Practica Contabilidad 4 Primer Parcial 2021-3
July 8, 2022 | Author: Anonymous | Category: N/A
Short Description
Download Practica Contabilidad 4 Primer Parcial 2021-3...
Description
HLFUBCN@NEBE `T Mkmrhnhnls pbrb mftrmibr (vb`lr 2= puftls) 2-
@b hlapb hlapbòáb òáb X.B. hl hlaprl; aprl; Umr Umrrmfl, rmfl, Mendnh Mendnhnl, nl, Abqu Abqunfbrn nfbrnb b y Alcn`nbr Alcn`nbrnl nl em ldnhnfb ldnhnfb plr $ 8, 577,777. B dnfb` em ams `b hlapbòáb emhnem hlftrbtbr uf tbsbelr y `bs prlpnmebems sm tbsbrlf mf; mendnhnl $2, 577,777, tmrrmfl $2, 377,777, abqunfbrnb $977,777 y mqunpls em ldnhnfb $577,777. Emtmranfbr m` hlstl em hbeb bhtnvl y jbhmr bsnmftl em `uibr.
Dmhjb
Humftbs y emtb``ms
Buxn`nbr
Bhtnvls vbrnls
Emcntl
Hrîentl
$ 8,577,777
Cbfhl
$ 8,577,777
Wbrb rminstrbr `b hlaprb em vbrnls bhtnvls b uf prmhnl i`lcb`.
Urbfsbhhnøf; Bhtnvl
Naplrtm
%
Hlstl prlrrbtmbel
Umrrmfl
$ 2,377,777
83%
$ 2,7::,777
Mendnhnl
$ 2,577,777
8:%
$ 2,3>3,777
Abqunfbrn b
$ 977,777
2>%
$ 454,777
Mqunpl em ldnhnfb
$ 577,777
22%
$ 895,777
Ultb`ms
$ 8,977,777
277%
$ 8,577,777
Hb`hu`l pbrb m` plrhmftbkm; 2) 3) 8) 5)
$ 2, 2,377 377,77 ,777 7 / 8,97 8,977,7 7,777 77 1 7.83 7.83 x 2 277 77 1 83 $ 2,5 2,577, 77,777 777 / 8,9 8,977, 77,777 777 1 7.8: 7.8: x 27 277 7 1 8: $ 97 977,7 7,777 77 / 8 8,97 ,977,7 7,777 77 1 7 7.2> .2> x 2 277 77 1 2> 2> $ 57 577,7 7,777 77 / 8 8,97 ,977,7 7,777 77 1 7.2 7.22 2 x 27 277 7 1 22
Ultb`; 277 Hb`hu`l pbrb m` prlrrbtmbel;
2) 3) 8) 5)
8, 8,57 577, 7,77 777 7 x 83 83% % 1 2, 2,7: 7::, :,77 777 7 8, 8,57 577, 7,77 777 7 x 8: 8:% % 1 2, 2,32 32>, >,77 777 7 8, 8,57 577, 7,77 777 7x2 2>% >% 1 454 454,7 ,777 77 8, 8,57 577, 7,77 777 7x2 22% 2% 1 895 895,7 ,777 77
Ultb`; $ 8, 577,777 Dmhjb
Humftb y emtb``ms
Buxn`nbr
87 87/x /xx/ x/xx xx
Wr Wrlp lpnm nmeb ebe e p`b p`bft ftb by mqunpl
Emcntl
Hrîentl
$ 8,577,777
Umrrmfl
$ 2,7::,777
Mendnhnl
$ 2,3>3,777
Abqunfbrnb
$ 454,777
Mqunpl em ldnhnfb
$ 895,777
Bhtnvls vbrnls
$ 8,577,777
Wbrb rminstrbr m` hlstl em `ls bhtnvls bequnrnel b uf prmhnl i`lcb` mf cbsm b `b tbsbhnøf.
3-
@b Hlap Hlapbòáb bòáb X.B, X.B, hlapr hlaprl l ufb hbanlfmtb hbanlfmtb fum fumvb vb b hrîen hrîentl tl b `b Em`tb Hl Hlamrh amrhnb`, nb`, plr S SE$2, E$2, 477,777.77, m` 2/2/3737, tbsb em nftmrîs uf 4% bfub` b : amsms, nfhurrnø mf ibstls em smiurl 87,777, napumstls 3=,777, mstls pbils dumrl dumrlf f mf mdmhtnvl, emt emtmranfm mranfm m` hlstl em `b abqunfbrnb fumv fumvb. b. Jbhmr m` bsnmftl em enbrnl hlrrmsplfenmftm. Hlstl em abqunfbrnb fumvb Wrmhnl (b hrîentl) $ 2, 477,777 Abs Ibstls em smiurls 87,777
Napumstls 3=,7777 1 ==,777 1 hlstl abqunfbrnb fumvb $ 2, 4==,777 Hb`hu`l em `ls nftmrmsms; Tb`lr dnfbfhnbanmftl $ 2, 477,777 x 4% 1 >4,777/ 23 1 :,777 x : 1 45,777
Dmhjb
Humftbs y emtb``ms
2/ 2/2/ 2/3 3737 737
Wr Wrl lpnme pnmebe be p`bf p`bftb tb y mqunpl Abqunfbrnb
Buxn`nbr
Emcntl $ 2, 4==,777
$ 2,4==,777
Hrîentl
Ibstls dnfbfhnmrls
$ 45,777
Nftmrmsms
$ 45,777
Cbfhl
$ ==,777
Elhuamftl x pbibr
$ 2,445,777
Wbrb rminstrbr hlaprb hbanlfmtb b hrîentl
8-
@b Hlap Hlapbòáb bòáb X.B, X.B, hlapr hlaprl l ufb abqunfbrnb abqunfbrnb fum fumvb vb b` hlft hlftbel bel b Hlam Hlamrhnb` rhnb` Ku`nâf, Ku`nâf, plr plr SE$:=7,777.77, m` 2/=/3737, nfhurrnø mf ibstls em smiurl 37,777, d`mtm 2=,777, napumstls beubfb`ms 57,777, nfstb`bhnøf 3=,777, mf m` trbs`bel `b abqunfbrnb fumvb sm ems`nzl y sm `m rlapnø ufb cbsm sm ibstbrlf mf `b rmpbrbhnøf 2:,777, mstls pbils dumrlf mf mdmhtnvl, mdmhtnvl, emtmranfm m` hlstl hlstl em `b abqunfbrnb fumvb. Jbhmr m` bsnmftl em enbrnl hlrrmsplfenmftm.
Hlstl em abqunfbrnb fumvb Wrmhnl $ :=7,777 Abs Xmiurls $ 37,777 D`mtm $ 2=,777 Napumstls em beubfbs $ 57,777 Smpbrbhnøf $ 2:,777 1 $>8,777 1 hlstl abqunfbrnb fumvb $ >58,777
Dmhjb
Humftb y emtb``m
2/=/3737
Wrlpnmebe p` p`bftb y mqunpl Abqunfbrnb
Buxn`nbr
Emcntl
Hrîentl
$ >58,777
$ >85,777
Cbfhl
$ >85,777
Wbrb rminstrbr `b bequnsnhnøf em ufb fumvb abqunfbrnb b` hlftbel
5-
@b Hlapbòáb X.B, rmhncnø uf mendnhnl em ufl em sus bhhnlfnstbs, sm emtmranfø qum m` vb`lr kustl em` tmrrmfl b `b dmhjb em `b elfbhnøf mrb em $:, 777,777 pmsls. Jbhmr m` rminstrl em `uibr.
Dmhj b
Humftb y emtb``m
Buxn`nbr
Emcntl
Hrîentl
Wrlpnmebe p`bftb y mqunpl Umrrmfl
$ :,777,777
$ :,777,777
Hbpntb` elfbel
$ :,777,777
Wbrb rminstrbr `b elfbhnøf em uf tmrrmfl plr uf bhhnlfnstb
=-
@b hlap hlapbòáb bòáb X.B X.B., ., hbac hbacnl nl uf mqunpl hhuyl uyl hlst hlstl l nfnhn nfnhnb` b` dum em $847 $847,777 ,777 hlf uf ufb b emprm emprmhnbhn hnbhnøf øf bhuau`beb em $827,777. @b Háb. Tmfemelrb rmhncm m` mqunpl usbel, y uf pbil mf mdmhtnvl plr $8=7,777. M` fumvl mqunpl tnmfm uf prmhnl em $ 537,777, y m` mqunpl usbel pleráb vmfemrsm plr $ 97,777. Jbhmr m` rminstrl em `uibr. Hâ`hu`ls; 2) Hls Hlstl tl beq bequns unsnhn nhnøf øf mqu mqunpl npl fum fumvl vl Aâs; vb`lr mqunpl usbel 1 hlstl em` bhtnvl fumvl
$ 8=7 8=7,77 ,777 7 $ 97,777 $ 537,777
3) Hls Hlstl tl em` em` bht bhtnvl nvl b ``bb dm dmhjb hjb e emm lpm lpmrbh rbhnøf nøf Mqunpl usbel, hlstl em bequnsnhnøf $ 847,777 Amfls; emprmhnbhnøf bhuau`beb $ 827,777 1 hlstl smiûf `ncrl $ =7,777 8)
Tb`lr em` mqunp mqunpl l usbel smiûf prmh prmhnl nl em amrh amrhbel bel Amfls; hlstl em` mqunpl mf `ncrl 1 ibfbfhnb mf nftmrhbacnl em bhtnvl
Dmhjb
Humftb y emtb``m
x/x/xx
Wrlpnmebe p`bftb y mqunpl Mqunpl fumvl
Buxn`nbr
Hrîentl
$ 537,777 $ 827,777
Wrlpnmebe p`bftb y mqunpl
Cbfhl
Emcntl $ 537,777
Emprmhnbhnøf bhu.
Mqunpl vnmkl
$ 97,777 97,777 $ =7,777 $ 37,777
$ 847,777
$ 847,777 $ 8=7,777
Ibfbfhnb mf nftmrhbacnl em bhtnvl
$ 37,777
Wbrb rminstrbr `b bequnsnhnøf em uf bhtnvl plr ltrl
4-
@b hlap hlapbòáb bòáb X.B X.B., ., bequn bequnrnø rnø ufb ab abqunfb qunfbrnb, rnb, em `b hb hbsb sb rlsbrnl rlsbrnl hlal hlcrl hlcrl em ufb humft humftb b plr hlcrbr em $587,777, m` vb`lr em amrhbel em enhjb abqunfbrnb 52=,777, b` dnfb` em` ams `b maprmsb `m enl mftrbeb b `b abqunfbrnb hlal bhtnvl. Jbhmr m` rminstrl em `uibr. Hb`hu`l; Tb`lr em `b abqunfbrnb $ 52=,777 Aâs; humftb x hlcrbr $ 587,777 1 ltrls ibstls $ 2=,777
Dmhjb
Humftb y emtb``m
Buxn`nbr
Emcntl
Wrlpnmebe p`bftb y mqunpl
Hrîentl
$ 52=,777
Abqunfbrnb
$ 52=,777
Ltrls ibstls
$ 2=,777
Humftb x hlcrbr
$ 587,777
Hbkb rlsbrnl
$ 587,777
Wbrb rminstrbr bequnsnhnøf em abqunfbrnb hlal hlcrl em ufb humftb x hlcrbr
9-
@b hlap hlapbòáb bòáb X.B X.B.. mantn mantnø ø 27,777 lc`nibh lc`nibhnlfms nlfms b $9= $9=7 7 h/u, `b hla hlapbòáb pbòáb AZ bh bhmptl mptl `b lc` lc`nibhn nibhnøf øf em hlapbòáb X.B., >8= bhhnlfms plr hlfhmptl em vmftbs em abqunfbrnbs, huyl prmhnl em `nstb em hlftbel ms em $4>=,777. Jbhmr m` rminstrl em `uibr. Hb`hu`l; 27,777 lc`nibhnlfms x $ 9=7 h/u 1 9, =77,777
Dmhjb
Humftb y emtb``m
Lc`nibhnlfms Mansnøf em lc`nibhnøf Wbrb rminstrbr `b mansnøf em 27,777 b
Buxn`nbr
Emcntl
Hrîentl
$ 9,=77,777 $ 9,=77,777
9=7 h/u
Hb`hu`l em vmftbs em `bs >8= bhhnlfms >8= bhhnlfms x 9=7 h/u 1 $ 972,3=7 Tb`lr em `b abqunfbrnb rmhncneb $ 4>=,777 Wmreneb em mansnøf em lc`nibhnlfms $ 4,3=7
Dmhj Dmhjbb
Humf Humftb tb y em emtb tb`` ``mm
Buxn Buxn`n `nbr br
Em Emcn cntl tl
x/x/xx
Wrlpnmebe p`bftb y mqunpl
$ 4>=,777
$ 4>=,777
Wmreneb em mansnøf em lc`nibhnlfms
Hr Hrîe îent ntl l
$ 4,3=7
Lc`nibhnlfms mantnebs
$ >8=
Wbrb rminstrbr `b bequnsnhnøf em >8= Bhhnlfms b 9=7 h/u mf pbil em abqunfbrnb
:-
@b Hlapbòáb X.B, b` 2 em mfmrl em` 3737, lctuvl ufb pbtmftm em` prleuhtl C, plr `b suab em SE$=77,777.77
Sminstrm `b trbfsbhhnøf y `b balrtnzbhnøf em` prnamr bòl.
Dmhjb
Humftb y emtb``ms
2/2/3737
Wbtmftms
Buxn`nbr
Emcntl
Hrîentl
$ =77,777
Cbfhl
$ =77,777
Wbrb rminstrbr `b pbtmftm lctmfneb pbrb mxp`lrbr m` prleuhtl b 37 bòls
Hb`hu`l em balrtnzbhnøf prnamr bòl 82/23/3737 $ =77,777 / 37 bòls 1 3=,777
Dmhjb
Humftb y emtb``m
82/23/3737
Ibstl imfmrb`ms y
Buxn`nbr
Emcntl $ 3=,777
Hrîentl
beanfnstrbtnvls Balrtnzbhnøf em pbtmftm
$ 3=,777
Wbtmftms
$ 3=,777
Wbrb rminstrbr `b balrtnzbhnøf em` 2mr bòl em `b pbtmftm em` prleuhtl C
>-
@b Hla Hlapbòáb pbòáb X. X.B, B, b` 2 em mf mfmrl mrl em` 3 3737, 737, lhupb lhupb uf tmrrmfl tmrrmfl br brrmfeb rmfebel el y jb dnr dnrabel abel uf hl hlftrb ftrbtl tl plr 27 bòls, `b Hlapbòáb jb hlfstrunel ufb fbvm pbrb jbhmr sus prleuhtls plr $>77,777.77, b mstm mendnhnl sm `m mstnab mstnab ufb vneb ûtn` em 8= bòls, sm utn`nzbrb ufb tbsb em emprm emprmhnbhnøf hnbhnøf em uf 27%.
Sminstrm `b trbfsbhhnøf y `b balrtnzbhnøf em` prnamr bòl.
Dmhjb
Humftb y emtb``m
2/2/3737
Amklrbs sl slcrm prlpnmebe
Buxn`nbr
Emcntl
Hrîentl
$ >77,777
Cbfhl
$ >77,777
Wbrb rminstrbr m` hlstl em `b hlfstruhhnøf em uf mendnhnl mf uf tmrrmfl brrmfebel b 8= bòls
Hb`hu`l; 82/23/3737
Dlrab 2; >77,777 / 27 bòls 1 >7,777 Dlrab 3; >77,777 >77,777 / 27 % 1 >7,777 Dmhjb
Humftb y emtb``m
82/23/3737
Ibs bsttls i im mfmrb` b`m ms y beanfnstrbtnvls Wrlpnmebe brrmfebeb Amklrbs slcrm
Buxn`nbr
Emcntl
Hrîentl
$ >7,777
$ >7,777 $ >7,777
prlpnmebe brrmfebeb Wbrb rminstrbr `b balrtnzbhnøf em` prnamr bòl em `b amklrb slcrm prlpnmebe brrmfebeb b 27 bòls
Mkmrhnhnls aîtlels pbrb hb`hu`br `b emprmhnbhnøf em `ls bhtnvls dnkls; 2-
Xm hlapr hlaprø ø ufb abqun abqunfbrnb fbrnb vb vb`lr `lr em `b dbh dbhturb turb $:77 $:77,777, ,777, pb pbil il em napum napumstl stl $2=, $2=,777, 777, nfstb`bh nfstb`bhnøf nøf $3=,777, vb`lr rmsneub` $47,777 y su vneb ûtn` ms em = bòls, eurbftm `ls hub`ms prleuhnrâ 8==,777 ufnebems, mf su vneb ûtn` trbcbkbrâ 5>,777 jlrbs. Wrnamrl emtmranfm m` hlstl em `b abqunfbrnb `b hub` sm pbiø tlel mf mdmhtnvl. Wrmpbrbhnøf em `ls bhtnvls Hlstl em abqunfbrnb;
Tb`lr em `b dbhturb Abs; Napumstls Nfstb`bhnøf Ultb` em hlstl em `b abqunfbrnb
$ :77,777 $ 2=,777 $ 3=,777 $ :57,777
E 1 Emprmhnbhnøf H 1 Hlstl em bequnsnhnøf :57,777 S 1 Tb`lr rmsneub` 47,777 W 1 Tneb ûtn` = bòls, 8== prleuhneb, 5>,777 jlrbs. Mf m` smiufel bòl `b abqunfbrnb prleukl ==,=77 ufnebems y trbcbkl =,>77 jlrbs. Emtmranfm `b emprmhnbhnøf em` smiufel bòl plr `ls sniunmftms aîtlels; b) Aîtl Aîtlel el em `áfmb `áfmb rrmhtb mhtb (jbhm (jbhmrr hube huberl rl em tlels `ls b bòls) òls)
H 1 Hlstl bequnsnhnøf S 1 Tb`lr Smsneub` W 1 Tneb ûtn` = bòls
$ :57,777 $ 47,777
E 1 H-S 1 :57,777 ‘ 47,777
W
= bòls
E 1 9:7,777 + E 1 2=4,777 Emprmhnbtnlf bffub` = Bòls Ubc`m em emprmhnbtnlf;
Bòls
Emprmhnbhnøf bfub`
Emprmhnbhnøf bhuau`beb
Tb`lr mf `ncrl
7
7
7
$ :57,777
2
$ 2=4,777
$ 2=4,777
$ 4:5,777
3
$ 2=4,777
$ 823,777
$ =3:,777
8
$ 2=4,777
$ 54:,777
$ 893,777
5
$ 2=4,777
$ 435,777
$ 324,777
=
$ 2=4,777
$ 9:7,777
$ 47,777
H-S
S
c) Xuab e emm `ls `ls eáintls eáintls ((jbhmr jbhmr huberl huberl em tlels tlels `ls `ls bò bòls) ls) H 1 hlstl em bequnsnhnøf $ :57,777 S1 Tb`lr rmsneub` $ 47,777 W 1 Tneb ûtn` = bòls
E 1 (H-S) x Drbhhnøf 2) 3) 8) 5) =)
E1(: :57, 57,777 777 ‘ 47,77 47,777) 7) x = =/2= /2= 1 34 347,7 7,777 77 E 1 (: (:57,7 57,777 77 ‘ 47,7 47,777) 77) x 5/2= 5/2= 1 37:,77 37:,777 7 E 1 (: (:57,7 57,777 77 ‘ 47,7 47,777) 77) x 8/2= 8/2= 1 2=4,77 2=4,777 7 E 1 (: (:57,7 57,777 77 ‘ 47,7 47,777) 77) x 3/2= 3/2= 1 275.77 275.777 7 E 1 ((:57 :57,77 ,777 7‘4 47,7 7,777) 77) x 2 2/2= /2= 1 =3 =3,77 ,777 7 Bòls
Drbhhnøf
Emprmhnbhnøf bfub`
Emprmhnbhnøf bhuau`beb
Tb`lr mf `ncrl
7
7
7
7
$ :57,777
2
=/2=
$ 347,777
$ 347,777
$ =:7,777
3
5/!=
$ 37:,777
$ 54:,777
$ 893,777
8
8/2=
$ 2=4,777
$ 435,777
$ 324,777
5
3/2=
$ 275,777
$ 93:,777
$ 223,777
=
2/2=
$ =3,777
$ 9:7,777
$ 47,777
H-S
S
h)
Jlrbs lrbs em tr trbc bcbk bkl l
U 1 Ubsb H1 Hlstl em bequnsnhnøf
$ :57,777
S1 Tb`lr rmsneub` W 1 Tneb ûtn` 5>,777 jlrbs
$ 47,777
U 1 ((H-S) H-S) U1 :57,777 ‘ 47,777 Jlrb 5>,777 jlrbs U 1 9:7,777 1 t 1 2=.>2 plr hbeb trbcbkl 5>,777 jlrbs Xuplfib qum mf m` smiufel bòl trbcbkl =,>77 =, >77 jlrbs E 1 =,>77 jlrbs x $ 2=.>2 1 >8,:4> emprmhnbhnøf bfub` em 3el bòl.
e) ]f ]fne nebe bems ms prle prleuh uhne nebs bs U 1 Ubsb H 1 Hlstl bequnsnhnøf S 1 Tb`lr rmsneub` W 1 Tneb ûtn`
$ :57,777 $ 47,777 $ 8==,777 ufnebems
U 1 (H-S) U1 :57,777 ‘ 47,777 8==,777 ]fnebems U 1 9:7,777 1 3.2> 8==,777 ufne. Xuplfibals qum mf m` 3el bòl trbcbkl ==,=77 ufnebems. E 1 ==,=77 ]fnebems ]fnebems x 3.2> 1 232,=5= emprmhnbhnøf bbfub` fub` 3-
@b Hlapbòáb X.B, b` 82 em enhnmacrm em` 3737, aumstrb `ls sniunmftms sb`els fmtls, mf humftb em prlpnmebe p`bftb y mqunpl; Umrrmfl SE$ 27, 777,777.77 Mendnhnl 4, :77,777.77 Aumc`ms y mqunpls em ldnhnfbs >57,777.77 Abqunfbrnb 2, 947,777.77 Emtmranfb `b emprmhnbhnøf em uf bòl 3737 smiûf m` aîtlel em `b `my 22->3.
Bhtnvls
Tb`lr mf `ncrls
Wlrhmftbkms
Emprmhnbhnøf bfub`
Mendnhnl
$ :77,777.77
=%
$ 57,777.77
Aumc`m y mqunpl em ldnhnfb
$ >57,777.77
3=%
$ 38=,777.77
Abqunfbrnb
$ 2,947,777.77
2=%
$ 345,777
ULUB@
$ =8>,777
Dmhjb
Humftbs y emt emtb``ms
82/23/3737
Ibstls imfmrb`ms y beanfnstrbtnvls
Buxn`nbr
Emcntl
Hrîent entl
$ =8>,777
Emprmhnbhnøf
$ =8>,777
Emprmhnbhnøf bhuau`beb mend.
$ 57,777.77
Emprmhnbhnøf bhuau`beb aumc`ms y mqunpl em ldnhnfb
$ 38=,777.77
Emprmhnbhnøf em abqunfbrnb
$ 345,777.77
Wbrb rminstrbr `b emprmhnbhnøf em `ls bhtnvls b` 82/23/372>
8-
@b Hlap Hlapbòáb bòáb X.B, X.B, bequnm bequnmrm rm ufb abqu abqunfbrn nfbrnb b b uf hlstl SE$ 83 83,777. ,777.77, 77, `b vneb vneb ûtn` 4 bòls, hlf hlf uf vb`lr rmsneub` em 5,777, tbsb em emprmhnbhnøf plr m` aîtlel em `áfmb rmhtb smrnb em` 24%. Emtmranfm `b emprmhnbhnøf smiûf m` aîtlel emprmhnbhnøf bhm`mrbeb.
H 1 Hlstl em bequnsnhnøf S 1 Tb`lr rmsneub` W 1 Tneb ûtn` 4 bòls
$ 83,777.77 $ 5,777.77
E 1 (H-S) x tbsb 2) E 1 (8 (83, 3,77 777 7 ‘ 5, 5,77 777) 7) x 8 83% 3% 1 :,>4 :,>47 7 3) E 1 3 38, 8,75 757 7 x 83% 83% 1 9,89 9,898 8 8) E 1 2= 2=,4 ,449 49 x 83% 83% 1 =,4 =,428 28.. 5 5) E 1 2 27, 7,4= 4=5 5 x 83% 83% 1 8,57 8,57>. >. 3 =) E 1 9,35 9,35= = x 83% 83% 1 3,82 3,82:. :. 3 4) E 1 5,>3 5,>34 4 x 83% 83% 1 2,=9 2,=94. 4. 8 Ubsb; 24% x 3 1 83%
Bòls
Emprmsnbhnlf bfub`
Emprmsnbhnlf bhuau`beb
Tb`lr mf `ncrl
7
7
7
$ 83,777
2
$ :,>47
$ :,>47
$ 38,757
3
$ 9,898
$ 24,888
$ 2=,449
8
$ =,728.5
$ 32,854.3
$ 27,4=5
5
$ 8,57>.3
$ 35,9==.5
$ 9,35=
=
$ 3,82:.3
$ 39,795
$ 5,>34
4
$ 2,=94.8
$ 3:.4=7.8
$ 8,8=7
H-S
S
Mkmrhnhnls Tmftbs em uf Bhtnvl Dnkl; 2-
@b Hla Hlapbòáb pbòáb X. X.B., B., tm tmfáb fáb ufb abqu abqunfbr nfbrnb nb hlf uf hlst hlstl l em bequns bequnsnhnø nhnøf f em $=57,777.77 $=57,777.77,, y bhtub`amftm tnmfm ufb emprmhnbhnøf bhuau`beb em $5>7,777.77 y sm vmfenø plr $57,777.77. rmb`nhm m` bsnmftl hlftbc`m. 2)
Hls Hlstl tl em em`` bht bhtnvl nvl b ``b b dmh dmhjb jb em ``b b lpm lpmrbh rbhnøf nøf;;
Mqunpl usbel hlstl em bequnsnhnøf $ =57,777.77 Amfls; emprmsnhbhnlf bhuau`beb $ 5>7,777.77 1 hlstl smiûf m` `ncrl $ =7,777.77 3) Tb`lr em` mqunp mqunpl l usbel smiûf prmh prmhnl nl em` amrhb amrhbel; el; Amfls; hlstl em` mqunpl smiûf `ncrl 1 pmreneb mf vmftb em` bhtnvl
Buxn`nbr
$ 57,777 $ =7,777 $ 27,777
Dmhjb
Humftb y emtb``m
x/x/xx
Cbfhl
$ 57,777
Emprmsnbhnlf bhuau`beb mqunpl vnmkl
$ 5>7,777
Wmreneb mf vmftb em` bhtnvl
$ 27,777
Wrlpnmebe p`bftb y mqunpl Mqunpl usbel
Emcntl
Hrîentl
$ =57,777 $ =57,777
Wbrb rminstrbr `b vmftb em uf bhtnvl plr emcbkl em` vb`lr mf `ncrl.
3-
@b Hla Hlapbòáb pbòáb X. X.B., B., tm tmfáb fáb uf mqun mqunpl pl em ldnhn ldnhnfb fb hlf uf hlst hlstl l em bequnsn bequnsnhnøf hnøf em $427,777 $427,777.77, .77, y bhtub`amftm tnmfm uf vb`lr mf `ncrls em e m $=7,777.77 y sm vmfenø plr $4=,777.77. rmb`nhm m` bsnmftl hlftbc`m.
2)
Hls Hlstl tl em em`` bht bhtnvl nvl b ``b b dmh dmhjb jb em ``b b lpm lpmrbh rbhnøf nøf;;
Mqunpl usbel? hlstl em bequnsnhnøf Amfls; vb`lr mf `ncrl 1 emprmsnbhnlf bhuau`beb 3)
$ 427,777 $ =7,777 $ =47,777
Tb Tb`l `lrr em` em` mqun mqunpl pl usbe usbel l
Xmiûf prmhnl em amrhbel; Amfls; hlstl em` mqunpl smiûf `ncrl 1 ibfbfhnb mf vmftb em` bhtnvl
$ 4=,777 $ =7,777 $ 2=,777
Dm Dmhhjb
Hum Humftb ftb y emtb` mtb``m `mss
Buxn Buxn`n `nbbr
x/x/xx
Cbfhl
$ 4=,777
Emprmsnbhnlf bhuau`beb mqunpl
$ =47,777
Wrlpnmebe p`bftb y mqunpl Mqunpl usbel Ibfbfhnb mf vmftb em` bhtnvl Wbrb rminstrbr `bs vmftbs em uf bhtnvl plr mfhnab em` vb`lr em` `ncrl
Emcn Emcntl tl
Hr Hrîîen entl tl
$ 427,777 $ 427,777 $ 2=,777
View more...
Comments