Pmu-Structural Calculations
November 13, 2022 | Author: Anonymous | Category: N/A
Short Description
Download Pmu-Structural Calculations...
Description
JEWEL OF THE CREEK DEVELOPMENT PHASE 2,PLOT
NO
129-104 PORT SAED, DUBAI
PERFORMANCE MOCKUP UNIT (PMU) STRUCTURAL CALCULATIONS EXPECTED RESULTS FOR GENERAL CURTAIN WALL TEST WALL TEST
(3.3 M H X 1.5 M W (MAX)) (MAX))
1
PERFORMANCE MOCKUP UNIT UNIT (PMU)
STRUCTURAL CALCULATIONS FOR
JEWEL OF THE CREEK ,DEVELOPMENT , PHASE 2
INTRODUCTION: The Following Report Contains the Structural Calculations for Curtain Wall for The Jewel of The Creek Development, Phase-2. This Structural Calculation Is Assessed as Per Bs:8118: Par-1. (Structural Use of Aluminum) With Required Support Paper at Latest of This Report. Report.PMU PMU (Performance Mock-Up Unit) For External Aluminum and Glass Works Laboratory Testing as Per Section 08 44 13 Metal-Framed Curtain Wall Part 1.03 C. This Test Reflects the Adequacy of Curtain Wall System as Per Project Specifications for All the Jewel of The Creek Buildings (Phase 2).
GLASS DETAILS:
It consists of 28 mm Tempered
Glass.
=28 mm (Used in Analysis)
6+16+6 mm
DEFLECTION Deflection Limits as per Project Specifications L/175.
ALUMINIUM PROPERTIES: Density = 2710 kg/m3 Modulus of elasticity = 70000 N/mm2 Modulus of rigidity
= 26600 N/mm2
2
LOAD COMBINATION ( BS 8118: Part 1:1991)
WIND LOADS Maximum Design Wind Pressure /Suction is 2.0 kpa as per Wind Simulation Studies and Discussion with the Consultant.
MAXIMUM MULLION TO MULLION SPACING Maximum spacing is (1.2 +1.78 )/2= 1.49 m≈1.50 m to calculate the Tributary Area.(Maximum D3)
3
PROFILE SELECTION (NO REIFORCEMENT /STIFFENERS)
Aluminum Mullion GE 14546
, Bracket to Bracket(in-in) Height is 33 3300 mm. Bracket to
4
GE 14546
Geometric properties of the cross-section Parameter Value A Sectional area 11.21 Av,y Conventional shearing area along Y-axis 1.87 Av,z Conventional shearing area along Z-axis 6.13 a Angle between Y-Z and U-V axes 0 Iy Moment of inertia about axis parallel to Y 417.56 passing through centroid Iz Moment of inertia about axis parallel to Z 67.92 passing through centroid It Torsional moment of inertia (St. Venant) 170.22 Iw Warping constant 509.03 iy Radius of gyration about axis parallel to Y 6.1 passing through centroid iz Radius of gyration about axis parallel to Z 2.46 passing through centroid Wu+ Elastic modulus about U-axis (+ve extreme) 48.37 Wu- Elastic modulus about U-axis (-ve extreme) 46.27 Wv+ Elastic modulus about V-axis (+ve extreme) 22.09 Wv- Elastic modulus about V-axis (-ve extreme) 22.09 W Plastic modulus about axis parallel to U-axis 61.61 pl,u Wpl,v Plastic modulus about axis parallel to V-axis 24.9 Iu Moment of inertia about U-axis 417.56 Iv Moment of inertia about V-axis 67.92 iu Radius of gyration about U-axis 6.1 iv Radius of gyration about V-axis 2.46 au+ Centroid to edge of compression zone along 1.97 +ve U-axis au- Centroid to edge of compression zone along 1.97 -ve U-axis av+ Centroid to edge of compression zone along 4.32 +ve V-axis av- Centroid to edge of compression zone along 4.13 yM
-ve V-axis Distance to centroid oid alon long Y-axis xis
-10 -1037.44
cm^2 cm^2 cm^2 deg cm^4 cm^4 cm^4 cm^6 cm cm cm^3 cm^3 cm^3 cm^3 cm^3 cm^3 cm^4 cm^4 cm cm cm cm cm cm cm
1 5
zM Sw Yb Zb P Pi Pe
Distance to centroid along Z-axis Sectorial static moment Distance to shear centre along Y-axis Distance to shear centre along Z-axis Perimeter Internal perimeter External perimeter
-9.48 0 -1037.44 -11.21 99.63 44.34 55.28
cm cm^4 cm cm cm cm cm
I1 I2 I12 Ip ip Wp yp zp up vp
Moment of inertia about Y-axis Moment of inertia about Z-axis Product of inertia about the centroid Polar moment of inertia about centroid Polar radius of gyration about centroid Polar elastic modulus about centroid Distance to equal area axis along Y-axis Distance to equal area axis along Z-axis Distance to equal area axis along U-axis Distance to equal area axis along V-axis
417.56 2995811.61 -110.03 485.48 6.58 52.98 0 0.33 0 0.33
cm^4 cm^4 cm^4 cm^4 cm cm^3 cm cm cm cm
Overall dimensions 61.5x176.577 mm
2 6
STAAD ANALYSIS
7
J Jo ob No
Sheet No
Rev
1 Software licensed to only@ ::LAVteam::® CONNECTED User: user@edu Non commercial
Part
Job Title
Ref B Byy
Client
File
Date30-Nov-21
STAAD-1.5M-3.4M.STD
Job Information Job
Engineer
Checked
Approved
Name:
30-Nov-21
Date: Project ID
Project Name Structure Type
PLANE FRAME
Number of Nodes Number of Elements
2 Highest Node 1 Highest Beam
Number of Basic Load Cases
3
Number of Combination Load Cases
8
2 1
Included in this printout are data for: The Whole Structure All Included in this printout are results for load cases: Type L/C
Primary Primary Primary Combination Combination Combination Combination Combination Combination Combination Combination
1 2 3 4 5 6 7 8 9 10 11
Name
DEAD LOAD WIND LOAD (2.0 KN/M2 X 1.5M)=3.00 K WIND LOAD (2.0 KN/M2 X 1.5M)=3.0 KN/ DL+WL(+) DL+WL(-) 1.2DL+1.2WL(+) 1.2DL+1.2WL(-) 1.35DL+1.5W L(+) 1.35DL+1.5W L(-) 1.2DL+1.6WL(+) 1.2DL+1.6WL(-)
Section Properties Section Prop
Section
Area 2
1
Prismatic General
(cm ) 11.210
Iyy 4
(cm ) 67.920
J
Izz 4
(cm ) 417.560
Material 4
(cm ) 1.000 ALUMINUM
Date/Time
Chd
16-Jul-2022 11:14
Pr Print Time/Date: 16/07/2022 11:24
STAAD.Pro STA AD.Pro CONNECT Edition 22.04.00.40
Print Run 1 of 11 8
J Jo ob No
Sheet No
Rev
2 Software licensed to only@ ::LAVteam::® CONNECTED User: user@edu Non commercial
Part
Job Title
Ref B Byy
Client
File
Date30-Nov-21
STAAD-1.5M-3.4M.STD
Chd
Date/Time
16-Jul-2022 11:14
Combination Load Cases Combination Comb.
Combination L/C Name
4
DL+WL(+)
5
DL+WL(-)
6
1.2DL+1.2WL(+)
7
1.2DL+1.2WL(-)
8
1.35DL+1.5WL(+)
9
1.35DL+1.5WL(-)
10
1.2DL+1.6WL(+)
11
1.2DL+1.6WL(-)
Primary
Primary L/C Name
1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3
DEAD LOAD W IIN ND LOAD (2.0 KN/M2 X 1.5M)=3.00 K DEAD LOAD WI WIN ND LOAD (2.0 KN/M KN/M2 2 X 1.5M)= )=3 3.0 KN KN// DEAD LOAD W IIN ND LOAD (2.0 KN/M2 X 1.5M)=3.00 K DEAD LOAD WI WIN ND LOAD (2.0 KN/M KN/M2 2 X 1.5M)= )=3 3.0 KN KN// DEAD LOAD W IIN ND LOAD (2.0 KN/M2 X 1.5M)=3.00 K DEAD LOAD WI WIN ND LOAD (2.0 KN/M KN/M2 2 X 1.5M)= )=3 3.0 KN KN// DEAD LOAD W IIN ND LOAD (2.0 KN/M2 X 1.5M)=3.00 K DEAD LOAD WI WIN ND LOAD (2.0 KN/M KN/M2 2 X 1.5M)= )=3 3.0 KN KN//
Factor
1.00 1.00 1.00 1.00 .00 1.20 1.20 1.20 1.20 .20 1.35 1.50 1.35 1.50 .50 1.20 1.60 1.20 1.60 .60
3.300m
Y X Z
OVERALL GEOMETRY
Load 3
Pr Print Time/Date: 16/07/2022 11:24
STAAD.Pro STA AD.Pro CONNECT Edition 22.04.00.40
Print Run 2 of 11 9
J Jo ob No
Sheet No
Rev
3 Software licensed to only@ ::LAVteam::® CONNECTED User: user@edu Non commercial
Part
Job Title
Ref B Byy
Client
File
Date30-Nov-21
STAAD-1.5M-3.4M.STD
Chd
Date/Time
16-Jul-2022 11:14
3.300m R1
Y X Z
GE 14546
Load 3
-0.500 kN/m
Y X Z
Load 1
DEAD LOAD
Pr Print Time/Date: 16/07/2022 11:24
STAAD.Pro STA AD.Pro CONNECT Edition 22.04.00.40
Print Run 3 of 11 10
J Jo ob No
Sheet No
Rev
4 Software licensed to only@ ::LAVteam::® CONNECTED User: user@edu Non commercial
Part
Job Title
Ref B Byy
Client
Date30-Nov-21
File
Date/Time
STAAD-1.5M-3.4M.STD
Y X Z
Load 2 3.000 kN/m
WIND LOAD (2.0 KN/M2 X 1.5M)=3.00 KN/M (POSITIVE PRESSURE)
Chd
16-Jul-2022 11:14
Y X Z
Load 3
-3.000 kN/m
WIND LOAD (2.0 KN/M2 X 1.5M)=3.0 KN/M (SUCTION-)
Pr Print Time/Date: 16/07/2022 11:24
STAAD.Pro STA AD.Pro CONNECT Edition 22.04.00.40
Print Run 4 of 11 11
J Jo ob No
Sheet No
Rev
5 Software licensed to only@ ::LAVteam::® CONNECTED User: user@edu Non commercial Job Title
Part Ref B Byy
Client
File
Date
Chd
30-Nov-21 STAAD-1.5M-3.4M.STD Date/Time 16-Jul-2022 11:14
Max: 16.001 mm
Y X Z
Load 4 : Displacement Displacement - mm
DL+WL, 16.001 MM < 3300/175=18.85 MM (O.K!) (FOR +AND -)
Pr Print Time/Date: 16/07/2022 11:24
STAAD.Pro STA AD.Pro CONNECT Edition 22.04.00.40
Print Run 5 of 11 12
J Jo ob No
Sheet No
Rev
6 Software licensed to only@ ::LAVteam::® CONNECTED User: user@edu Non commercial Job Title
Client
Part Ref B Byy File
Date30-Nov-21
STAAD-1.5M-3.4M.STD
Max: -4.900 kN-m
Date/Time
Chd
16-Jul-2022 11:14
Y
Load 6 : Bending Z Moment - kN-m
X Z
MAXIMUM MOMENT= 1.2DL+1.2WL= 4.9 KNM < 6.44 KNM (MULLION CAPACITY ) (FOR +AND -)
Pr Print Time/Date: 16/07/2022 11:24
STAAD.Pro STA AD.Pro CONNECT Edition 22.04.00.40
Print Run 6 of 11 13
J Jo ob No
Sheet No
Rev
7 Software licensed to only@ ::LAVteam::® CONNECTED User: user@edu Non commercial Job Title
Part Ref B Byy
Client
File
Date30-Nov-21
STAAD-1.5M-3.4M.STD
Max: -5.940 kN
Date/Time
Chd
16-Jul-2022 11:14
Y
Load 6 : Shear Y Force - kN
X Z
MAXIMUM SHEAR FORCE 1.2DL+1.2WL=5.940 KN < 19.83 KN (FOR +AND -)
Pr Print Time/Date: 16/07/2022 11:24
STAAD.Pro STA AD.Pro CONNECT Edition 22.04.00.40
Print Run 7 of 11 14
J Jo ob No
Software licensed to only@ ::LAVteam::® CONNECTED User: user@edu Non commercial
Sheet No
8
Part
Job Title
Rev
Ref B Byy
Client
File
0 kN
Date30-Nov-21
STAAD-1.5M-3.4M.STD
Date/Time
Chd
16-Jul-2022 11:14
Y
Load 6 : Axial Force Force - kN
X Z
2.098 kN
MAXIMUM AXIAL FORCE =1.2DL+1.2WL=2.098KN βo
Slender
ε = √(250 MPa/po) ε=
Slenderness Limit Constant 1.25
βo = 22*ε
27.5
Limit for a semi‐compact section
β1 = 18*ε
22.5
Limit for a fully compact section
ELEMENT CLASSIFICATION FOR WEB ELEMENT:
yo/yc= gr = βw =
‐ 0.82 0.4
Stress Gradient Coefficient (Figure 4.2) Slenderness Parameter
(gr*d/tw)
βw =
31.31 SLENDER!
ELEMENT CLASSIFICATION FOR FLANGE ELEMENT:
βf =
b/tf
βf =
20.50 FULLY COMPACT!
Slenderness Parameter
CHECK FOR BENDING MOMENT RESISTANCE OF MULLION: 3
48306.05 mm
Wx=SCX ɤm =
1.2
Mz =
4.9 k kN N ‐m
MRX = MRX = Since:Mz< MRX
(ρo*Wx)/ɤm
Factored max.bending moment generated from STAAD.
6.44 kN‐m O.K!
21
21
CHECK FOR SHEAR RESISTANCE: According to BS 8118: Part 1: 1991 ‐ table 4.3, d w < 49 * ε Fully Compact t w
d w >
49 * ε
Slender
t w
=√
(250 ) po
ε=
1.25
d tw
78.28
THE SECTION IS
SLENDER!
Vmax=
5.94 kN kN
Nw=
Factored max.shear generated from STAAD
1
Avw=
Number of webs
0.8*Nw*d*tw
Effective shear area 3
250.48 mm
Avw= VRSWY=
(ρV*AVW)/ɤm
VRSWY=
Factored shear resistance 19.83 kN
Since:Vmax< VRSWY O.K! CHECK FOR AXIAL RESISTANCE FOR COMPRESSION MEMBERS: According to BS 8118: Part 1: 1991 ‐ table 4.7.3
Pcw =
2.098
P1 =
Factored max.axial force (Compression) generated from STAA
ρa
P1 = e= K= l= l=
e*K
ry=
l/ry
λ= λ=
Ps = PRC =
According 4.7.6.2 175 MPa 1500.00 mm 0.7 mm 1050 mm
Distance between Transoms Effective length factor for Lateral Torsional Buckling Effective length for Lateral Torsional Buckling
24.61 mm
Minor Axis Radius of Gyration
42.67 120 MPa
Buckling stress ‐ Figure 4.10(a)
(Ps*Am)/ɤm
PRC =
111.76 kN
Since:Pcw< PRC
O.K! LATERAL TORSIONAL BUCKLING CHECK:
According BS 8118: Part 1: 1991 ‐ 4.5.6
=√
(250 ) po
ε= 1.25 For Unwelded , Fully Compact Sections,4.5.6.5 ρ1 =ρo For Other Sections , Including Hybrid ,4.5.6.5 ρ1 = (ɤm*MRX)/Wx ρ1 = e= K= l= l= ry= λ=
e*K
l/ry 42.67
λ=
From Fig.4.9 ps= MRS= MRS= Since:Mz< MRS
160.00 MPa 1500 mm 0.7 mm 1050 mm 24.61 mm
135 MPa (ps*Wx/ɤm) 5.43 kN‐m O.K!
Distance between Transoms Effective length factor for Lateral Torsional Buckling Effective length for Lateral Torsional Buckling Minor Axis Radius of Gyration
22
BEARING CAPACITY OF SECTION The bearing capacity of the connected ply is given by the following. ∗∗∗∗ BRP= According 6.4.4 ɤ
N= db=
2 14 mm
tw =
2.00 mm
db/t=
7.00
C=
2
C=
20t/db
C= Hence C= BRP=
2
Number of Flanges or Webs Connecting to Screw/Bolt Dia of Hole (2 NOS M 12 BOLT) Wall Thickness When db/t βo
Slender
ε= ε=
√(250 MPa/ρo)
Slenderness Limit Constant 1.25
βo = 22*ε
27.5
Limit for a semi‐compact section
β1 = 18*ε
22.5
Limit for a fully compact section ELEMENT CLASSIFICATION CLASSIFICATION FOR WEB ELEMENT:
yo/yc= gr = βw =
‐0.82 0.45 (gr*d/tw)
βw =
Stress Gradient Coefficient (Figure 4.2) Slenderness Parameter
35.22 SLENDER!
ELEMENT CLASSIFICATION CLASSIFICATION FOR FLANGE ELEMENT:
βf = βf =
b/tf
Slenderness Parameter 20.50
FULLY COMPACT!
28
CHECK FOR BENDING MOMENT RESISTANCE OF TRANSOM: 3
48306.05 mm
Wx= ɤm =
1.2 2
Mz =
(1.2*W *Lt ) )//8
Mz =
Actual Factored max.bending moment . 1.55 kN‐m
MRX =
(ρo*Wx)/ɤm
MRX =
Allowable bending moment . 6.44 kN‐m
Since:Mz< MRX
O.K!
CHECK FOR SHEAR RESISTANCE: According to BS 8118: Part 1: 1991 ‐ table 4.3, d w < 49 * ε Fully Compact t w
d w >
49 * ε
Slender
t w
=√
(250 ) po
ε= d tw THE SECTION IS Vmax=
1.25 78.28 SLENDER!
(1.2*W *Lt)/2
Vmax= Nw= Avw=
2 3
500.96 mm (ρV*AVW)/ɤm
VRSWY= Since:Vmax< VRSWY
Number of webs Effective shear area
0.8*Nw*d*t w
Avw= VRSWY=
Factored max.shear 4.14 kN
Factored shear resistance 39.66 kN
O.K!
29
ADEQUACY OF GLASS THICKNESS
30
ADEQUACY OF GLASS THICKNESS (AS PER ASTM E 1300 – 2002)
INTRODUCTION:
This report given structural calculation of glass thickness for Jewel of Creek Creek @Dubai, as @Dubai, as per (ASTM E 1300 – 2002) 2002) according wind load calculations as per (2.0 kpax1.5) 3.0 3.0 kpa. This analysis was done with the aid of software
SAFLEX programmer for determining of glass size and thickness in conjunction with ASTM E 1300 code of practice, Glass selection calculations ensuring the adequacy of glass thickness so that not more than 8 glass units per thousand breaks during the building life.
The typical Curtain Wall consists of 28 mm Double Glazed Vision Panel
Outer Frame:
6 mm Thick Tempered,
Air Space:
16 mm.
Inner Pane:
6 mm Thick Tempered.
31
The glass unit is supported supp orted on 2 nos. setting blocks as shown.
2300 mm (MAX) P
P
a
a
75
L=1500(Max)
Design wind load considered
Simplified glass panel size
= 3. 3.0 0 kpa
= 1500 x 2300 mm
Deflection: Maximum Allowable deflection (From output window below)
= 25 mm
3
32
Permissible deflection deflection = (short side length) / 50, limited to 25 mm = 1500 / 50, limited to 25 mm = 30 mm, limited to 25 mm
= 23 mm
View more...
Comments