Practica Unidad No 04 y 05 - Matematica Basica - Septiembre - Diciembre 2021
April 12, 2023 | Author: Anonymous | Category: N/A
Short Description
Download Practica Unidad No 04 y 05 - Matematica Basica - Septiembre - Diciembre 2021...
Description
[rjftofj ]eonjn Ed. ;> Vostmgj Eugïrofd
Nmsfrohor y Fdgpimtjr Nmaoeor Vostmgj Eugïrofd d nm Eugmrjfoöe. Eugmrjfoöe.
•
]e sostmgj nm eugmrjfoöe ms ue fdeluetd nm sçghdids y rmcijs qum pmrgotme fdestruor tdnds ids eügmrds vêionds me mi sostmgj. Me ids sostmgjs nm nm eugmrjfoöe eugmrjfoöe pdsofodejims pdsofodejims mi vjidr nm ue sçghdid nmpmenm tjetd nmi sçghdid utoiozjnd, fdgd nm ij pdsofoöe qum ïsm sçghdid dfupj dfupj me mi eügmrd. eügmrd. Fijsoaofjfoöe Vostmgj Eugïrofd.
•
Fijsoaofjfoöe Ids sostmgjs nm eugmrjfoöe pumnme fijsoaofjrsm me nds crjenms crupds< pdsofodejims pdsofodej ims y ed-pdsofodejims. ed-pdsofodejims. Vo ue sostmgj nm eugmrjfoöe eugmrjfoöe pdsofodeji pdsofodeji tomem hjsm x soceoaofj qum sm nospdem nm x sçghdids noamrmetms noamrmetms pjrj msfrohor ids eügmrds, y qum x ueonjnms adrgje uej ueonjn nm drnme supmrodr. ^opds nm Vostmgj Eugïrofd.
•
Vostmgj nm eugmrjfoöe hoejroj fdestruftovj.
•
Vostmgj nm eugmrjfoöe nmfogji.
•
Vostmgj nm eugmrjfoöe dftji.
•
Vostmgj `mxjnmfogji.
•
Vostmgj nudnmfogji.
•
Vostmgj jiajeugïrofd.
•
Hjsm1>.
•
Eugmrjf Eugmrjfoöe oöe rdgjej. rdgjej.
•
Mi fdeluetd eugïrofd eugïrofd mstê fdgpumstd fdgpumstd pdr ids ids eügmrds<
•
Ids fdeluetds fdeluetds eugïrofds eugïrofds sde jcrupjfodems jcrupjfodems nm eügmrds qum qum cujrnje uej smrom nm prdpomnjnm prdpomnjnmss mstrufturjims. mstrufturjims. [dr mlmgpid mlmgpid mi sostmgj gês usuji me jrotgïtof jrotgïtofj j ejturji mstê adrgjnd pdr pdr mi fdeluetd fdeluetd nm ids eügmrds ejturjims, ejturjims, fde ij sugj, ij guitopiofjfoöe guitopiofj foöe y ijs rmijfodem rmijfodemss usujims nm drnme drnme jnotovd. jnotovd. Mi fdeluetd nm ids T eügmrds ejturjims ms mi progmr fdeluetd eugïrofd, mstm fdeluetd eds pmrgotm drnmejr y fdetjr. Mi fdeluetd nm nm ids eügmrds ejturjims sm mxprmsj< E7 { :,8,6, > rt rt … } Ijs dpmrjfodems dpmrjfodems oetmrejs me ids eügmrds ejturjims (E) (E) sde Jnoffoöe y sustrjffoöe sustrjffoöe ]ej dpmrjfoöe ms oetmrej fujend sm fujend sm rmjiozj sdhrm ue mimgmetd mimgmetd nm ue crupd y qum nj fdgd rmsuitjnd dtrd mimgmetd mimgmetd + Vo \ 7metmrds pdsotovds y \ - 7 metmrds emcjtovds, metdefms \7 Metmrd Emcjtovd Ijs dpmrjfodems oetmrejs me me ids eügmrds metmrds (\) sde ij sug sugj, j, ij rmstj y ij guitopiofjfoöe Ijs dpmrjfodems dpmrjfodems oetmrejs me ids eügmrds rjfodejims (Z) sde sde eügmrds rmjims
•
• •
•
•
•
•
Ids topds nm nmfogjims sde nmfogji, fdgpumstd fdgpumstd,, pmroönofd purd purd gostd, Ed mxjftds y
•
ed pmroönofds, pmroönofds, Fijsoaofjfoöe Fijsoaofjfoöe nm eügmrds nmfogjims nmfogjims j pjrtor nm ij arjffoöe.
;.666…ms ue eugmrd rjfodeji nmhond j mi fdfometm nm nds eügmrds eügmrds metmrds metmrds :/3 ms ue eugmrd rjfodeji yj qum qum eugmrd rjfodeji d orrjfodeji . Ijs dpmrjfodems dpmrjfodems oetmrejs me ids eügmrds orrjfodejims (Z¾) (Z¾) sde sugj, rmstj, guitopiofjfoöe y novosoöe Ijs dpmrjfodems dpmrjfodems oetmrejs nm nm ids eügmrds rmjims (X) sde eügmrds sde eügmrds rmjims rmjims Iostjr ijs prdpomnjnms cmemrjims Xjfodejims, cmemrjims nm ids eügmrdso ms mi dpumstd nm fdgpimld nm fdgpimld -> + 6o o ∜(∘:1) ms mi mquovjimetm j > j > o
•
•
•
•
•
= ∜(∘8=) ms mi mquovjimetm j
•
dhvod qum so PNN. 8 + 6 me adrgj fjeöeofj d nm pjr drnmejnd ms ms dhvod
:.
1,∘0 me adrgj hoedgofj d jrotgïtofj ms (1,-0) ij adrgj hoedgofj ms nmfor nmij adrgj j+ho
•
= metmrds, > metmrds :/=, =;/:;
iumcd tmemgds , (j,h) ms nmfor < j71 y h7-0
Vo j y h sde nds eügmrds rmjims, tji qum j ms gmedr qum h ji fdeluetd nm eügmrds rmjims Ids eügmrds rmjims sde sde tdnds ids fdeluetds nm fdgprmenonds metrm j y h sm im iijgj iijgj Ids eügmrds jetmrodrms y su sçghdid sçghdid ms uej "X" nosgoeuonj Ids oetmrvjids oetmrvjids pumnme smr lustj, smr lustj, jugmetjnj d nosgoeuonj
•
•
•
oetmrvjids jtmenomend j ij nmaoeofoöe nm nm sus mxtrmgds pumnme pumnme smr fdefrmtjgmetm fdefrmtjgmetm Ids oetmrvjids Ids oetmrvjid oetmrvjidss sm pumnme prmsmetjr prmsmetjr me adrgj nm jsfmenmetms d nmsfmenmetms jsfmenmetms d nmsfmenmetms Vo x 5 6 9 3 mstjs nds nmsocujinjnms sm pumnme mxprmsjr mx prmsjr luetjs nm ij socuometm adrgj Vo 6Ux73Uy sogpioaofjr 6Ux+:-3Uy+:+6Ux/3Uy-3Ó(6U 6Ux+:-3Uy+:+6Ux/3Uy-3Ó(6Ux)+6Ó(3Uy) x)+6Ó(3Uy) Ms ue fdeluetd gmnohim y Ids oetmrvjids oetmrvjids qum tomeme sus sus nds mxtrmgds nmaoeonds sm sm iijgjeT Ms
•
•
•
tomem ij gosgj fjrnoejionjn fjrnoejionjn qum ij rmftj rmj rmji i . j9x9h. • Ids oetmrvjids oetmrvjids jfdtjnds pumnme pumnme smr Vm mxprmsj< j9x9h. Ids oetmrvjids oetmrvjids jfdtjnds qum qum ed oefiuyme sus mxtrmgds smiijgje sm iijgje oefiuym ids mxtrmgds metrm • ids fujims mstê fdgprmenond, pmrd sç tdnds ids vjidrms uhofjnds metrm mstds.
Xmjiozjr ijs socuometms dpmrjfodems rjfodejims m orrjfodejims :)
>/= + ¹
8)
6/3 - 8/0 6
6) >
8/6 x 8/=:.
x0 7 8> :.01111111113:
>=/1; + :;;/1; + >8;/1; + :8/1; 7 >= + :;; :/6 ó >/3 + >8; + :8)/1; 7 =33/1;
>) =
=)
(8 :/ :/66 + 1) ( 6/> ∘ =/1 )
:.= + ;.8= 7 :.3= smcuend:>8:=✖ 8 ms :.>:>8:=
3) -
∜8
∜
∜=∘>∜=
7 -::,:0;6>
0)
>∜ 3+6∜80 3 +6∜80
81.>=3=:6::;1
?)
∜(6 ) ∜0
>.0?0?3?>0==3
:;) >∜ >∜88 +
∜:0
?.0??>?>?611:
Njnd ijs socuometms edtjfodems nm Oetmrvjids nmtmrgoem pjrj fjnj ued su Nmsocujinjn, Vu Adrgj Crêaofj, Idecotun y [uetd Gmnod, somgprm qum smj pdsohim :)
R8,1W
=/6
8)
W∘6,=R
R6,=W
6)
R∘0/6,8/=R
>)
W ∘ 8 , 1 W
=W ∘ ∕, > R
`jstj oeaoeotd pdsotovd
6 :/:= x 7 1
Vo pdrqum tomems
. Ids mimgmetds nm x smrje j pjrtor nmi >
=)
W∘∕,6W { x | 6
R=,∕R
x
:}.
Ij adrgj nm nmsocuji nmsocujinjn njn ms x5=x5=. x5=
Mamftujr ijs dpmrjfodems nm eügmrds fdgpimlds :) (8 + >o) +(6 -o) Mi eugmrd fdgp imld imld ms -=o y su fdelucjnd ms ms -=o
8) (6 ‖ =o) =o) ‖ (1 (1 ‖ 6o) 6o) -6 - 8 o
6) (8∜ = + >o) + (6∜ = ‖ 0o) 0o) ::.:0;66??
>) (8 + 6o) (> ‖ 8o) 8o) :>
0o
=) (-0 +3o) - 6o (o -8) -=
:6 o
1) (0 + >o) / (8 ‖ 6o) 6o)
;.6;31?86;0
8.>1:=60>1 o
3) (8 + ∜ -> ) / (6 - ∜ -:1) -;.;0
;.=1 o
Ijs gjtmgêtofjs eds `jfme gjs iohrms iohrms y gmeds gjeopuijhims.
View more...
Comments