Probabilidades Practica Resuelta Numero 8
Short Description
Descripción: proba...
Description
PRÁCTICA DIRIGIDA N° 12 Tema: ESTIMACION DE PARAMETROS 1. La gerencia de ventas de “Móvil S.A.” desea el número medio de galones de gasolina que vende a sus clientes .De sus registros selecciona una muestra aleatoria de 64 ventas y obtiene que el número medio de galones vendidos es 5.6 y la desviación estándar 1.3 galones. Construya un intervalo de confianza del
para la media.
Solución: El intervalo de confianza es:
Con:
y
En la tabla de distribución normal:
El intervalo de confianza es:
2. Una empresa eléctrica fabrica focos que tienen una duración aproximadamente distribuida de forma normal con una desviación estándar de 40 horas.
Solución: a) Si una muestra de 36 focos tiene una duración promedio de 780 horas, encuentre un intervalo de confianza del de todos los focos que produce esta empresa.
y
En la tabla de distribución normal:
para la media de la poblacion
El intervalo de confianza es:
b) ¿De qué tamaño se necesita una muestra si deseamos tener
de
confianza que nuestra media muestral este dentro de 10 horas de la media real?
y
En la tabla de distribución normal:
El intervalo de confianza es:
3. Se sabe que la duración, en horas, de un foco de 50 watts tiene una distribución aproximadamente normal, con una desviación estándar de 25 horas .Se toma una muestra aleatoria de 16 focos , la cual resulta tener una duración promedio de 1014 horas.
y
a) Construya un intervalo de confianza del
En la tabla de distribución normal:
El intervalo de confianza es:
para la duración promedio.
b) Suponga que se desea una confianza del
en que el error en la
estimación de la duración promedio sea menor que 5 horas .¿Que tamaño de muestra debe utilizarse?
y
En la tabla de distribución normal:
De la condición del problema:
4. La resistencia a la ruptura de los hilos tiene una desviación estándar de 18 gramos. ¿Cuántas mediciones de resistencia a la ruptura deben hacerse en el siguiente experimento, si la estimación de la resistencia promedio de ruptura debe estar a menos de 4 gramos de la resistencia verdadera a la ruptura con un coeficiente de confianza igual a 0.90?
Solución:
y
De la tabla de distribución normal:
Con intervalo de confianza:
5. La gerencia del “Luz del Sur ” quiere estimar la facturación mensual promedio de corriente eléctrica en casas unifamiliares en el distrito de Breña .Con base en estudios similares se supone que la desviación estándar es 25 soles .El gerente desea estimar la facturación promedio con una
aproximación de 5 soles respecto del promedio real con
de confianza .
¿Que tamaño de muestra debe tomar?
Solución:
y
De la tabla de distribución normal:
El intervalo de confianza es:
6. Un supermercado tiene 5000 clientes con cuenta corriente .Para estimar el total adecuado por estos clientes, se selecciona una muestra aleatoria de
36 cuentas la cual da una media de $ 1500 por cuenta y una desviación estándar de $ 600 .Establézcase un intervalo de confianza del estimar la cantidad total adecuada por todos los clientes con cuenta corriente.
Solución:
Y
En la tabla de distribución normal:
En el intervalo de confianza:
para
7. De un lote de válvulas se escoge una muestra aleatoria de 400 válvulas obteniéndose una media de vida útil de 800 horas con desviación estándar de 100 horas.
Solución:
y
a) ¿Con qué grado de confianza se diría que la media de vida está entre 789.15 y 810.85?
Y
Con la tabla de distribución normal:
b) ¿Qué tamaño de muestra se debe tener para que el intervalo de la media (792.16 ; 807.84) sea de
de confianza?
En la tabla de distribución normal:
Con intervalo de confianza:
8. Diez soportes fabricados mediante cierto proceso tienen un diámetro medio de 0.506 cm con una desviación estándar de 0.004 cm .Suponiéndose que los datos pueden ser considerados como una muestra aleatoria de una población normal, elabore un intervalo de confianza de
para el diámetro
promedio real de los soportes fabricados mediante este proceso.
Solución:
y
En la tabla de distribución normal:
De la tabla de distribución normal:
El intervalo de confianza es:
9. En un estudio de contaminación del aire realizado en una estación experimental, de ocho muestras aleatorias diferentes de aire se obtuvieron los siguientes montos de materia orgánica suspendida soluble en benceno (en microgramos por metro cubico) : 2.2 , 1.8 , 3.1 , 2.0 , 2.4 , 2.0 , 2.1 y 1.2 .Suponiendo que la población muestreada es normal , obtenga un intervalo de confianza de 95% para la correspondiente media real.
Solución: Intervalo de confianza:
Con:
y
En la tabla de distribución ”t” student
:
Con intervalo de confianza:
10. Una partida grande de cierto tipo de partes de maquinas contiene
de
defectuosos. Si se selecciona una muestra aleatoria de 225 partes, obténgase un intervalo dentro del cual la proporción poblacional este con confianza del
Solución: Distribución Bernoulli: La v.a.d.
,
con
En la tabla de distribución normal:
11. Supongamos que estamos interesados en estimar el porcentaje de consumidores de cierto producto .Si una muestra aleatoria de tamaño 300 dio 100 individuos que consumían dicho producto, determine:
Solución: Distribución Bernoulli: Si la v.a.d.
,
a) El intervalo de confianza del En la tabla de distribución normal:
con
para la proporción poblacional.
b) El tamaño de la muestra para que el error de estimación no exceda del con confianza del
En la tabla de distribución normal:
En la tabla de distribución normal:
De la condición de
:
12. Se recibe un lote muy grande de artículos proveniente de una fabrica que asegura que el porcentaje de artículos defectuosos en la producción es del .Al seleccionar una muestra aleatoria de 200 artículos y después de inspeccionarlos, se descubre ocho defectuosos.
Solución: Distribución Bernoulli: La v.a.d.
, a) Obtener un intervalo de confianza del
con para la verdadera proporción de
artículos defectuosos en el proceso de manufacturación del fabricante.
En la tabla de distribución normal:
Con intervalo de confianza:
b) Con base en los resultados de a), ¿Qué se puede concluir con respecto a la afirmación del fabricante? Se puede observar, que la afirmación del fabricante no se encuentra en el intervalo de confianza, sin embargo, se tiene una muy buena aproximación.
13. En una muestra aleatoria de 500 familias que tienen televisores en la ciudad de Huaral, se encuentra que 340 están suscritos a una compañía de TV por cable.
Solución: Sea v.a.d.
, a) Encuentre un intervalo de confianza del
con para la proporción real de
familias en esta ciudad que están suscritas a TV por cable.
En la tabla de distribución normal:
Con intervalo de confianza:
b) ¿Qué tan grande se requiere que sea una muestra si queremos tener de confianza de que nuestra estimación de la proporción poblacional está dentro de 0.02?
14. De un lote grande de piezas de televisores, se extraen al azar mil unidades. En la inspección se encuentra que
no cumplen con las especificaciones
mínimas .Hallar el intervalo de confianza del piezas que no satisfacen las especificaciones.
Solución: Sea v.a.d.
,
En la tabla de distribución normal:
Con intervalo de confianza:
con
para la proporción de
15. Una muestra aleatoria de 300 votantes de un total de 5000 inscritos en cierto distrito dio 120 votos a favor del candidato Juan Pérez.
Solución: Sea v.a.d.
, Con:
Y
a) Determine el intervalo de confianza del no votaron por el candidato Juan Pérez.
para el total de inscritos que
De la tabla de distribución normal:
Con intervalo de confianza:
b) ¿Con qué grado de confianza se obtiene un intervalo de amplitud igual a 0.15?
Así:
View more...
Comments