Power Grid on Well Foundation

April 27, 2018 | Author: spattiwar | Category: Deep Foundation, Civil Engineering, Infrastructure, Geotechnical Engineering, Science
Share Embed Donate


Short Description

Download Power Grid on Well Foundation...

Description

Presentation by Sandeep Pattiwar, TANGENT Technical Solutions to  Power Grid Corporation of India Limited, Gurgaon Date: 8th February 2010

Well Foundations in India  Introduction y In large parts of India, well foundations are commonly 

adopted for bridges y Design and construction practices have been  progressively streamlined to cater for ever increasing  progressively streamlined to cater for ever‐increasing  loads and foundation depths  y With the introduction of large spans, the well size also  With the introduction of large spans  the well size also  increases. For Second Hooghly Bridge, 24 m dia wells  have been adopted  The deepest well so for  have been adopted. The deepest well so for  constructed in India is up to  70 m below WL 

Well Foundations in India  Introduction y Daring efforts are on in different parts of the world to  y y y y

build bridges on a very large scale  Even bridges between continents are in process,   America Asia, Europe‐Africa for example America‐ Asia  Europe Africa for example In India hundreds of thousands of bridges have been  constructed during the twentieth century   During the first decade of this century, about  R Rs.100,000 cr   are expected to be spent on Bridges   t d t  b   t   B id Foundations cost 50 % or more

Use of Well Foundation Introduction y Past Experience making it more reliable and  y

y y y

dependable by virtue of default choice Well foundations are more suitable for deep water   where it is difficult to carry construction equipment  like River/Creek Bridges Intake Structures  offshore as well as river Intake Structures, offshore as well as river Deep foundation and suitable for alluvial soil which  mainly consist of Sandy i l   i t  f S d No special equipment and heavy machineries are  required i d

Use of Well Foundation Introduction y Used in India and Indian Sub‐continent only y Well Foundation is preferable to pile foundation if it  W ll F d i  i   f bl     il  f d i  if i  

has to resist large horizontal forces y Well foundation is more suitable for deep water where  W ll f d i  i     i bl  f  d     h   it is difficult to carry construction equipment y Well Foundation is meant for deep foundation where  W ll F d i  i    f  d  f d i   h   the river bed gets scoured and forces need to be  t transferred to deeper level. f d t  d  l l

Pile Foundation Vs Well Foundation Item

Pile Foundation

Well Foundation

Vertical Capacity

By Side Friction as well End  Bearing

Only End Bearing

Lateral Capacity

Net balance of Passive By Fixity Depth in clay as  well Sandy Soil, alternatively  Resistance and Active  Spring Analogy can be used Pressure  with  FOS of 2

Structure

Slender and Flexible

Short and Rigid

Construction

Difficult under deep water

Easy comparatively

Construction Equipment

Heavy and Costly like Rig  p and platform

Crane and Grab

Time

Faster

Longer

o ec o Protection

Liner is required up to scour  e s equ ed up o scou level

Ca sso s equ ed if   Caisson is required necessary for construction  requirement

DESIGN ASPECTS

Shapes and Sizes Shape is governed by the requirement of stability during  construction and least resistance during service: y Need for effective streamline flow y Circular is the most common option available y D‐Shape well for wider and heavy foundations y Rectangular shape is rare unless required for the  functionality y Circular diameter is upto 12 m without any diaphragm  else either diaphragm is provided or extensive study is  undertaken for the steining stresses.

Shapes and Sizes Shape is governed by the requirement of stability during  construction and least resistance during service: y Dredge hole for easy dredging > 2 m y D‐Shape well is not to have                                              

aspect ratio (length/breadth) 2:1

Well Foundation A Well foundation consist of  following components: y Cutting Edge y Well Curb W ll C b y Bottom Plug y Steining y Sand Filling y Top Plug y Intermediate Plug y Well Cap

Input Data y Forces above well foundation y Hydraulic Parameters like scour depth, current  Hydraulic Parameters like scour depth  current  y y y

y

velocity and Discharge Seismic Zone and Wind Pressure Bore Hole details for assessing depth of soil and rock,  if anyy Geo‐technical Investigations including stratification,  y and c and weighted mean diameter of bed  g density, φ material  Bearing Capacity

Special Requirement y y y y y

Variation of depth of water i.e. HFL and LWL Bed Levels and Ground Levels Working Months availability Formation Level Any other feature depending on the location like rock  slope  type of water  and moderate/severe  slope, type of water  and moderate/severe  environment condition  y Pneumatic Sinking in case of deeper founding level  with boulder strata y Floating caisson incase of deep standing water g p g

Depth of Well Foundation for Soil y Mean scour depth is calculated as per bed material d sm

⎛D = 1.34⎜ ⎜k ⎝ sf

2 b

1/ 3

⎞ ⎟ ⎟ ⎠

y This “mean scour depth” is used to calculate Maximum 

scour depth to account local scour effect y For Pier foundations : 2 x dsm from HFL y For Abutment foundations: 1.27 x dsm from HFL

y Grip Length: The minimum depth of foundation 

below scour level is 1/3 rd of Maximum Scour Depth

Depth of Well Foundation for Rock y The well foundation shall be taken up to sound rock 

and rest evenly along the periphery by blasting or  pneumatic sinking, if required. y The shear key should be provided inside the rock for a  depth of 300 mm in hard rock and 600 mm in soft  rock. rock y Diameter of shear key must be minimum 1.5 m or 1.5 m  to 2 0 m less than dredge hole to 2.0 m less than dredge hole. y 6 dowel bars of 25 mm diameter with anchored 1.5 m  in rock and projected 1 5 m above in rock and projected 1.5 m above.

Well Steining Thickness of well steining is governed by following  factors: y Natural sinking or sinking without excessive kentledge y Without getting damaged during rectifying excessive  tilt and shift y Hoop compression for the differential pressure during  p p p g construction and service y Hoop tension arising out of differential earth pressure  g developed during sand blow y Structural design at all levels due to external forces

Well Steining Thickness of well steining is governed by following  factors: y The minimum thickness > 500 mm y The thickness arrived for self sinking, empirically: h = kd l

y Where k is a constant and depends on the type of well 

steining i i

In Cement Concrete

0.03

Twin D wells

0.039

y d is diameter of well or smaller dimensions in D‐Well y l is depth of well below top of well or LWL, which ever  p p

is higher

Well Steining Further steining thickness shall be adjusted as per type  of soil stratum:

Well Steining Steining thickness can  be reduced  if the  be reduced, if the  height of well is more  than 30 m  However   than 30 m. However,  the reduced diameter  of well should be able  to support structure  above well  foundation.

Well Steining – Structural Design y Plain Concrete Wells y Vertical Reinforcement = 0.12% of Gross Area V ti l R i f t    %  f G  A y Horizontal Hoop Reinforcement = 0.04% of volume y RC Concrete Wells RC C  W ll y Vertical Reinforcement = 0.2% of Gross Area y Inner Face, vertical reinforcement = 0.06% y Transverse Reinforcement as per column design and  shall not be less than 0.04% of volume h ll   b  l   h   %  f  l

Well Steining – Structural Design y Checking of steining stresses at all critical sections and 

normally these are: y Well cap bottom level y At the level of change in steining thickness At th  l l  f  h  i   t i i  thi k y Below scour level where resultant shear is zero

y Well steining also shall be checked for ovalisation

moments t

Well Steining – Jack down method Well Steining  Jack down method •

As per ‐IRC‐78‐2000 Clause‐708.2.3.5 l If Specialised methiods of sinking such as jackdown method are adopted then the steining thickness may be adjusted according to design and construction requirements. i t

Check for cohesion‐less soil  y IRC 45 recommends checking of well 

Side Earth Resistance y Active and Passive Earth Pressure as per Coulomb 

Theory:

Side Earth Resistance y In case of c‐φ soil, effect of ‘c’ may be added as per 

procedure given by Bell:

Bell  Correction

Side Earth Resistance – F.O.S. y The Side earth resistance for pier wells is considered 

below scour level y The resistance calculated is ultimate and converted  into allowable resistance by dividing F O S into allowable resistance by dividing F.O.S. y Net pressure of Passive and Active is calculated y F.O.S. is considered 2 for load combination without  F O S  i   id d   f  l d  bi i   i h  

wind or seismic y F.O.S. is considered 1.6 for load combination with wind  F O S  is considered  6 for load combination  ith  ind  or seismic

Side Earth Resistance y For cohesionless soil, IRC 45 may be used for pier well 

foundations y Side earth resistance may be ignored in case of  foundations resting on rock y However, side resistance of well foundations resting on  rock be considered if allowable bearing pressure is less  than 100 t/m2

Tilt and Shift y In Design of well, tilt of 1 in 80 and shift of 150 mm due 

to translation both additive in a direction which will  cause most severe effects shall be considered y If the actual tilt and shift exceeds the above limits,  , remedial measures have to be resorted to bring the  well within limit.  y However, if not possible then its effect on bearing  pressure, steining stresses shall be examined and if  necessary can be sink further down to control the base  pressure.

Cutting Edge y To penetrate easily through the different type of strata 

cutting edge is provided at the base of well. It is  cutting edge is provided at the base of well  It is  designed to cater resistance which encountered during  sinking  It shall be anchored properly to well curb sinking. It shall be anchored properly to well curb. y Guidelines of IRC 78 stipulate that its weight should  not be less than 40 kg/running meter. not be less than 40 kg/running meter y When there are partitions, the intermediate cutting  edge have been placed 300 mm higher than the outer  cutting edge to prevent rocking.

Cutting Edge

Cutting Edge

Cutting Edge g g

Cutting Edge

Required 40 kg/meter

Well Curb y Minimum resistance while being sunk. y Strong enough to transmit forces from steining to the  S   h    i  f  f   i i    h  

bottom plug  y Minimum reinforcement = 72 kg/m3 y Internal angle of curb shall be kept in between 30 degree to  37 g 37 degree.

Well Curb

Well Curb

Well Curb

Bottom Plug y Is provided to transfer the load from steining to 

bottom plug and ultimately from bottom plug to  underneath strata. y A suitable sump shall be made below the level of the  cutting edge. y Before concreting, it shall be insured that its inside  Before concreting  it shall be insured that its inside  faces have been cleared thoroughly.

Bottom Plug

SAND FILLING

Bottom Plug

Well Cap y The bottom of well cap shall be as low as possible 

taking into account of LWL taking into account of LWL. y Well cap design is as per any rational method y Normally design is cater to consider partial fixity at the  N ll  d i  i       id   i l fi i     h   junction to take care large fixity moments.

Filling y Filling if required shall be sand or excavated material 

free from organic matter free from organic matter. y Incase filling is not done, bottom plug shall be  checked for upward thrust. checked for upward thrust y Normally, if vertical pressure is within limit, filling is  done upto scour level atleast. scour level atleast y In a high seismic area, filling is avoided above scour  l l level.

Construction of Well Foundations: ƒ Conventional Construction on 

Land /  Sand Islands ƒ Floating Caissons ƒ Jack  down  method k d h d ƒ Pneumatic Sinking P ti  Si ki

Conventional Construction on  Land / Sand Island Method

Well Sinking – Sand Island Method

Well Sinking – Sand Island Method

Well Sinking – Sand Island Method

GANGA  BRIDGE  AT  PATNA

Floating Caissons Floating Caissons

Floating Caisson g z

Area for fabrication of steel caisson will be  made near the river bank by constructing  suitable  cofferdam 

z z

IInitial i i l lift lif off steell caisson i will ill be b fabricated f bi d on a leveled ground in fabrication yard G bbi off soil Grabbing il from f within i hi andd aroundd the h caisson will be carried out so as to allow the water to rush in and make the caisson to float. float The caisson will be held in position with proper guying arrangement

z z z

z

The caisson will be towed to the desired location and aligned properly Caisson will be held in position with tethering arrangement Concrete quantity as per design requirements will be poured evenly in the curb portion so that the caisson i gets further f h immersed i d in i the h water Next lift of steel caisson will be built and concrete quantity i off designed d i d amount will ill be b pouredd inside i id the caisson

z z z z z

This procedure will continue till the cutting edge comes near the th riverbed i b d When the caisson is about to get grounded its alignment will be rechecked Water will be poured inside the caisson to ensure its grounding at exact location Water ba Wate ballast ast will w be replaced ep aced with w t concrete co c ete so that t at caisson gets grounded at its exact location Steining concreting will be continued further and the well will be taken to its founding level as per normal practice

Tethering arrangement General Details

Caisson Aligned at location

First lift of concrete poured

Shifting of  concrete over  Barge g

Concrete placing

Build next lift of Caisson And place concrete

Checking of alignment with water ballast

Muck removal by grabbing

Sinking in progress

Steining Concreting & sinking

Sinking in progress

Final stage – At founding level

Well Caisson Launching

Caisson  Fabrication Yard

Launching of  Caisson

Well Caisson Launching

Caisson being towed  to location

Sinking in  progress

SECOND HOOGHLY BRIDGE Enabling works for caisson sinking

JOGIGOPHA BRIDGE Slipway for Floating Caissons

Jogighopa Bridge Slipway for Floating Caissons

Jogighopa Bridge Floating Gantry for Handling Caissons

Floating Caisson being  g g Towed to Location

Colcrete arrangemen f ffoundation for d ti

Jack Down Method Jack Down Method

Well Sinking By Jack Down Method

Well Sinking By Jack Down Method

Well Sinking By Jack Down Method

Well Sinking By Jack Down Method

Pneumatic Sinking Pneumatic Sinking

Pneumatic sinking Pneumatic sinking y Pneumatic sinking is resorted to when open sinking

can not be continued in hard strata and excavation by open grabbing and chiseling is not possible. y When p pneumatic sinking g is adopted, p , it is p possible to inspect the well from inside and take the decision based on the actual conditions.

Pneumatic Sinking

• •

In this method airtight cover is fixed on dredge hole and compressed air is pumped in, so that water is pushed out of well up to cutting edge level. Men are sent inside to carryout manual excavation. Muck is removed through shaft without releasing pressure. . . .Contd.

Arrangement for Pneumatic Sinking

Kali Bridge – Pneumatic Sinking

Kali Bridge – Pneumatic Sinking

Limitations • Pneumatic sinking is very costly and is resorted to

only when the well can not be founded safely with open sinking. sinking • Men have to work under compressed air, air pressure of

which depends upon the depth of cutting edge below the water level. level • Depth up to which pneumatic sinking can be done

without undue risk to human lives is restricted to about 30 m. m ….contd

Limitations • Man feels increased pressure on ear drum when inside

the airlock. airlock If it is not balanced properly it may result in sever pain, bleeding and may cause damage to ear drum. • Dizziness, double vision, incoherence of speech are

quite common and some times man becomes unconscious after coming out of well.

. . . contd

Limitations  • Due to the physiological effects on men working inside

an air lock, lock effective working hours are generally restricted to about two hours. This is followed by period of gradual decompression and a minimum rest period of 5 to 6 hours

CASE STUDY Second Hooghly Bridge

Second Hooghly Bridge

Second Hooghly Bridge

Second Hooghly Bridge g y g

Second Hooghly Bridge , Calcutta Tilting Slipway for Floating Caisson Tilting Slipway for Floating Caisson 

Second Hooghly Bridge , Calcutta

SECOND HOOGHLY BRIDGE

Vidyasagar Setu Culcutta (1992) Vidyasagar Setu, Culcutta  (1992)

Sinking a Pylon caisson 11

CASE STUDY Jogighopa Bridge

CASE STUDY Jogighopa g g p Bridge g

Brahmaputra Bridge, Jogighopa, 2.28 km

y Wells 7 and 13 tilted;  more than a year to correct y Wells 17 & 18 on hard rock at steep incline (1:1). 12 x  W ll    &  8   h d  k     i li  ( )      

1500 mm dia anchor piles, provided through steining,  extending to 10 m below cutting edge  y For well 17 additional 1500 dia, 8 nos, external piles  provided  integral with the well cap  provided, integral with the well cap  y Two rows of jet grouted piles around periphery of the  steining as curtain wall  t i i     t i   ll 

Brahmaputra Bridge, Jogighopa ∅ 1.5 m

WELL CAP

3.5 35m 1.5 m

50 m 2.5 m 18 m

RC PLUG

PLAN

DRILL PIPE WITH AIR CONTROL VALVES WORKING PLATFORM CASING DRILL PIPE STABILIZER + 35.00 m CAISSON STEINING AIR - LIFT DRILL PIPES HEAVY DUTY STIFF ASSEMBLY HEAVY DUTY STABILIZER

CC PLUG

3m JET GROUT CURTAIN

∅ 1.5 m PILE

STIFF SPACER PIPE NON ROTATING DRUM STABILIZER - 12.50 m

10 m

FIG. SECTION

JOGIGHOPA BR. FOUNDATIONS

DRILL BIT

WIRTH DRILLING RIG

Jogighopa Bridge – Caisson Fabrication

JOGIGOPHA BRIDGE Sli Slipway ffor Fl Floating ti Caissons C i

Jogighopa Bridge Slipway for Floating Caissons

Jogighopa Bridge Floating Gantry for  Handling Caissons

Jogighopa Bridge Floating Gantry for Handling Caissons

Jet Grouting

Foundation scheme for wells 17 and 18 Foundation scheme for wells 17 and 18 Design & construction of above b f foundations, d i were governed by following main factors: (i) Likely scour upto rock strata. (ii) Uniform support over steeply sloping strata (iii) Sinking under pneumatic condition was not feasible

Foundation scheme for wells 17  I In view i off above, b f ll i following and 18 d  8 scheme was adopted :

(i) Sink well upto one metre

above top of rock strata. (ii) Stabilise S bili soil il around d well ll curb above rock strata by forming grout barrier. barrier (iii) Support steining by constructing g six out of twelve 1.5 m diameter RC piles through 1.65 m diameter holes kept in well steining, with 10 m anchor length g in rock strata.

Foundation scheme for wells 17 and 1 (iv) Remove sand in dredge‐hole b grabbing by bb and d air‐lifting lf to clean entire area including g that below well curb. (v) Construct concrete bottom plug. plug (vi) Construct balance six piles to complete anchoring of the foundation. foundation (vii) Construct RC plug over the plug g in dryy bottom p condition d after f dewatering d the h well.

Jogighopa Bridge - Piling

Piling through the Well Foundation

CASE STUDY Nepal Bridge

Artesian Conditions Shivganga bridge, Nepal, 8 spans x 32 m y Artesian head encountered at 17 m below GL y Well redesigned with foundation resting on clay above  W ll  d i d  i h f d i   i     l   b  

the artesian layer. Plus bed protection : ƒ Upstream & downstream aprons & Cut‐off walls,  U  & d    & C ff  ll   ƒ Concrete floor

Artesian Conditions - Khara Bridge, Nepal

Well disappears during sinking Artesian Bubbles

SAR 6 Y2k

CASE STUDY Passighat Bridge

Passighat Bridge, Arunachal Pradesh  Well Foundation y Non availability of formula for scour depth in bouldary

strata; slow sinking in such strata   y Subsoil with large boulders 2 to 3 m dia; rate of sinking  10 to 20 mm per hour initially    p y y Sinking very difficult due to large size boulders;  considerable slow down in overall progress  y Difficulties in finally deciding the foundation level;  decision making body in considerable dilemma     y ‐R K Dhiman IABSE colloquium 1999  foundations for major 

bridges

Passighat Bridge, Arunachal Pradesh  Well Foundation y Design consultant recommended 50 m deep wells y The bore data indicated hard conglomerate right  Th  b  d  i di d h d  l  i h 

through the depth up to 50 m except top 10 m  y Core recovery was close to 90% C       l     % y During execution, impossible to sink the well beyond  10 m with conventional method      i h  i l  h d  y Pneumatic sinking used up to 30 m; beyond that it is  not possible physiologically to work under compressed  bl h l ll k d d air, it is not permitted as per code

Well Foundation Delays  Passighat Bridge, Arunachal Pradesh, 703 m long Bridge Arunachal Pradesh 703 m long y Started in 1987 and well 

sinking continues (2006)  y Design envisaged, 50 m  deep wells. Hard  p conglomerate strata with  very large boulders did not  permit sinking it  i ki y After 15 years of struggle  including pneumatic  sinking, the founding level  was raised by 22 m.  y

Boulder dredged during sinking i ki

Pasighat Bridge Unsuitable foundation design g Boulder B ld dredged g during well sinking SAR 6 Y2k

Fi 1 : PASSIGHAT BRIDGE Fig: LEGEND

Constructability

Bridge in Nepal

Narmada bridge, Chandod Well cap 14 m below water

SAR 6 Y2k

Construction Equipments Construction Equipments

Batching Plant on Shore

4/2/2010

Floating Batching Plant

Concrete cofferdam being towed to location

Cranes for Concreting and Dredging

4/2/2010

Floating arrangement for Batching Plant Concrete pump and placer boom

GANGA BRIDGE AT PATNA Fl Floating i crane for f well ll sinking i ki

Well sinking by cranes and grabs

SECOND HOOGHLY BRIDGE Enabling works for caisson sinking

Correction of Tilt and Shift Correction of Tilt and Shift

Well sinking ;Tilt correction Concrete Kentledge blocks Kentledge for Well Sinking

Wellll sinking W i ki ;Tilt Tilt correction ti Platform for concrete kentledge

Tilt Rectification of Wells

Tilt Rectification of Wells Til R ifi i Tilt Rectification of Wells f W ll

Tilt Rectification of Wells

Tilt Rectification Platform for Well Foundation

Tilt Rectification Platform for Well Foundation

4/2/2010

Kandroor Bridge across Sutlej - Badly tilt d well tilted ll being b i corrected t d

SAR 6 Y2k

Kandroor Bridge

SAR 6 Y2k

Select IRC Papers reporting Well  Select IRC Papers reporting Well Foundation Problems y IRC Paper 253 ‐ Rupnarayan Bridge, West Bengal

293 ‐   Bassein Creek Bridge, Mumabi B i  C k B id  M bi 314 ‐ Godavari Bridge, Maharashtra

328 ‐ 8  Bhakla Bridge, UP Bh kl  B id  UP 359 ‐ Haldi Bridge, WB 400 ‐ Hasdeo Bridge, Champa, MP 434 ‐ Tapi Bridge, Idgaon, Maharashtra 464 – Kalyani Bridge, WB y Indian Highways, Dec 1982, Arjun Khola Bridge, Nepal

Conclusion y The construction of wells have not always been 

smooth, a variety of problems during construction has  th     i t   f  bl  d i   t ti  h   resulted in inordinate delays, increased cost of  rectification and even abandonment of wells  tifi ti   d    b d t  f  ll   y With advance methods of geo‐technical investigation, 

equipments, revised codal specifications and sound  engineering practices, we should able to decide the  methodology and foundation type in advance.

Comments, queries, suggestions  q gg

welcome tangent g [email protected] @

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF