Problems 64 - Buku Problems 64 - Buku

May 6, 2024 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Problems 64 - Buku Problems 64 - Buku...

Description

lOMoARcPSD|24450360

Problems 64 - buku Hukum Perlindungan Anak dan Kekerasan Dalam Rumah Tangga (Khusus Hukum Pidana) (Universitas HKBP Nommensen)

Studocu is not sponsored or endorsed by any college or university Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

6.4 : 10.000 lb/hr of 57oAPI gasoline is cooled from 150 to 130oF by heating 42oAPI kerosene from 70 to 100oF. Pressure drops of 10 psi are allowable with a minimum dirt factor of 0.004. a. How many 2 ½- by 1 ¼-in IPS hairpins 20 ft long are required? b. How shall they be arranged? c. What is the final fouling factor? Pembahasan : 1. Neraca Panas (Heat Balance) Qpanas = Qdingin Gasoline Tav = Menentukan nilai c dengan Figure 4 c = 0,533 Btu/lb°F Q = W.c.(t2 – t1) = 10000.0,533.(150-130) = 106600 Btu/hr Kerosene tav = Menentukan nilai c dengan Figure 4 c = 0,48 Btu/lb°F w = Q /c.(t2 – t1) = 106600/0,48.(100-70) = 7402,78 Btu/hr

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

0,533 0,480

2. Δt Hot Fluid 150

130

Higher Temperature Lower Temperature

Cold Fluid 100

Difference

70

60

50

-10

LMTD =

= 54,91

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

3. Temperatur Kalorik Dari informasi buku Kern (hal. 111) untuk liquid hidrokarbon digunakan nilai Tc, tc dengan menentukan Kc dan Fc (Fig.17), namun Tav dan tav digunakan bila : 1. Kedua liquid (cold terminal) encer (< 1,0 cp) 2. Temperature range 50 – 100 C 3. Perbedaan temperatur < 50 C

4. Flow Area Hot Fluid (Gasoline) =

2 ½ in ID Tabel 11

=

1 ¼ in OD Tabel 11

Cold Fluid (Kerosene) D=

1 ¼ in ID Tabel 11

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

5. Kecepatan Alir Massa Hot Fluid (Gasoline) =

Cold Fluid (Kerosene) = 6. Reynolds Hot Fluid (Gasoline) saat 140 F, = 0,426 cp

Fig.14

= 0,426 x 2,42 = 1,03 lb/ft.hr

L/D = 2 L/D = 360

Cold Fluid (Kerosene) saat 85 F, = 1,620 cp

Fig.14

= 1,620 x 2,42 = 3,92 lb/ft.hr

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

1,620

0,426

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

7. Dari fig.24 didapat, Hot Fluid (Gasoline) = 230 Cold Fluid (Kerosene) = 69

8. Hot Fluid (Gasoline) Saat 140 F, c = 0,533 k = 0,087 (fig.1) = 1,85 Cold Fluid (Kerosene) Saat 85 F. c = 0,48 k = 0,0817 (fig.1) = 2,85

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

9. Hot Fluid (Gasoline)

1,85 219,17 Cold Fluid (Kerosene) 2,85 139,71

10. = 54,67 x 1,380/1,66 = 168,05 = 116,13

= 85 + Hot Fluid (Gasoline) = 1,16 (

)

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Cold Fluid (Kerosene)

= 3,12 (

)

= 211,04

1,290

0,480

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

11. Clean Overall Coeficient =

= 107,53 Btu/hr(

12. Koefisien Design

13. Surface

a. Maka dibutuhkan 2 hairpin atau 80 lin ft b. Hairpin dihubungkan secara seri dengan panjang 20 ft c. A aktual = 80 x 0,435 = 34,8 =

= 55,78

=

Dapat dilihat Rd actual > 7,5% Rd min. Sehingga berdasarkan ketentuan batas perbedaan Rd actual dengan Rd min yang memenuhi jika lebih besar (5 – 10%), maka desain ini dapat diterima. Oleh karena itu, perhitungan pressure drop dapat dilanjutkan.

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Pressure Drop Hot Fuid

72 Dari fig 6 kern diperoleh

Cold Fluid

Dari fig. 6 kern diperoleh Sehingga,

Hot Fluid

Cold Fluid

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

0,800

0,715

1. Hot fluid

Pressure Drop,

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Di sini, kami membagi aliran di tiap stream menjadi 2. Namun, bila melihat dari kecilnya pressure drop actual, maka sepertinya masing-masing stream cukup dibuat 1 aliran, sehingga dalam perhitungan sebelumnya Dirt Factor = 0,004.

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

6-6 Diinginkan untuk memanaskan 7000 lb/hr anilin dari 100 ke 150 lb/hr panas yang memiliki suhu awal 185

menggunakan toluene 10000

Bila fouling factor 0,005, sedangkan pressure drop

yang diperkenankan adalah 10 psi dan pipa harpin 15 ft, IPS

x

in tersedia, tentukan jumlah

pipa harpin yang dibutuhkan dan susunannya serta Rd Final Heat Balance Cold fluid (anilin), Hot fluid (toluene),

(viskos dianggap konstan dari rentang T1 – T2)

Toluene Aniline

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360



Diperoleh nilai Maka,



dan

(Kern Hal 111) ⁄

LMTD Hot Fluid 185 147,02

Higher Temp Lower Temp

Cold Fluid

Diff

150

35

∆t2

100

47,02

∆t1

-12,02

∆t2 -∆t1

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Pengecekan viskositas pada

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Fluida panas (toluene) pada μ<

Fluida dingin (aniline) pada μ>

Caloric Temperature 

o

API

Fluida di pipa bagian dalam (aniline) Dengan asumsi s konstan pada 1,02 diperoleh



Mencari nilai Kc

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

7o API aniline (cold fluid) Dari data diatas diperoleh

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Dari data yang diplotkan pada sumbu x = 1,31 menyentuh garis Kc = 1,41 menghasilkan

(Chapter 5 Kern) 7o API aniline (cold fluid)

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Flow Area

Dengan menggunakan rumus 

Untuk pipa luar (Anulus)



Untuk pipa dalam

(

)

Downloaded by Lutfatin Faidah ([email protected])

(Kern hal 111)

lOMoARcPSD|24450360

Karena flow area annulus lebih besar maka komponen yang lajunya lebih besar diletakkan di annulus (toluene) dan sebaliknya laju yang lebih kecil di letakkan pada pipa dalam (aniline).

Menghitung nilai koefisien perpindahan panas konveksi (h)

c

(

)( )



(

)

= kapasitas panas (fig 4) = viskositas (fig 14)

k

= koefisien perpindahan panas konduksi (table 4) = keofisien yang diperoleh dengan mengkorelasikan terhadap Re (fig 24)



Penentuan viskositas

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Fluida panas (toluene) pada μ = 0,34 cp



μ=

Fluida dingin (aniline) pada μ = 2 cp

μ=



Penentuan mass velocity Fluida dingin (aniline) di pipa bagian dalam ⁄



Fluida panas (toluene) pada pipa anulus



⁄ Reynolds number Fluida pada pipa anulus (toluene)

⁄ Dengan

Fluida di pipa bagian dalam (toluene)

Downloaded by Lutfatin Faidah ([email protected])



C

lOMoARcPSD|24450360

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360



Nilai fluida pada pipa bagian dalam (aniline)

fluida pada pipa anulus (toluene) 

Mencari nilai k

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360



( )

(

( )

(



)



Menghitung nilai h





dianggap konstan

)

cold at inner pipe (aniline) ( )



hot fluid at annulus (toluene) ( )



Pemeriksaan



pada permukaan diameter luar (OD)

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360



Penentuan nilai ⁄



⁄ ⁄

dan ⁄

Penentuan viskositas pada tw

fluida dingin (aniline) pada

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

= 1,55cp ⁄

= (

)

(

)

,036

fluida panas (toluene) pada = 0,4 cp = (

Sehingga,

)

(

)









Menghitung panjang pipa yang dibutuhkan 



Koefisien bersih keseluruhan



Koefisien desain keseluruhan , dengan asumsi Rd = 0,005







Panjang yang dibutuhkan

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Setidaknya dibutuhkan 6 buah pipa hairpin berukuran 15 ft disusun seri Luas permukaan secara actual yaitu

, sehingga koefisien actual

desain

C



⁄ C

Pengecekan Pressure Drop Pressure drop pada pipa annulus (toluene sebagai fluida panas)

Friction factor dari Mc Adams dan Seltzer dengan koreksi 10%

Dari table 6 kern diperoleh Sehingga,

Downloaded by Lutfatin Faidah ([email protected])

(Kern Hal 53)

lOMoARcPSD|24450360

Pressure Drop,

Pressure drop pada inner pipe (aniline sebagai fluida dingin) Friction factor dari Mc Adams dan Seltzer dengan koreksi 10%

Dari table 6 kern diperoleh Sehingga,

Pressure Drop,

(by-pass aliran yang memiliki laju volumetric yang tinggi)

Downloaded by Lutfatin Faidah ([email protected])

(Kern Hal 53)

lOMoARcPSD|24450360

6-8 Suatu cairan didinginkan dari 350 hingga 300 °F oleh cairan lain yang dipanaskan dari 290 hingga 315 °F. Bagaimana perbedaan suhu sebenarnya menyimpang dari LMTD jika (a) Fluida panas disusun secara seri dan fluida dingin mengalir dalam dua jalur paralel aliran berlawanan, (b) Fluida panas disusun secara seri dan fluida dingin mengalir dalam tiga jalur aliranberlawanan aliran paralel, (c) Kisaran fluida dingin dalam (a) dan (b) diubah menjadi 275 hingga 300 °F. Penyelesaian: Perbedaan suhu sebenarnya diberikan melalui persamaan ini

Untuk satu seri aliran panas dan n aliran dingin paralel, dapat ditunjukkan melalui Persamaan (6.35a)

Dimana

[(

)( )



]

a. Fluida panas disusun seri dan fluida dingin mengalir dalam dua jalur paralel aliran berlawanan. Heat Balance: Hot fluid = Cold fluid =

(n = 2, 2 aliran paralel)

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

∆t

0 P

n

h

n ny

b. Fluida panas disusun secara seri dan fluida dingin mengalir dalam tiga jalur aliran-berlawanan aliran paralel (n = 3, 3 aliran paralel)

[(

)( )

[(

)(



)



]

[

Perbedaan suhu sebenarnya adalah:

c. Kisaran fluida dingin dalam (a) dan (b) diubah menjadi 275 hingga 300 °F. Heat Balance: Hot fluid = Cold fluid = Kasus a : Untuk satu aliran panas seri dan 2 aliran paralel

Downloaded by Lutfatin Faidah ([email protected])

] ]

lOMoARcPSD|24450360

Karena ∆t

0 P

n

h

n ny

Kasus b : Untuk aliran panas seri dan aliran fluida dingin dalam 3 aliran paralel

[( [(

)( ) )(



)



[

Perbedaan suhu sebenarnya adalah:

Downloaded by Lutfatin Faidah ([email protected])

] ] ]

lOMoARcPSD|24450360

6.10) 6330 lb/hr of toluene is cooled from 160 to l00°F by heating amyl acetate from 90 to 100°F using 15-ft hairpins. The exchangers are 2-by 1/4-in. IPS. Allow-ing 10 psi pressure drops and providing a minimum dirt factor of 0.004 (a) how many hairpins are required, (b) how shall they be arranged, and (c) what is the final dirt factor? Penyelesaian : (1) Neraca Panas Toluena =

= 130

C = 0,44 Btu/(lb)(

Toluena (Fig.2)

Q = 6330 x 0,44 (160-100) = 167.112 Btu/hr

0,44

130

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Amil Asetat =

= 95 Amil Asetat

C = 0,48 Btu/(lb)( (Fig.2) W = = 5802,5 Ib/h Q =wxcx

0,48

x (0,48) (10) = 27852 Btu/hr

95

(2) LMTD Hot Fluid

Cold Fluid

Diff

160

Higher Temp

100

60

100

Lower Temp

90

10 50

LMTD =

=

=

= 27,9

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

(3) Caloric Temperature = 130

Viskositas < 1 cp

= 95

=1

Hot Fluid: anulus (Toluena)

Cold Fluid: inner pipe, Acetate

(4) Flow area

(4) D = 1,38/12 = 0,115 ft

= 2067/12 = 0,1725 ft

=

= 1,66/ 12 = 0,138 ft

=

=

/4 /4 = 0,0104

)/

= 3,14 (

)/4

= 0,00826 (5) Mass Velocity =

/

= 5802,5/0,0104 = 557932, 692 lb/hr (

Downloaded by Lutfatin Faidah ([email protected])

)

lOMoARcPSD|24450360

=

)/

=(

(6) pada 95 , )/0,138

= 0,71

(Fig.14)

= 0,71 x 2,42

= 0,0762

= 1,71 lb/(ft)(hr)

(5) Mass Velocity = w/

Reynolds =

= 6330/0,00826 = 767.000 lb/(hr)(

= )

= 37521,78

(6) Reynold Number At 130 ,

= 0,41 Cp

=

(Fig. 14)

= 0,41 x 2,42 = 0,99 Btu/(ft) (hr = = 0,0762 (767.000)/0,99 = 59.000

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

(7)

= 167 (Fig. 24)

(7)

(8) At = 130 , c = 0,44 Btu/(lb)( K = 0,085 Btu/(hr)(

(Fig. 2)

= 112 (Fig. 24)

(8) at = 100

)( /ft) (Table.4)

, c = 0,48 Btu/(lb)(

k = 0,084 Btu/(hr)(

=

(9)

)( /ft) (Table. 4)

=

= 1,725

= 2,137

=

(9)

=

= 167 (0,085/0,0762) (1,725) (1)

= 112 (0,084/0,115) (2,173) (1)

= 232 Btu/(hr)(

= 177,77 Btu/(hr)(

)( )

(10) Correct =

)( )

to surface at OD x ID/OD

= 177,77 x 1,38/1,66 = 147,78

Downloaded by Lutfatin Faidah ([email protected])

(Fig. 2)

lOMoARcPSD|24450360

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

(11)

Clean overall coefficient , Uc: Uc =

(12)

=

= 90,27 Btu/(hr)(

Design overall coefficient, =

+

:

=

= 0,004

)( )

+ 0,004

= 66,3 Btu/(hr)(

)( )

Summary 232

h outside

101,17

70 54 Required Surface Q=

A

A= =

= 90,34

Dari tabel 11 untuk 1 ¼ in. IPS standart pipe outside surface = 0,435 Required Length =

, sehingga:

= 207,6 lin ft

Maka, Setidaknya dibutuhkan 7 buah pipa hairpins berukuran 15 ft disusun seri . luas surface area secara aktual menjadi 210 X 0,435 = 91,35 Design (

. Sehingga, Koefisien

): = 65, 56 Btu/(hr) (

=

)( )

Faktor pengotor: =

=

= 0,004

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Pressure Drop Toluena, Hot Fluid 1‟)

(Pers 6.4)

= 0,00714 s = 0,87,

= 62,5 x 0,87 =54,3

(Table. 6)

2‟)

3‟) (

)

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Amil Asetat (1)

(Table. 6) (2)

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Problem 6.12 100.000 lb/jam nitrobenzena harus didinginkan dari 325 hingga 275 °F dengan benzena yang dipanaskan dari 100 hingga 300 °F. Hairpins sepanjang dua puluh kaki berukuran 4 kali 3 inci. Pipa ganda IPS akan digunakan , dan penurunan tekanan 10 psi diperbolehkan . Diperlukan faktor kotoran minimal 0,004 . Berapa banyak hairpins yang dibutuhkan,Bagaimana mengaturnya, dan berapa factor kotoran akhir Dik : •

Nitrobenzene (Hot Fluid) W = 100.000 lb/jam T1 = 325oF T2 = 275oF



Benzene (Cold Fluid) t1 = 100oF t2 = 300oF

Dit: Berapa banyak hairpins yang dibutuhkan? Bagaimana mengaturnya? dan berapa factor kotoran akhir? Penyelesaian: 1. Hot Balanace (Hot Fluid) Perhitungan Tav, tav, C, Q, dan W Nitrobenzene (Hot Fluid) Tav= Tav= Tav= 300oF C = 0,445 Btu/lb (oF) from fig. 2 page 804 Q = W. C. (T1-T2) Q = 100.000 lb/hr. 0,445 Btu/lb (oF).(325 oF- 275 oF) Q = 100.000 lb/hr. 0,445 Btu/lb (oF).(50 oF) Q = 2.225.000 Btu/hr

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Benzene (Cold Fluid)

Benzene (Cold Fluid) tav= tav= tav= 200oF C = 0,48 Btu/lb (oF)

from fig. 2 page 804

w= w= w = 23177,08 lb/hr

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

2. LMTD Hot Fluida

Cold FLuid

Diff

325 o F

Higher Temp

300 o F

25

Δt2

275 o F

Lower Temp

100 o F

175

Δt1

150

Δt2Δt1



Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

LMTD = = =

(

(

)

)

= = 76,923 oF = 77 oF

3. Caloric temperature

4. Flow area Hot fluid : annulus, Nitrobenzene D2 = ID Annulus D2 = D2 = 0,3355 ft D1 = OD inner pipe D1 =

(tabel 11. page 844)

(tabel 11. page 844)

D1 = 0,292 ft

= =

(

(

)

)

= = 0,0216 ft2

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Diameter Ekuivalen (De) De =

(

De =

(

)

(Eq. 6.3 Page 111) )

De = De = De = 5. Mass velocity (Ga) ANNULUS HOT FLUID Ga = Ga = Ga =

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

6. Viskositas Pada T = 300oF, (X=10,6 ; Y= 16,2) (Fig. 14 Page 822) = 0,29 Cp (Fig. 14 page 823) = 0,29 x 2,24 = 0,7018 lb/ft.hr Bilangan Reynold, Rea = Rea = Rea = 621418

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

7. Transfer Heat (Jh) = 1038

(Gambar 24 Page 824)

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

8. Pada T= 300oF

C=0,445 Btu/lb 0F (Tabel 4 Page 800)

ka = k1 + (T-T1) ka = 0,095 + (300-86) ka = 0,095 + (214) ka = 0,095 + (- 0,012) ka = 0,083 Btu/hr.ft2.(oF/Ft)

= (

= = 1,254

)

(

)

(

)

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

9. Koefisien film (ho) = jH( ) ( )

= 1038 (

)(1,254)

= 1038 x 0,8811 x 1,254 = 1147 Btu/hr. ft2 oF Cold fluid : inner pipe benzene 10. Flow area D = 3,068 D=

(tabel 11. page 844)

D = 0,256 ft

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Daerah aliran ap: = =

(

(

)

=0,051 ft2

)

11. Mass velocity (Gp) ANNULUS Cold FLUID Gp= Gp= Gp= 12. Viskositas Pada T = 200oF, ( X = 12,5 ; Y = 10,9) = 0,26 cp x 2,42 = 0,26 x 2,42 = 0,629 lb/ft.hr Bilangan Reynold,

Fig 14. Page 822 (Gambar 14 page 823)

Rep = Rep = Rep = 184.960

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

13. jH = 425

(Gambar 24, Page 824)

14. Konduktivitas, k benzene

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Pada T= 200oF

C=0,48 Btu/lb 0F (Tabel 4 Page 800)

kp = k1+ (T-T1) kp = 0,092 + (200-86) kp = 0,092 + (-0,0106) kp = 0,081 Btu/hr.ft2.(oF/Ft)

= (

=

)

(

)

(

)

= 1,242

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

15. Koefisien film (ho) = jH( ) ( ) = 425 (

)(1,242)

= 425 x 0,3164 x 1,242 = 167 Btu/hr. ft2 oF =

x

= 167 x = 167 x 0,877 = 146,5 16. Menentukan tw = tc + (

tw = 200 + (

tw = 200 + (

o

dan )(Tc-tc)

)(300-200)

)(100)

tw = 287,29 F Pada tw = 287,29 oF

a =( a =(

)

a =0,99

)

= 1147 = 1147 ho = 1135,53 Btu/hr. ft2 oF

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Pada tw = 287,29 oF

=( =(

)

= 1,07

)

= 167 = 167 hi = 178,69 Btu/hr. ft2 oF = 146,5 = 146,5 hio = 156,755 Btu/hr. ft2 oF

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

17. Clean Overall coefficient ( Uc = (

)

Uc = (

Uc = (

)

)

Uc = 137,74 Btu/(hr.ft2 oF) 18. Design Overall coefficient ( Ud = (

)

Ud = (

)

Ud = (

)

Ud = 88,80 Btu/(hr.ft2 oF) 1135,53

156,755

h outside 137,74

Ud

88,80

19. Required Surface Q = UD A Δt A= (

A= (

A=

)

)

20. Required Length Required length = (

Required length = ( Required length =

)

)

tabel 11 page 844

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Dapat terpenuhi jika menghubungkan 9 hairpins berukuran 20 ft. Sehingga : 360 x 0,917 = 330,12 ft2 The actual design coefficient is UD= (

)

UD= 87,53 Btu/hr.ft2.oF RD= (

RD= (

RD= (

) )

)

RD= 0,0042 (hr.ft2.oF)/Btu

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

7-7 43.200 lb/j 35oAPI distilat didinginkan dari 250 sampai 120

dengan menggunakan air

pendingin yang mengalami peningkatan suhu dari 85 hingga 120 . Untuk maksud tersebut digunakan 19 ⁄ in ID shell dengan jumlah tube 204 buah, OD tube = ⁄ “ 16 BWG. L = 16 ft dengan pitch bujur sangkar 1 in. Tube passes = 4 , baffle space = 5 in. Susunan seperti apa yang menghasilkan pressuredrop mendekati 10 psi, tentukan Rd, dan temperature optimum keluaran air

Dari penjabaran soal di atas, diperoleh data yang diketahui : Shell ID

Tube = 19,25 in

Jumlah dan panjang

= 204 dan 16 ft

Baffle space = 5 in

OD, BWG, Pitch

Passes

Passes

= ⁄ in, 16 BWG, 1 in

=1

=4

Hot fluid (35o API distilate), Cold fluid (water),

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360



Diperoleh nilai Maka,

dan

⁄ Kern Hal 111 ⁄



Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

LMTD

Hot Fluid 250 120

Higher Temp Lower Temp

Cold Fluid

Diff

120

130

∆t2

85

35

∆t1

95

∆t2 -∆t1

Mencari FT

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Diperoleh FT = 0,84

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Maka

Caloric temperature 

Mencari nilai Kc

35o API distilate (hot fluid) Dari data diatas diperoleh

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360



Menentukan nilai

Dari data yang diplotkan pada sumbu x = 0,27 menyentuh garis Kc = 0,31 menghasilkan

Chapter 5 Kern 35o API distilate (hot fluid)

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Water (cold fluid fluid)

Flow Area 

Shell (Cold Fluid-air)

Dimana:



ID

: Diameter dalam

C‟

: Tube space

B

: Baffle space

PT

: Tube Pitch

n‟

: Shell passes

Tube (Hot Fluid-35o API distilate)

Dimana: : Jumlah tube n

: Passes : Luas penampang pertube

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Karena flow area tube hamper sama dengan shell maka (42o API kerosene) diasumsikan terletak pada dan (34o API mid-continent crude) pada tube Menghitung nilai koefisien perpindahan panas konveksi (h)

c

(

)( )



(

)

= kapasitas panas (fig 2) = viskositas (fig 14)

k

= koefisien perpindahan panas konduksi (table 4)

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

= keofisien yang diperoleh dengan mengkorelasikan terhadap Re (fig 24)

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Cold fluid (water) pada = 0,7 cp ⁄

=

Hot fluid (35o API distilate) pada = 1,8 cp = 

Penentuan mass velocity



Cold fluid (air) at shell ⁄



Hot fluid (35o API distilate) at tube ⁄



Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360



Reynolds number Fluid at shell (air)

Dengan

Dimana: de

: Diameter dalam

PT

: Tube Pitch

d0

: Diameter luar tube ⁄ , sehingga

Dengan ⁄

Fluid at tube (35o API distilate) ⁄ Dengan ⁄



Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360



Nilai Fluid at shell (air)

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Fluid at tube (35o API distilate) 

Mencari nilai k





( )

(

)

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Hot fluid at tube (35o API distilate)



( )



(



)

Menghitung nilai h (part 1) Hot fluid at tube (35o API distilate) ( ) ⁄



cold fluid at shell (air) ( )







Pemeriksaan

pada permukaan diameter luar (OD)

Penentuan nilai



dan

Hot fluid at annulus pipe ⁄





Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Cold fluid (air) pada = 0,4 cp = (

)

(

)



Hot fluid (35o API distilate) pada = 1,7cp = (

Sehingga,

)

(

)



Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360





Menghitung Rd 







Clean overall coefficient



Design overall coefficient

Rd



Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

| 

C

C

|

Pengecekan Pressure Drop Pressure drop pada tube (35o API distilate sebagai hot fluid)

Dengan



Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Diperoleh

dan ⁄

Dengan



diperoleh

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Pressure drop pada shell (air sebagai cold fluid)





Dengan

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Diperoleh



dan

Outlet Optimum Temperature

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

7-9 100.000 lb/jam larutan potassium iodide 20 persen harus dipanaskan dari 80 sampai 200 oF menggunakan steam pada 15 psig. Tersedia untuk servis adalah 10 in. ID 1-2 exchanger tanpa baffle memiliki 50 t

ng ¾ in. OD,16 BWG,16‟0” p nj ng i t

nt k

lint

np

pitch

segitiga (Triangular pitch) 15/16-in. Tekanan turun (pressure drops) dan faktor kotoran (dirt factor)?

Penyelesaian Diketahui : Wpotasium iodia

= 100.000 lb/hr

T1

= 250oF

T2

= 250oF

t1

= 80oF

t2

= 200oF

Tekanan steam

= 15 psig

ID

= 10 in

Tanpa baffle memiliki 50 tabung ¾ in OD

= 16

BWG

= 16‟0”

Pitch

= 15/16-in.Triangular pitch

Ditanya : Pressure drops dan dirt factor? Jawab : Shell side

Tube side

ID = 10 in

J ml h

Baffle space = half circles

OD, BWG, pitch = ¾ in, 16 BWG

Passes = 1

15/16-in.Triangular pitch

n p nj ng

Passes =2 (1) Heat Balance Weighted specific heat = 0,8 Cpwater + 0,2

Downloaded by Lutfatin Faidah ([email protected])

50, 16‟0”

lOMoARcPSD|24450360

CpKI Weighted specific heat = 0,8 (1) + 0,2 (0,3) Weighted specific heat = 0,86 Btu/(lb)(oF) Potasium iodida, Q = W.C (t2 – t1) Q = 100.000 x 0,86 (200 – 80) Q = 10.320.000 Btu/hr Steam, Q ms hfg = mc Cpc (t2 – t1) Pabs = 14,7 + 15 = 29,7 psi = 30 psi Diperoleh dari tabel 7 buku Kern  hfg = 945,3 Sehingga, 945,3 x ms = 100.000 x 0,86 (200 – 80) 945,3 x ms = 10.320.000 ms =

= 10917,169 lb/hr

(2)

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Hot Fluid

Cold Fluid

Diff

250

Temperatur Tinggi

200

50

250

Temperatur Rendah

80

170

0

Perbedaan

120

120

LMTD = LMTD = LMTD = LMTD = 98,36oF ……. P

R=

m n 5.14

i B k K n)

R= R=0

(3)Tc dan tc Tc =

=

tc = =

==

= 250oF = 140oF

Hot Fluid : tube side, steam

(4)Luas aliran, 0,302 in2  dari tabel 10 at =

……. P

m n 7.48 h l 152

i

k K n)

at = at = at = 0,053 ft2

Downloaded by Lutfatin Faidah ([email protected])

-

lOMoARcPSD|24450360

(5)Kecepatan massa Gt =

……. P

m n 7.2)

Gt = Gt = 205.984,340 lb/hr . ft2 (6)Pada Ta = 250oF 0,013 x 2,42 0,03146 lb/ft.hr (Gambar 15 terlampir) D=

=

= 0,05167 ft

(Tabel 10 terlampir)

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

0,013

Maka : Ret =

…….. P

m n 3.6)

Ret = Ret = 338.309,31

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

(7)Maka : jH

620……. G m

24 t l mpi )

(8)Pada Ta = 250oF C = 1,02 btu/lbm.oF K = 0,395 btu/h.ft.oF

(9)Maka nilai hio : = = 0,4 hi = jH .

……. P

.

hi = 620.

m n 6.15 )

. 0,4

hi = 1895,88 btu/h.ft2.oF hio = hi.

……

hio = 1895,88 .

m

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

hio = 1567,26 btu/h.ft2.oF

Cold Fluid : shell side, Pottasium iodide 4‟) L

li n

as = (area of shell) – (area of tubes) ( ) ]–*

as = [

as = 0,392 ft2

+

5‟) K c p t n m Gs = Gs = Gs = 255.102,04 lb/hr.ft2 6‟) P

Ta = 140oF

0,98 x 2,42 2,37 l /ft.h ……. T l mpi ) Ds = Ds =

……. P

m n 6.3)

= 0,159 ft2

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Res = Res = Res = 17.114,44

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

7‟) P

Ta = 140oF

jH = 64 8‟) Dik t h i

hw

nt k col fl i

= 140oF

ta =

Pada ta = 140oF k = 0,9 . 0,381 = 0,343 Btu/(hr)(ft2)(oF/ft) Jadi telah diketahui bahwa : k = 0,343 Btu/(hr)(ft2)(oF/ft) = 2,37 lb/(ft)(hr) c = 0,86 Btu/(lb)(oF) Sehingga : ( )

=(

)

= 1,98

9‟) ho = jH = jH = (64)

……. P

( )

m n 6.15 )

( )

(1,98)

= 273,36 Btu/(hr)(ft2)(oF)

10‟) M nc i nil i tw (Tc – tc) ……. P

tw = t c +

m n 5.31 )

(250 – 140)

tw = 140 + tw = 273,24oF 11‟) P

tw = 273,24oF

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

=2 = 0,18 x 2,42 = 0,436 lb/(ft)(hr) =(

=(

)

= 1,32

12‟) Co ho =

)

ct co ffici nt ……. P

m n 6.36)

ho = 273,36 x 1,32 ho = 360,39 Btu/(hr)(ft2)(oF)

13‟) Cl n Ov

ll Co ffici nt Uc)

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Uc =

……. P

m n 6.38)

Uc = Uc = Uc = 293,01 Btu/(hr)(ft2)(oF) 14‟) D ign Overall Coefficient (UD) Berdasarkan tabel 10, pad OD = ¾ in, BWG = 16 Dip ol h xt n l

f c /ft, ”

0,1963 ft2/ft

Maka : A

j ml h x p nj ng x ”

A

50 x 16‟0” x 0,1963

UD =

……. P

157 ft2

m n 5.3)

UD = UD = 668,2847 Btu/(hr)(ft2)(oF) 15‟) Di t F cto Rd) Rd =

……. P

m n 6.13)

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Rd = Rd = Rd = -0,00191 Ringkasan 1567,26

houtside

360,39

Uc

293,0121

Ud

668,2847

Rd calculated

-0,00191

Pressure Drop (1) Spesific vol of steam from table 7 (Halaman 816 dari buku Kern) 

Maka diperoleh pada saat Pabs 30 psi, v = 13,746 ft 3/lb

 

= 62,5 lb/ft3 Cari nilai specific gravity (s) s= s= s= s = 0,00116

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360



Res = 17.114,44 maka Diperoleh nilai f sesuai gambar 26 (halaman 836 dari buku Kern)



f = 0,00016 ft2/in2 = x

……. P

m n 7.45)

= x = 34,71 psi

1‟) =

……. P

m an 6.4)

=

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

= 0,159 ft ……. P

=

m n 7.3)

= 0,159 x 255.102,04/3,14 = 12.917,58 Kemudian lihat gambar 26 (halaman 836) untuk mencari nilai f f = 0,00023 ft2/in2

2‟)

=

……. P

m n 7.45)

Buku Perry Tabel 2-1 (halaman 2-21), Potassium iodida Spesific gravity = 3,13 = = 0,00543 psi

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

7-11 A 1-2 exchanger recovers heat from 10,000 lb/hr of boiler blowdown at 135 psig by heating raw water from 70 to 96 °F. Raw water· flows in the tubes. Available for the service is a 10.02 in. ID 1-2 exchanger having 52 tubes% in. OD, 16 BWG, 8'0" long. Baffies are spaced· 2 in. apart, and the bundle is arranged for two tube passes. What are the pressure drops and fouling factors? (Exchanger A 1-2 memulihkan panas dari 10.000 lb/jam blowdown boiler pada 135 psig dengan memanaskan air mentah dari 70 hingga 96 °F. Air mentah· mengalir di dalam tabung. Tersedia untuk layanan ini adalah 10,02 in. Penukar ID 1-2 memiliki 52 tabung% in. OD, 16 BWG, 8'0" panjang. Baffle diberi jarak· 2 in. terpisah, dan bundel diatur untuk dua lintasan tabung. Apa penurunan tekanan dan faktor pengotoran?) Dik: ;

(asumsi) Dit = pressure drops and fouling factors?

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Penyelesaian: 1‟) Hot B l nc hal 170, Kern 1965

01111

( ) (

)

( )

2‟) LMTD Fluida Panas

Fluida Dingin

Diff

135

Temparatur tertinggi

96

39

96

Temperatur terendah

70

26

13 LMTD =



Pers 5.14 Hal 89, Kern 1965

hal 170, Kern 1965

hal 170, Kern 1965

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Mencari Faktor Temperatur ( Dari grafik gambar 18. didapat nilai

sebesar 0,825 Pers 7.42, Hal 149, Kern 1965

3‟) C lo ic T mp

t Pers 5.28 , hal 96, Kern 1965

Pers 5.29 , hal 96, Kern 1965

Hot Fluida, Shell : Boiler/Steam 4‟) Flow Pers 7.1, Hal 138, Kern 1965

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

(

( )

5‟) M

)

V l Pers 7.2, Hal 138, Kern 1965

6‟) m nc i vi ko it Pada

) menggunakan Fig. 14, Kern 1965 : didapat viskositas

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Mencari

menggunakan Fig. 28 Kern 1965 , didapat viskositas

pers 3.6, Hal 112, Kern 1965

7‟) H t t n

f cto jH)

Dari Fig. 28 Kern 1965 didapat jH = 59

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

8‟) D i t l 4, K n 1965 ik t h i nil i k i 0,356 p h 86 Dilakukan interpolasi untuk mendapatkan nilai k air pada , didapat nilai k = 0,370 btu/(hr)( )( / ) ( )



(

9‟)

(

)

( )





pers 6.15b , Hal 112, Kern 1965



pers 6.15b , Hal 112, Kern 1965

)

9‟)

(

10‟) t

( ) )

w ll-temperature ⁄

pers 5.31, Hal 98, Kern 1965

11‟) P

12‟)

(

)

( )

pers 6.36, Kern 1965

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Cold Fluida,:Tube, Raw water 4) Flow area berdasarkan tabel 10. hal, 843, Kern 1965 ⁄ 5) Mass Vel

Pers 7.48, Hal 152, Kern 1965 ⁄ Pers 7.2, Hal 138, Kern 1965

6) mencari viskositas ( ) menggunakan Fig. 14, Kern 1965 : Pada

didapat viskositas

mencari D menggunakan tabel 10, Kern 1965 , didapat D = 0,62

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

pers 3.6, Hal 112, Kern 1965

7) L/D = 8/0,052 = 153,84 jH = 23

menggunakan Fig. 24, Kern 1965

8) Pada c = 1 Btu/lb. =

k = interpolasi = =

x = k = 0,355 Btu / (j.Ft2.

/Ft)

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

( ) 9)

10)



) ⁄ = 2,05

=(

=

(

.

( )



)

= 2661 Btu / (j.Ft2.

= 321,89 .

11) Pada Tw = 107,1

12)

(

= 321,89

pers 6.15b , Hal 112, Kern 1965

)

,

)

= 0,69 x 2,42 = 1,67 lb/ft.j (

)

= 321,89

= 321,89 x 1,18 = 369,21 Btu/(j.Ft2.

)

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

Pressure Drop ( Penurunan Tekanan Fluida Panas 1‟) Res = F = 0,000268 Ft2 / in2 2‟) No. of c o

menggunakan Fig. 29, Kern 1965

,N+1

12L/B = 12 X 8/12 = 8

Ds = 10,02 / 12 = 0,83 ft

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

3‟)

= = = 0,18 psi

Diterima

= 10 psi

hitung <

Maka perhitungan (Design) Dapat Diterima Pressure Drop ( Penurunan Tekanan Fluida dingin (1) Ret = F = 0,000148 Ft2 / in2 (2)

menggunakan Fig. 26, Kern 1965

=

= = 0,064 psi

𝑥

𝑥

𝑥

𝑥

𝑥

𝑥

𝑥

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

3‟)

,

V2/2g‟

0,0075 m ngg n k n Fig. 27, K n 1965

= (4n/s) (V2/2g‟) = (4x2)/2 x 0,0075 = 0.06 psi Diterima

= 10 psi

hitung <

Maka perhitungan (Design) Dapat Diterima

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

13. Koefisien keseluruhan Bersih Uc 

hio .ho hio  ho

369,21(773,9) Uc  369,21  773,9 Uc  249,96 Btu/(J.ft 2 .o F)

(6.38)

14. Desain Koefisien Keseluruhan (U ) a ''  0,1963 ft

(Tabel 10)

A  52 x8 x0,1963  81,66 ft Q UD  AT 390000 UD   180,6ft Btu/(hr)(ft 2 )( o F) (81,66)(26,45) 2

Downloaded by Lutfatin Faidah ([email protected])

lOMoARcPSD|24450360

15. Faktor Kotoran (Rd) Rd 

Uc U D U cU D

(6.13)

249,96  180,6 249,96(180,6) Rd  0,0015 Rd ketentuan  0,0015 Rd 

Rd hitung (0,0015)  Rd ketentuan (0,0015)

Downloaded by Lutfatin Faidah ([email protected])

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF