Primer Broj 1
September 20, 2017 | Author: Zumbul Zumbulić | Category: N/A
Short Description
fundiranje...
Description
BROJNI PRIMER -1 Potrebno je odrediti uticaje (sleganje w, nagib elastične linije θ, transverzalnu silu T i moment savijanja M) u tački A, B i nagib elastične linije ispod koncentrisane sile P, vrlo dugačkog nosača na deformabilnoj podlozi, prema opterećenju i dimenzijama na Slici 4.7. Temeljnu podlogu aproksimirati Vinklerovim modelom. Proračun izvršiti analitički, prema izrazima za beskonačni nosač. 0,4
P=1,3 MN
B
x
0,4
A
1,0
p=50,0 kN/m
k=30,0 MN/m3 3,0
2,0
B=1,5 4,0
1,0
L=10,0
Eb =21,0 GPa I=0,159 m4
z
Slika 4.7
Opterećenje između tačaka A i B beskonačnog nosača
Rešenje: Parametar krutosti sistema temeljni nosač – podloga (tlo), iznosi:
λ=
4
kB = 4Eb I
4
30,0 ⋅ 1,5 = 0,2409 m −1 4 ⋅ 21000 ⋅ 0,159
Proračun sleganja w, nagiba θ, transverzalne sile T i momenta savijanja M, u tački A : -
pomoćne veličine za proračun uticaja koncentrisanog opterećenja :
∆x = x − x P = 0 − 3,0 = −3 ,0 -
pomoćne veličine za proračun uticaja od jednako podeljenog opterećenja :
∆x L = x − x L = 0 − 5 ,0 = −5 ,0
∆x D = x − x D = 0 − 9 ,0 = −9 ,0
sgn(∆x L ) = sgn(− 5 ,0 ) = −1
sgn(∆x D ) = sgn(− 9 ,0 ) = −1
wA =
wA =
Pλ p [D(5λ ) − D(9λ )] A(3λ ) + 2 Bk 2 Bk
1300 ⋅ 0 ,2409 50 ,0 A(0 ,723) + [D(1,205 ) − D(2,169 )] = 2,48 ⋅ 10 −3 m 2 ⋅ 1,5 ⋅ 30000 2 ⋅ 1,5 ⋅ 30000
θA =
θA =
sgn(∆x ) = sgn(− 3,0 ) = −1
Pλ2 pλ [A(5λ ) − A(9λ )] B(3λ ) + Bk 2 Bk
1300 ⋅ 0 ,2409 2 50 ,0 ⋅ 02409 B (0 ,723) + [A(1,205 ) − A(2,169 )] = 0 ,586 ⋅ 10 −3 rad 1,5 ⋅ 30000 2 ⋅ 1,5 ⋅ 30000 MA =
P p C (3λ ) − 2 [B(5λ ) − B(9λ )] 4λ 4λ
MA =
1300 ,0 50 ,0 C (0 ,723 ) − [B(1,205 ) − B(2 ,169 )] = 18 ,028 kNm 0 ,964 0 ,232 P p [C (5λ ) − C (9λ )] D(3λ ) + 2 4λ
TA =
TA =
1300 ,0 50 ,0 D (0 ,723) + [C (1,205) − C (2 ,169 )] = 235 ,914 kN 2 0 ,964
Proračun sleganja w, nagiba θ, transverzalne sile T i momenta savijanja M, u tački B :
sgn(∆x ) = 1
∆x = 7 ,0
sgn(∆x L ) = 1
∆x D = 1,0
sgn(∆x D ) = 1
Pλ p [D(5λ ) − D(λ )] A(7 λ ) + 2 Bk 2 Bk
wB =
wB =
∆x L = 5 ,0
1300 ⋅ 0 ,2409 50 ,0 A(1,687 ) + [D(1,205) − D(0 ,241)] = 0 ,93 ⋅ 10 −3 m 2 ⋅ 1,5 ⋅ 30000 2 ⋅ 1,5 ⋅ 30000
θB = −
θB = −
1300 ⋅ 0 ,2409 2 50 ,0 ⋅ 02409 B(1,687 ) + [A(1,205) − A(0 ,241)] = −0 ,384 ⋅ 10 −3 rad 1,5 ⋅ 30000 2 ⋅ 1,5 ⋅ 30000 P p C (7 λ ) + 2 [B(5λ ) − B(λ )] 4λ 4λ
MB =
MA =
1300 ,0 50 ,0 C (1,687 ) + [B(1,205 ) − B(0 ,241)] = −257 ,049 kNm 0 ,964 0 ,232 T∞ = −
TB = −
Pλ2 pλ [A(5λ ) − A(λ )] B(7 λ ) + Bk 2 Bk
P p [C (5λ ) − C (λ )] D (7 λ ) + 2 4λ
1300 ,0 50 ,0 D(1,687 ) + [C (1,205 ) − C (0 ,241)] = −24 ,930 kN 2 0 ,964
Sleganje w i nagib elastične linije beskonačnog nosača θ ispod sile P :
w =
w =
1300 ⋅ 0 ,2409 50 ,0 1,00 + [D(0 ,482 ) − D(1,445 )] = 3,77 ⋅ 10 −3 m 2 ⋅ 1,5 ⋅ 30000 2 ⋅ 1,5 ⋅ 30000
θ=
θ=
Pλ p [D(2λ ) − D(6 λ )] A(0 ) + 2 Bk 2 Bk
Pλ 2 pλ [A(2λ ) − A(6 λ )] B(0 ) + Bk 2 Bk
1300 ⋅ 0 ,2409 2 50 ,0 ⋅ 02409 [A(0 ,482 ) − A(1,445 )] = 0 ,0765 ⋅ 10 −3 rad 0 ,0 + 1,5 ⋅ 30000 2 ⋅ 1,5 ⋅ 30000
Dijagram momenta savijanja na delu AB bekonačnog nosača (kNm) -400 -200 -208.17
0
-257.05
-123.29
18.03 -5.80
200 167.47
314.09
400 419.67
600 747.04
800
796.47
1,000 1,200 1,400
1337.66
1,600 0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
Dijagram transverzalnih sila na delu AB beskonačnog nosača (kN) 800 674.15
700 600
508.96
500 360.50
400 300 200
235.91
100 -24.93
0 -100 -200
-141.46
-97.41
-75.98
8.0
9.0
-208.98
-300 -298.91
-400 -500
-457.26
-600 -625.85
-700 0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
10.0
View more...
Comments