PROBLEMAS DE METODO SIMPLEX.doc
Short Description
Download PROBLEMAS DE METODO SIMPLEX.doc...
Description
PROBLEMAS DE METODO SIMPLEX 1.Suponga que una persona acaba de heredar $6.000 y desea invertirlos. Al oír ésta noticia, dos amigos distintos le ofrecen la oportunidad de participar como socio en dos negocios, cada negocio planteado por cada amigo. En ambos casos, la inversión significa dedicar un poco de tiempo el siguiente verano, al igual que invertir efectivo. Con el primer amigo, al convertirse en socio completo, tendría que invertir $5.000 y 400 horas, y la ganancia estimada (ignorando el valor del tiempo) sería de $4.500. Las cifras correspondientes a la proposición del segundo amigo son $4.000 y 500 horas, con una ganancia estimada de $4.500. Sin embargo, ambos amigos son flexibles y le permitirían entrar en el negocio con cualquier fracción de la sociedad; la participación en las utilidades sería proporcional a esa fracción. Como de todas maneras, ésta persona está buscando un trabajo interesante para el verano (600 horas a lo sumo), ha decidido participar en una ó ambas propuestas, con la combinación que maximice la ganancia total estimada. Formule y resuelva el problema 2. Una compañía manufacturera descontinuó la producción de cierta línea de productos no redituable. Esto creó un exceso considerable en la capacidad de producción. La gerencia quiere dedicar ésta capacidad a uno o más de tres productos; llámense productos 1, 2 y 3. En la siguiente tabla se resume la capacidad disponible de cada máquina que puede limitar la producción: Tiempo disponible Tipo de máquina (Horas) Fresadora 500 Torno 350 Rectificadora 150 El número de horas-máquina que se requiere para cada producto es: Tipo de Producto 1 Producto 2 Producto 3 máquina Fresadora 9 3 5 Torno 5 4 0 Rectificadora 3 0 2 El departamento de ventas ha indicado que las ventas potenciales para los productos 1 y 2 exceden la tasa máxima de producción y que las ventas potenciales del producto 3 son 20 unidades por semana. La ganancia unitaria sería $50, $20 y $25, respectivamente, para los productos 1, 2 y3 . El objetivo es determinar cuántos productos de cada tipo debe producir la compañía para maximizar la ganancia. 3. Se ha concedido permiso a una empresa de turismo para realizar vuelos entre Ibagué y las islas de San Andrés e interinsulares. para ello, debe comprar turborreactores con los que cubrir los vuelos entre Ibagué y las islas, así como aviones de hélice y / o helicópteros con los que atender los vuelos interinsulares. El presupuesto de compra es de 2.800 millones de pesos. Las características de los aparatos que puede comprar se resumen en la tabla. TIPO DE COSTO/UN Mant./Un TRIPULACION Capacidad 6 AVION (10 $) ($/día) (pas/mes) Pilotos Copilotos Azafatas Turborre.
300
120.000
2
-
2
4.000
A. hélice
100
60.000
1
1
1
300
50
30.000
1
-
-
100
Helicóptero
Se pueden contratar hasta 20 pilotos y 16 azafatas. Se desea emplear al menos a 3 copilotos. El tráfico entre Ibagué y San Andrés se estima en 8.000 pasajeros por mes y el interinsular en 500 pasajeros por mes. El permiso concedido requiere que el número mínimo de aparatos sea 15. La compañía desea operar con costo de mantenimiento mínimo. a) Formule un problema de programación lineal que proporcione al plan óptimo de compra. b) Resolverlo e interpretar la solución 4. Un empresario pretende fabricar dos tipos de congeladores denominados A y B. Cada uno de ellos debe pasar por tres operaciones antes de su comercialización: Ensamblaje, pintado y control de calidad. Los congeladores requieren, respectivamente, 2,5 y 3 horas de ensamblaje, 3 y 6 Kg. De esmalte para su pintado y 14 y 10 horas de control de calidad. Los costos totales de fabricación por unidad son, respectivamente, 30 y 28, y los precios de venta 52 y 48, todos ellos en miles de pesos. El empresario dispone semanalmente de 4.500 horas para ensamblaje, de 8.400 Kg. De esmalte y 20.000 horas para control de calidad. Los estudios de mercado muestran que la demanda semanal de congeladores no supera las 1.700 unidades y que, en particular, la de tipo A es de, al menos, 600 unidades. Se desea: a) Formular un modelo de programación lineal que indique cuántos congeladores deben fabricarse de cada tipo para que el beneficio sea máximo, teniendo en cuenta el estudio de demanda. b) Resolverlo mediante el método simplex. Interpretar la solución óptima incluyendo las variables de holgura. c) Determinar los precios sombra de las horas de ensamblaje y control de calidad. Al fabricante le ofrecen disponer de 200 horas más para ensamblaje con un costo adicional total de $750.000 pesos. ¿Debería aceptar la oferta? 5. En un laboratorio se fabrican 4 productos P1, P2, P3, P4 que consumen un día por unidad en su proceso completo de producción, aunque se pueden producir varias unidades simultáneamente. El espacio (m2) en el almacén y la mano de obra (número de trabajadores) disponibles limitan la producción. La siguiente tabla contiene los datos relevantes del proceso de producción, así como los costos de fabricación y precios de venta (en miles de pesos). Producto P1 P2 P3 P4 Disponibilidad Área (m2 /und.) 10 30 80 40 900 Trabajadores /und. 2 1 1 3 80 Costos /unidad 20 30 45 58 Precio de venta /und. 30 50 85 90 a) Encontrar el plan de producción de beneficio máximo b) Interpretar los valores de los precios sombra c) Cuál es el rango de los recursos del programa construido para el que se mantiene la optimalidad de tales valores? d) La firma podría alquilar 150 m2 más de superficie de almacén a un costo de $70.000 por día. ¿Debería alquilar éste espacio? Si es así, ¿Cuál es el nuevo plan de producción.
View more...
Comments