PPC-production possibility curve, PPF-production possibility frontier
Short Description
PPC- production possibility curve, PPF- production possibility frontier...
Description
Production-possibility frontier In economics, a production-possibility frontier (PPF), or "transformation curve", or production possibility curve (PPC) is a graph that shows the different rates of production of two goods that can be produced efficiently with limited productive resources. The PPC shows the maximum obtainable amount of one commodity for any given amount of another commodity (or composite of all other commodities), given the society's technology and the amount of factors of production available. A PPC can be used to illustrate a number of economic concepts, such as opportunity cost, productive efficiency and the marginal rate of transformation. Though they are normally concave, PPCs can also be linear (straight) or convex, depending on a number of factors. When an economy grows its PPC will expand (since more can be produced). Conversely, the PPC will contract with economic growth (less can be produced). Efficiency
An example PPC with illustrative points marked A PPC simultaneously shows all possible combinations of two goods that can be produced; commonly it takes the form of the curve on the right. Invariably, in order for an economy to increase the quantity of one good produced, production of the other good must be sacrificed. Here, butter production must be sacrificed for production of guns. PPCs are most commonly used to predict how much of the latter must be sacrificed for a given increase in production of the former.
Assuming that the economy's factors of production do not increase, making more butter requires that resources be redirected from making guns to making butter. If production is efficient, the economy can choose between combinations (i.e. points) on the PPC: B if guns are to be prioritized, C if more butter is needed, D if a mix is required, and so forth. Hence, all points on the curve are points of maximum productive efficiency (no more output can be achieved from the given inputs); all points inside the frontier are feasible but productively inefficient (such as A) All points outside the curve are infeasible for given resources and thus unattainable in the short run, such as X. In addition, a single point on the PPC represents perfect allocative efficiency, where the correct combination of both is produced to maximize social welfare. Opportunity cost
Increasing butter from A to B carries little opportunity cost, but for C to D the cost is great. If there is no increase in productive resources, increasing production of a first good has to entail decreasing production of a second, because resources must be transferred to the first and away from the second. Points along the curve describe the trade-off between the goods. The sacrifice in the production of the second good is called the opportunity cost (because increasing production of the first good entails losing the opportunity to produce some amount of the second). Opportunity cost is measured in the number of units of the second good that are forgone if an additional unit of the first good is made.
In the context of a PPC, opportunity cost is directly related to the shape of the curve. Unless a straight-line PPC is used, opportunity cost will vary depending on the start and end point. Thus, producing ten more packs of butter when only a little butter is being produced may carry with it small opportunity costs (as with a movement from A to B), but the same change once more is produced may seem more costly (as with C to D). Marginal rate of transformation
Marginal rate of transformation increases when the transition is made from AA to BB. The slope of the production-possibility frontier (PPC) at any given point is called the marginal rate of transformation (MRT). It describes numerically the rate at which output of one good can be transformed (by re-allocation of production resources) into output of the other. It is also called the (marginal) "opportunity cost" of a commodity, that is, it is the opportunity cost of X in terms of Y at the margin. It measures how much of good Y is given up for one more unit of good X or vice versa. Since the shape of a PPC is commonly drawn as concave downward to represent increasing opportunity cost with increased output of a good. Thus, MRT increases in absolute size as one moves from the top left of the PPC to the bottom right of the PPC. The marginal rate of transformation can be expressed in terms of either commodity. The marginal opportunity cost of guns in terms of butter is simply the reciprocal of the marginal opportunity cost of butter in terms of guns. For example, the (absolute) slope at point BB in the diagram is equal to 2, then, in order to produce one more pack of butter, the production of 2 guns must be sacrificed. If at AA, the marginal opportunity cost of butter in terms of guns is equal
to 0.25, then, the sacrifice of one gun could produce four packs of butter, and the opportunity cost of guns in terms of butter is 4. Shape The example used above (increasing opportunity costs, with a curve approaching a quarter-circle) is the most common form of PPC. It can represent an assumed disparity in the factor intensities and technologies of the two sectors. That is, as an economy specializes more and more into one product, the opportunity costs of producing that product increase, because we are using more and more resources that are poorly suited to produce it. With increasing production of butter, workers from the gun industry will move to it. At first, the least qualified (or most general) gun workers will help starts making butter. The move of these workers has little impact on the opportunity cost of increasing butter production: the loss in gun production will be small. This cost of successive units will increase as more specialized gun manufacturers are attracted. If opportunity costs are constant, a linear PPC is produced. Products requiring similar resources (bread and pastry, for instance) will have an almost straight PPC, and hence almost constant opportunity costs (when increasing production rates). More specifically, with constant returns to scale, there are two opportunities for a linear PPC: I. If there was only one factor of production to consider. II. If the factor intensity ratios in the two sectors were constant at all points on the production-possibilities curve. With varying returns to scale, however, it may not be entirely linear in either case. In other interpretations, a straight-line production-possibility frontier reflects a situation where resources are not specialized and can be substituted for each other with no cost. With varying returns to scale, in the long run the PPC would appear inverted with opportunity costs falling as more are produced of a particular product. This is caused by the diminishing marginal return issues such as labour immobility and skills mismatch all being resolvable in the long run, leaving only economies of scale to be achieved from the greater specialization into a particular good to drive down opportunity cost.
A common PPF:
A straight line PPF:
increasing opportunity cost
constant opportunity cost
An inverted PPF: decreasing opportunity cost
Position
An unbiased expansion in a PPC The two main determinants of the position of the curve are available production functions (reflecting the state of technology and management) and available factors of production. Only points within a PPC are actually possible in the short run. In the long run, if the technology improves or the supplies of factors of production increase, the production-possibility frontier shifts to the right (outward), raising the amount of each good that can be produced. A military or ecological disaster might move the PPC to the left (inward). Virtually all such shifts have their own costs associated with them. By extension, PPCs can be used to show whether an economy is prioritizing future development
(capital goods) or present consumption (consumer goods).Likewise, the growth may be biased, that is, the PPC shifts outwards more in one direction than the other, usually caused by unequal technological improve or increase in the factors of production.
View more...
Comments