Practica No 3 Etn807

November 16, 2018 | Author: Gouh Armando Colque Vargas | Category: Velocity, Control System, Equations, Function (Mathematics), Rotation
Share Embed Donate


Short Description

Download Practica No 3 Etn807...

Description

Universidad Autónoma Tomas Frías Materia Facultad Técnica Sistemas de control II - Laboratorio Carrera Ingeniería Electrónica ETN - 807 GUIA DE LABORATORIO ETN-807 Practica No 3 Modelación Posición de un Motor de CC

OBJETIVO Manejar Manejar los comandos comandos necesarios que nos permitirá permitirán n modelar u obtener obtener de manera simulada simulada el  posicionamiento de un motor de CC. Para Para lo cual se procede a obtener su Función de transferencia y ecuaciones en el espacio de Estados que representa a nuestro sistema dinámico. Además de que realizaremos utilizando MATLAB su respuesta en lazo abierto.  INTRODUCCIÓN  El motor de CC es un actuador común en control sistemas. Provee movimiento rotatorio directamente y, acoplado con ruedas dentadas o poleas y cables, puede proveer movimiento transicional. El circuito eléctrico de la armadura y el diagrama de cuerpo libre del rotor se muestran en la siguiente figura:

Para esto, asumimos los valores siguientes para los parámetros físicos. Estos valores se derivaron experimentalmente de un motor real de laboratorio de control • • • • • • • •

momento de inercia del rotor (J) = 0.01 kg.m^2/s^2 coeficiente de amortiguamiento del sistema mecánico (b) = 0.1 Nms constante de fuerza electromotriz (K=Ke=Kt) = 0.01 Nm/Amp resistencia eléctrica (R) = 1 ohm inductancia eléctrica (L) = 0.5 H entrada (V): Fuente de Tensión salida (theta): posición del eje el rotor y eje se consideran rígidos

Ecuaciones del Sistema

El torque del motor, T, se relaciona con la corriente de armadura, i, por un factor constante Kt. La fuerza contraelectromotriz (emf), e, se relaciona con la velocidad de rotación mediante las siguientes ecuaciones Ing jorge Alberto Herrera Caballero

Universidad Autónoma Tomas Frías Facultad Técnica Carrera Ingeniería Electrónica

Materia Sistemas de control II - Laboratorio ETN - 807

En unidades del sistema internacional SI (las que usaremos), Kt (constante de armadura) es igual a Ke (constante del motor). De la figura de arriba podemos escribir las siguientes ecuaciones basadas en la ley de Newton combinado con la ley de Kirchhoff:

1. Función de Transferencia Usando Transformadas de Laplace las ecuaciones del modelo de arriba pueden expresarse en términos de s.

Eliminando I(s) podemos obtener la siguiente función de transferencia, donde la velocidad de rotación es la salida y la tensión es una entrada.

Sin embargo como durante este ejemplo estamos mirando a la posición, como que es la salida. Podemos obtener la posición integrando Theta Punto, por lo tanto solo necesitamos dividir la función de transferencia por s.

2. Espacio de Estado Estas ecuaciones pueden también representarse en la forma espacio de estado. Si elegimos posición del motor, velocidad del motor, y corriente de armadura como las variables de estado, podemos escribir las ecuaciones como sigue:

Ing jorge Alberto Herrera Caballero

Universidad Autónoma Tomas Frías Facultad Técnica Carrera Ingeniería Electrónica

Materia Sistemas de control II - Laboratorio ETN - 807

 PROCEDIMIENTO Requerimientos de diseño

Quisiéramos poder posicionar muy precisamente al motor, entonces el error de estado estacionario de la posición del motor debería ser cero. Además quisiéramos que el error de estado estacionario debido a una perturbación también sea nulo. El otro requerimiento a la performance es que el motor  alcance muy rápidamente su posición final. En este caso, queremos tener un tiempo de establecimiento de 40ms. y un sobrepico menor que 16%. Si simulamos la entrada de referencia (R) por una entrada escalón unitario, entonces la salida velocidad del motor debería tener: • • • •

Tiempo de establecimiento menor que 40 milisegundos Sobrepico menor que 16% Error de estado estacionario nulo Sin error de estado estacionario debido a una perturbación

Representación en Matlab y respuesta a lazo abierto 1. Función de Transferencia

Podemos poner la función de transferencia en Matlab definiendo el numerador y el denominador  como vectores: Cree un nuevo archivo-m e ingrese los siguientes comandos: J=3.2284E-6; b=3.5077E-6; K=0.0274; R=4; L=2.75E-6; num=K; den=[(J*L) ((J*R)+(L*b)) ((b*R)+K^2) 0];

Ahora veamos qué hace el sistema original a lazo abierto. Copie el siguiente comando al final del archivo-m y ejecútelo en la ventana de comandos del Matlab: step(num,den,0:0.001:0.2)

Debería obtenerse la figura siguiente: comprobar????? Ing jorge Alberto Herrera Caballero

Universidad Autónoma Tomas Frías Materia Facultad Técnica Sistemas de control II - Laboratorio Carrera Ingeniería Electrónica ETN - 807 De la figura vemos que cuando se aplica 1 volt al sistema, la posición del motor cambia en 6 radianes, seis veces mayor que la posición deseada. Para una entrada escalón de 1 volt, el motor  debe girar alrededor de 1 radian. Además, el motor alcanza un estado estacionario que no satisface los criterios de diseño

2. Espacio de Estado Podemos poner las ecuaciones de espacio de estado en el Matlab definiendo las matrices del sistema como sigue: J=3.2284E-6; b=3.5077E-6; K=0.0274; R=4; L=2.75E-6; A=[0 1 0 0 -b/J K/J 0 -K/L -R/L]; B=[0 ; 0 ; 1/L]; C=[1 0 0]; D=[0];

La respuesta al escalón se obtiene mediante el comando step(A,B,C,D)

Desgraciadamente, Matlab responde con Warning: Divide by zero ??? Index exceeds matriz dimensions.

(división por cero) (índice excede dim de matriz)

Error in ==> /usr/local/lib/matlab/toolbox/control/step.m On line 84 ==> dt = t(2)-t(1);

Con esta representación de las ecuaciones dinámicas están habiendo problemas numéricos de escalamiento . Para solucionar el problema, escalamos el tiempo mediante tscale = 1000. Ahora la salida tiempo estará en milisegundos en lugar de en segundos. Las ecuaciones están dadas por  tscale = 1000; J=3.2284E-6*tscale^2; b=3.5077E-6*tscale; K=0.0274*tscale; R=4*tscale; L=2.75E-6*tscale^2; A=[0 1 0 0 -b/J K/J 0 -K/L -R/L]; B=[0 ; 0 ; 1/L]; C=[1 0 0]; D=[0];

Ing jorge Alberto Herrera Caballero

Universidad Autónoma Tomas Frías Materia Facultad Técnica Sistemas de control II - Laboratorio Carrera Ingeniería Electrónica ETN - 807 La salida parece la misma que cuando se obtuvo através de la función de transferencia, pero el vector tiempo debe ser dividido por tscale. [y,x,t]=step(A,B,C,D); plot(t/tscale,y) ylabel('Amplitud') xlabel('Tiempo (seg)')

 INFORME  Presente el informe, debe mostrar todas las graficas obtenidas. El informe debe de contener  resumen, introducción, procedimiento, análisis de resultados, conclusiones y bibliografía consultada.

Ing jorge Alberto Herrera Caballero

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF