PROBLEMA DE TEORÍA DE COLAS
September 24, 2017 | Author: Young Miner | Category: N/A
Short Description
Download PROBLEMA DE TEORÍA DE COLAS...
Description
PROBLEMA DE TEORÍA DE COLAS Un técnico debe mantener operativos 05 ventiladores marca Búfalo que trabajan en la unidad minera Cobriza. La distribución de la probabilidad antes de que un ventilador tenga un desperfecto es exponencial, con un rango de cada 8 horas. El tiempo de reparación de cada ventilador es de 2 horas y también tiene una distribución exponencial. a) Calcular el número esperado de ventiladores operando satisfactoriamente. b) Calcular el tiempo de espera en el sistema de los ventiladores.
SOLUCIÓN: 1. DATOS:
K: número de ventiladores = 5 R: número de técnicos asignados = 1 λ: tasa de descompostura del ventilador = 1/8 μ: tasa de servicio (reparación) del ventilador = 1/2 Modelo probabilístico del tiempo de operación: Exponencial Modelo probabilístico del tiempo de reparación: Exponencial
2. MODELO ESPECÍFICO: (M / M / 1) : (GD / 5 / 5)
3. DETERMINACIÓN SI ES UN ESTADO ESTABLE: ρ = λ / μ = (1/8) / (1/2) = ¼ < 1 ; por lo tanto es estable
4. DISTRIBUCIÓN DE PROBABILIDADES Pn: probabilidad que haya malogrados en el sistema.
“n”
ventiladores
Reemplazando:
5. LA SUMA DE LAS PROBABILIDADES ES IGUAL A UNO Po + P1 + P2 + P3 + P4 + P5 = 1 reemplazando: Po + 1,25 Po + 1,25 Po + 0,94 Po + 0,47 Po + 0,12 Po = 1 5,03 Po = 1, entonces: Po = 0,1988; Po = 19,9 % (probabilidad de que ningún ventilador esté malogrado) Todas las probabilidades: P1 = 1,25 Po = 24,88 % (Probab. que 1 ventilador malogrado) P2 = 1,25 Po = 24,88 % (Probab. que 2 ventilador malogrados) P3 = 0,94 Po = 18,71 % (Probab. que 3 ventilador malogrados) P4 = 0,47 Po = 9,35 % (Probab. que 4 ventil. esté malogrados) P5 = 0,12 Po = 2,39 % (Probab. que 5 ventilador malogrados)
6. MEDIDAS BÁSICAS Ls = Σ n . Pn = 0 (Po) + 1 (P1) + 2 (P2) + 3 (P3) + 4 (P4) + 5 (P5)
reemplazando: | Ls = 0 + 1(0,2488) + 2(0,2488) + 3(0,1871) + 4(0,0935) + 5(0,0239)
Ls = 1,8012 ventiladores malogrados (se espera)
Por lo tanto, Ventiladores operando satisfactoriamente: K – Ls = 5 - 1,8012 = 3,1988 ~ 3 ventiladores
Tiempo de espera de un ventilador en el taller (línea de espera + servicio)
Ws = Ls / Σ λ (K – n) Pn
donde: Ws = 1,8012 / ⅛ (5Po + 4P1 + 3P2 + 2P3 + 1P4 + 0P5) Ws = 1,8012 / ⅛ (5x0,199+4x0,2488+3x0,2488+2x0,1871+1x0,0935+0)
Ws = 1,8012 / 0,4002 = 4,4977 ~ 4,5 horas
View more...
Comments