ProblemarioTermodinamica 2012 Tapia
January 9, 2017 | Author: Daniel Osvaldo Oxte | Category: N/A
Short Description
Download ProblemarioTermodinamica 2012 Tapia...
Description
TERMODINÁMICA Dr. Jorge Alejandro Tapia González Dr. Francisco Ramón Peñuñuri Anguiano
Problemario
UNIVERSIDAD AUTÓNOMA DE YUCATÁN FACULTAD DE INGENIERÍA
PROBLEMARIO ASIGNATURA: TERMODINÁMICA NIVEL LICENCIATURA AUTORES: Dr. Jorge Alejandro Tapia González Dr. Francisco Ramón Peñuñuri Anguiano
Semestre Enero-Junio 2012
1
INDICE Antecedentes
3
Objetivo general
3
Descripción general
4
Bibliografía
4
Carta descriptiva de la asignatura
5
Problemas Unidad 1
11
Conceptos de la Termodinámica.
Unidad 2
19
Formas de energía y su transformación.
Unidad 3
26
Propiedades de las sustancias puras.
Unidad 4
38
Primera Ley de la Termodinámica (sistemas cerrados).
Unidad 5
52
Primera Ley de la Termodinámica (volumen de control).
Unidad 6
72
Segunda Ley de la Termodinámica.
Unidad 7
78
Entropía.
2
PROBLEMARIO DE LA ASIGNATURA TERMODINÁMICA
1. Antecedentes La termodinámica es una disciplina de interés para las diversas ingenierías y sus conceptos se usan en el diseño y mantenimiento de dispositivos y/o artefactos mecánicos que cumplen con la finalidad de transformar la energía a partir de los cambios en las propiedades termodinámicas. El curso de Termodinámica está diseñado para enseñar a los estudiantes de nivel licenciatura, las leyes y relaciones energéticas en la ingeniería, mediante el manejo de los conceptos de Energía, Calor, Trabajo, Entropía y los cambios físicos y químicos que experimenta la materia, así como las leyes que rigen su comportamiento. El presente problemario tiene como finalidad, ser una herramienta que permita facilitar la enseñanza de la asignatura “TERMODINAMICA” en el curso de licenciatura del tronco común correspondiente al área de ciencias básicas de la Facultad de Ingeniería. El problemario comprende 7 unidades, las cuales se cubren en un total de 60 horas/semestre (distribuidas como 45 horas teóricas y 15 para resolución de problemas con prácticas) y se imparten con una frecuencia de 4 horas por semana. Durante el curso el alumno realizará cálculos relacionados con los cambios de energía, entropía, calor y trabajo tanto para sistemas cerrados como abiertos.
2. Objetivo general El alumno tendrá conocimiento y comprenderá las transformaciones de la Energía y de las sustancias por medio de las leyes y principios fundamentales de la Termodinámica, como parte esencial de la Ingeniería.
3
3. Descripción general El problemario consta de 138 problemas resueltos y divididos en 7 unidades.
La
complejidad de los problemas se incrementa de manera gradual conforme al orden dado en la carta descriptiva de la materia.
4. Bibliografía 1.
Callen Albert B. (1960). “Thermodynamics”, Wiley
2.
Cengel Yunus, Boles Michael (1998). “Termodinámica”, 2a edición. McGrawHill, México
3.
Manrique Jorge (1982). “Termodinámica”, Harla
4.
Manrique Jorge (1982). “Transferencia de Calor”, Harla
5.
Sears F.W. (1986). “Termodinámica”. Reverté
6.
Zemansky Mark (1982). “Calor y Termodinámica”, Aguilar
7.
M. C. Potter y C. W. Somerton (2004). “Termodinámica para Ingenieros”,
8.
McGraw-Hill
9.
Faires (2002). “Termodinámica”. Limusa Van Wylen. (2000). Fundamentos de Termodinámica”, 2ª edición. Limusa Wiley
4
CARTA DESCRIPTIVA DE LA ASIGNATURA: TERMODINÁMICA ASIGNATURA: HORAS TOTALES: Termodinámica ÁREA DISCIPLINARIA: Ciencias Básicas HORAS TEÓRICAS: UBICACIÓN: HORAS PRÁCTICAS: 3er. Periodo CLAVE: CRÉDITOS: IF-L-03 SERIACIÓN: HORAS SEMANALES: IF-L-02 CLASIFICACIÓN: Obligatoria GRUPO BÁSICO (Según CACEI): Ciencias Básicas y Matemáticas
60 46 14 7 4
OBJETIVO GENERAL: Comprender las transformaciones de la energía y de las sustancias por medio de las leyes y principios fundamentales de la Termodinámica, como parte esencial de la Ingeniería. CONTENIDO: 1. Conceptos de la Termodinámica. 2. Propiedades de las sustancias puras. 3. Primera Ley de la Termodinámica (sistemas cerrados). 4. Primera Ley de la Termodinámica (volumen de control). 5. Segunda Ley de la Termodinámica. 6. Entropía
H. TEÓR. H. PRÁC. 8.0 0.0 8.0 2.0 8.0 3.0 8.0 3.0 6.0 3.0 8.0 3.0
TÉCNICAS DE ENSEÑANZA: Exposición oral y audiovisual, ejercicios de clase y fuera del aula e investigación bibliográfica. TÉCNICAS E INSTRUMENTOS DE EVALUACIÓN: Exámenes parciales. 70 % Trabajos de laboratorio y Tareas. 30 % PERFIL PROFESIOGRÁFICO: Profesor de tiempo completo o tiempo parcial con licenciatura en Ingeniería o en Física, y de preferencia con posgrado en el área de Termodinámica. BIBLIOGRAFÍA: 1. Callen Albert B. (1960). “Thermodynamics”, Wiley 2. Cengel Yunus, Boles Michael (1998). “Termodinámica”, 2a edición. McGraw-Hill, México 3. Manrique Jorge (1982). “Termodinámica”, Harla 4. Manrique Jorge (1982). “Transferencia de Calor”, Harla 5. Sears F.W. (1986). “Termodinámica”. Reverté 6. Zemansky Mark (1982). “Calor y Termodinámica”, Aguilar 7. M. C. Potter y C. W. Somerton (2004). “Termodinámica para Ingenieros”, McGraw-Hill 8. Faires (2002). “Termodinámica”. Limusa 9. Van Wylen. (2000). Fundamentos de Termodinámica”, 2ª edición. Limusa Wiley
5
ASIGNATURA: UNIDAD:
Termodinámica 1. Conceptos de la Termodinámica
OBJETIVO DE LA UNIDAD: Estudio de los conceptos básicos de la Termodinámica y la compresión de la aplicación de la misma en el campo de la Ingeniería. CONTENIDO: 1.1 Definición de Termodinámica. 1.2 Sistema Termodinámico. 1.3 Formas de energía. 1.4 Propiedades Termodinámicas. 1.5 Postulado de estado. 1.6 Procesos Termodinámicos 1.7 Presión 1.8 Temperatura y ley cero de la Termodinámica
H. TEÓR. H. PRÁC.
0.5 0.5 1.0 1.0 1.0 1.0 1.5 1.5
TÉCNICAS DE ENSEÑANZA: Exposición oral y audiovisual, ejercicios de clase y fuera del aula e investigación bibliográfica. TÉCNICAS E INSTRUMENTOS DE EVALUACIÓN: Exámenes parciales. 70 % Trabajos de laboratorio y Tareas. 30 % PERFIL PROFESIOGRÁFICO: Profesor de tiempo completo o tiempo parcial con licenciatura en Ingeniería o en Física, y de preferencia con posgrado en el área de Termodinámica. BIBLIOGRAFÍA: 1. Cengel Yunus, Boles Michael (1998). “Termodinámica”, 2a edición. McGraw-Hill, México 2. Manrique Jorge (1982). “Termodinámica”, Harla 3. Sears F.W. (1986). “Termodinámica”. Reverté 4. Faires (2002). “Termodinámica”. Limusa 5. Van Wylen. (2000). Fundamentos de Termodinámica”, 2ª edición. Limusa Wiley ASIGNATURA: UNIDAD:
Termodinámica 2. Propiedades de las sustancias puras
OBJETIVO DE LA UNIDAD: Comprensión de las principales fases de la materia y las relaciones entre las propiedades Termodinámicas en una sustancia pura. CONTENIDO: 2.1 Procesos de cambio de fase en una sustancia pura. 2.2 Superficie p-v-T. 2.3 Región de Líquido-Vapor. 2.4 Entalpía 2.5 Tablas de propiedades Termodinámicas. 2.6 La ecuación de estado de gas ideal. 2.7 Ecuaciones de estado para gases no ideales.
6
H. TEÓR. H. PRÁC.
1.0 1.0 1.0 1.0 2.0 1.0 1.0
2.0
TÉCNICAS DE ENSEÑANZA: Exposición oral y audiovisual, ejercicios de clase y fuera del aula e investigación bibliográfica. TÉCNICAS E INSTRUMENTOS DE EVALUACIÓN: Exámenes parciales. 70 % Trabajos de laboratorio y Tareas. 30 % PERFIL PROFESIOGRÁFICO: Profesor de tiempo completo o tiempo parcial con licenciatura en Ingeniería o en Física, y de preferencia con posgrado en el área de Termodinámica. BIBLIOGRAFÍA: 1. Callen Albert B. (1960). “Thermodynamics”, Wiley 2. Cengel Yunus, Boles Michael (1998). “Termodinámica”, 2a edición. McGraw-Hill, México 3. Manrique Jorge (1982). “Termodinámica”, Harla 4. Sears F.W. (1986). “Termodinámica”. Reverté 5. Zemansky Mark (1982). “Calor y Termodinámica”, Aguilar 6. M. C. Potter y C. W. Somerton (2004). “Termodinámica para Ingenieros”, McGraw-Hill 7. Faires (2002). “Termodinámica”. Limusa 8. Van Wylen. (2000). Fundamentos de Termodinámica”, 2ª edición. Limusa Wiley ASIGNATURA: UNIDAD:
Termodinámica 3. Primera ley de la Termodinámica (sistemas cerrados)
OBJETIVO DE LA UNIDAD: Estudio de la primera ley de la Termodinámica en sistemas cerrados, con y sin dependencia de los calores específicos a la temperatura. CONTENIDO: 3.1 Energía 3.2 Calor 3.3 Transferencia de calor. 3.4 Trabajo. 3.5 Formas Mecánicas de trabajo. 3.6 Primera ley de la Termodinámica. 3.7 Energía interna, Entalpía y Calores específicos.
H. TEÓR. H. PRÁC.
1.0 1.0 1.0 1.0 1.0 2.0 1.0
3.0
TÉCNICAS DE ENSEÑANZA: Exposición oral y audiovisual, ejercicios de clase y fuera del aula, reportes experimentales. TÉCNICAS E INSTRUMENTOS DE EVALUACIÓN: Exámenes parciales. 70 % Trabajos de laboratorio y Tareas. 30 % PERFIL PROFESIOGRÁFICO: Profesor de tiempo completo o tiempo parcial con licenciatura en Ingeniería o en Física, y de preferencia con posgrado en el área de Termodinámica. BIBLIOGRAFÍA: 1. Callen Albert B. (1960). “Thermodynamics”, Wiley 2. Cengel Yunus, Boles Michael (1998). “Termodinámica”, 2a edición. McGraw-Hill, México
7
3. 4. 5. 6. 7. 8. 9.
Manrique Jorge (1982). “Termodinámica”, Harla Manrique Jorge (1982). “Transferencia de Calor”, Harla Sears F.W. (1986). “Termodinámica”. Reverté Zemansky Mark (1982). “Calor y Termodinámica”, Aguilar M. C. Potter y C. W. Somerton (2004). “Termodinámica para Ingenieros”, McGraw-Hill Faires (2002). “Termodinámica”. Limusa Van Wylen. (2000). Fundamentos de Termodinámica”, 2ª edición. Limusa Wiley
ASIGNATURA: UNIDAD:
Termodinámica 4. Primera ley de la Termodinámica (Volumen de control)
OBJETIVO DE LA UNIDAD: Estudio de la primera ley de la Termodinámica en volúmenes de control, con y sin dependencia de los calores específicos a la temperatura. CONTENIDO: H. TEÓR. H. PRÁC. 4.1 Volumen de control 1.0 4.2 Principio de conservación de la masa y la energía en un Volumen de 1.0 Control 4.3 Principio de conservación de la masa y la energía para un proceso de 2.0 1.5 flujo permanente. 4.4 Principio de conservación de la masa y la energía para un proceso de 2.0 flujo no permanente. 4.5 Principio de conservación de la masa y la energía para un proceso de 2.0 1.5 flujo uniforme.
TÉCNICAS DE ENSEÑANZA: Exposición oral y audiovisual, ejercicios de clase y fuera del aula, reportes experimentales. TÉCNICAS E INSTRUMENTOS DE EVALUACIÓN: Exámenes parciales. 70 % Trabajos de laboratorio y Tareas. 30 % PERFIL PROFESIOGRÁFICO: Profesor de tiempo completo o tiempo parcial con licenciatura en Ingeniería o en Física, y de preferencia con posgrado en el área de Termodinámica. BIBLIOGRAFÍA: 1. Callen Albert B. (1960). “Thermodynamics”, Wiley 2. Cengel Yunus, Boles Michael (1998). “Termodinámica”, 2a edición. McGraw-Hill, México 3. Manrique Jorge (1982). “Termodinámica”, Harla 4. Manrique Jorge (1982). “Transferencia de Calor”, Harla 5. Sears F.W. (1986). “Termodinámica”. Reverté 6. Zemansky Mark (1982). “Calor y Termodinámica”, Aguilar 7. M. C. Potter y C. W. Somerton (2004). “Termodinámica para Ingenieros”, McGraw-Hill 8. Faires (2002). “Termodinámica”. Limusa 9. Van Wylen. (2000). Fundamentos de Termodinámica”, 2ª edición. Limusa Wiley
8
ASIGNATURA: UNIDAD:
Termodinámica 5. La segunda ley de la Termodinámica
OBJETIVO DE LA UNIDAD: Estudiar la segunda ley de la Termodinámica y comprender su relación con los procesos termodinámicos. CONTENIDO: 5.1 Depósitos de energía térmica. 5.2 Maquinas y eficiencias térmicas. 5.3 Enunciados de la segunda ley de la Termodinámica. 5.4 Refrigerador y Bomba de calor. 5.5 Reversibilidad e Irreversibilidad en los procesos. 5.6 El ciclo de Carnot. 5.7 Maquina, refrigerador y bomba de calor de Carnot. 5.8 La escala Termodinámica de temperatura.
H. TEÓR. H. PRÁC.
0.5 1.0 1.0 1.0 1.0 0.5 0.5 0.5
1.5 1.5
TÉCNICAS DE ENSEÑANZA: Exposición oral y audiovisual, ejercicios de clase y fuera del aula, reportes experimentales. TÉCNICAS E INSTRUMENTOS DE EVALUACIÓN: Exámenes parciales. 70 % Trabajos de laboratorio y Tareas. 30 % PERFIL PROFESIOGRÁFICO: Profesor de tiempo completo o tiempo parcial con licenciatura en Ingeniería o en Física, y de preferencia con posgrado en el área de Termodinámica. BIBLIOGRAFÍA: 1. Callen Albert B. (1960). “Thermodynamics”, Wiley 2. Cengel Yunus, Boles Michael (1998). “Termodinámica”, 2a edición. McGraw-Hill, México 3. Manrique Jorge (1982). “Termodinámica”, Harla 4. Sears F.W. (1986). “Termodinámica”. Reverté 5. Zemansky Mark (1982). “Calor y Termodinámica”, Aguilar 6. M. C. Potter y C. W. Somerton (2004). “Termodinámica para Ingenieros”, McGraw-Hill 7. Faires (2002). “Termodinámica”. Limusa 8. Van Wylen. (2000). Fundamentos de Termodinámica”, 2ª edición. Limusa Wiley
9
ASIGNATURA: UNIDAD:
Termodinámica 6. Entropía
OBJETIVO DE LA UNIDAD: Estudiar la entropía y comprender su importancia en los procesos termodinámicos. CONTENIDO: H. TEÓR. H. PRÁC. 6.1 La desigualdad de Clausius. 0.5 6.2 Entropía. 0.5 6.3 Transferencia de calor en procesos isotérmicos e internamente 0.5 reversibles. 6.4 Procesos isentrópicos. 0.5 6.5 Balance de entropía en un volumen de control. 1.0 3.0 6.6 Principio de incremento de la entropía. 1.0 6.7 La tercera ley de la Termodinámica. 0.5 6.8 Diagramas T-s y h-s. 0.5 6.9 Las relaciones T-ds. 1.0 6.10 El cambio de entropía en sustancias puras. 1.0 6.11 El cambio de entropía en sólidos y líquidos.
1.0
TÉCNICAS DE ENSEÑANZA: Exposición oral y audiovisual, ejercicios de clase y fuera del aula, reportes experimentales. TÉCNICAS E INSTRUMENTOS DE EVALUACIÓN: Exámenes parciales. 70 % Trabajos de laboratorio y Tareas. 30 % PERFIL PROFESIOGRÁFICO: Profesor de tiempo completo o tiempo parcial con licenciatura en Ingeniería o en Física, y de preferencia con posgrado en el área de Termodinámica. BIBLIOGRAFÍA: 1. Callen Albert B. (1960). “Thermodynamics”, Wiley 2. Cengel Yunus, Boles Michael (1998). “Termodinámica”, 2a edición. McGraw-Hill, México 3. Manrique Jorge (1982). “Termodinámica”, Harla 4. Sears F.W. (1986). “Termodinámica”. Reverté 5. Zemansky Mark (1982). “Calor y Termodinámica”, Aguilar 6. M. C. Potter y C. W. Somerton (2004). “Termodinámica para Ingenieros”, McGraw-Hill 7. Faires (2002). “Termodinámica”. Limusa 8. Van Wylen. (2000). Fundamentos de Termodinámica”, 2ª edición. Limusa Wiley
10
Unidad 1: Conceptos de la Termodinámica OBJETIVO DE LA UNIDAD: Estudio de los conceptos básicos de la Termodinámica y la compresión de la aplicación de la misma en el campo de la Ingeniería. 1-1 A 45° de latitud la aceleración gravitacional en función de la altura z sobre el nivel del mar es g = a – bz donde a 9.807 m/s2 y b = 3.32x10-6 s2. Determine la altura sobre el nivel del mar donde el peso de un objeto disminuya en 1%. R= 29,539m
Para este caso
Sustituyendo
1-2 Determine la masa y el peso del aire contenido en un recinto cuyas dimensiones son 6m x 6m x 8m. Suponga que la densidad del aire es 1.16kg/m3. R=334.1kg; 3277N Asumimos que la densidad del aire en constante en el recinto La densidad del aire es 1.16kg/m3
(
)(
)
1-3 A veces, la aceleración de los aviones rápidos se expresa en g (en múltiplos de la aceleración estándar de la gravedad). Calcule la fuerza ascensional que sentiría un hombre de 90kg en un avión cuya aceleración es 6g.
11
1-4 La temperatura de un sistema aumenta en 15°C durante un proceso de calentamiento. Exprese en Kelvin ese aumento de temperatura.
1-5 Los humanos se sienten mas cómodos cuando la temperatura está entre 65°F y 75°F. Exprese esos límites de temperatura en °C. Convierta el tamaño de intervalo entre esas temperaturas (10°F) a K, °C y R. ¿Hay alguna diferencia si lo mide en unidades relativas o absolutas? Limites de temperatura en °C
Intervalos
1-6 En un taque de almacenamiento de aire comprimido, la presión es 1500KPa. Exprese esa presión utilizando una combinación de las unidades a) KN y m; b) Kg, m y s; c) Kg, Km y s. a) (
)
b) (
)(
)
c) (
)(
)( 12
)
1-7 El agua en un tanque esta a presión, mediante aire comprimido, cuya presión se mide con un manómetro de varios líquidos, como se ve en la figura P1-50. Calcule la presión manométrica del aire en el tanque si h1= 0.2m, h2= 0.3m y h3= 0.46m. Suponga que las densidades de agua, aceite y mercurio son 1000kg/m3, 850kg/m3 y 13600kg/m3, respectivamente.
[ ](
)(
)
1-8 La Presión manométrica en un líquido, a 3m de profundidad, es 28KPa. Determine la presión manométrica en el mismo líquido a la profundidad de 9m.
13
1-9 Los diámetros del embolo que muestra la figura P1-55E son D1= 3 pulg y D2= 2 pulg. Determine la presión en psia, en la cámara, cuando las demás presiones son P 1= 150psia y P2= 200psia.
(
)
1-10 Una mujer pesa 70Kg y el área total de las plantas de sus pies es de 400cm 2. Desea caminar sobre la nieve, pero la nieve no puede resistir presiones mayores que 0.5KPa. Determine el tamaño mínimo de los zapatos para nieve que necesita (Superficie de huella por zapato) para que pueda caminar sobre la nieve sin hundirse. (
)(
)
1-11 Un Bacuómetro conectado a un tanque indica 15KPa e un lugar donde la presión barométrica es 750mm de Hg. Determine la presión absoluta en el tanque. Suponga que ρhg= 13590 kg/m3. R=85KPa
14
(
)(
)
1-12 El barómetro de un escalador indica 930mbar cuando comienza a subir la montaña, y 780 mbar cuando termina. Sin tener en cuenta el efecto de la altitud sobre la aceleración gravitacional local, determine la distancia vertical que escalo. Suponga que la densidad promedio del aire es 1.20Kg/m3. R= 1274m
(
)(
)
1-13 Un gas está contenido en un dispositivo vertical de cilindro y embolo entre los que no hay fricción. El embolo tiene una masa de 4Kg y un área de sección transversal de 35cm2. Un resorte comprimido sobre el embolo ejerce una fuerza de 60N. Si la presión atmosférica es de 95Kpa, calcule la presión dentro del cilindro. R= 123.4Kpa
15
1-14 Un manómetro que contiene aceite (ρ= 850Kg/m3) se conecta a un recipiente lleno de aire. Si la diferencia del nivel de aceite entre ambas columnas es de 60cm y la presión atmosférica es de 98Kpa, determina la presión absoluta del aire en el recipiente. R= 103Kpa
(
)
1-15 Considere un tubo en U cuyas ramas están abiertas a la atmosfera. Ahora se agrega agua dentro del tubo desde un extremo y aceite ligero (ρ= 790Kg/m3) desde el otro. Una de estas ramas contiene 70cm de agua, mientras que la otra contiene ambos fluidos con una relación de altura aceite agua de 4. Determine la altura de cada fluido en esta rama. Suponiendo que el agua y el aceite son sustancias incompresibles, la densidad del aceite es dado a ser , tomando la densidad del agua como . La altura de columna de agua en el brazo izquierdo es La Entonces, = 4 . Tomando nota de que ambos brazos están abiertos a la atmósfera, la presión en el fondo del tubo en U se puede expresar como:
y Simplificando: →
⁄
→
Señalando que , el agua y las alturas de las columnas de aceite en el segundo brazo se determinó que:
⁄ .
→ ⁄
→
.
1-16 Calcule la presión absoluta P1, del manómetro de la figura P1-79, en Kpa. La presión atmosférica local es 758mm de Hg.
⁄
⁄
16
(
⁄
)
1-17 La fuerza generada por un resorte está dada por F = kx donde K es la constante del resorte y x es su desviación. El resorte de la figura P1-94 tiene una constante de 8KN/cm. Las presiones son P1= 5,000KPa, P2= 10,000Kpa y P3= 100Kpa. Si los diámetros del embolo son D1= 8cm y D2 = 3cm, ¿Cuál será la desviación del resorte? R= 1.72cm Las fuerzas que actúan sobre el pistón en la dirección vertical dan:
Que resuelto por el
⁄
y sustituyendo [
obtenemos: ]
[
]
1-18 Al medir pequeñas diferencias de temperatura con un manómetro, una de sus ramas esta inclinada, para mejorarla exactitud de la medición. (La diferencia de presión sigue siendo proporcional a la distancia vertical y no a la longitud del tubo ocupada por el líquido). La presión del aire en un ducto circular se mide usando un manómetro, cuya rama abierta esta inclinada formando 35° con la horizontal, como muestra la figura P1119. La densidad del liquido en el manómetro es 0.81Kg/lt, y la densidad vertical entre los niveles del fluido en las 2 ramas del manómetro es 8cm. Calcule la presión manométrica del aire en el ducto, y la longitud de la columna del líquido en la rama inclinada, por arriba del nivel del líquido en la rama vertical. ⁄ ⁄ Densidad del líquido La presión manométrica en el conducto es determinada a partir de: ⁄
⁄
La longitud de la columna de fluido diferencial es: ⁄ ⁄ 17
(
⁄
)(
⁄
)
1-19 Un tubo en U tiene sus ramas abiertas a la atmosfera. Entonces, se vierten volúmenes iguales de agua y aceite ligero (ρ= 49.3 Lbm/pie 2) en las ramas. Una persona sopla por el lado del aceite del tubo U, hasta que la superficie de contacto entre los 2 líquidos se mueve hasta el fondo del tubo U, por lo que los niveles de liquido en las 2 ramas son iguales. Si la altura del liquido en cada rama es 30 pulgadas, calcule la presión manométrica que ejerce la persona al soplar. Densidad del aceite Densidad del agua
= 49,3lbm/ ⁄
notando que ha = hw y reordenando:
⁄
⁄
⁄
18
(
.
⁄
⁄
)(
)
Unidad 2: Formas de energía y su transformación OBJETIVO DE LA UNIDAD: Estudio de los conceptos básicos de las formas de energía y su transformación. 2-1 Un rio corre hacia un lago, con una velocidad promedio de 3m/s, con un flujo de 500m3/s, por un lugar a 90m sobre la superficie del lago. Calcule la energía mecánica total del rio por unidad de masa, y la potencia que pueda generar todo el rio en ese lugar. ⁄
Tomando la densidad del agua como
⁄
( ⁄
)(
⁄ ⁄
)
⁄
El potencial de generación de energía del agua del río se obtiene multiplicando la energía mecánica total por el flujo másico: ̇ ̇ ̇
̇ ̇
⁄
⁄ ⁄
⁄
⁄
2-2 Un chorro de agua sale por una tobera a 60m/s con una tasa de flujo de 120Kg/s; Se va a usar para generar electricidad, al chocar con las paletas en la periferia de una rueda. Calcule la potencia que puede generar ese chorro.
⁄ ̇ ⁄
⁄
̇ ⁄
19
⁄
( ̇ (
⁄
)
)
⁄
2-3 Una persona entra en un elevador, en el vestíbulo de un hotel, con su equipaje de 30Kg, y sale en el decimo piso, 30m mas arriba. Calcule la cantidad de energía consumida por el motor del elevador que queda entonces almacenado en el equipaje. ⁄
⁄
(
)
⁄
2-4 Calcule la energía requerida para acelerar un automóvil de 800Kg, desde el reposo hasta 100Km/hr, en un camino horizontal. R= 309Kj ((
)
)(
⁄
)
2-5 Una persona cuya masa es 100Kg empuja un carrito cuya masa, incluyendo su contenido, es 100Kg; sube por una rampa que forma un ángulo de 20° con la horizontal. La aceleración gravitación local es 9.8m/s2. Calcule el trabajo, en Kj, necesario para recorrer 100m por esa rampa, suponiendo que el sistema es a) la persona, y b) el carrito y su contenido. a) Considerando la persona como el sistema, dejando l, ser el desplazamiento a lo largo de la rampa y θ ser el ángulo de inclinación de la rampa: ⁄
⁄
(
)
⁄
este es el trabajo que el hombre debe hacer para mover el peso del carrito y su contenido, además de su propio peso a una distancia de l b) Aplicando la misma lógica al carrito y su contenido obtenemos: ⁄
(
⁄ ⁄
)
2-6 La fuerza F necesaria para comprimir un resorte una distancia x es F-F0 = Kx, donde K es la constate del resorte y F0 es la precarga. Calcula el trabajo necesario para comprimir un resorte cuya constante es K = 200Lbf/pulg, una distancia de 1 pulgada, a partir de su longitud sin precarga (F0= 0Lbf). Exprese su resultado en Lbf·pie y en Btu. 20
∫ ⁄
∫
[
∫ ](
)
(
)
2-7 Cuando una burbuja esférica de vapor de amoniaco sube en el seno de amoniaco liquido, su diámetro cambia de 1 a 3cm. Calcule la cantidad de trabajo efectuado por esa burbuja, en Kj, si la tensión superficial del amoniaco es 0.02N/M. R= 5.03x10-8 ∫ ⁄
[
]
(
)
2.8 Una varilla de acero de 0.5cm de diámetro y 10m de longitud se estira 3cm. Para ese acero el modulo de elasticidad es 21KN/cm2. ¿Cuánto trabajo, en KJ, se requiere para estirar esta varilla? El volumen original e la varilla es:
El trabajo requerido para estirar la varilla 3 cm es:
⁄
[
]
2-9 Determina la potencia necesaria para que un automóvil de 2000Kg suba por un camino ascendente de 100m de longitud con una pendiente de 30° (Con respecto a la horizontal) en 10 s; a) A velocidad constante, b) Desde el reposo hasta una velocidad 21
final de 30m/s y c) De 35m/s a una velocidad final de 5m/s. Ignore la fricción, la resistencia del aire y la resistencia del rodaje. R= a) 98.1kw, b) 188kw, c) -21.9kw La potencia requerida para cada caso es la suma de los porcentajes de cambio en las velocidades cinética y potencial, esto es: ̇
̇
̇
a) ̇ vertical es ̇
ya que la velocidad es constante, la altura en consecuencia,
⁄
⁄
̇
̇
[
⁄
]⁄
̇
b)la potencia necesaria para acelerar es: ̇
[
⁄
y ̇
⁄
̇
⁄
][
⁄
]⁄
̇
c)la potencia necesaria para desacelerar es: ̇ y
[
⁄ ̇
̇
⁄
⁄
][
⁄
]⁄
̇
2-10 Un ventilador debe acelerar 4m3/s de aire en reposo hasta una velocidad de 10m/s. Calcule la potencia mínima que debe alimentarse al ventilador. Suponga que la densidad del aire es 1.18kg/m3. R= 236W El ventilador transmite la energía mecánica del eje (potencia del eje) a la energía mecánica del aire (energía cinética). Para un volumen de control que encierra el ventilador, el balance de energía se puede escribir como: ̇
̇
(constante)
22
̇
̇
Índice de transferencia de energía total por el calor, energía y masa.
porcentaje de cambio en la energía cinética, potencial, etc.
̇ Donde: ̇
̇
̇
̇
⁄
⁄
⁄
Sustituyendo, la entrada de potencia mínima requerida se determina: ̇
⁄
⁄ ̇
(
⁄
⁄
)
2-11 Se bombea agua de un embalse inferior a otro superior mediante una bomba que provee 20KW de potencia de flecha. La superficie libre del embalse superior esta 45 más arriba respecto a la del inferior. Si el caudal medido de agua es de 0.03 m3/s, determine la potencia mecánica que se convierte en energía térmica durante este proceso debido a efectos de fricción. ̇ ̇
̇
̇ ̇ (
)(
)
la potencia mecánica perdida a causa de los efectos de fricción se convierte en: ̇
̇
̇
2-12 Un perol de aluminio, cuya conductividad térmica es 237W/m·°C, tiene un fondo plano de 20cm de diámetro y 0.4cm de espesor. Se transmite constantemente calor a agua hirviendo en el perol, por su fondo a una tasa de 500W. Si la superficie interna del fondo del perol esta a 105°C, calcule la temperatura de la superficie externa de ese fondo de perol.
Bajo condiciones estables, la tasa de transferencia de calor a través del fondo de la bandeja por conducción es: 23
Sustituyendo: ⁄ Obtenemos:
2-13 Se sopla aire caliente a 80°C sobre una superficie plana de 2m x 4m, a 30°C. Si el coeficiente de transferencia de calor por convección es 55W/m2·°C Determine la tasa de transferencia de calor del aire a la placa, en KW.
⁄
2-14 Un recipiente esférico de acero, cuyo diámetro exterior es 20cm, y cuya pared hueca tiene el espesor de 0.4cm, se llena con agua y hielo a 0°C. La superficie externa esta a 5°C. Calcule la tasa aproximada de pérdida de calor a través de la esfera, y la rapidez con que se funde el hielo en el recipiente. La conductividad térmica del hierro es k = 80,2 W / m ° C. El calor de fusión del agua es a 1 atm es 333,7 kJ / kg.
La tasa de transferencia de calor a través de la cárcasa por conducción es: ⁄
24
Teniendo en cuenta que se tarda 333,7 kJ de energía para fundir 1 kg de hielo a 0 ° C, la velocidad a la que el hielo se funde en el contenedor puede ser determinado a partir de: ̇ ⁄ ⁄ ̇ ⁄
25
Unidad 3: Propiedades de las sustancias puras OBJETIVO DE LA UNIDAD: Comprensión de las principales fases de la materia y las relaciones entre las propiedades Termodinámicas en una sustancia pura.
3-1 Un dispositivo de cilindro- embolo contiene 0.85 kg de refrigerante 134a, a -10°C. El embolo tiene movimiento libre y su masa es de 12 Kg, con diámetro de 25 cm. La presión atmosférica local es 88 Kpa. Ahora bien, se transfiere calor al refrigerante 134a hasta que su temperatura es 15°C. Determine a) La presión final, b)El cambio de volumen del cilindro y c) El cambio de entalpia en el refrigerante 134a. (a) La presión final es igual a la presión inicial, que se determina desde: ⁄
⁄ ⁄
(
⁄
)
(b) El volumen específico y la entalpia de R-134a en el estado inicial de 90,4 kPa y -10 ° C y en el estado final de 90,4 kPa y 15 ° C son: ⁄ ⁄
⁄ ⁄
Los volúmenes, inicial y final del volumen y el cambio son: ⁄ ⁄
(c) El cambio de entalpía total se determina a partir de: ⁄
26
⁄
3-2 Una libra masa de agua llena un recipiente rígido de 2.29 pies cúbicos, a una presión inicial de 250psia. A continuación se enfría el recipiente a 100°F. Calcula la temperatura inicial y la presión final del agua. ⁄
Este es un proceso de enfriamiento volumen constante (V = V / m = constante). El estado final está saturado y por tanto la mezcla la presión es la presión de saturación a la temperatura final: ⁄
3-3 Un Kilogramo de vapor de agua a 200 Kpa, llena el compartimiento izquierdo de 1.1989 m3 de volumen de un sistema dividido, como el que se muestra en la figura P3-34. El volumen de la cámara derecha es el doble que e la izquierda, y al principio ha sido evacuado. Determine la presión del agua cuando se haya eliminado la división, y se haya transferido el calor necesario para que la temperatura del agua sea 3°C.
⁄ ⁄
3-4 Diez kilogramos de R-134a llena un dispositivo de cilindroembolo de 1.595 m3 de volumen, a -26.2°C de temperatura. Entonces se calienta el dispositivo, hasta que la temperatura es 100°C. Calcule el volumen final de R-134a.
27
⁄
⁄
El estado inicial se determina que es una mezcla, y por lo tanto la presión es la presión de saturación a la temperatura dada:
El estado final es vapor sobrecalentado y es el volumen específico: ⁄ El volumen final es entonces: ⁄
3-5 El dispositivo de cilindro- embolo, con carga de resorte de la figura P3-43, esta lleno con 0.5Kg de vapor de agua, inicialmente a 4MPa y 400°C. Al principio, el resorte no ejerce fuerza sobre el embolo. La constante del resorte, en la ecuación F= kx, es k= 0.9KN/cm, y el diámetro del embolo es D= 20cm. Entonces, el agua sufre un proceso hasta que su volumen es la mitad de su volumen original. Calcule la temperatura final y la entalpia específica del agua. R= 220°C, 1721KJ/kg De las tablas de vapor: ⁄
El proceso experimentado por este sistema es un proceso lineal de Pv. La ecuación de esta línea es:
28
Donde P1 es la presión del sistema cuando su volumen específico es V1. La ecuación de resorte puede ser escrita como:
C constante es por lo tanto: ⁄
⁄
La presión final es entonces: (
) ⁄
Y
⁄
⁄
El estado final es una mezcla y la temperatura es:
La calidad y la entropía en el estado final son: ⁄ ⁄
⁄ 3-6 Un tanque rígido de 2.5m3 de volumen contiene 15kg de un vapor húmedo de agua a 75°C. Entonces, se calienta lentamente el agua. Determine la temperatura a la cual el líquido, que forma parte del vapor húmedo, en el tanque se evapora por completo. También describa el proceso en un diagrama de T-v con respecto a las líneas de saturación. ⁄ 29
Cuando el líquido se vaporiza completamente el tanque contendrá solamente vapor saturado. Por lo tanto, ⁄ La temperatura en este punto es la temperatura que corresponde a este valor vg ⁄
3-7 Un recipiente rígido contiene 2kg de refrigerante 134a, a 800Kpa y 120°C determine el volumen del recipiente y la energía interna total del refrigerante. R= 0.0753m3, 655.7KJ ⁄ ⁄ El volumen total y la energía interna se determinan a partir de: ⁄ ⁄ 3-8 Un recipiente de 0.5m3 contiene 10kg de refrigerante 134a a -20°C. Calcula a)La presión b) La energía interna total y c) El volumen que ocupa la fase liquida. R= a) 132.82Kpa, b) 904.2KJ, c) 0.00489m3 (a) El volumen específico del refrigerante es: ⁄
(b) La calidad del refrigerante-134a y su energía interna total se determinan a partir de:
30
⁄ ⁄ (c) La masa de la fase líquida y su volumen se determina a partir de:
⁄
3-9 Un dispositivo de cilindro- embolo contiene 0.1m3 de agua liquida y 0.9m3 de vapor de agua, en equilibrio a 800Kpa. Se transmite calor a presión constante, hasta que la temperatura llega a 350°C. a) ¿Cual es la temperatura inicial del agua?
b) Calcule la masa total del agua
⁄ ⁄
c) Calcule el volumen final ⁄ ⁄ d) Indique el proceso de un diagrama P-v con respecto a las líneas de saturación.
31
3-10 Se deja enfriar vapor de agua sobre calentado a 180psia y 500°F, a volumen constante, hasta que la temperatura baja 250°F. En el estado final, calcule a) La presión, b) La calidad y c) La entalpia. También muestre el proceso en un diagrama T-v con respecto a las líneas de saturación. R= a)29.84 psia, b)0.219, c) 426Btu/lbm
⁄
A 250 ° F, vf = 0,01700 /lbm y vg = 13,816 /lbm. Así, en el estado final, el tanque contendrá saturado mezcla líquido-vapor puesto que vf
View more...
Comments