Planos y Formatos

May 3, 2018 | Author: E&G | Category: Drawing, Topography, Computer Network, Mathematics, Science
Share Embed Donate


Short Description

Download Planos y Formatos...

Description

^d`eks y Lkrg`tks.

ÇEMFIB 0. FE]XKMRIIFÙE 9 8. MBLFEFIFÙE 2 9. ^D@EKY 2 =. ^D@EK MB ^D@E]@ 2 =.0. ^uetks ^ uetks ` tbebr tbeb r be iubet` ....................................................................................................................... < =.0.0. Bd mfhuok mb d`s vbet`e`s =.0.8. D` pubrt` =.0.9. Bsi`d` =.0.=. Ikt`s

< < < 1

=.0.=.0. Ikt`s p`rif`dbs



=.0.=.8. Ikt`s mb efvbd



=.0.2. Dçgftb mbd tbrrbek =.0. 2.0. Mblfefifùe Mblfe fifùe ................................................................................................................................................. 0> 2.8. Bsi`d` aràlfi` aràlfi ` ......................................................................................................................................... 0> 2.9. ]fpks mb bsi`d`s ...................................................................................................................................... 00 2.=. Bsi`d`s ekrg`dfz`m`s ekrg`dfz `m`s ............................................................................................................................. 00 2.2. ]fpks mb pd`eks sbaÿe bsi`d` ............................................................................................................. 08 ig ) )x7 0 ig ------------------------------ ------- x ig

0ig 0>.>>>ig 

8ig

 7 2.>>> ig

)

Ykduifùe? D` bsi`d` bs 0?2.>>>.

=.0.=. Ikt`s ^kr dk qub `i`h`gks mb vbr pkmrç`gks tkg`r tkm`s d`s gbmfm`s mb d` khr` gfmfbemk skhrb bd pd`ek ike ue` rbad`  k  k ue bsi`dçgbtrk . Yfe bgh`rak, bd pd`ek mb pd`et` iubet` ike ue bdbgbetk aràlfik (d` ikt`) qub g`ri` ue` gbmfm`, bvft`emk pksfhdbs ikelusfkebs ` d` jkr` mb ebibsft`r ue` gbmfm`.

Bei`re`ifùe G`rçe I`h`ddbrk

^àafe` 1 mb 81

^d`eks y Lkrg`tks.

=.0.=.0. Ikt`s p`rif`dbs D`s ikt`s p`rif`dbs gfmbe ue` mfst`eif` mbetrk mbd pd`ek ? mfst`eif` betrb p`rbmbs p`r` ikekibr d` gbmfm` mb ue dki`d, mfst`eif` betrb bobs mb ikduge`, mfst`eif` betrb bd p`ðk mb ue` i`rpfetbrç` y d` p`rbm gàs ibri`e`, bti. Yb mfhuo`e ikgk ue` dçeb` iruz`m`   pkr ktr`s gàs pbqubð`s be dks bxtrbgks qub femfi`e mb mkemb ` mkemb sb bstà tkg`emk d` gbmfm`.

Bobgpdk? Ikt`s p`rif`dbs mbd pd`ek mb pd`et`.

Bei`re`ifùe G`rçe I`h`ddbrk

^àafe` : mb 81

^d`eks y Lkrg`tks.

=.0.=.8. Ikt`s mb efvbd D`s ikt`s mb efvbd  ske ue tfpk mb ikt`, qub be dua`r mb tkg`r mfst`eif`s jkrfzket`dbs (d`rak mb ue` p`rbm), femfi`e mflbrbeif` mb `dtur`  (mflbrbeif`  (mflbrbeif` mb `dtur` betrb ue pfsk y ktrk). ^`r` bstk, sb femfi` be bd pd`ek iuàd bs bd efvbd mb rblbrbeif` ikekifmk ikgk —bd ibrk‗ . @ p`rtfr mb bstb efvbd d`s ikt`s fefif`ràe be +0.28 (ue` supbrlfifb qub sb beiubetrb ` 0 gbtrk y 28 ibetçgbtrks gàs `rrfh` qub bd ibrk) y be ->.9> (ue` supbrlfifb qub sb beiubetrb ` 9> ibetçgbtrks pkr mbh`ok mbd efvbd mb rblbrbeif`. D`s ikt`s mb efvbd sb mfhuo`e be d` pd`et` mb rbpd`etbk ikgk ue içriudk iruz`mk  pkr ue` iruz ike mks iu`mr`etbs kpubstks pfet`mks mb ebark  y ue eÿgbrk qub femfi` d` `dtur`. Bd puetk qub gfmb bs bd qub sb beiubetr` oustk be bd ibetrk mbd içriudk .

=.0.2. Dçgftb mbd tbrrbek Dks dçgftbs mbd tbrrbek   sb mfhuo`e ike ue` dçeb` puetb`m` y ue tbxtk `dfeb`mk   qub mfib? —B.M.^.‗ (Bob Mfvfskrfk mb ^rbmfks) . Yfe bgh`rak, bst` mbekgfe`ifùe bs v`rf`hdb. Be ue` pd`et` bs femfspbes`hdb uhfi`r bd dçgftb mbd tbrrbek p`r` pkmbr mbtbrgfe`r d` pksfifùe mb tkmks dks bdbgbetks mb d` khr`. ^rfeifp`dgbetb, sb `ikt`e dks bobs mb pd`et` `d dçgftb mbd tbrrbek p`r` dubak uhfi`r i`m` bdbgbetk. @sç d` uhfi`ifùe be khr` sb j`ib mb d` sfaufbetb g`ebr`? Yb fmbetflfi`e dks dçgftbs mbd tbrrbek  mbg`ri`mks  mbg`ri`mks pkr bd tkpùar`lk. Yb g`ri`e dks bobs mb pd`et`  sbaÿe su mfst`eif` ` dks dçgftbs mbd tbrrbek. Yb ikestruybe dks bdbgbetks prfeifp`dbs  (p`rbmbs, ifgfbetks, bti.) sbaÿe su mfst`eif` ` dks bobs mb pd`et`. Yb ikestruybe dks bdbgbetks sbiuem`rfks  (i`rpfetbrç`s,  (i`rpfetbrç`s, rbvbstfgfbetks, pd`lkebs, bti.) sbaÿe su mfst`eif` ` dks bdbgbetks prfeifp`dbs (bxprbs`m` be d`s ikt`s p`rif`dbs). 







=.0. mb 81

^d`eks y Lkrg`tks.

2.9. ]fpks mb bsi`d`s 





@sç beiketr`gks? Bsi`d` mb `gpdf`ifùe , iu`emk bd eugbr`mkr mb d` lr`iifùe bs g`ykr qub bd mbekgfe`mkr. Bsi`d` mb rbmuiifùe , bd i`sk iketr`rfk, iu`emk bd eugbr`mkr bs gbekr qub bd mbekgfe`mkr. Bsi`d` e`tur`d, iu`emk ue khobtk sb beiubetr` mfhuo`mk ` su t`g`ðk rb`d, sbrç` d` bsi`d` 0?0. Bs mbifr, ikfeifmbe d` gbmfm` mbd khobtk y d` mbd mfhuok.

2.=. Bsi`d`s ekrg`dfz`m`s Bst`s bsi`d`s bstàe ekrg`dfz`m`s pkr d` ekrg` REB 0>8 0?8> 0?2>

0?0

2?0

0?0>> 0?8>> 0?2>>

0>?0

0?0.>>> D` bsi`d` ` bdbafr  p`r` rb`dfz`r ue mfhuok mbpbemb mb d` ikgpdbofm`m mbd khobtk ` rbprbsbet`r y mb d` lfe`dfm`m mb d` rbprbsbet`ifùe. Be tkmks dks i`sks, mbhb sbr sulfifbetbgbetb ar`emb  p`r`  p`r` pbrgftfr ue` fetbrprbt`ifùe làifd y id`r` mb d` felkrg`ifùe gkstr`m`. Dks mbt`ddbs qub sb`e mbg`sf`mk pbqubðks  p`r` ue` mblfefifùe ikgpdbt` be d` rbprbsbet`ifùe prfeifp`d, mbhbe rbprbsbet`rsb be ue` vfst` mb mbt`ddb ` ue` bsi`d` g`ykr , `d d`mk mb d` rbprbsbet`ifùe prfeifp`d. D`s mfgbesfkebs mbd khobtk   y d` bsi`d`   utfdfz`m` felduybe pkstbrfkrgbetb be d` bdbiifùe mbd lkrg`tk mb mfhuok ` bgpdb`r. Bobgpdk 0? Yb mbsb` rbprbsbet`r be ue lkrg`tk @9 d` pd`et` mb ue bmflfifk mb :> x => gbtrks. D` bsi`d` gàs ikevbefbetb p`r` bstb i`sk sbrç` 0?8>> qub prkpkrifke`rç` ue`s mfgbesfkebs mb => x 8> ig , guy `mbiu`m`s `d t`g`ðk mbd lkrg`tk. Bobgpdk 8? Yb mbsb` rbprbsbet`r be ue lkrg`tk @= ue` pfbz` mb rbdko mb mfgbesfkebs 8 x 0 gg.

D` bsi`d` `mbiu`m` sbrç` 0>?0.

Bei`re`ifùe G`rçe I`h`ddbrk

^àafe` 00 mb 81

^d`eks y Lkrg`tks.

2.2. ]fpks mb pd`eks sbaÿe bsi`d` Bxfstbe dks sfaufbetbs tfpks mb pd`eks mb pd`et` ` bsi`d` mbpbemfbemk mb dk qub sb v` ` rbprbsbet`r? Be @= vbrtfi`d sfe bsi`d` (0?0).  Yb us`rà p`r` bsqubg`s qub ek rbqufbr`e bsi`d`. Bobgpdks? bsqubg`s mb bdbitrùefi` mb rbm, mf`ar`g` mb hdkqubs mb i`hbibr` mb FI], pbrspbitfv`s mb p`sfddks, tbijks, irkqufs mb mfhuoks. 



Be @= vbrtfi`d ike bsi`d` 0?0>.   Iketbemrà bd mfhuok mbd iketbefmk mb dks `rg`rfks mb

bdbitrùefi` mb rbm. 

Be @9 `p`fs`mk (u jkrfzket`d) sfe bsi`d`.   Yb us`rà p`r` bsqubg`s qub ek rbqufbr`e bsi`d`. Bobgpdks?  bsqubg`s mb bdbitrùefi` mb rbm, mf`ar`g` mb hdkqubs mb i`hbibr` mb FI],

pbrspbitfv`s mb p`sfddks, tbijks, irkqufs mb mfhuoks. 

Be @9 `p`fs`mk (u jkrfzket`d) ike bsi`d` 0?0>.   Iketbemrà bd mfhuok mbd iketbefmk mb dks

`rg`rfks mb bdbitrùefi` mb rbm, skhrb tkmk iu`emk qubrbgks vbr d` fetbrikebxfùe betrb bddks. 

Be @9 `p`fs`mk (u jkrfzket`d) ike bsi`d` 0?2>, 0?0>>, 0?8>>. Mfhuok mb pd`eks be pd`et`,

i`e`dfz`ifkebs be pd`et`, bti.

8, =@>, bti.

Bei`re`ifùe G`rçe I`h`ddbrk

^àafe` 08 mb 81

^d`eks y Lkrg`tks.

@>7 0 g8

Dks lkrg`tks  tfbebe lkrg` rbit`eaud`r   y su d`mk g`ykr   bs r`çz mb mks vbibs bd d`mk gbekr, ikgk sb gubstr` be d` sfaufbetb lfaur`?

Xbd`ifùe betrb dks d`mks mbd lkrg`tk. D`s mfgbesfkebs mb dks d`mks mbd lkrg`tk   sb khtfbebe rbskdvfbemk bd sfaufbetb sfstbg` mb biu`ifkebs mb mks feiùaeft`s. Z ± V 7 0 g8 J`y mks lkrg`s mb rbskdvbrdk? 0ª lkrg`? V7Z±

8

 Z ± Z ±



8  7 0 3 Z 8 ±

 V 7 >,:=0 ±



Bei`re`ifùe G`rçe I`h`ddbrk

8  7 0 3 Z 8 7

0 8

 3 Z 7

0

0 

8

0/ =



8

>,:=0g

8  7 0,0:6 g

^àafe` 09 mb 81

^d`eks y Lkrg`tks.

8ª lkrg`? Z7



8





8

 Z 7

 ± V 7 0 3 0,0:6



8



8

8

 7 0 3 V 8 7

8  3 V 7

0/ =

8



0,0:6g

 7 >,:=0 g

^`r` khtbebr bd lkrg`tk fegbmf`tk felbrfkr sb mfvfmb bd lkrg`tk @> pkr d` gft`m mbd d`mk mb g`ykr dkeaftum. Bd eubvk lkrg`tk `sç khtbefmk bs ue` jko` rbit`eaud`r mb · g 8 mb supbrlfifb, sfbemk 8 d` rbd`ifùe betrb d` dkeaftum mb sus d`mks. Bstb lkrg`tk sb mbekgfe` @0  y tfbeb ue`s mfgbesfkebs mb 26=x:=0 gg. Mfvfmfbemk bd lkrg`tk @0 pkr d` gft`m mb su d`mk mb g`ykr dkeaftum sb khtfbeb bd lkrg`tk fegbmf`tk felbrfkr, mbekgfe`mk @83 y `sç suibsfv`gbetb, sfaufbemk bstb prkibsk sb v`e khtbefbemk dks rbst`etbs lkrg`tks j`st` ddba`r `d lkrg`tk gàs pbqubðk, mbekgfe`mk @=.

@daueks mb dks lkrg`tks gàs utfdfz`mks ske? Lkrg`tk

Mfgbesfkebs (gg)

@>

:=0x00:6

@0

26=x:=0

@8

=8>x26=

@9

861x=8>

@=

80>x861

@2

0=:x80>

@<

0>2x0=:

Xbad` mb rblbrbeif`? Bei`re`ifùe G`rçe I`h`ddbrk

^àafe` 0= mb 81

^d`eks y Lkrg`tks.

Be d` sfaufbetb lfaur` sb `prbif` d` lkrg`ifùe y d` rbd`ifùe qub bxfstb betrb dks mflbrbetbs lkrg`tks .

]kmks dks lkrg`tks tfbebe ue` i`r`itbrçstfi` be ikgÿe? ske jko`s rbit`eaud`rbs sbgbo`etbs iuyks d`mks bstàe be rbd`ifùe 8 . Dks lkrg`tks @9 `d @>  sùdk ske vàdfmks sf d`s jko`s sb utfdfz`e jkrfzket`dgbetb . ^kr su p`rtb, bd lkrg`tk @= sùdk sb pbrgftb sf d`s jko`s sb utfdfz`e vbrtfi`dgbetb .

Bei`re`ifùe G`rçe I`h`ddbrk

^àafe` 02 mb 81

^d`eks y Lkrg`tks.

x:60

@9x=

=8>x00:6

@=x9

861x

@=x=

861x:=0

@=x2

861x0>20

? Lkrg`tk

Mfgbesfkebs (gg)

@>x8

00:6x0x9

00:6x8289

Lkrg`tk

Mfgbesfkebs (gg)

@0x9

:=0x01:9

@0x=

:=0x891:

Lkrg`tk

Mfgbesfkebs (gg)

@8x9

26=x08x0=:<

@9x<

=8>x01:9

@9x1

=8>x8>:>

Lkrg`tk

Mfgbesfkebs (gg)

@=x<

861x08,923 >,23 >,13 0,= y 8 gg . D` rbd`ifùe betrb ue arkskr y bd sfaufbetb bs 8 . 







Bei`re`ifùe G`rçe I`h`ddbrk

^àafe` 01 mb 81

^d`eks y Lkrg`tks.

,:

>,2

>,9

Gbmf`

>,<

>,=

>,9

>,8

Lfe`

>,9

>,8

>,0

>,0

Bstks arkskrbs mb dçeb` bstàe rblbrfmks ` d` dçeb` mb g`ykr bspbskr.

¾ .

Bei`re`ifùe G`rçe I`h`ddbrk

^àafe` 06 mb 81

^d`eks y Lkrg`tks.

Yb mbekgfe` `dtur` ekgfe`d mbd tbxtk  ` d` `dtur` mb d`s dbtr`s g`yÿsiud`s, d`s gfeÿsiud`s `dt`s y dks eÿgbrks . I`m` `dtur` mb dbtr`  tfbeb ue` `pdfi`ifùe y abebr`dgbetb sb `pdfi`? Betrb 8 y = gg p`r` `ikt`ifkebs y ekt`ifkebs. Betrb 2 y 0> gg p`r` rùtudks y mbekgfe`ifkebs. Betrb 08 y 82 gg p`r` ar`embs rùtudks. 





D` `dtur` ekgfe`d bs d` mb d`s g`yÿsiud`s  y  y d` mb d`s gfeÿsiud`s  bs  bs mb 2/1 d` ekgfe`d.

]`etk be bd i`obtçe mb rktud`ifùe ikgk skhrb bd mfhuok sb utfdfz`rà d` bsirftur` ekrg`dfz`m` , ike bd t`g`ðk y bspbskr `mbiu`mk `d i`obtçe k `d mfhuok, y` sb` ` g`ek `dz`m`, pd`etfdd` k gbmf`etb bd krmbe`mkr y sus jbrr`gfbet`s felkrgàtfi`s. D` bsirftur` vbrtfi`d   sb subdb utfdfz`r prblbrbetbgbetb be pd`eks mb `rquftbitur` (ikestruiifùe, bdæitrfiks y bdbitrùefiks), y d` iursfv` k feidfe`m`, be pd`eks abebr`dgbetb femustrf`dbs.

gg p`r` dks lkrg`tks @8, @9 y @= . Yf sb prbvæ ue pdba`mk p`r` `rijfv`mk ike pbrlkr`ifkebs be bd p`pbd, sb mbhb mblfefr ue g`rabe mb `rijfv`mk (k g`rabe mb beiu`mbre`ifùe ) mb ue` `eijur` gçefg` mb 8> gg, be bd d`mk kpubstk `d iu`mrk mb rktud`ifùe (bs mbifr, bd g`rabe fzqufbrmk). Mb su ekrg`dfz`ifùe sb bei`ra`e d`s ekrg`s REB 0>00 y MFE :89 .

,: gg . Bobgpdk? Gàrabebs y g`rik p`r` dks lkrg`tks mb d` sbrfb @.

skhrb bd puetk 8 mbd prkybitk tæiefik mb FI] sb feiduybe dks pd`eks y bsqubg`s mb prfeifpfk ebibs`rfks p`r` d` fest`d`ifùe mb d` felr`bstruitur` . Ikestftuybe d` jbrr`gfbet` p`r` qub bd ikestruitkr pubm` uhfi`r be dks dua`rbs `mbiu`mks dks bdbgbetks rbqubrfmks be d` gbgkrf`, mb `iubrmk ike d`s i`r`itbrçstfi`s mb dks gfsgks feidufm`s be bd ^dfbak mb Ikemfifkebs. Mbhbe sbr, pkr t`etk, id`rks y prbifsks . Mbdfeb`mks pkr gbmfks bdbitrùefiks k g`eu`dbs  bdfgfe`emk mum`s be su fetbrprbt`ifùe. Dks rbldbo`mks ` iketfeu`ifùe, ikesfmbr`mks ikgk gçefgks, pkmràe sbr ikgpdbgbet`mks ike ktrks pd`eks qub ` oufifk mbd prkybitfst` sb`e ebibs`rfks be i`m` i`sk ikeirbtk. Bs fgpkrt`etb sbð`d`r qub sb mbhbe feidufr ouetk ` dks pd`eks mbd bmflfifk, qub gubstrbe d` uhfi`ifùe mb dks rbifetks, d`s i`e`dfz`ifkebs, rbafstrks y h`sbs mb `iibsk tbrgfe`d, dks bsqubg`s hàsfiks mb d`s felr`bstruitur`s mb r`mfkmflusfùe skekr` y tbdbvfsfùe y mb dks sbrvfifks mb tbdbikguefi`ifkebs mb tbdblkeç` mfspkefhdb `d pÿhdfik y mb h`em` `eij` . 

Bd bsqubg` mb d` felr`bstruitur`   tfbeb pkr khobtk gkstr`r d`s i`e`dfz`ifkebs, rbifetks, rbafstrks y h`sbs mb `iibsk tbrgfe`d.

Bei`re`ifùe G`rçe I`h`ddbrk

^àafe` 82 mb 81

^d`eks y Lkrg`tks. 



Bd bsqubg` mb r`mfkmflusfùe skekr` y tbdbvfsfùe   tfbeb pkr khobtk gkstr`r dks bdbgbetks mb bst` felr`bstruitur`, mbsmb dks bdbgbetks mb i`pt`ifùe mb d`s sbð`dbs j`st` d`s h`sbs mb `iibsk mb dks tbrgfe`dbs. Bd bsqubg` mb tbdbikguefi`ifkebs mb tbdblkeç` mfspkefhdb `d pÿhdfik y mb h`em` `eij`  tfbeb pkr khobtk gkstr`r d` mfstrfhuifùe mb dks i`hdbs y mbgàs bdbgbetks mb d` rbmbs mb tbdblkeç` mfspkefhdb `d pÿhdfik y mb h`em` `eij` mbd bmflfifk k ikeouetk mb bmflfi`ifkebs y su `sfae`ifùe ` i`m` vfvfbem`.

Yb feidufràe, `d gbeks, dks sfaufbetbs pd`eks? 8.0. ^d`ek abebr`d mb sftu`ifùe mbd bmflfifk. 8.8. ^d`eks mbsirfptfvks mb d` felr`bstruitur` p`r` d` fest`d`ifùe mb d`s rbmbs mb tbdbikguefi`ifùe qub ikestftuybe d` FI].

8.8.@. Fest`d`ifkebs mb FI] be pd`et` sùt`ek k a`r`ob (be su i`sk). 8.8.H. Fest`d`ifkebs mb FI] be pd`et` h`o`. 8.8.I. Fest`d`ifkebs mb FI] be pd`et` tfpk. 8.8.M. Fest`d`ifkebs mb FI] be pd`et`s sfeaud`rbs. 8.8.B. Fest`d`ifkebs mb FI] be àtfik (iu`emk prkibm`). 8.8.L. Fest`d`ifkebs mb FI] be pd`et` iuhfbrt` k h`ok iuhfbrt`. 8.8.A. Fest`d`ifkebs mb FI] be sbiifùe (iu`emk d` bstruitur` mbd bmflfifk dk pbrgft`). 8.8.J. Fest`d`ifkebs p`r` sbrvfifks mb Jka`r Mfaft`d, y ktrks sbrvfifks. Iu`emk sb` pksfhdb, bst`s fest`d`ifkebs sb pkmràe feidufr be dks pd`eks mb d`s fest`d`ifkebs ikgueft`rf`s mb d` FI], sfbgprb qub qubmbe mbhfm`gbetb mflbrbeif`m`s. Yf bddk ek lubr` pksfhdb k `mbiu`mk, pkr su ikgpdbofm`m, sb feidufràe be pd`eks sbp`r`mks. D`s fest`d`ifkebs be bd fetbrfkr mb d`s vfvfbem`s k dki`dbs sb gkstr`ràe be pd`eks sbp`r`mks. 8.9. Bsqubg`s mb prfeifpfk.

8.9.@. Bsqubg` abebr`d mb d` felr`bstruitur` prkybit`m` p`r` bd bmflfifk, ike d`s mflbrbetbs i`e`dfz`ifkebs y rbafstrks fmbetflfi`mks p`r` i`m` rbm mb tbdbikguefi`ifùe feidufm` be d` FI]. 8.9.H. Bsqubg`s mb prfeifpfk mb d` fest`d`ifùe mb X`mfkmflusfùe Ykekr` y ]bdbvfsfùe, gkstr`emk tkmk bd g`tbrf`d `itfvk y p`sfvk (ike su fmbetflfi`ifùe ike rbd`ifùe ` dk femfi`mk be Gbgkrf` y ^dfbak mb Ikemfifkebs) y `ikt`ifkebs be gbtrks. 8.9.I. Bsqubg`s mb prfeifpfk mb i`m` ue` mb d`s rbmbs p`r` bd `iibsk ` dks sbrvfifks mb tbdblkeç` mfspkefhdb `d pÿhdfik y mb h`em` `eij`, gkstr`emk d` `sfae`ifùe mb i`hdbs pkr pd`et` y pkr vfvfbem` `sç ikgk d`s i`r`itbrçstfi`s mb dks i`hdbs, y mbgàs bdbgbetks utfdfz`mks be dks puetks mb fetbrikebxfùe, mfstrfhuifùe y mb `iibsk `d usu`rfk (ike su fmbetflfi`ifùe ike rbd`ifùe ` dk femfi`mk be Gbgkrf` y ^dfbak mb Ikemfifkebs) y `ikt`ifkebs be gbtrks. 8.9.M. Bsqubg`s mb prfeifpfk mb d` fest`d`ifùe prkybit`m` p`r` iu`dqufbr ktr` rbm feidufm` be d` FI]. 8.9.B. Bsqubg` mb mfstrfhuifùe mb bqufpks be bd fetbrfkr mbd Xbafstrk mb ]brgfe`ifùe mb Xbm.

Bei`re`ifùe G`rçe I`h`ddbrk

^àafe` 8< mb 81

^d`eks y Lkrg`tks.

6. ^D@EKY ^@X@ RE@ XBM MB \K_ V M@]KY 











Be ue prkybitk tæiefik mb \kz y M`tks sb s b feidufràe, `d gbeks, dks sfaufbetbs pd`eks? Yftu`ifùe. Bmflfifks. ^d`et`s. Mf`ar`g` mb hdkqubs abebr`d (bdbitrùefi` mb rbm). Mf`ar`g` mb hdkqubs femfvfmu`d (bdbitrùefi` mb rbm). Mf`ar`g` abebr`d mb d` fest`d`ifùe mb i`hdb`mk (sf j`y bmflfifks). Fest`d`ifkebs pkr pd`et`. Mfstrfhuifùe mb tkg`s. I`e`dfz`ifkebs y i`hdb`mks p`r` rbmbs y tbdblkeç`. ^`ebd mb p`rijbk y i`hdb`mk pkr i`m` pd`et` mbd bmflfifk. Eugbr`ifùe.

Dks pd`eks mb fest`d`ifùe  femfi`e d` uhfi`ifùe mb dks `rg`rfks, h`embo`s, i`e`dbt`s, bqufpks mb rbm k ibetr`dft`s tbdblùefi`s , `sç ikgk d`s zke`s mb `iibsk y mfstrfhuifùe mbd i`hdb`mk , ` p`rtfr mb dks pd`eks mb `rquftbitur` u khr` ifvfd.

Bei`re`ifùe G`rçe I`h`ddbrk

^àafe` 81 mb 81

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF