Preparatorio07 Lab - Circuitos Electronicos GR7 Arellano Kevin

July 29, 2022 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Preparatorio07 Lab - Circuitos Electronicos GR7 Arellano Kevin...

Description

 

 

ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

TRABAJO PREPARATORIO LABORATORIO DE CIRCUITOS ELECTRÓNICOS

Práctica No. 7 Respuesta en frecuencia  – Parte I Realizado por: Alumnos:  Edison Cruz

Grupo:

7

Kevin Arellano  IEE552

(Espacio Reservado) Fecha de entrega: 2017 / 06 / 28 año

mes

f. ______________________

día

Recibido por:

Sanción:________________________________________________

Abril – Agosto 2017A 

 

TRABAJO PREPARATORIO Tema: Respuesta en frecuencia –  Parte  Parte I. 

Objetivo: Revisar los criterios generales de respuesta en baja frecuencia de un amplificador con TBJ y determinar la frecuencia de corte para un amplificador en configuración emisor común. común.  1. Consultar: ¿Qué es la respuesta en frecuencia de un circuito, y para qué se utiliza? Los circuitos comúnmente tienen componentes pasivos como resistencias, capacitores e inductores, siendo estos dos últimos dependientes de la frecuencia. La respuesta en frecuencia de un circuito es el análisis del comportamiento del circuito debido a los valores de las respectivas unidades de los elementos antes mencionados. Como se mencionaba anteriormente, anteriormente, debido a que los capacitores e inductores dependen de la frecuencia, su correcto dimensionamiento en el circuito permitirá construir circuitos selectivos en frecuencia y así obtener componentes en frecuencia que resulten de interés para un propósito determinado. Es de este concepto que se sale el uso de filtros, los cuales tienen una función específica según la ubicación que tengan en el circuito, el orden de elementos y por supuesto los valores en sus respectivas unidades que adquieran.

Figura 1. Curvas del comportamiento de distintos capacitores ante diferentes valores de frecuencias

Diagrama de Bode Asintótico de magnitud, de la respuesta en frecuencia de un bloque de adelanto de primer orden, bloque de retardo de primer orden, bloque derivador y bloque integrador, presentar junto con sus respectivas expresiones.

 

  Figura 2. Diagrama de bode de magnitud de un sistema de primer orden orden en retardo.

Figura 3. Diagrama de bode de magnitud de un sistema de primer orden en adelanto

Figura 4. Diagrama de Bode de magnitud de un integrador

 

  Figura 5. Diagrama de Bode de magnitud de un sistema derivador

2. Determinar analíticamente la frecuencia de corte para cada uno de los capacitores c apacitores CI, CO, y CE (en función de los componentes del circuito de la Figura 1), presentar el desarrollo completo para cada capacitor, que incluye el análisis teórico junto con su respectivo Diagrama de Bode Asintótico donde se identifica la frecuencia de corte.

Figura 6. Amplificador de Emisor común para análisis de frecuencia

Para el capacitor CI Impedancia equivalente vista desde el capacitor, mientras el resto de capacitores se hacen cortocircuito.

 = =   + 1 ∗  +  + ||    = 2∗   ∗1  ∗   Para el capacitor CE

 +     = | +  + | + ||  + 1

  = 2∗  ∗1 ∗  

 

Para el capacitor Co

 =  ||   = 2∗  ∗1  ∗   Resolver el circuito presentado en la Figura 11, y determinar todas las frecuencias de corte presentes en el amplificador.

Figura 1. Amplificador en Emisor Común para análisis de frecuencia de corte

 

33

6.8 

 

2.2 2.2  88 

Figura 2. Amplificador en Emisor Común DC

 

 

88  390  Figura 3. Circuito equivalente Thévenin de Amplificador Emisor común

  = 33 ∥ 6.8   = 5.6  :

6.810    = 33 + 6.8  = 1.7   −   −  −  = 0   −   + 1 −  −  = 0 

   =    −     + 1 + 1.7V−0.7V  = 1.8746   =  5.6 1.8746  100+1 +478Ω Determinación de la resistencia dinámica

  26      =   = 1.8746  

Frecuencias de corte

 = 13.87

 

Capacitor 1

 =   1 

  1    = 802  = 6.25  /   1  =  +  

  1  = 80 802 2.2 .2 + 2   = 2.97 / 

Capacitor 2

 =   1    1    = 12390  = 213.67 / /    1    =  ( + + +)   1  =     390 13.87 +88 12( 13.887 7 +88 + 88 ++39 390 0 )  = 1.03 / 

Capacitor 3

 = 33  ∥ ∥ ∥ ∥    + ∥1  100+1  +   13.87 +88  6.8  = 3.6   = 47    =   1    1   = 473.6    = 5.91 / / 

 

 

Dibujar en papel semi-logarítmico la respuesta en frecuencia del amplificador.

Comprobar los valores calculados usando un simulador, adjuntar la gráfica de la respuesta en  frecuencia dada por por el simulador, simulador, comentar comentar el resultado. resultado. 

Figura 4. Respuesta en frecuencia de capacitor de colector

 

 

Figura 5. Respuesta en frecuencia de capacitor de base  base  

Figura 5. Respuesta en frecuencia de capacitor de emisor  

R5 2.2k

C1

Out

R1 33k

V1

C3

80nF

Q1

V2

2N3904

10V

47nF

R2 6.8k

R3

R6

88

2k

R4

C2

390

12uF

Figura 6. Amplificador en configuración Emisor Común con frecuencia de corte

 

 

Figura 16. Voltaje de entrada y salida del Amplificador en configuración Emisor Común

La gráfica obtenida mediante la simulación simulación muestra que la ganancia de voltaje se mantiene constante en el intervalo de 2.97kHz, una vez que la frecuencia de corte sea superada.

Bibliografía  [1] Calderón. A. ‘’Circuitos electrónicos’’, Escuela Politécnica Nacional  

[2] Llugsi R. Lupera P. “Electrónica Básica”  [3] Cátedra de teoría de circuitos. Edición 2016

[4] Señales y Sistemas. Estudio frecuencial de sistemas de primer y segundo orden. Universidad Carlos Tercero de Madrid

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF