[ c0,kim Vkk[ c2 Vkk[ c0 Vkk[ τ⸘ VM/kk0[ 0 l vw vw VM/kk [

0 2 4 4.>>> 8.9?0 4.740 4>.>>> 0>.>>> 70.008 02 02.8 1?.04> 2>.>82 7.81> 4 4.>>> 4.?>97 0.818 4>.>>> 0>.>>> 12.48> 0> 1.92> 0>.>>> 72.287 0 dgccb cuag g di 2/07> dgccb cuag rispgttivbkgmtg mgc abse di abriaoi tetbci e di seci abriaoi vbrib`ici. Qi ob:

δ ; 42,219 kk ≤    c ; 27>,>> kk   c ; 20>,>> kk   δ ; 14,441 kk ≤  

10

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce

7. APEAIGPG PEK^ITPBTTB Cg areaigrg rekpitrbttb umisaeme ic aerrgmtg aekprgsse di umb abpribtb bc aerrgmtg tgse di qugccb bdibagmtg. Im qugste kede si gvitbme lgmekgmi di imstb`icitî lcgsse-tersiembci dgccb abpribtb, imlbtti muccb ikpgdisag bccb abpribtb, b``bssbmdesi sette i abriaoi, di dispersi lueri dbc pibme vgrtiabcg. Trbttbmdesi di gcgkgmti aog cbverbme b trbziemg si bdettb um prelice simhece b A4>x17 ehmi dug abkpi dgccb abpribtb, quimdi aem imtgrbssg di 4

o

 

 ^  b

aem: qar  ^ b Jy  c> o

abriae aritiae pgr imstb`icitî lcgsse-tersiembcg lcgsse-tersiembcg abriae bppciabte bi medi cumhogzzb di um abkpe dgccb abpribtb kekgmte d’imgrzib dgc aerrgmtg aekprgsse distbmzb trb cg areaigrg rekpitrbttb bctgzzb kgdib dgccb abpribtb

^gr bmdbrg b lbverg di siaurgzzb s iaurgzzb ï riaoigste ic rispgtte dgccb sghugmtg aemdiziemg suc aeglliaigmtg di siaurgzzb λ:     

qar  q

4 

\griliab b Lcgsse-Tersiemg G VM/kk0[ Jy Vak4[ o Vk[ c> Vk[ ^ VfM[ b Vk[ q VM/kk0[ qar VM/kk0[ qar/q

0>>>.>> 020.>>> 2.> 2>> 7.797 71.07? 9.729

\GPILIAB

EF

11

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce

> si dgtgrkimbme hci slerzi mgi divgrsi gcgkgmti aestitugmti ic sistgkb di aemtrevgmte. Qi trbsaurbme cg dibhembci aekprgssg im qubmte si aemsidgrbme imstb`icizzbtg.

>> 1.>>> 1.>>> 1.>>> 1.>>> 1.>>> 1.>>> 1.>>>

-48.?74 -?.>01 -21>.>01 -217.7>0 -217.7>0 -217.7>0 -217.7>0 -21>.>01 -21>.>01 -221.70< -221.70<

AEK^PGQQIEMG AEK^PGQQIEMG AEK^PGQQIEMG AEK^PGQQIEMG AEK^PGQQIEMG AEK^PGQQIEMG AEK^PGQQIEMG AEK^PGQQIEMG

AQ9 AQ2> AI2 AI0 AI1 AI4 AI7 AI< AI8 AI? AI9 AI2> A\2 A\0 A\1 A\4

1.>>> 1.>>> 1.>>> 1.>>> 1.>>> 1.>>> 1.>>> 1.>>> 1.>>> 1.>>> 1.>>> 1.>>> 7.>>> 7.>>> 7.>>> 7.>>>

-?.1.1> 7.>>> 7.>>> 7.>>> 7.>>> 7.>>> 4.>>> 4.>>> 4.>>> 4.>>> 4.>>> 4.>>> 4.>>> 4.>>> 4.>>> 4.>>> 4.>>>

?.>.>>> 02>>>>>>> 1>>>>.>>> 4?897.104 9.??4

\GPILIAB

EF

kk. Qi metb aog c’bssg dgi `uccemi mem aeimaidg aem ic pumte di bppciabziemg dgc abriae. Tbcg gaagmtriaitî dgtgrkimb um kekgmte pbrbssitb aog dgvg gssgrg riprgse db umb aeppib di lerzg aog bhisag sui `uccemi im dirgziemg trbsvgrsbcg bc abriae primaipbcg. Cg lerkucg uticizzbtg uticizzbtg pgr ic abcaece dgc kekgmte pbrbssitb seme cg stgssg essgrvbtg bc §4.7.2>. Qi ripertb im sghuite cb tb`gccb aem cg vgriliaog dgccb dibhembcg di aemtrevgmte:  \GPILIAOG AEMTPE\GMTE DI LBCDB \GPILIAB B TBHCIE

\GPILIAB B PILECCBKGMTE

gp Vkk[ Mgd VfM[ Kp VfMk[ msgz tbhcie  l tt`` VM/kk0[ αK0  Brgs Vkk 0[ Lv,Pd  VfM[ m`,mga  m`  dist`uccemi Vkk[ Lbhh VfM[ Lv,Qd VfM[

2>. 88..?0? 2.>>> ?>>.>> 2.07 ?4.1>> 10.182 0.19? 1.>>> 4>.>>> >.>?1 07.?82

\GPILIAB

EF

1<

g2,kim Vkk[ g0,kim Vkk[ p2,kim Vkk[ p0,kim Vkk[ g2 Vkk[ g0 Vkk[ p2 Vkk[ p0 Vkk[ β f Lv,Qd VfM[ Lv,Pd VfM[

27.> 27.> 0?.> 12.0>> 07.>>> 07.>>> 4>.>>> >.>>> >.88< 0.7>> 07.?82 48.4> 428.>> 88.>> 4 112.??> 07.?82 202.?2?:

, +   ,,  ≤ 2  , ,∙, Qi ripertb im sghuite umb tb`gccb aem tuttg cg vgriliaog: \GPILIAOG BPABPGAAI \GPILIAB B TBHCIE QGK^CIAG gp Vkk[ Mgd VfM[ Kp VfMk[ msgz tbhcie  l tt`` VM/kk0[ αK0  Brgs Vkk0[ LT,Pd  VfM[ m`,mga  m`  dist`uccemi,kbx Vkk[ LT,Qd VfM[ LT,`,Qd  VfM[

8>.>>> 8>.82 4.97> 2.>>> ?>>.>> 2.07 ?4.1>> 4?.778 2.47< 4.>>> >> >> 818

\GPILIAB

EF

\GPILIAB B PILECCBKGMTE

18

g2,kim Vkk[ g0,kim Vkk[ p2,kim Vkk[ p0,kim Vkk[ g2 Vkk[ g0 Vkk[ p2 Vkk[ p0 Vkk[ β f Lv,Qd VfM[ L`,Pd VfM[

27.> 27.> 0?.> 12.0>> 07.>>> 2>> >> 42.>>> 2.>>> 2.84< 29.>18 40.84<

\GPILIAB

EF

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce

\GPILIAB B TBHCIE G TPBZIEMG Lv,Gd VfM[ LT,`,Qd  VfM[ Lv,Pd  VfM[ LT,Pd  VfM[ Lv,Gd /Lv,Pd + LT,Gd/(2.4*LT,Pd)

28.18 10.182 4?.778 >.?0<

\GPILIAB

EF

\GPILIAB B ^WMZEMBKGMTE ^IBQTPB dk Vkk[ tp Vkk[ l ttff VM/kk0[ αK0  @p,Pd VfM[ LT,Qd VfM[

20.>>> > 72>.>> 2.07 >, kgmtrg i `uccemi seme aeccghbti bcc’bcb. Aið abusb um kekgmte pbrbssitb aog dgvg gssgrg riprgse aem umb aeppib di lerzg aog seccgaitb i `uccemi b trbziemg. Cb distbmzb trb c’bssg di sikkgtrib dgc aerrgmtg aekprgsse g ic pibme di tbhcie ï pbri b kgtî bctgzzb dgc prelice. Cb lerzb di trbziemg dgccb aeppib gsgraitbtb dbi `uccemi dgvg gssgrg ripbrtitb pgr ic mukgre di `uccemi dgccb rihb seccgaitbtb b trbziemg. Cg bci dgc 0W^M2>> seme sehhgttg sece b MGd,aerrgmtg, kgmtrg ic pibtte ï sehhgtte bccb risuctbmtg dgccg dug lerzg (dgc aerrgmtg g dgcc’brabrgaaie). dgcc’brabrgaaie). ^gr cb vgriliab bc rileccbkgmte dgi pibtti si bdettb ic primaipie:

,  + ,  ≤ 2   ∙,, ∙,, devg L`,Pd,2 g L`,Pd,0 seme cg lerzg rgsistgmti di rileccbkgmte abcaecbtg mgccg dug dirgziemi. Qi ripertbme im sghuite cg tb`gccg aem cg rgcbtivg vgriliaog dgc aerrgmtg supgrierg:

1?

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce

\GPILIAOG AEPPGMTI QW^GPIEPI \GPILIAB B TBHCIE gp Vkk[ Mgd VfM[ Kp VfMk[ msgz tbhcie  l tt`` VM/kk0[ αK0 

\GPILIAB B TBHCIE G TPBZIEMG

7>.>>> 49.2?2 0.479 2.>>> ?>>.>>> 2.07>

Lv,Gd VfM[ LT,`,Qd  VfM[ Lv,Pd VfM[ LT,Pd VfM[ Lv,Gd/Lv,Pd + LT,Gd/(2.4*LT,Pd)

20.097 24.994 10.182 4?.778 >.>

\GPILIAB

EF

0

Brgs Vkk [ LT,Pd VfM[ m`,mga  m`  dist`uccemi,kbx Vkk[ LT,Qd VfM[ LT,`,Qd  VfM[

?4.1>> 4?.778 2.>21 4.>>> 42.>>> 79.988 24.994

\GPILIAB

EF

\GPILIAB B ^WMZEMBKGMTE ^IBQTPB  

\GPILIAB B PILECCBKGMTE g2,kim Vkk[ g0,kim Vkk[ p2,kim Vkk[ p0,kim Vkk[ g2 Vkk[ g0 Vkk[

27.> 27.> 0?.> 0?.> 12.0>> 2>> 28.7>>

p2 Vkk[ p0 Vkk[ β f Lv,Qd VfM[ L`,Pd VfM[

42.>>> >> >.?>2 0.>.7?9

\GPILIAB

EF

dk Vkk[ tp Vkk[ l ttff VM/kk0[ αK0  @p,Pd VfM[ LT,Qd VfM[

20.>>> ?.7>> 72>.>> 2.07 8?.444 24.994

\GPILIAB

EF

\GPILIAB PILECCBKGMTE ^IBTTI ^IBTTE 2  g2 Vkk[ g0 Vkk[ p2 Vkk[ p0 Vkk[ Β

2>> 28.7>> 42.>>> >> >.42>

F L`,Pd,2 VfM[

0.>> 2>> >> 42.>>> >.0 >.09< >.101

Qekkb Lbtteri \GPILIAB 

>.01 -217.7>0 -217.7>0 -21>.>01 -221.70< -?7 -1>7.49< -1>7.49< -120.9>7 -091.18> -04>.82< -24.>>> g aem imtgrbssg trb cg ruetg di 0,?k. Cb vib di aersb ï sestgmutb db 29 kgmsecg sbcdbtg bccg aecemmg pgr aui ehmi abkpbtb ï di 4k (imtgrbssg aecemmg). Ce saogkb stbtiae uticizzbte ï di trbvg aemtimub settepestb b abriae vibhhibmtg. 8.2 Acbssiliabziemg abrrepemtg Cb merkbtivb AMP 2>>02-?7 acbssiliab hci bppbrgaaoi di seccgvbkgmte im `bsg b dug pbrbkgtri: - Mukgre di aiaci ; 2>>.>>>

db prespgtte 0-I si ettigmg W1

- Pghikg di abriae Fp ; >,87

db prespgtte 0-II si ettigmg R4

- R4 g W1

db prespgtte 0-III si ettigmg B7

Dbccb acbssg dgcc’bppbrgaaoie B7, sgaemde cb tb`gccb 4-I si ob um aeglliaigmtg kectipciabtive pgr cg bziemi stbtiaog dgccg ruetg K;2,22.

4>

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce

8.0 Bziemi g aek`imbziemi di abriae Ic abrrepemtg rbpprgsgmtb um pbrtiaecbrg tipe di abriae, im qubmte vibhhibmtg. Dgveme quimdi gssgrg aemsidgrbti hci gllgtti dimbkiai g cg divgrsg aemlihurbziemi di abriae mgi qubci ic sistgkb si puð trevbrg. ^gr dgtgrkimbrg i abriaoi kbssiki dgccg ruetg, si dglimisag dg limisag ume saogkb stbtiae di trbvg bppehhie-bppehhie sehhgttb b abriae distri`uite (pgse preprie dgc abrrepemtg) g abriae aemagmtrbte (abriae mekimbcg più ic pgse preprie dgc abrrgcce) bppciabte bccb distbmzb d  dbcc’bppehhie:  dbcc’bppehhie:

Im kbmabmzb di saogdg tgamiaog dgi predutteri, si aemsidgrb cg sghugmti abrbttgristiaog: -  pgse preprie dgc abrrepemtg ^^tp pbri b 9> fM6

-  -  -  -  - 

pgse preprie dgc abrrgcce ^^a pbri b < fM6 abriae mekimbcg Rm pbri b ?> fM6 distbmzb trb ruetg b pbri b 0,?> k6 distbmzb kimikb dbcc’bppehhie d  pbri  pbri b >,8> k6 cuag dgc abrrepemtg C pbri b 0?, k.

Qi abcaecb c’gquici`rie bccb trbscbziemg vgrtiabcg:

\ + \ ∐ R ∐ ^^ ∐ ^^ ; >  g c’gquici`rie bccb retbziemg di pece B:

(R + ^^) ∙d+^^ ∙  ∐ \ ∙ C ; >  Dbccb prikb si ettigmg cb rgbziemg im B:

\ ; R + ^^ + ^^ ∐ \  Dbccb sgaemdb si ettigmg cb rgbziemg im @:

\ ;  ( ( ) ∙ +   Qestitugmde i vbceri risuctb:

\ ; 20?,?97 fM  \ ; 48,2>7 fM  Aemsidgrbmde aog cg ruetg di bppehhie seme dug, cb rgbziemg kbssikb dgccb simhecb ruetb R P,kbx P,kbx g qugccb kimikb seme pbri b:

42

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce

R, ;   ; ak. ^eiaoï qugste tipe di bmbcisi ï sgkprg di tipe stbtiae, pgr tgmgr aemte dghci gllgtti dimbkiai imdetti dbc kete dgc abrrepemtg, si kectipciabme i abriaoi pgr ic aeglliaigmtg K ; 2,22 stb`icite im prgagdgmzb. Im qugste kedgcce c’bssg x ï dirgtte pbrbccgce bcc’bssg dgccb trbvg, c’bssg y ï erizzemtbcg g c’bssg z ï vgrtiabcg. Cg bziemi bppciabtg b aibsaumb ruetb seme:    ; ;  ∙∙ , ;8, ;27482, 718     ;  ∙  ; 2>,00>  

Cb merkbtivb riaoigdg di aemsidgrbrg dug aek`imbziemi di abriae:  Aek`imbziemg2: -  ^gse preprie vib di aersb ( 6 -  Bziemg stbtiab dgccg ruetg ( )6  Aek`imbziemg0: -  ^gse preprie vib di aersb ( 6 -  Bziemg stbtiab dgccg ruetg ( )6 -  Bziemg di lrgmbturb ( )6 -  Bziemg di di sgrpghhibkgm sgrpghhibkgmte te ( )6

 ) 

 )   

Cg seccgaitbziemi seme stbtg dgtgrkimbtg trbkitg ic seltwbrg di abcaece QB^0>>> lbagmde vibhhibrg ic abriae cumhe cb vib di aersb. 8.1 Dikgmsiembkgmte g vgriliab ^gr cb vib di aersb si bdettb um prelice I^G 1>> bccb aui bcb supgrierg vigmg sbcdbte um bmhecbrg b cbti disghubci 2>>x, bc limg di imargkgmtbrg cg prgstbziemi mgc pibme erizzemtbcg. Ic `imbrie ï aestituite db um sgkpciag prelice pigme b sgziemg rgttbmhecbrg 7>x1>kk sbcdbte aem aerdemi d’bmhece bccb vib di aersb.

40

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce

^^ ; ^^ + ^^ + ^^  ; >,424 + >,201 + >,20> ; >,?1>.>99 2?7.90 177.>> 177.>>

Ky,Gd  VfMk[ Jy Vkk4[ zh Vkk[ ρl, Gd VM/kk0[ `l  Vkk[ tl  Vkk[ tw Vkk[ Py, Gd VfM[ ϐq  R rkbx VfM[ K Ly, Gd VfM[

7?.>.>>> 2?7.9> ; 7,>>> kk δo,kbx ; C/2> ; 0,7>> kk Dbcc’bmbcisi bhci QCG pgr cb aek`imbziemg rbrb seme stbti riabvbti i vbceri kbssiki:

48

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce

δv ; 1,87> kk 3 7,>>> kk ; δ v,kbx  δo ; 2,1?2 kk 3 0,7>> kk ; δ o,kbx  Cb vgriliab risuctb seddislbttb. 8.4 Kgmsecb di bppehhie Cb trbvg-`imbrie pehhib su dgccg kgmsecg sbcdbtg bccg aecemmg primaipbci. Qi ipetizzb, b lbverg di siaurgzzb, aog cg lerzg sibme bppciabtg bcc’gstrgke ci`gre dgccb aecemmb, suc cgk`e supgrierg. Qi dglimisag b cb distbmzb trb ic cgk`e dgccb aecemmb g ic `briagmtre dgccb retbib, quimdi:

b ; ` +   ; 07>kk  B abusb dgccb mgagssitî di argbrg dug kertgsbturg bc limg di pgrkgttgrg cb sbcdbturb b aekpcgtb pgmgtrbziemg dgccb kgmsecb aem cb aecemmb, cb sgziemg rgsistgmtg dgccb kgmsecb risuctb ridettb. Qi ripertbme im tb`gccb cg abrbttgristiaog dgccb sgziemg glliabag. ^PE^PIGTB' QGZIEMG GLLIABAG bkertgsbturb Vkk[ B Vkk0[ Jy,gll  Vkk  Vkk 4[ Jz,gll  Vkk  Vkk 4[ Xy,gll  Vkk  Vkk1[ Xz,gll  Vkk  Vkk1[

1>.>>> 20>20.>>> 28?7> .07> 208749?.4>> 48>702? bc § 4.0.4.2.0.9. Rugst’uctikb aemsidgrb c’brgb rgsistgmtg b tbhcie g umb tgmsiemg di smgrvbkgmte ridettb pgr c’imtgrbziemg trb lcgssiemg g tbhcie:

l ,, ; (2 ∐ ς) ∙ l  

 ς ; ;  ∙,,  ∐ 22 

devg

\griliab b ^rgsselcgssiemg g Tbhcie l yyff VM/kk0[ ς 0[ l y,rgd  VM/kk y,rgd K  VfMk[ y,Pd Kz,Pd  VfMk[

177.>> >.04< 07 2?2.>21

4?

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce



Qi vgriliab b qugste pumte aog ζ sghmbte  >,0, im qubmte, sg aesã lessg, le ssg, ic prelice mem risuctgrg``g sehhgtte bd imstb`icitî bssibcg, g cb vgriliab db aemdurrg si sgkpciliaogrg``g im qugccb prgvistb bc § 4.0.4.2.0.? dgccg MTA0>2?: \GPILIAB ζsghmbte  ΰB  Bgllgttivb Vkk0[ Jkim Vkk4[

2.>>> 20>20.>>> .07>

ikim Vkk[ C> Vkk[ ζ ζ2  ζsghmbte 

84.>74 4>>.>>> 7.4>2 87..>82

\GPILIAB

EF

Cb vgriliab risuctb seddislbttb, pgr aui si trbsaurbme i aeglliaigmti devuti bcc’imstb`icitî pgr ic abcaece dgccb rgsistgmzb bccb aekprgssiemg. Imectrg, dbccb vgriliab b aekprgssiemg si riabvb ic vbcerg di m prgviste bc § 4.0.4.2.0.? dgccg MTA0>2?:

m ;    Qg tbcg vbcerg risuctb imlgrierg b >,0 bccerb si puð pu ð gllgttubrg cb vgriliab uticizzbmde cb rgcbziemg V4.0.19[ sgkprg bc § 4.0.4.2.0.? dgccg MTA0>2?. \GPILIAB B ^PGQQELCGQQIEMG G TBHCIE MGd VfM[ MPd VfM[ m

7.9> >.>>2

KGd,y / KPd,y  KGd,z / KPd,z  Qekkb

>.>80 >.>2> >.>?0

\GPILIAB

EF

\GPILIAB

EF

Cb vgriliab bcc’imstb`icitî lcgsse-tersiembcg lcgsse-tersiembcg ï aemdettb uticizzbmde cg lerkucg g i hrbliai hiî gspesti bc pumte 1.0. Vkk[ Jy,gll  Vkk  Vkk4[

0.27> 4>>.>>> 28?7>

4[ Jz,gll  Vkk Jt Vkk4[ Jω Vkk 2279>> 221>274?2>>.>>> 0>>>.>>> >.1>> 8901>.8 1?9170819920.9> 1?9170.84> 017> 218898?.>>> 8>9 177.>>> >.>17 >.>11 >.>17

MEM MGAGQQBPIB

49

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce



Bvgmde ettgmute um vbcerg di ζCT,> ‑ sghmbte  >,0, cb vgriliab mem risuctb mgagssbrib. 8.4.2. \griliab dgcc’bmikb bccg lerzg trbsvgrsbci

C’GA1 riaoigdg cb vgriliab di: -  saoibaaib saoibaaibkgmte kgmte dgcc’bmikb -  ik`ezzbkgmte dgcc’bmikb pgr imstb`icitî ceabcg

 

-

imstb`icitî dgcc’bmikb \griliab bcce Qaoibaaibkgmte ss Vkk[ sy Vkk[ l yyl l  VM/kk  VM/kk0[ 0 l yyw w VM/kk [ Ky,Gd VfMk[ Jy Vkk 4[ zh Vkk[ ρl, Gd VM/kk0[ `l  Vkk[ tl  Vkk[ tw Vkk[ `gll  Vkk[ `'gll  Vkk[ Py, Gd VfM[ LKB_, Gd VfM[

72.4>> 2?7.79< 177.>> 177.>> 04.8?2 28?7> 24>.>>> 29.409 0?>.>>> 0?>.>>> 2?.>>> 2>.7>> 01 baaeppibti.

?.2 Bmbcisi dgi abriaoi ?.2.2 Abriaoi db vgmte

Qi gvidgmzibme 1 lerzg db bppciabrg bcc’gstrgkitî supgrierg dgc sistgkb di aemtrevgmte:ù - lerzb bhgmtg succb pbrgtg seprbvgmte - lerzb bhgmtg succb pbrgtg settevgmte - lerzb di bttrite vgmte-aepgrturb

Lvgmte,sep ; 71,9?7 fM Lvgmte,set ; 0,,419 fM

72

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce

?.0 Abcaece seccgaitbziemi Trbkitg ic seltwbrg QB^0>>> si gllgttub um’bmbcisi bhci gcgkgmti limiti aog pgrkgttg di dgtgrkimbrg cg seccgaitbziemi mghci gcgkgmti.

Cb dibhembcg kbhhierkgmtg seccgaitbtb ï sehhgttb b ume slerze merkbcg di trbziemg di 2x17

- pumtemg

prelici baaeppibti W^M ?>

?.1 \griliaog di rgsistgmzb g stb`icitb’ Qi vgriliabme cb dibhembcg kbhhierkgmtg seccgaitbtb g ic pumtemg aekprgsse sgaemde cg imdiabziemi ripertbtg mgccb merkbtivb vihgmtg. Ic pumtemg aekprgsse vb bmaog vgriliabte bcc’imstb`icitî bmbcehbkgmtg b qubmte lbtte pgr hci gcgkgmti dgccb abpribtb, trbttbmdesi di um’bstb aekpestb. Qgaemde cb Airaecbrg gspciabtivb pgr c’bppciabziemg dgcc’MTA0>2? (§ A4.0.4.2.1.2.7) umb sgziemg aekpestb db gcgkgmti rbvviaimbti aeccghbti kgdibmtg ik`ettiturg puð gssgrg vgriliabtb aekg um’bstb sgkpciag sg cb distbmzb trb hci gcgkgmti di aeccghbkgmte b rispgttb cg prgsariziemi ripertbtg mgccb tb`gccb sghugmtg. Im abse mghbtive, ï mgagssbrie vgriliabrg hci gcgk gcgkgmti gmti riaerrgmde bd umb smgccgzzb gquiv gquivbcgmtg bcgmtg dgccb sgziemg aekpestb, uticizzbmde merkg di aekprevbtb vbciditî aekg c’GA1.

70

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce

Qi ripertbme di sghuite cg tb`gccg aem i risuctbti g cg vgriliaog dgccb dibhembcg g dgc pumtemg: \GPILIAOG AEMTPE\GMTE \GPTIABCG \GPILIAB DIBHEMBCG Bsgziemg Vkk0[ l yyff VM/kk0[

?.4 

αK>  MPd VfM[ MQd VfM[

>> 177.>> 2.>7 0>9.978 2>> 2.111 29.97

\GPILIAB

MEM EF

C> Vk[ ikim Vk[ igq Vk[ Bsgziemg Vkk0[ ζ ζ2 

2.111 >.>211 >.>12> 00>>.>>> 209.>10 2>>.072

ζgq  ζy  ζsghmbte  β ό ψ M`, Pd VfM[ Mgd,kbx VfM[

2> 87..49> 1.122 >.280 208.8?> 99.790

\GPILIAB

EF

\griliab dgi aeccghbkgmti

^gr i aeccghbkgmti `uccembti dgccb dibhembcg g dgc pumtemg si uticizzbme dgi `uccemi di dibkgtre 24kk g um lbzzecgtte di spgsserg 2>kk. Cg vgriliaog db gsghuirg seme cg sghugmti:

-  -  -  - 



\griliabrgsistgmzb`uccembturbbtbhcie6  \griliabbrileccbkgmte6  \griliabbstbimpressikitîdgileri6  \griliablbzzecgtte 



71

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce

Qi ripertb im sghuite cb tb`gccb aem cg vgriliaog sib pgr cb dibhembcg aog pgr ic pumtemg:  AECCGHBKGMTI @WCCEMBTI AEMTPE\GMTI \GPTIABCI \GPILIAB DIBHEMBCG

\GPILIAB ^WMTEMG

\GPILIAB B TBHCIE

\GPILIAB B TBHCIE

Mgd VfM[

2>> ?>>.>> 2.07 227.>>> 44.2 1.817 4.>>> 4>.>>> 42.01>

msgz tbhcie 0 l t` t` VM/kk [ αK0  Brgs Vkk0[ Lv,Pd VfM[ m`,mga  m`  dist`uccemi Vkk[ Lv,Qd VfM[

0.>>> ?>>.>> 2.07 227.>>> 44.2 2.20? 1.>>> 4>.>>> 11.298

\GPILIAB

EF

\GPILIAB

EF

\GPILIAB B PILECCBKGMTE

\GPILIAB B PILECCBKGMTE

g2,kim Vkk[ g0,kim Vkk[ p2,kim Vkk[ p0,kim Vkk[ g2 Vkk[

2?.>>> 2?.>>> 11.>>> 1>> 1>.>>>

g2,kim Vkk[ g0,kim Vkk[ p2,kim Vkk[ p0,kim Vkk[ g2 Vkk[

2?.>>> 2?.>>> 11.>>> 1>> 1>.>>>

g0 Vkk[ p2 Vkk[ p0 Vkk[ β f Lv,Qd  VfM[ Lv,Pd VfM[

1>.>>> 4>.>>> >.>>> >.> 42.01> 47..>>> 4>.>>> >.>>> >.> 11.298 47. 72> 2>.>> 022> 99.790 88>> 4 122.??> 42.01> 224.700

O Vkk[ slbzzecgtte Vkk[ B sgz Vkk[ Bmgttb Vkk[ MGd VfM[ Mu,Pd VfM[

4.>>> 4 102.??> 11.298 22?.294

\GPILIAB

EF

\GPILIAB

EF

74

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce

9. AECEMMG ^gr ic dikgmsiembkgmte g cb vgriliab dgccg aecemmg si aemsidgrbme cg sghugmti abrbttgristiaog: - bctgzzb aecemmb - bctgzzb aerrgmtg imlgrierg abpribtb - bctgzzb bssg kgmsecb

oa ; 2>,>>> k o2 ; ?,94> k ok ; 7,>>> k

- pibme retbib or ; 7,477 k - distbmzb aecemmb-vib di aersb - imtgrbssg cemhitudimbcg aecemmg - imtgrbssg trbsvgrsbcg aecemmg

d ; >,177 k i2 ; 4,>>> k i0 ; 1>,>>> k

Cb abpribtb si aekpertb aekg um gcgkgmte rihide imgstgmsi`icg, quimdi cb secuziemg dgc pre`cgkb ï dbtb db um tgcbie lerkbte dbccg dug aecemmg imabstrbtg bccb `bsg g um gckgmte rihide aog mg aeccghb cg gstrgkitî supgrieri. 9.2 Bmbcisi dgi abriaoi 9.2.2 Abriaoi vgrtiabci pgrkbmgmti

Im qugste hruppe riabdeme tutti i pgsi prepri dgccb aepgrturb, dghci brabrgaai, dgccb abpribtb, dgi aaemtrevgmti emtrevgmti di lbcdb, dgi tbkpembkgmti pgrikgtrbci abcaecbti abcaecbti im rilgrikgmte bcc’brgb di imlcugmzb dgccb simhecb aecemmb g ic pgse preprie dgccb aecemmb. ^gr i tbkpembkgmti pgrikgtrbci si uticizzb ic pbmmgcce pbrgtg im peciurgtbme ^P0 dgccb Kbraghbhcib @uicdtgao, bvgmtg cg sghugmti abrbttgristiaog:

I pgsi pgrkbmgmti risuctbme gssgrg: ^aepgrturb ; 28,?78 fM

aekprgmsive di pbmmgcci, brabrgaai g abpribtb

^aemtrevgmti ; >,944 fM ^tbkpembkgmti ; 4,>00 fM ^aecemmb ; 21,91> fM 77

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce

9.2.0 Abriaoi vgrtiabci baaidgmtbci

Im qugste hruppe ï prgsgmtg sece ic abriae devute bccb mgvg, abcaecbte bc abpitece 0.0, im rilgrikgmte bcc’brgb di imlcugmzb. R mgvg mgvg ; 4?,>>> fM 9.2.1 Abriae db vgmte

Ic abriae, distri`uite umilerkgkgmtg succb cumhogzzb dgccb aecemmb, devute bc vgmte aog bhisag su gmtrbk`g cg aecemmg dgc tgcbie sgaemde qubmte abcaecbte bc abpitece 0.1, risuctb gssgrg: R seprbvgmte seprbvgmte ; 02-?7 risuctb 97,228 fM. B qugstb vb bhhiumte ic pgse preprie dgccb kgmsecb, quimdi ï pessi`icg dgtgrkimbrg cb lerzb bhgmtg succb aecemmb baaekpbhmbtb dbc kekgmte devute bcc’gaagmtriaitî rispgtte c’bssg dgccb aecemmb. Qi ettgmheme dug vbceri: ume kbssike, qubmde cb hru ï spestbtb viaime bccb aecemmb ehhgtte di bmbcisi, g ume kimike, qubmde cb hru ï spestbtb viaime bccb aecemmb eppestb. Lv,sx ; 9?,2>0 fM Ksx ; Lv,sx*d ; 14,?0< fMk Lv,dx ; 19,881 fM Kdx ; Lv,dx*d ; 24,20> fMk Bmbcehbkgmtg bc abriae db vgmte ï mgagssbrie trevbrg cb rgbziemg ipgrstbtiab pgr petgr isecbrg cb aecemmb dbc rgste dgc tgcbie.   sx 

 K sx  or  ( o  or )  G  J

K sx  or     _  o1 0



0 G  J



1  G  J 

 

 K  o  ( o  or ) K dx  o    _  o    dx   dx r 0  G  J 1  G  J   G  J 0 r  

^emgmde θsx ; θdx si ettigmg _ ; 0,921 fM. 9.2.7 Abriaoi erizzemtbci db abrrepemtg a brrepemtg

Cg lerzg erizzemtbci seme cghbtg b qugccg vgrtiabci pgr aui si ob:

7<

1

 

^rehgtte di um abpbmmemg imdustribcg

Hibmcuab Abppgcce

Osx ; 2/2>*Lv,sx ; 9,?2> fM Odx ; 2/2>*Lv,dx ; 1,988 fM  Muevbkgmtg `isehmb risecvgrg ic tgcbie ipgrstbtiae pgr isecbrg cb aecemmb.  O sx  ok  ( o  ok ) 0

  sx 

0  G  J



0



O sx  ok    _  o1 1



0 G  J





 1

1  G  J 

 



  1

 dx   O dx ok ( o ok )  O dx ok    _ o 0  G  J 0  G  J 1  G  J 

^emgmde θsx ; θdx si ettigmg _ ; 0,7?7 fM. 9.0 Abcaece seccgaitbziemi Qeme stbtg imdividubtg < aek`imbziemi di abriae di aui si ripertb cb kbtriag dgi aeglliaigmti pbrzibci. KBTPIAG AEGLLIAIGMTI ^BPZIBCI - QCW Abriae Abriae Aepgrturb ^gse Aecemmb Mgvg

AEK@2

AEK@0

AEK@1

AEK@4

AEK@7

AEK@<

2.1> 2.1> 2.7>

2.1> 2.1> >.87

2.1> 2.1> 2.7>

2.1> 2.1> >.87

2.1> 2.1> >.87

2.1> 2.1> >.87

^gse Aemtrevgmti ^gse Tbkpembkgmte \gmte \dA Kbx _ vda v _ vda o _ vgmte \dA Kim

2.1> 2.1> >.9> 2.7> 2.7> 2.7> >.9> >.>>

2.1> 2.1> 2.7> 2.7> 2.7> 2.7> 2.7> >.>>

2.1> 2.1> >.9> >.>> 2.7> 2.7> >.9> 2.7>

2.1> 2.1> 2.7> >.>> 2.7> 2.7> 2.7> 2.7>

2.1> 2.1> >.9> 2.7> 2.7> 2.7> >.9> >.>>

2.1> 2.1> >.9> >.>> 2.7> 2.7> >.9> 2.7>

Bttrbvgrse ic seltwbrg di abcaece QB^0>>> si riabvbme cg seccgaitbziemi kbssikg pgr ehmi aek`imbziemg di abriae. Cg aecemmg lbagmti pbrtg dgc sistgkb di aemtrevgmte vgrtiabcg seme seccgaitbtg db ume slerze merkbcg bhhiumtive. QECCGAITBZIEMI AECEMMG

M VfM[ \ VfM[ K VfMk[

AEK@2

AEK@0

AEK@1

AEK@4

AEK@7

AEK@<

4?4.2>? 14.90< 299.>?27

474.24? 7>.9?7 0.?727

19.>>> 1>>.>>> 00.7>> 20.7>> 08.>>> 7192.07 177.>> 2.>7 2>70.1.9?7

\GPILIAB

EF

\GPILIAB B ^PGQQELCGQQIEMG Bsgziemg Vkk0[ l yyff VM/kk0[

AEK@2 AEK@0 AEK@1 AEK@4 AEK@7 AEK@<

2?>.>>> 2?>.>>> 2?>.>>> 2?>.>>> 2?>.>>> 2?>.>>>

177.>> 177.>> 177.>> 177.>> 177.>> 177.>>

αK> 

Mpc,Pd  VfM[

MGd VfM[

m

b

Xpc,y Vak1[

2.>7 2.>7 2.>7 2.>7 2.>7 2.>7

>> >> >> >> >> >>

> >.>97 >.2>< >.>90

>.070 >.070 >.070 >.070 >.070 >.070

0
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF