PIPEPHASE Application Briefs

April 13, 2017 | Author: armando0212-1 | Category: N/A
Share Embed Donate


Short Description

Download PIPEPHASE Application Briefs...

Description

SimSci-Esscor®

PIPEPHASE® 9.6 $SSOLFDWLRQ%ULHIV

March 2013

All rights reserved. No part of this documentation shall be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Invensys Systems, Inc. No copyright or patent liability is assumed with respect to the use of the information contained herein. Although every precaution has been taken in the preparation of this documentation, the publisher and the author assume no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained herein. The information in this documentation is subject to change without notice and does not represent a commitment on the part of Invensys Systems, Inc. The software described in this documentation is furnished under a license or nondisclosure agreement. This software may be used or copied only in accordance with the terms of these agreements. © 2013 by Invensys Systems, Inc. All rights reserved. Invensys Systems, Inc. 26561 Rancho Parkway South Lake Forest, CA 92630 U.S.A. (949) 727-3200 http://www.simsci-esscor.com/ For comments or suggestions about the product documentation, send an e-mail message to [email protected]. All terms mentioned in this documentation that are known to be trademarks or service marks have been appropriately capitalized. Invensys Systems, Inc. cannot attest to the accuracy of this information. Use of a term in this documentation should not be regarded as affecting the validity of any trademark or service mark. Invensys, Invensys logo, PIPEPHASE, INPLANT, and SimSci-Esscor are trademarks of Invensys plc, its subsidiaries and affiliates.

Table of Contents Introduction About this Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v-iii Example Simulation Features . . . . . . . . . . . . . . . . . . . . . . . . . . . v-iv

Chapter 1 PIPEPHASE EXAMPLE Example 1 - Liquid - Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-1 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-1 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-1 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-4 Case Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-6 Example 2 -Blackoil Well . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-9 Simulation Objective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-9 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-9 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-12 Case Execution and Results . . . . . . . . . . . . . . . . . . . . . . . . .1-14 Nodal Analysis Calculations . . . . . . . . . . . . . . . . . . . . . . . . .1-15 Example 3 - Distillation Curve . . . . . . . . . . . . . . . . . . . . . . . . . .1-18 Simulation Objective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-18 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-18 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-20 Case Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-22 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-22 Example 4 - Gas Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-24 Simulation Objective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-24 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-24 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-28 Case Execution and Results . . . . . . . . . . . . . . . . . . . . . . . . .1-29 Example 5 - Compositional Sub Sea Riser . . . . . . . . . . . . . . . . .1-30 Simulation Objective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-30 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-30 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-35 Case Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-37 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-37 Example 6 - Pigging Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . .1-39 PIPEPHASE Application Briefs

i

Simulation Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-39 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-39 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-41 Case Execution and Results . . . . . . . . . . . . . . . . . . . . . . . . . 1-43 Example 7 - Well Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-44 Simulation Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-44 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-44 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-47 Case Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-48 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-48 Example 8 - Blackoil Gathering Network . . . . . . . . . . . . . . . . . 1-49 Simulation Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-49 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-49 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-51 Case Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-55 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-55 Example 9 - Gas Condensate Network . . . . . . . . . . . . . . . . . . . . 1-57 Simulation Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-57 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-57 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-59 Case Execution - Calculation Segment. . . . . . . . . . . . . . . . . 1-63 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-66 Example 10 - Steam Line Sizing . . . . . . . . . . . . . . . . . . . . . . . . . 1-67 Simulation Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-67 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-67 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-69 Case Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-70 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-70 Example 11 - Gas - Lift Manifold . . . . . . . . . . . . . . . . . . . . . . . . 1-72 Simulation Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-72 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-72 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-73 Case Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-76 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-77 Example 11A - Link Groups for Subsurface Junctions . . . . . . . . 1-78 Simulation Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-78 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-78 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-79 Example 12 - Nodal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-82 ii

Table of Contents

Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-82 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-82 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-84 Case Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-86 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-86 Example 13 - Hydrate Analysis for Compositional Fluids . . . . .1-89 Simulation Objective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-89 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-89 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-91 Case Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-93 Example 14 - Choke Sizing and MChokes in PIPEPHASE . . . .1-97 Simulation Objective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-97 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-97 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-99 Case Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-100 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-100 Example 15 - The Gilbert Choke Model in PIPEPHASE . . . . .1-103 Simulation Objective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-103 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-103 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-105 Case Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-107 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-107 Example 16 - The New DPDT Device - Can be used to Model Compressors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-108 Simulation Objective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-108 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-108 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-111 Case Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-112 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-112 Example 17 - Generate a Vertical Flow Performance (VFP) Table to Represent a Well . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-113 Simulation Objective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-113 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-113 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-115 Case Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-117 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-119 Example 18 - Using the Vertical Flow Performance (VFP) Table to Represent a Well . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-120 Simulation Objective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-120 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-120 PIPEPHASE Application Briefs

iii

Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-121 Case Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-122 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-124 Example 19 - Generate PVT Data using PIPEPHASE . . . . . . 1-126 Simulation Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-126 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-126 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-130 Case Execution and Results . . . . . . . . . . . . . . . . . . . . . . . . 1-132 Example 20 - Generating Output Reports in Excel . . . . . . . . . 1-138 Simulation Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-138 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-138 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-140 Case Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-142 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-142 Example 21A - Manifold Junction Unit . . . . . . . . . . . . . . . . . . 1-147 Simulation Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-147 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-147 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-153 Case Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-159 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-160 Example 21B - Network Change Utilities. . . . . . . . . . . . . . . . . 1-163 Simulation Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-163 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-163 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-164 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-171 Example 22 - PIPEPHASE-GEM Integration . . . . . . . . . . . . . . 1-176 Simulation Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-176 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-176 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-179 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-182 Example 23 – Long pipeline using a Drag Reduction Agent . . 1-192 Simulation Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-192 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-192 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-193 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-194

iv

Table of Contents

Introduction About this Manual This manual contains examples of the use of PIPEPHASE and illustrates many of the features of the program. It is not possible to include every program option in the examples and a list of the features which appear in each example is given in an easy-to-read tabular format in Table 1-1, Table 1-2 and Table 1-3. This is where to look if you are looking for an example which contains a specific feature.The user is urged to read and become familiar with the Pipephase, Netopt, Tacite User’s manual and obtain adequate training before attempting to these examples. The manual then details the example simulations. Each example is comprised of five sections: ■

Simulation Objective - This section outlines the goals of the simulation, as well as presenting some of the important problem parameters.



Simulation Model - This section describes how the example is translated into the PIPEPHASE input data.



Input Data - The full keyword input data file is listed in this section.



Case Execution - This section describes how the example is executed keeping the goals specified in the simulation objective.



Results - For clarity, the full excel output reports are not presented here. Instead, the link and node summaries are shown along with selected reports which are particularly relevant to the simulation goals given in the Simulation Objective.

PIPEPHASE Application Briefs

iii

Example Simulation Features Table 1-1: Features Used in Example (1-10) Simulations Statement Feature Example Number 1 2 3 4 5 6 7 8 9 10 General Data Category of Input Pipeline

• • • • • •

Well CALCULATION



Network Single Link

• • • • •

• • •

• • • • • •

Gas lift





PVT generation



Compositional



Blackoil

• •



• •

Condensate Liquid

• •

Gas



Steam Isothermal

• •



Sphering FCODE

Correlations for flow device

• • •



• • • • •







• • • • •







Liquid holdup corrections DEFAULT



Medium and its parameters Flow device details



Conductivities, insulation thickness SEGMENT

Horizontal and vertical

OUTDIMENSION

Alternative output

PRINT

Output options



• • • • • •



• • • • • • • • •

Plot



Methods Data Category of Input SOLUTION

Pbalance method



No flow reversals



TOLERANCE

Convergence tolerance



THERMO

System

• •

• •

Introduction

Table 1-1: Features Used in Example (1-10) Simulations Statement Feature Example Number 1 2 3 4 5 6 7 8 9 10

TRANSPORT

Individual enthalpy, density



System



• •



• •

Component Data Category of Input LIBID

Library components

PETROLEUM

Petro components

CHARACTERIZE

Property method

• • •



PVT Data Category of Input SET

Gravity

• •

Viscosity





Contaminants Specific heat LIFTGAS

Gravity

GENERATE

Property tables

• • •

• • • •

Structure Data Category of Input SOURCE

Set number, pressure/rate

• • • • • • • • • •

Pressure estimate



Ref. source Temperature

• • • • • • • • • •

Quality (steam)



Composition

• •

TBP

Assay curve



LIGHTENDS

Defined components in assay



WTEST

Well inflow performance relationship

SINK

Rate estimate



Fixed pressure



• • • •

• • •

JUNCTION

Pressure estimates

PIPE

Length/ID

• • • • • •

• • •

Elevation change

• •



• • • •

Heat transfer parameters

• •

Pipe data – thickness, conductivity



Sphere diameter

PIPEPHASE Application Briefs







v

Table 1-1: Features Used in Example (1-10) Simulations Statement Feature Example Number 1 2 3 4 5 6 7 8 9 10 RISER

Length/Elevation

ANNULUS

Depth

TUBING

Length, depth

• • •

• •

Structure Data Category of Input, continued Detailed heat transfer BEND

PUMP

K or KMUL

• •



2-phase flow model Chisholm or Homogeneous



Non-standard



Fixed power



CHOKE



COMPRESSOR

Fixed pressure

CONTRACTION

Angle

COOLER

Tout

DPDT

Curve

• • • •

EXIT



ENTRANCE



ORIFICE



TEE



VALVE



VENTURIMET ER

CPCV



EXPANSION

Angle



COMPLETION

Gravel packed



MANIFOLD Gas Lift Data Category of Input GASLIFT

Capacity calculated



Sizing Data Category of Input DEVICE

All devices



Casestudy Data Category of Input CHANGE

Global



Individual





Sensitivity Analysis Data Category of Input

Introduction

Table 1-1: Features Used in Example (1-10) Simulations Statement Feature Example Number 1 2 3 4 5 6 7 8 9 10 SENSITIVITY

Inflow



Outflow



Table 1-2: Features Used in Example (11 -20) Simulations Statement

Feature

Example Number 11

12

13

14

15

16

17

18

19

20





General Data Category of Input Pipeline





Well CALCULATION

Network



Single Link





















Gas lift PVT generation



Compositional Blackoil

• •



• •













Condensate Liquid Gas



Steam Isothermal Sphering FCODE

Correlations for flow device









Liquid holdup corrections Medium and its parameters







Flow device details







Conductivities, insulation thickness







SEGMENT

Horizontal and vertical







OUTDIMENSION

Alternative output

PRINT

Output options

DEFAULT

PIPEPHASE Application Briefs

• •









• •





















• •











vii

Statement

Feature Plot

Example Number 11

12

13

14

15

16

17

18

















19

20











































Methods Data Category of Input SOLUTION

Pbalance method No flow reversals

TOLERANCE

Convergence tolerance

THERMO

System





Individual enthalpy, density TRANSPOR T



System

Component Data Category of Input LIBID

Library components

PETROLEU M

Petro components

CHARACTE RIZE

Property method





PVT Data Category of Input SET

Gravity

























Viscosity Contaminants Specific heat LIFTGAS

Gravity

GENERATE

Property tables





Structure Data Category of Input SOURCE

Set number, pressure/rate



Pressure estimate































Ref. source Temperature













Quality (steam) Composition TBP

Assay curve

Introduction

Statement

Feature

LIGHTEND S

Defined components in assay

WTEST

Well inflow performance relationship

SINK

Example Number 11

12

13

14

15

16

17

18

19

20

Rate estimate





















Fixed pressure























































JUNCTION

Pressure estimates

PIPE

Length/ID





Elevation change





Heat transfer parameters





Pipe data – thickness, conductivity Sphere diameter RISER

Length/ Elevation

ANNULUS

Depth



TUBING

Length, depth













Structure Data Category of Input, continued

Detailed heat transfer BEND



K or KMUL 2-phase flow model Chisholm or Homogeneous Non-standard

PUMP

Fixed power •

CHOKE COMPRESSOR

Fixed pressure

CONTRACTION

Angle

COOLER

Tout

DPDT

Curve







EXIT

PIPEPHASE Application Briefs

ix

Statement

Feature

Example Number 11

12

13

14

15

16

17

18

19

20

ENTRANCE ORIFICE TEE VALVE VENTURIMETER

CPCV

EXPANSION

Angle

COMPLE TION

Gravel packed









MANIFOLD Gas Lift Data Category of Input GASLIFT

Capacity calculated

Sizing Data Category of Input DEVICE

All devices

Casestudy Data Category of Input CHANGE

Global Individual

Sensitivity Analysis Data Category of Input SENSITIVIT Y

Inflow



Outflow

Introduction

Table 1-3: Features Used in Example (21 A & 21B) Simulations Statement

Feature

Example Number 21 A

21B

Pipeline





Well





Network

















General Data Category of Input

CALCULATION

Single Link Gas lift PVT generation Compositional Blackoil Condensate Liquid Gas Steam Isothermal Sphering FCODE

Correlations for flow device Liquid holdup corrections

DEFAULT

Medium and its parameters Flow device details Conductivities, insulation thickness

SEGMENT

Horizontal and vertical

OUTDIMENSION

Alternative output





PRINT

Output options





Plot









Methods Data Category of Input SOLUTION

Pbalance method No flow reversals

TOLERANCE

Convergence tolerance





THERMO

System









Individual enthalpy, density TRANSPORT

PIPEPHASE Application Briefs

System

xi

Statement

Feature

Example Number 21 A

21B

Component Data Category of Input LIBID

Library components





PETROLEUM

Petro components





CHARACTERIZE

Property method Gravity





Viscosity



PVT Data Category of Input SET

Contaminants Specific heat LIFTGAS

Gravity

GENERATE

Property tables



Structure Data Category of Input SOURCE

Set number, pressure/rate









Pressure estimate Ref. source Temperature Quality (steam) Composition TBP

Assay curve

LIGHTENDS

Defined components in assay

WTEST

Well inflow performance relationship

SINK

Rate estimate





Fixed pressure





JUNCTION

Pressure estimates

PIPE

Length/ID





Elevation change









Heat transfer parameters Pipe data – thickness, conductivity Sphere diameter RISER

Length/Elevation

ANNULUS

Depth

TUBING

Length, depth

Introduction

Statement

Feature

Example Number 21 A

21B













Structure Data Category of Input, continued Detailed heat transfer BEND

K or KMUL 2-phase flow model Chisholm or Homogeneous Non-standard

PUMP

Fixed power

CHOKE COMPRESSOR

Fixed pressure

CONTRACTION

Angle

COOLER

Tout

DPDT

Curve

EXIT ENTRANCE ORIFICE TEE VALVE VENTURIMET ER

CPCV

EXPANSION

Angle

COMPLETION

Gravel packed

MANIFOLD Gas Lift Data Category of Input GASLIFT

Capacity calculated

Sizing Data Category of Input DEVICE

All devices

Casestudy Data Category of Input CHANGE

Global Individual

Sensitivity Analysis Data Category of Input SENSITIVITY

Inflow Outflow

PIPEPHASE Application Briefs

xiii

Introduction

Chapter 1 PIPEPHASE EXAMPLE Example 1 - Liquid - Pump Simulation Model In this simulation, PIPEPHASE calculates the pressure drop through the system to ensure that the pump is adequately sized.

Simulation Model In this example (see Figure 1-2), PIPEPHASE is used to simulate the transfer of solvent from an atmospheric storage tank to an elevated header tank at a rate of 100 gpm. The pump is rated at 10 HP but its discharge pressure is limited to 30 psig. The user needs to calculates the pressure drop through the system to ensure that the pump is adequately sized. Any temperature changes along the piping can be ignored (i.e. assume isothermal heat transfer). Figure 1-1: Liquid - Pump

PIPEPHASE Application Briefs

1-1

Figure 1-2: Schematic representation of Liquid - Pump

The inside diameter of the pipe and elbows are 3.068" and 3" respectively. All elbows are 90º with a friction factor multiplier (Kmul) of 30. The Kmul for the gate valve is 13. The solvent is defined as a single-phase liquid and its physical properties are entered into the Single Phase Liquid PVT Data dialog box. 1.

Fluid Property Data dialog box is opened by selecting PVT Data from General menu or by clicking the PVT Data icon .

2.

Click Edit in Fluid Property Data dialog box to display Single Phase Liquid PVT Data dialog box (see Figure 1-3 ).

The gravity is the only mandatory property required but viscosity and/or specific heat data should always be supplied if available. Otherwise these properties will be estimated from the gravity.

1-2

PIPEPHASE EXAMPLE

Figure 1-3: Single Phase Liquid PVT Data Dialog Box

PIPEPHASE Application Briefs

1-3

Input Data $General Data Section $ TITLE PROBLEM=EXAMPLE1, USER=SIMSCI, DATE=10/01/97 $ DESCRIPTION PUMP LIQUID SOLVENT FROM A STOCK TANK TO A HEADER TANK $ DIMENSION English, PRESSURE=PSIG, RATE(LV)=GPM $ OUTDIMENSION SI, ADD $ CALCULATION NETWORK, Liquid $ FCODE PIPE=HW $ DEFAULT IDPIPE=4.026, IDTUBING=4.026, IDANNULUS=6.065, * THKPIPE=0.2, THKINS=0, 0, * 0, 0, 0, * CONPIPE=29, CONINS=0.015, 0.015, * 0.015, 0.015, 0.015, * HINSIDE=0, HOUTSIDE=0, HRADIANT=0 $ PRINT INPUT=FULL, DEVICE=PART, PLOT=FULL, * PROPERTY=FULL, FLASH=FULL, MAP=TAITEL, * CONNECT=NONE, SUMMARY=BOTH, DATABASE=FULL, * SIMULATOR=PART $ SEGMENT AUTO=ON, DLHORIZ(FT)=2000, DLVERT(FT)=500 $ $Network Data Section $ NETWORK DATA $ SOLUTION PBALANCE, FLOWAL=1 $ TOLERANCE PRESSURE=2 $ $PVT Data Section $ PVT PROPERTY DATA $ SET SETNO=1, GRAV(LIQUID, API)=46.062, CP=0.525, * VISC=32, 0.395/ 122, 0.246 $ $Structure Data Section $ STRUCTURE DATA $ SOURCE NAME=FEED, IDNAME=FEED, PRIORITY=0, * SETNO=1, PRES=0, TEMP=104, * RATE=100, XCORD=0, YCORD=-125 $ SINK NAME=SINK, IDNAME=SINK, PRES(ESTI)=1, * RATE(ESTI)=1, XCORD=1000, YCORD=-125 $ $ $ LINK NAME=LINK, FROM=FEED, TO=SINK, * IDNAME=LINK, IDFROM=FEED, IDTO=SINK, * PRINT ENTRANCE NAME=EN1 , IDPIPE=3.068 PIPE NAME=PIP0, LENGTH=4, ID=3.068, * ISOTHERMAL PUMP NAME=PMP1, POWER=4.1, PRES(MAX)=30, * EFF=90 PIPE NAME=PIP1, LENGTH=30, ID=3.068, * ISOTHERMAL VALVE NAME=GAT1, IDIN=3.068, IDOUT=3, * KMUL=13 BEND NAME=BEN1, ID=3, KMUL=30, *

1-4

PIPEPHASE EXAMPLE

ROUGH(REL)=4.471e-004 PIPE NAME=PIP2, LENGTH=10, ECHG=10, * ID=3.068, ISOTHERMAL BEND NAME=BEN2, ID=3, KMUL=30, * ROUGH(REL)=4.471e-004 PIPE NAME=PIP3, LENGTH=70, ID=3.068, * ISOTHERMAL BEND NAME=BEN3, ID=3, KMUL=30, * ROUGH(REL)=4.471e-004 PIPE NAME=PIP4, LENGTH=30, ECHG=30, * ID=3.068, ISOTHERMAL BEND NAME=BEN4, ID=3, KMUL=30, * ROUGH(REL)=4.471e-004 EXIT NAME=EX1 , IDPIPE=3.068 $ $ End of keyword file... $ END

Case Execution If alternate output dimensions (SI) are requested in addition to those used for the input data, select Output Units of Measure from General menu to specify the output units (see Figure 1-4). When the simulation is run the resulting output file displays results in both the original user specified Unit of Measurements (UOMs) and SI. It is important to note that if the user generates an Excel report, only the Output UOMs will be displayed. Excel reports unlike the ASCII Output reports only support a single UOM set. Normally, the UOM set corresponds to the UOM set defined in the PIPEPHASE simulation. If the user specifies an Output UOM set, the Excel report will automatically use the output UOM set and ignore the original UOM set.

PIPEPHASE Application Briefs

1-5

Figure 1-4: Output Units of Measurement Dialog Box

Results 1.

Select File/Run.. or click to display Run Simulation and View Results dialog box. Click Run to solve the network.

Figure 1-5: Run Simulation and View Results Dialog Box

Note: The generation of Excel output reports does take some time

and therefore, users should ensure that their simulation has been 1-6

PIPEPHASE EXAMPLE

solved and converged before generating complex output reports. 2.

Click Excel present in the top right-hand corner of this dialog box. This displays the Excel Reports dialog box.

3.

The user can select the reports that are to be displayed in Excel. By default, everything is selected. The user should judiciously select the reports to be displayed as large simulation models contain numerous nodes and links. The Links Reports in particular can take several minutes to generate.

4.

In the Excel Reports dialog box, the user also needs to select Run Options located at the top right- hand corner of the dialog box (see Figure 1-5).



Run Simulation - Simply runs and solves the simulation.



Create Database - Creates a Microsoft Access database with all the data to be displayed in the Excel Reports. The user must select this option to generate an Excel Report.



Create Excel Report - Creates a detailed Excel Report.

5.

After selecting the options in the Excel Reports dialog box, the user has to click Run Current Network. In the above case, it skips running and converging the network model (it assumes that the user has previously converged the simulation), creates the Access database, and subsequently creates the Excel Report.

The output report shows that the discharge pressure from the pipe is 15 psig or 205 kPa, which means that the pump is adequate for the intended application.

PIPEPHASE Application Briefs

1-7

Figure 1-6: Excel Output Surface Pressure Plot for Link LINK - Base Case 350

300

Pressure, KPA

250

200

150

100

50

0 0

10

20

30

40

50

Distance from Inlet, M Fluid

Excel report displays results in one set of units only. In this case the output UOM set.

1-8

PIPEPHASE EXAMPLE

Example 2 -Blackoil Well Simulation Objective In this simulation, EX2_BLACKOIL-WELL, the user needs to determine the production rate for an oil well with a separator pressure of 25 Bar. In addition to determining the production rate, the user is asked to determine the degradation in performance as the reservoir pressure declines and to investigate the effect of increasing the flow line diameter.

Simulation Model In the simulation model, EX2_BLACKOIL-WELL, recent reservoir data including a Vogel coefficient for the well is provided. The well tubing is deviated from the vertical and the flow line from the wellhead increases in elevation by 15m along its length. A 1.0" choke is placed at the wellhead (See Figure 1-7). Figure 1-7: Blackoil Well

PIPEPHASE Application Briefs

1-9

Figure 1-8: Schematic Representation of Blackoil Well

The well completion is gravel-packed with data as shown in Figure 1-9. Figure 1-9: Gravel Packed Completion Dialog Box

The well tubing is surrounded by a layer of insulation held in place by a metal sheet. The annulus between this metal sheet and the outer casing contains gas. The user must consider the heat transfer throughout the well bore and the flow line as shown in Figure 1-10. 1-10

PIPEPHASE EXAMPLE

Figure 1-10: Tubing Detailed Heat transfer Data

The well is simulated as a single link. The pressure boundary is fixed at each end and the flow rate is estimated. The fluid is modeled as a Blackoil where the Gravity, Gas/Oil Ratio, and Water Cut are defined. The Hagedorn-Brown (HB) pressure drop correlation is selected for the tubing device and the Beggs-BrillMoody (BBM) correlation is used to calculate the pressure drop in the flow line. The SOURCE node temperature and pressure correspond to the reservoir conditions. The inflow performance relationship is modeled using the Vogel IPR model. An estimate for the flow rate is also supplied. The tunnel length for the COMPLETION is the difference between the screen and the borehole radii (i.e. 105mm 60mm), which is 45mm. The default permeability is suitable for this gravel size.

PIPEPHASE Application Briefs

1-11

Input Data $General Data Section $ TITLE PROBLEM=EXAMPLE2, USER=SIMSCI, DATE=10/01/97 $ DESCRIPTION BLACKOIL WELL SENSITIVITY ANALYSIS $ DIMENSION Metric, RATE(LV)=CMHR, LENGTH=M,IN, * DENSITY=SPGR $ OUTDIMENSION Metric, ADD $ CALCULATION NETWORK, Blackoil $ FCODE TUBING=HB $ DEFAULT IDPIPE=102.26, IDTUBING=102.26, IDANNULUS=154.05099 $ PRINT INPUT=FULL, DEVICE=FULL, PLOT=FULL, * PROPERTY=FULL, FLASH=FULL, MAP=TAITEL, * CONNECT=NONE, SUMMARY=BOTH, DATABASE=FULL, * SIMULATOR=PART $ SEGMENT AUTO=OFF, NHOR=10, NVER=10 $ $Network Data Section $ NETWORK DATA $ SOLUTION PBALANCE, FLOWAL=1 $ TOLERANCE PRESSURE=6.895e-003 $ $PVT Data Section $ PVT PROPERTY DATA $ SET SETNO=1, GRAV(OIL,SPGR)=0.876, GRAV(GAS,SPGR)=0.71, * GRAV(WATER,SPGR)=1.05 $ $Structure Data Section $ STRUCTURE DATA $ SOURCE NAME=RES, IDNAME=RES, PRIORITY=0, * SETNO=1, PRES=400, TEMP=110, * RATE(ESTI)=50, GOR=320, WCUT=5, * XCORD=0, YCORD=-125 $ SINK NAME=SEPR, IDNAME=SEPR, PRES=25, * RATE(ESTI)=1, XCORD=1000, YCORD=-125 $ $ $ LINK NAME=LINK, FROM=RES, TO=SEPR, * IDNAME=LINK, IDFROM=RES, IDTO=SEPR, * PRINT IPR NAME=IPR , TYPE=VOGEL, * IVAL=BASIS, 2, * RVAL=QMAX, 100 / VOGCON, 0.2 / VOGEXP, 1 / * UPTIME,1 / OPEN,1 COMPLETION NAME=Z001, JONES, TUNNEL=45, * PERFD=10, SHOTS=25, LENGTH=10 TUBING NAME=TUB1, LENGTH=1830, DEPTH=1710, * ID=3.873, U=4.882 CHOKE NAME=CHK1, FN, ID=1 PIPE NAME=LINE, LENGTH=1250, ECHG=15, * ID=3.5, ROUGH(IN)=0.18, U=4.882 $ $ End of keyword file...

1-12

PIPEPHASE EXAMPLE

$ END $ $Sensitivity Analysis Data Section $ GSENSITIVITY ANALYSIS LINK DATA $ LINK NAME=LINK NODE NAME=CHK1 FLOW RATE=40, 50, 60, * 70 DESCRIPTION INFLOW= 450 BAR, 400 BAR, * 350 BAR DESCRIPTION OUTFLOW= 3 1/2 IN DIA, 4 IN DIA, * 4 1/2 IN DIA, 5 IN DIA INFLOW NAME=RES, * PRES=450, 400, 350 OUTFLOW NAME=LINE, * ID=3.5, 4, 4.5, 5 $ END GUI DATA

PIPEPHASE Application Briefs

1-13

Case Execution and Results To generate and view the calculated Pressure and Temperature profiles for the well bore: 1.

Click on the main toolbar. The Run Simulation and View Results dialog box.

2.

Select Network as the simulation Type and click the Run button. The simulation solves and converges successfully.

3.

To view the results in MS-Excel, select Excel from the dropdown list in the Report menu.

4.

To view the results in MS-Excel,Click the Excel button to display the results. The results are displayed in the Link worksheet and appear as shown in Figure 1-11.

Figure 1-11: Well Pressure and Temperatures for Link

1-14

PIPEPHASE EXAMPLE

Nodal Analysis Calculations To study the flow rates at different reservoir pressures and flow line diameter perform a Nodal Analysis. The wellhead choke is to be specified as the NODE. Flow rates at the choke will be reported for the combinations of pressure and diameter. The reservoir pressure is investigated between 300 and 450 bar with flow line diameters of 3.5", 4", 4.5" and 5". The expected range of flow rates in the study is between 40 & 70 m3/h. 1.

Double click on the link to display the Link Device Data dialog box. Click on the Nodal button to display the Nodal Analysis dialog box. Enter the details in the Nodal Analysis Parameters dialog box as shown in Figure 1-12 Nodal Analysis Parameters.

Figure 1-12: Nodal Analysis Parameters

2.

Click on the main toolbar. The Run Simulation and View Results dialog box as shown in Figure 1-13.

PIPEPHASE Application Briefs

1-15

Figure 1-13: Run Simulation and View Results

1-16

3.

Select Nodal Analysis as the simulation Type and click the Run button. The Nodal Analysis simulation converges successfully.

4.

To analyze the results, click the RAS button to display the PIPEPHASE Result Access System window.

5.

Click File/New and load the Nodal plot stored in the same location as the simulation.

6.

Click Special Plots button in the PIPEPHASE Result Access System window to display the RSA Special Plots dialog box. Enter the details and click the View Plot button.

7.

The RAS Nodal plots can be generated in Excel (see Figure 1-14), by clicking on the General menu in PIPEPHASE Result Access System window and selecting Setup options.

PIPEPHASE EXAMPLE

Figure 1-14: Nodal Analysis of Pressure

PIPEPHASE Application Briefs

1-17

Example 3 - Distillation Curve Simulation Objective In this simulation, PIPEPHASE determines the pressure losses through the network and also investigates the effect of raising the inlet pressure and of using larger diameter pipes in the network

Simulation Model Crude oil is heated before entering refinery distillation columns for separation into various petroleum products. The user is required to determine the pressure losses through the network. The user must also investigates the effect of raising the inlet pressure and of using larger diameter pipes. Figure 1-15: Distillation Curve

Figure 1-16: Schematic representation of Distillation Curve

1-18

PIPEPHASE EXAMPLE

This is a compositional network model. Since the direction of flow must be from left to right, the No Reverse Flow option can be specified in the Network Convergence Data dialog box (see Figure 1-17 ). Figure 1-17: Network Convergence Data Dialog Box

The crude oil is defined using a TBP (True Boiling Point) distillation curve and an average API gravity. PIPEPHASE automatically characterizes the oil by generating a number of petroleum fractions with associated physical properties. Lightend components are defined in addition to the crude oil distillation curve, all properties for which are stored in internal component databanks. Grayson-Streed K-values are used with Lee-Kesler enthalpies and vapor density. Liquid density is calculated using the API method.

PIPEPHASE Application Briefs

1-19

Input Data $General Data Section $ TITLE PROBLEM=EXAMPLE3, USER=SIMSCI, DATE=10/01/97 $ DESCRIPTION CRUDE OIL HEAT EXCHANGER NETWORK $ DIMENSION RATE(LV)=BPH $ CALCULATION NETWORK, Compositional $ DEFAULT IDPIPE=4.026, IDTUBING=4.026, IDANNULUS=6.065 $ PRINT INPUT=FULL, DEVICE=FULL, PLOT=FULL, * PROPERTY=FULL, FLASH=FULL, MAP=TAITEL, * CONNECT=NONE, SUMMARY=BOTH, DATABASE=FULL, * SIMULATOR=PART $ SEGMENT AUTO=ON, DLHORIZ(FT)=2000, DLVERT(FT)=500 $ $Component Data Section $ COMPONENT DATA $ LIBID 1, C2 / * 2, C3 / * 3, IC4 / * 4, NC4 / * 5, IC5 / * 6, NC5 , BANK=PROCESS, SIMSCI $ PHASE VL=1,6 $ ASSAY CHARACTERIZE=LK, CONVERSION=API94, CURVEFIT=IMPR $ $Network Data Section $ NETWORK DATA $ SOLUTION PBALANCE, FLOWAL=1, NOFR $ TOLERANCE PRESSURE=1 $ $Thermodynamic Data Section $ THERMODYNAMIC DATA $ METHOD SET=SET01, SYSTEM=GS, ENTHALPY=LK, * DENSITY(V)=LK $ WATER PROPERTY=Super $ KVALUE BANK=SimSci $ $PVT Data Section $ PVT PROPERTY DATA $ GENERATE SETNO=1, SOURCE=FEED, TEMP=0, * DT=30, NT=16, PRES=10, * DP=40, NP=4, PRINT=LDEN SET SETNO=1, SET=SET01 $ $Structure Data Section $ STRUCTURE DATA $ SOURCE NAME=FEED, IDNAME=FEED, PRIORITY=0, * SETNO=1, SET=SET01, PRES=114, *

1-20

PIPEPHASE EXAMPLE

TEMP=60, RATE(W)=1.5000e+006, ASSAY=LV, * XCORD=0, YCORD=245 TBP DATA=3, 97 / 5, 149 / 10, 208 / * 20, 330 / 30, 459 / 40, 590 / * 50, 690 / 60, 770 / 70, 865 / * 80, 980 / 100, 1100 API AVG=31 LIGHTENDS PERCENT(LV)=3, NORMALIZE, * COMPOSITION(LV)=1, 0.1 / 2, 0.2 / 3, 0.3 / * 4, 0.7 / 5, 0.5 / 6, 1.2 $ SINK NAME=PROD, IDNAME=PROD, PRES(ESTI)=1, * RATE(ESTI)=1.500e+006, XCORD=1210, YCORD=55 $ JUNCTION NAME=J1, IDNAME=J1, XCORD=455, * YCORD=185 JUNCTION NAME=J2, IDNAME=J2, XCORD=665, * YCORD=235 $ $ LINK NAME=1, FROM=FEED, TO=J1, * IDNAME=1, IDFROM=FEED, IDTO=J1, * PRINT PIPE NAME=Z001, LENGTH=20, ID=12, * U=1 TEE NAME=Z002, IDPIPE=12, KMUL=20, * ROUGH(REL)=1.000e-004 PIPE NAME=Z003, LENGTH=20, ID=10, * U=1 DPDT NAME=E1, * CURVE=5.0000e+005, -10, 50 / 1.5000e+006, -5, 40 PIPE NAME=Z005, LENGTH=20, ID=12, * U=1 VENTURI NAME=Z006, IDPIPE=12, IDTHROAT=9.5, * CPCV=1.45 CONTRACTION NAME=Z007, IDIN=12, IDOUT=10, * ANGLE=135 PIPE NAME=Z008, LENGTH=5, ID=10, * U=1 $ LINK NAME=2, FROM=J1, TO=J2, * IDNAME=2, IDFROM=J1, IDTO=J2, * PRINT PIPE NAME=Z009, LENGTH=10, ID=10, * U=1 BEND NAME=Z010, ID=10, KMUL=60, * ROUGH(REL)=4.471e-004 PIPE NAME=Z011, LENGTH=40, ID=10, * U=1 DPDT NAME=E2, * CURVE=5.0000e+005, -10, 50 / 1.5000e+006, -5, 40 PIPE NAME=Z013, LENGTH=20, ID=10, * U=1 ORIFICE NAME=Z014, Thick, IDPIPE=10, * IDORIFICE=6 PIPE NAME=Z015, LENGTH=20, ID=10, * U=1 BEND NAME=Z016, ID=10, KMUL=60, * ROUGH(REL)=4.471e-004, HOMOGENEOUS PIPE NAME=Z017, LENGTH=10, ID=10, * U=1 $ LINK NAME=3, FROM=J1, TO=J2, * IDNAME=3, IDFROM=J1, IDTO=J2, * PRINT PIPE NAME=Z018, LENGTH=10, ID=10, * U=1 BEND NAME=Z019, ID=10, NONSTANDARD, * ANGLE=60, RADIUS=30, KMUL=50, * ROUGH(REL)=4.471e-004 PIPE NAME=Z020, LENGTH=40, ID=10, * U=1

PIPEPHASE Application Briefs

1-21

DPDT NAME=E3, * CURVE=5.0000e+005, -15, 40 / 1.5000e+006, -7, 35 PIPE NAME=Z022, LENGTH=40, ID=10, * U=1 BEND NAME=Z023, ID=10, KMUL=60, * ROUGH(REL)=4.471e-004, LAMBDA=1.1, C2=4 PIPE NAME=Z024, LENGTH=10, ID=10, * U=1 $ LINK NAME=4, FROM=J2, TO=PROD, * IDNAME=4, IDFROM=J2, IDTO=PROD, * PRINT PIPE NAME=Z025, LENGTH=5, ID=10, * U=1 EXPANSION NAME=Z026, IDIN=10, IDOUT=12, * ANGLE=135 PIPE NAME=Z027, LENGTH=40, ID=12, * U=1 DPDT NAME=E4, * CURVE=5.0000e+005, -10, 50 / 1.5000e+006, -5, 40 PIPE NAME=Z029, LENGTH=40, ID=12, * U=1 $ $Case Study Data Section $ CASE STUDY DATA DESCRIPTION CASE STUDY 1 PARAMETER CCLASS=SOUR, CNAME=FEED , VARI=PRESSURE Value=125 CASE STUDY DATA DESCRIPTION CASE STUDY 2 PARAMETER CCLASS=SOUR, CNAME=FEED Value=114

, VARI=PRESSURE

PARAMETER CCLASS=PIPE Value=10

, CNAME=GFROM, VARI=PIPE ID

PARAMETER CCLASS=PIPE Value=12 $ End of keyword file... $ END

, CNAME=GNETWORK, VARI=PIPE ID

, *

, * , * , *

Case Execution Heat exchanger in the simulation is modeled as a DPDT device, where the temperature and pressure changes are entered as functions of the mass flow rates.

Results Click Run and solve the simulation.Two case studies are performed after the base case to investigate the effect of the feed pressure and pipe diameter. Each case study produces a completely separate output report and a case study summary is generated at the end of the report (see Figure 1-18).

1-22

PIPEPHASE EXAMPLE

Figure 1-18: Node Summary

PIPEPHASE Application Briefs

1-23

Example 4 - Gas Pipeline Simulation Objective In this simulation, PIPEPHASE computes the heat loss to the surroundings (i.e. soil) using built in correlations to determine the buried pipeline heat transfer coefficients.

Simulation Model An obsolete, cross - country oil pipeline is to be converted to gas service. A five stage compressor is available and will be installed at the inlet of the pipeline. The pipeline runs over rough terrain and is buried 36 inches below the surface. Most of the pipeline has 1.5 inches of insulation with a thermal conductivity of 0.0116 BTU/hrft2-F. However, a portion of the pipeline is not insulated. Even though the insulation is a liability for gas flow, it would be too expensive to remove it. Figure 1-19: Gas Pipeline

Figure 1-20: Schematic Representation of Example - Gas Pipeline

1-24

PIPEPHASE EXAMPLE

The user must establish the rate of gas which can be delivered at a pressure of 600 psig. The maximum allowable operating pressure for the pipeline must also be checked for the new service. Line and route specifications are shown on the following page. A simple single-phase GAS fluid model is used to characterize the fluid. To minimize the amount of input data, the most commonly used pipeline diameter, pipeline thickness and insulation thickness are set as global defaults. User can select Global Defaults from the General menu or click the Global Defaults icon . The thermal conductivities of the insulation and soil are also set as default values (see Figure 1-21). Figure 1-21: Pipe Heat Transfer Defaults Dialog Box

The compressor has a power and efficiency specification. The outlet temperature of the cooler is defined subject to the maximum design duty. If the required duty exceeds this value, it will be set to the maximum value and the temperature will be higher than the specified value. The required delivery pressure is specified as a fixed sink pressure boundary condition. PIPEPHASE computes the heat loss to the surroundings (i.e. soil) using built in correlations to determine the buried pipeline heat transfer coefficients.

PIPEPHASE Application Briefs

1-25

The pipeline route and size data are shown in Table 1-1 below. Table 1-1: Pipeline Data Section

Length (Miles)

Pipe ID (in)

Elevation Increase (ft)

Pipe Thickness (in)

Insulation Thickness (in)

1

15.8

29.25

587

0.375

1.5

2

1.81

29.25

160

0.375

1.5

3

4.79

26.376

1041

0.312

1.5

4

0.8

29.062

681

0.469

1.5

5

1.7

29.376

1600

0.375

1.5

6

5.9

29.376

0.0

0.375

1.5

7

11.3

29.376

1020

0.375

1.5

8

10.4

29.376

-2220

0.375

1.5

9

10.4

29.25

-220

0.375

1.5

10

16.7

29.25

-230

0.375

-

11

25.5

29.25

-70

0.375

-

12

2.02

29.15

-

0.375

-

13

21.78

29.312

-260

0.349

1.5

14

0.6

29.0

-

0.500

1.5

15

14.7

29.376

-170

0.375

1.5

16

5.8

29.376

150

0.375

1.5

17

16.9

29.376

400

0.375

1.5

18

10.4

29.376

-30

0.375

1.5

19

42.1

29.376

-1570

0.375

1.5

Pipeline profiles can be displayed by clicking View Profile (see Figure 1-22) in the Link Device Data dialog box.

1-26

PIPEPHASE EXAMPLE

Figure 1-22: Link Profile Window

PIPEPHASE Application Briefs

1-27

Input Data $General Data Section $ TITLE PROBLEM=EXAMPLE4, USER=SIMSCI, DATE=10/01/97 $ DESCRIPTION BURIED CROSS COUNTRY GAS PIPELINE $ DIMENSION RATE(GV)=CFD $ OUTDIMENSION Metric, ADD $ CALCULATION NETWORK, Gas $ DEFAULT IDPIPE=29.376, IDTUBING=29.376, IDANNULUS=6.065, * ROUGH(IN)=6.0000e-004, TAMBIENT=50, * THKPIPE=0.375, THKINS=1.5, 0, * 0, 0, 0, * CONPIPE=29, CONINS=0.0116, 0.015, * 0.015, 0.015, 0.015, * HINSIDE=0, HOUTSIDE=0, HRADIANT=0, * SOIL, COND=0.7, BDTOP=36 $ PRINT INPUT=FULL, DEVICE=FULL, PLOT=FULL, * PROPERTY=FULL, FLASH=FULL, MAP=TAITEL, * CONNECT=NONE, SUMMARY=BOTH, DATABASE=FULL, * SIMULATOR=PART $ SEGMENT AUTO=OFF, DLHORIZ(FT)=1000, DLVERT(FT)=500 $ $Network Data Section $ NETWORK DATA $ SOLUTION PBALANCE, FLOWAL=1 $ TOLERANCE PRESSURE=2 $ $PVT Data Section $ PVT PROPERTY DATA $ SET SETNO=1, GRAV(SPGR)=0.93, CPRATIO=1.3, * CONT=0, 0.2, 0 $ $Structure Data Section $ STRUCTURE DATA $ SOURCE NAME=S1, IDNAME=S1, PRIORITY=0, * SETNO=1, PRES=375, TEMP=97, * RATE(ESTI)=500, XCORD=0, YCORD=-125 $ SINK NAME=SINK, IDNAME=SINK, PRES=600, * RATE(ESTI)=1, XCORD=1000, YCORD=-125 $ $ $ LINK NAME=LINK, FROM=S1, TO=SINK, * IDNAME=LINK, IDFROM=S1, IDTO=SINK, * PRINT MCOMPRESSOR NAME=Z001, STAGES=5, EQUALPR, * ADEFF=76, 100, 100, * 100, 100, POWER=27000 COOLER NAME=Z002, TOUT=100, DUTY(MAX)=500 PIPE NAME=Z003, LENGTH=83424, ECHG=587, * ID=29.25, SOIL PIPE NAME=Z004, LENGTH=9556.7998, ECHG=160, * ID=29.25, SOIL PIPE NAME=Z005, LENGTH=25291.20117, ECHG=1041, * SOIL, THKPIPE=0.312

1-28

PIPEPHASE EXAMPLE

PIPE NAME=Z006, LENGTH=4224, ECHG=681, * ID=29.062, SOIL, THKPIPE=0.469 PIPE NAME=Z007, LENGTH=8976, ECHG=1600, * SOIL PIPE NAME=Z008, LENGTH=31152, ECHG=0, * SOIL PIPE NAME=Z009, LENGTH=59664, ECHG=1020, * SOIL PIPE NAME=Z010, LENGTH=54912, ECHG=-2220, * SOIL PIPE NAME=Z011, LENGTH=54912, ECHG=-220, * ID=29.25, SOIL PIPE NAME=Z012, LENGTH=88176, ECHG=-230, * ID=29.25, SOIL, THKINS=0, * 0, 0, 0, * 0, CONINS=0.0116, 0.015, * 0.015, 0.015, 0.015 PIPE NAME=Z013, LENGTH=1.346e+005, ECHG=-70, * ID=29.25, SOIL, THKINS=0, * 0, 0, 0, * 0, CONINS=0.0116, 0.015, * 0.015, 0.015, 0.015 PIPE NAME=Z014, LENGTH=10665.59961, ECHG=0, * ID=29.15, SOIL, THKINS=0, * 0, 0, 0, * 0, CONINS=0.0116, 0.015, * 0.015, 0.015, 0.015 PIPE NAME=Z015, LENGTH=1.150e+005, ECHG=-260, * ID=29.312, SOIL, THKPIPE=0.344 PIPE NAME=Z016, LENGTH=3168, ECHG=0, * ID=29, SOIL, THKPIPE=0.5 PIPE NAME=Z017, LENGTH=77616, ECHG=-170, * SOIL PIPE NAME=Z018, LENGTH=30624, ECHG=150, * SOIL PIPE NAME=Z019, LENGTH=89232, ECHG=400, * SOIL PIPE NAME=Z020, LENGTH=54912, ECHG=-30, * SOIL PIPE NAME=Z021, LENGTH=2.223e+005, ECHG=-1570, * SOIL $ $ End of keyword file... $ END

Case Execution and Results If metric units are selected as the output UOM, then the Excel Reports will display all results in metric units. Note: Excel reports can only use a single UOM set.

PIPEPHASE Application Briefs

1-29

Example 5 - Compositional Sub Sea Riser Simulation Objective In the simulation, EX5_COMPOSITIONAL-SUBSEA-RISER, the user is required to: 1.

Determine the onshore slug catcher size. To do this, the user must calculate the onshore fluid temperature, pressure, liquid and vapor rate, and the total liquid holdup.

2.

Generate a fluid phase envelope and hydrate curves. Assuming that the average seabed temperature is 10ºC, the user must determine if hydrate will form in the line.

Simulation Model Wet gas is produced offshore and subsequently transported to the shore through a 32-inch pipeline. The wet gas passes through a booster platform where the gas is separated and compressed. The gas is then re-combined with the condensate and sent to the onshore destination. The pipeline is coated with concrete for negative buoyancy and the heat transfer coefficient for heat loss to the sea-water is estimated at 0.16 BTU/hr-ft2-F. The risers and downcomers are bare and heat transfer coefficients for heat loss to the water and air are computed to be 1.60 and 0.25 BTU/hr-ft2-F, respectively. Figure 1-23: Compositional Sub Sea Riser

1-30

PIPEPHASE EXAMPLE

Figure 1-24: Schematic Representation of Example - Compostional Sub Sea Riser

Table 1-2: Pipe Details Section

Length (m)

Rise (m)

Notes

1

10

-10

Downcomer in air

2

155

-155

Downcomer in water

3

38000

-177

Main line

4

39000

22

5

30400

35

6

4400

11

7

2600

-21

8

24000

25

9

9300

-15

10

3600

13

11

4100

-18

12

12800

25

13

8700

-26

14

11500

191

15

200

160

Riser to booster platform

16

10

10

Riser in air

17

10

-10

Downcomer in air

18

160

-150

Downcomer in water

19

17000

-184

20

5500

27

21

24900

-26

22

7700

31

23

49100

-9

PIPEPHASE Application Briefs

1-31

Table 1-2: Pipe Details Section

Length (m)

Rise (m)

24

900

6

25

19700

-10

26

6100

31

27

12600

-16

28

8700

18

29

3000

-19

30

15400

66

31

4600

42

32

20000

203

Notes

Shore

The compositional fluid is modeled using library components with a petroleum pseudo-component to represent the heavy condensate. All the required condensate properties are computed by PIPEPHASE from the supplied values of molecular weight and specific gravity. The Soave-Redlich-Kwong (SRK) equation of state is used to compute the liquid-vapor phase splits. A single link simulation is used to determine the outlet pressure corresponding to the survey rate of 1,000 metric tons of production with an inlet pressure of 143 bar. The temperature profile for the pipeline is also computed via a heat balance over each calculation segment.

1-32



Compositional runs provide flash reports at the inlet and outlet of the pipeline. These reports show a detailed breakdown of gas and condensate compositions and associated properties.



The node summary reports values at standard conditions (see Figure 1-25). The link summary reports values at actual conditions. It is important to differentiate between the two. In this case the Link Summary reports an actual condensate flow rate of 88.6 m3/hr at the sink whereas, under standard conditions, no liquid exists.

PIPEPHASE EXAMPLE

Figure 1-25: Node and Link Summary Report



The Taitel-Dukler-Barnea flow regime map (see Figure 1-26) is used to accurately predict the flow pattern. The results indicate single-phase and stratified flow through most of the pipeline. The last vertical pipes are shown to be in annular flow.

Figure 1-26: Flow Regime Map Flow Regime Map for LINK - Base CaseOutlet 1.00E+02

Superficial Liquid Velocity, M/SEC

D

1.00E+01

1.00E+00

A

I

1.00E-01

X W 1.00E-02 0.1

1

10

100

1000

Superficial Gas Velocity, M/SEC

The temperature and pressure profiles for the pipeline can be viewed in the output report. There is significant cooling of the gas in the initial downcomer. This is reflected in the phase diagram for the fluid (see Figure 1-27). The traverse traces the temperature and pressure profile of the pipeline across the phase envelope. Initially a single-phase fluid as the temperature and pressure drop the fluid become two-phase as liquid condensate drops out of the gas. PIPEPHASE Application Briefs

1-33

Figure 1-27: Phase Envelope Map Phase Envelope for LINK - Base Case 160 140 120

Pressure, BAR

100 80 60 40 20 0 -200

-150

-100

-50

0

50

100

Temperature, DEG C Fluid

1-34

Critical Point

Water Saturation

Fluid Traverse

PIPEPHASE EXAMPLE

Input Data $General Data Section $ TITLE PROBLEM=EXAMPLE5, USER=SIMSCI, DATE=10/01/97 $ DESCRIPTION OFFSHORE GAS AND CONDENSATE PIPELINE $ DIMENSION Metric, DENSITY=SPGR $ CALCULATION NETWORK, Compositional $ DEFAULT IDPIPE=774.70001, IDTUBING=300, IDANNULUS=354.05099, * ODTUBE=325.211, ROUGH(MM)=0.056, TAMBIENT=10, * UPIPE=549.2383, UTUBING=3432.6694, UANNULUS=3432.6694, * THKPIPE=19.05, THKINS=45.72, 0, * 0, 0, 0, * CONPIPE=43.15734, CONINS=7.1432, 0.0223, * 0.0223, 0.0223, 0.0223, * HINSIDE=0, HOUTSIDE=0, HRADIANT=0, * WATER, COND=0.44645, VISC=1, * DENSITY(SPGR)=1, VELO=5 $ PRINT INPUT=FULL, DEVICE=FULL, PLOT=FULL, * PROPERTY=FULL, FLASH=FULL, MAP=TAITEL, * CONNECT=NONE, SUMMARY=BOTH, DATABASE=FULL, * SIMULATOR=PART, SLUG=BRILL $ SEGMENT AUTO=OFF, DLHORIZ(M)=1500, DLVERT(M)=100 $ $Component Data Section $ COMPONENT DATA $ LIBID 1, H2O / * 2, N2 / * 3, CO2 / * 4, C1 / * 5, C2 / * 6, C3 / * 7, IC4 / * 8, NC4 / * 9, IC5 / * 10, NC5 / * 11, NC6 / * 12, NC7 , BANK=PROCESS, SIMSCI $ PHASE VL=1,12 $ $Network Data Section $ NETWORK DATA $ SOLUTION PBALANCE, FLOWAL=1 $ TOLERANCE PRESSURE=0.138 $ $Thermodynamic Data Section $ THERMODYNAMIC DATA $ METHOD SET=SET01, SYSTEM(VLE)=PRM $ KVALUE BANK=SimSci $ $PVT Data Section $ PVT PROPERTY DATA $ SET SETNO=1, SET=SET01

PIPEPHASE Application Briefs

1-35

$ $Structure Data Section $ STRUCTURE DATA $ SOURCE NAME=1, IDNAME=1, PRIORITY=0, * SETNO=1, SET=SET01, PRES=143, * TEMP=47, RATE(W)=1.0000e+006, XCORD=0, * YCORD=-125, * COMP(M)=1, 0.08 / 2, 0.19 / 3, 2.07 / * 4, 87.18 / 5, 4.93 / 6, 2.98 / * 7, 0.54 / 8, 0.69 / 9, 0.29 / * 10, 0.2 / 11, 0.3 / 12, 0.55 $ SINK NAME=SINK, IDNAME=SINK, PRES(ESTI)=40, * RATE(ESTI)=1.000e+006, XCORD=1000, YCORD=-125 $ $ $ LINK NAME=LINK, FROM=1, TO=SINK, * IDNAME=LINK, IDFROM=1, IDTO=SINK, * PRINT PIPE NAME=Z001, LENGTH=10, ECHG=-10, * U=175.7675 PIPE NAME=Z002, LENGTH=155, ECHG=-155, * U=1124.9121 PIPE NAME=Z003, LENGTH=38000, ECHG=-177 PIPE NAME=Z004, LENGTH=39000, ECHG=22, * U=549.0978 PIPE NAME=Z005, LENGTH=30400, ECHG=-35 PIPE NAME=Z006, LENGTH=4400, ECHG=11 PIPE NAME=Z007, LENGTH=2600, ECHG=-21 PIPE NAME=Z008, LENGTH=24000, ECHG=25 PIPE NAME=Z009, LENGTH=9300, ECHG=-15 PIPE NAME=Z010, LENGTH=3600, ECHG=13 PIPE NAME=Z011, LENGTH=4100, ECHG=-18 PIPE NAME=Z012, LENGTH=12800, ECHG=25 PIPE NAME=Z013, LENGTH=8700, ECHG=-26 PIPE NAME=Z014, LENGTH=11500, ECHG=191 PIPE NAME=Z015, LENGTH=200, ECHG=160, * U=1124.9121 PIPE NAME=Z016, LENGTH=10, ECHG=10, * U=175.7675 SEPARATOR NAME=S001, PERCENT(WATER)=100, PERCENT(COND)=100 COMPRESSOR NAME=C002, PRES=120, EFF=85 INJECTION NAME=I003, FROM=S001, COND PIPE NAME=Z017, LENGTH=10, ECHG=-10, * U=175.7675 PIPE NAME=Z018, LENGTH=160, ECHG=-150, * U=1124.9121 PIPE NAME=Z019, LENGTH=17000, ECHG=-184 PIPE NAME=Z020, LENGTH=5500, ECHG=27 PIPE NAME=Z021, LENGTH=24900, ECHG=-26 PIPE NAME=Z022, LENGTH=7700, ECHG=31 PIPE NAME=Z023, LENGTH=49100, ECHG=-9 PIPE NAME=Z024, LENGTH=900, ECHG=6 PIPE NAME=Z025, LENGTH=19700, ECHG=-10 PIPE NAME=Z026, LENGTH=6100, ECHG=31 PIPE NAME=Z027, LENGTH=12600, ECHG=-16 PIPE NAME=Z028, LENGTH=8700, ECHG=18 PIPE NAME=Z029, LENGTH=3000, ECHG=-19 PIPE NAME=Z030, LENGTH=15400, ECHG=66 PIPE NAME=Z031, LENGTH=4600, ECHG=42 PIPE NAME=Z032, LENGTH=20000, ECHG=203 $ $UNIT OPERATION Data Section $ UNIT OPERATION DATA $ HYDRATE UID=H001, NAME=HYDRATE EVALUATION EVALUATE STREAM=SINK, POINTS=30, IPRES=40, * MAXPRES=160, TESTIMATE=50, INHIB(MEOH)=10

1-36

PIPEPHASE EXAMPLE

$ $ End of keyword file... $ END

Case Execution For single link simulations, PIPEPHASE users can estimate the slug catcher size by choosing from three statistical slugging models ■

Brill



Scott



Norris.

These models are not available for network simulations. The slugging model is specified in the Print Options in the General menu (see Figure 1-28). Figure 1-28: Print Options Dialog Box

Results The slug catcher size can be estimated by reviewing the data in the Slugging Report worksheet of the Excel report (see Figure 1-29). PIPEPHASE Application Briefs

1-37

In this case the mean slug length is calculated to be approximately 600 m. This is multiplied by the cross sectional area of the pipeline to determine the volume of the slug. Figure 1-29: Slugging Report

1-38

PIPEPHASE EXAMPLE

Example 6 - Pigging Pipeline Simulation Objective In this simulation, the Sphering or Pigging feature is used to increase the throughput of the pipeline.

Simulation Model A cross-country pipeline, which transports a two-phase natural gas mixture, is currently operating at maximum capacity. The delivery pressure at the end of the pipeline will become too low if the flow rate is increased. Hence additional compression will be required. sphering or pigging, is to be performed in order to increase the throughput of the pipeline. Pigs will be launched at the beginning of the line and at two intermediate points along the line. Figure 1-30: Pigging Pipeline

Figure 1-31: Schematic representation of Example - Pigging Pipeline

PIPEPHASE Application Briefs

1-39

The user must determine the quantity of liquid, which will be removed from the pipeline in order to size the slug catcher. The source has compositional fluid with two, defined petroleum components as the heavy ends. The Cavett 1980 method is specified for characterizing the petro components. The SRK equation of state and petroleum transport properties are selected as suitable for simulating the behavior of the natural gas mixture. Pigging or sphering calculations can only be specified for single link simulations. The user activates the pigging calculations by selecting Calculation Methods from the General menu, and clicking the Sphering Analysis radio button (see Figure 1-32). The user also needs to supply a time increment - this defines the rate for successive steady state sphering calculations. It is important that an appropriate time interval is selected in order to ensure that pipeline transients are adequately simulated. Figure 1-32: Network Calculation Methods Dialog Box

The user specifies the diameter and launch position for the sphere in the Pipe dialog box. The pigging algorithm can simulate multiple pigs launching for different locations along the pipeline. A pig is automatically launched from an intermediate site when the previous sphere reaches it.

1-40

PIPEPHASE EXAMPLE

In addition to activating the pigging calculations in the Network Calculation dialog box (see Figure 1-32), the user must also specify the size and location of the pig in the Pipe device dialog box (see Figure 1-33). In this case, three Pigs are launched at the beginning of pipes Z001, Z003 and Z006 respectively - each with different diameters. Figure 1-33: Pipe Dialog Box

Input Data $General Data Section $ TITLE PROBLEM=EXAMPLE6, USER=SIMSCI, DATE=10/01/97 $ DESCRIPTION PIPELINE SPHERING EXAMPLE $ DIMENSION English $ CALCULATION NETWORK, Compositional, SPHERING $ DEFAULT IDPIPE=8, IDTUBING=8, IDANNULUS=6.065, * TAMBIENT=65, UPIPE=0.8, UTUBING=1, * UANNULUS=1 $ PRINT INPUT=FULL, DEVICE=FULL, PLOT=FULL, * PROPERTY=FULL, FLASH=FULL, MAP=TAITEL, * CONNECT=NONE, SUMMARY=BOTH, DATABASE=FULL, * SIMULATOR=PART, SLUG=BRILL $ SEGMENT AUTO=OFF, DLHORIZ(FT)=5000, DLVERT(FT)=500, * DTIM(SEC)=19 $ $Component Data Section $ COMPONENT DATA $ LIBID 1, C1 / * 2, C2 / * 3, C3 / *

PIPEPHASE Application Briefs

1-41

4, NC4 / * 5, NC5 / * 6, NC6 , BANK=PROCESS, SIMSCI PETRO(API) 7, PETRO1, , 45.000, 350.000 / * 8, PETRO2, , 38.000, 480.000 $ PHASE VL=1,8 $ $Network Data Section $ NETWORK DATA $ SOLUTION PBALANCE, FLOWAL=1 $ TOLERANCE PRESSURE=2 $ $Thermodynamic Data Section $ THERMODYNAMIC DATA $ METHOD SET=SET01, SYSTEM=SRK $ WATER PROPERTY=Super $ KVALUE BANK=SimSci $ $PVT Data Section $ PVT PROPERTY DATA $ SET SETNO=1, SET=SET01 $ $Structure Data Section $ STRUCTURE DATA $ SOURCE NAME=Q012, IDNAME=Q012, PRIORITY=0, * PRES=350, TEMP=120, RATE(GV)=0.7667, * XCORD=0, YCORD=-125, * COMP(M)=1, 88.61 / 2, 3.15 / 3, 2.69 / * 4, 2.04 / 5, 1.67 / 6, 1.11 / * 7, 0.55 / 8, 0.18 $ SINK NAME=SINK, IDNAME=SINK, PRES(ESTI)=1, * RATE(ESTI)=1, XCORD=1000, YCORD=-125 $ $ $ LINK NAME=LINK, FROM=Q012, TO=SINK, * IDNAME=LINK, IDFROM=Q012, IDTO=SINK, * PRINT PIPE NAME=Z001, LENGTH=4224, IDSPHERE=8, * ID=8, U=0.8 PIPE NAME=Z002, LENGTH=6336, ECHG=154, * U=0.8 PIPE NAME=Z003, LENGTH=8448, ECHG=-69, * IDSPHERE=8.1, U=0.8 PIPE NAME=Z004, LENGTH=3696, ECHG=100, * U=0.8 PIPE NAME=Z005, LENGTH=6336, ECHG=120, * U=0.8 PIPE NAME=Z006, LENGTH=264, ECHG=-10, * IDSPHERE=12.1, ID=12, U=0.8 PIPE NAME=Z007, LENGTH=2640, ECHG=58, * ID=12, U=0.8 PIPE NAME=Z008, LENGTH=9504, ECHG=-118, * ID=12, U=0.8 $ $ End of keyword file... $ END

1-42

PIPEPHASE EXAMPLE

Case Execution and Results The results of the pigging analysis can be reviewed in the basic output or in the Excel report (see Figure 1-34). Note: The pigging model in PIPEPHASE is a steady state model. A fully transient pigging model is available in TACITE. Figure 1-34: Sphering Report

PIPEPHASE Application Briefs

1-43

Example 7 - Well Test Data Simulation Objective In this simulation, PIPEPHASE determines the optimum lift gas injection rate to increase the production of an oil well.

Simulation Model A large amount of separator gas that is available from an oil well could be used to increase production. The user needs to investigate the feasibility of injecting the gas for continuous gas-lift. The reservoir pressure, well-head pressure, formation Gas-Oil ratio and water cut are known. The injection pressure and gas-lift valve location are fixed. The user needs to determine the optimum lift gas injection rate. The well inflow performance coefficient is not known but test data is available. Figure 1-35: Well Test Data

1-44

PIPEPHASE EXAMPLE

Figure 1-36: Schematic Representation of Well Test Data

The user should select Gas Lift Analysis as the simulation type (see Figure 1-37). Only the single link model support this simulation type. The lift gas flows down an annulus surrounding the production tubing. Figure 1-37: Simulation Definition Dialog Box

Source and Well Test Data needs to be entered as shown in the Figure 1-38.

PIPEPHASE Application Briefs

1-45

Figure 1-38: Blackoil Well Test Data Dialog Box

The injection depth is specified in the Injection Performance dialog box (see Figure 1-39), found in the Gas Lift Options in the Special Features menu. Figure 1-39: Injection Performance Dialog Box

1-46

PIPEPHASE EXAMPLE

PIPEPHASE makes a preliminary pass using the well test data to determine the inflow Performance coefficient (PI) before it makes the individual injection rate calculations. Well test conditions can be referred to the outlet of any flow device in the well or flow line string. In this case they are at the wellhead.

Input Data $General Data Section $ TITLE PROBLEM=EXAMPLE7, USER=SIMSCI, DATE=10/01/97 $ DESCRIPTION BLACKOIL WELL WITH GAS LIFT DESCRIPTION Gas in Annulus. Oil in tubing. DESCRIPTION Well test data used to calculate PI $ DIMENSION RATE(LV)=BPD $ CALCULATION GASLIFT, Blackoil $ DEFAULT IDPIPE=4.026, IDTUBING=4.026, IDANNULUS=6.065, * ROUGH(IN)=2.4000e-003, TGRAD=1.2 $ PRINT INPUT=FULL, DEVICE=FULL, PLOT=FULL, * PROPERTY=FULL, FLASH=FULL, MAP=TAITEL, * CONNECT=NONE, SUMMARY=BOTH, DATABASE=FULL, * SIMULATOR=PART $ SEGMENT DLHORIZ(FT)=2000, DLVERT(FT)=1000 $ $PVT Data Section $ PVT PROPERTY DATA $ SET SETNO=1, GRAV(OIL,API)=28.00001, GRAV(GAS,SPGR)=0.85, * GRAV(WATER,SPGR)=1.02 LIFTGAS GRAV(GAS,SPGR)=0.82 $ $Structure Data Section $ STRUCTURE DATA $ SOURCE NAME=Q001, IDNAME=Q001, PRIORITY=0, * SETNO=1, PRES=2100, TEMP=182, * RATE(ESTI)=400, GOR=500, WCUT=5, * XCORD=0, YCORD=437 WTEST NAME=TUB1, PI , RESP=2100, * TEMP=109, PRES=142, RATE=400, * GOR=500, WCUT=5 $ SINK NAME=SINK, IDNAME=SINK, PRES=165, * RATE(ESTI)=1, XCORD=1060, YCORD=-144 $ $ $ LINK NAME=GASL, PRINT ANNULUS NAME=ANN1, DEPTH=8500, IDANNULUS=6.336, * ODTUBE=2.875, U=1.9 $ LINK NAME=PROD, PRINT TUBING NAME=TUB1, DEPTH=8500, ID=2.441, * U=1, FCODE=ORK $ $GAS LIFT Data Section $ GASLIFT CAPACITY PRES=950 , TEMP=100 , DEPTH=5900 , *

PIPEPHASE Application Briefs

1-47

RATE=1.000e-003 0.6 / 0.8 / 1 3 / 4 $End of GAS LIFT $ $ End of keyword $ END

/ 0.2 / 0.4 / * / 2 / * Data Section file...

Case Execution The hydraulic and heat transfer calculations are carried out at a number of trial injection rates and the case that maximizes oil production is selected. These calculations are performed for the production as well as the injection string.

Results Click Run and solve the simulation. Results can be reviewed in the ASCII output report. Note: In PIPEPHASE 9.3, Excel reports do not support the gas-lift analysis simulation type. Figure 1-40: Output Report

1-48

PIPEPHASE EXAMPLE

Example 8 - Blackoil Gathering Network Simulation Objective This simulation determines the flow distribution and the overall capacity of the system.

Simulation Model The gathering system is comprised of several wells, flow lines and trunk lines with a loop [C-D-E] in the main trunk line. The field is divided into four regions - A, I, G and H. All the wells in a region have the same pressure, temperature and fluid properties. The user needs to determine the flow distribution and the overall capacity of the system. Figure 1-41: Blackoil Gathering Network

Figure 1-42: Schematic Representation of Blackoil Gathering Network

PIPEPHASE Application Briefs

1-49

The wells in each area have the same properties and conditions. The reference source facility can be used to simplify the input data for the Source nodes (see Figure 1-43). Figure 1-43: Blackoil Source

Click the link (A4-A) to display Device Data dialog box (see Figure 1-44). The Beggs and Brill (BB) pressure drop correlation is used for all flow lines and trunk line calculations. The Hagedorn and Brown (HB) correlation is used for the wells. The well inflow performance relationships are modeled using Vogel coefficients. Figure 1-44: Inflow Performance Relationship Dialog Box

1-50

PIPEPHASE EXAMPLE

Input Data $General Data Section $ TITLE PROBLEM=EXAMPLE8, USER=SIMSCI, DATE=10/01/97 $ DESCRIPTION BLACKOIL LOOPED GATHERING NETWORK $ DIMENSION RATE(LV)=BPD $ CALCULATION NETWORK, Blackoil $ FCODE PIPE=BB, TUBING=HB $ DEFAULT IDPIPE=10, IDTUBING=3.476, IDANNULUS=6.065, * TAMBIENT=120, TGRAD=2, UPIPE=1, * UTUBING=1, UANNULUS=1 $ PRINT INPUT=FULL, DEVICE=FULL, PLOT=FULL, * PROPERTY=FULL, FLASH=FULL, MAP=TAITEL, * CONNECT=NONE, SUMMARY=BOTH, DATABASE=FULL, * SIMULATOR=PART $ SEGMENT AUTO=OFF, DLHORIZ(FT)=2000, DLVERT(FT)=500 $ LIMITS PRES(MIN)=-14.596 $ $Network Data Section $ NETWORK DATA $ SOLUTION PBALANCE, FLOWAL=2, STEP=1, * MAXITER=50, QDAMP=5000, HALVINGS=1 $ TOLERANCE PRESSURE=0.1 $ $PVT Data Section $ PVT PROPERTY DATA $ SET SETNO=1, GRAV(OIL,API)=33, GRAV(GAS,SPGR)=0.85, * GRAV(WATER,SPGR)=1.06 SET SETNO=2, GRAV(OIL,API)=30, GRAV(GAS,SPGR)=0.9, * GRAV(WATER,SPGR)=1.06 SET SETNO=3, GRAV(OIL,API)=26, GRAV(GAS,SPGR)=0.95, * GRAV(WATER,SPGR)=1.06 $ $Structure Data Section $ STRUCTURE DATA $ SOURCE NAME=A1, IDNAME=A1, PRIORITY=0, * SETNO=1, PRES=2000, TEMP=220, * RATE(ESTI)=7171.6284, GOR=650, WCUT=5, * XCORD=245, YCORD=-264 $ SOURCE NAME=G1, IDNAME=G1, PRIORITY=0, * SETNO=2, PRES=2400, TEMP=240, * RATE(ESTI)=4807.5415, GOR=650, WCUT=5, * XCORD=1899, YCORD=-101 $ SOURCE NAME=H1, IDNAME=H1, PRIORITY=0, * SETNO=3, PRES=2500, TEMP=260, * RATE(ESTI)=4547.5977, GOR=650, WCUT=5, * XCORD=1875, YCORD=660 $ SOURCE NAME=I1, IDNAME=I1, PRIORITY=0, * SETNO=1, PRES=2100, TEMP=220, * RATE(ESTI)=5054.75, GOR=650, WCUT=5, * XCORD=475, YCORD=640 $

PIPEPHASE Application Briefs

1-51

SOURCE NAME=A2, IDNAME=A2, PRIORITY=0, * REFSOURCE=A1, XCORD=81, YCORD=-38 $ SOURCE NAME=A3, IDNAME=A3, PRIORITY=0, * REFSOURCE=A1, XCORD=0, YCORD=216 $ SOURCE NAME=A4, IDNAME=A4, PRIORITY=0, * REFSOURCE=A1, XCORD=22, YCORD=453 $ SOURCE NAME=A5, IDNAME=A5, PRIORITY=0, * REFSOURCE=A1, XCORD=191, YCORD=618 $ SOURCE NAME=G2, IDNAME=G2, PRIORITY=0, * REFSOURCE=G1, XCORD=1970, YCORD=130 $ SOURCE NAME=G3, IDNAME=G3, PRIORITY=0, * REFSOURCE=G1, RATE(ESTI)=2453.2366, GOR=0, * WCUT=0, XCORD=1940, YCORD=395 $ SOURCE NAME=G4, IDNAME=G4, PRIORITY=0, * REFSOURCE=G1, XCORD=1753, YCORD=-245 $ SOURCE NAME=H2, IDNAME=H2, PRIORITY=0, * REFSOURCE=H1, XCORD=1770, YCORD=867 $ SOURCE NAME=H3, IDNAME=H3, PRIORITY=0, * REFSOURCE=H1, XCORD=1475, YCORD=963 $ SOURCE NAME=I2, IDNAME=I2, PRIORITY=0, * REFSOURCE=I1, XCORD=694, YCORD=810 $ SINK NAME=F, IDNAME=F, PRES=100, * RATE(ESTI)=75662.35156, XCORD=1410, YCORD=-245 $ JUNCTION NAME=A, IDNAME=A, XCORD=550, * YCORD=243 JUNCTION NAME=B, IDNAME=B, XCORD=823, * YCORD=304 JUNCTION NAME=C, IDNAME=C, XCORD=1116, * YCORD=443 JUNCTION NAME=D, IDNAME=D, XCORD=1468, * YCORD=448 JUNCTION NAME=E, IDNAME=E, XCORD=1102, * YCORD=153 JUNCTION NAME=G, IDNAME=G, XCORD=1630, * YCORD=290 JUNCTION NAME=H, IDNAME=H, XCORD=1372, * YCORD=649 JUNCTION NAME=I, IDNAME=I, XCORD=848, * YCORD=518 $ $ LINK NAME=A-B, FROM=A, TO=B, * IDNAME=A-B, IDFROM=A, IDTO=B, * RATE(ESTI)=35323.44922, PRINT PIPE NAME=Z016, LENGTH=70000, ECHG=-100, * ID=19, U=1 $ LINK NAME=A1-A, FROM=A1, TO=A, * IDNAME=A1-A, IDFROM=A1, IDTO=A, * RATE(ESTI)=7171.62842, PRINT IPR NAME=IPR1, TYPE=VOGEL, * IVAL=BASIS, 2, * RVAL=QMAX, 18400 / VOGCON, 0.2 / VOGEXP, 1 / * UPTIME,1 / OPEN,1 TUBING NAME=Z002, DEPTH=5000, U=1 PIPE NAME=Z003, LENGTH=1000, ECHG=0, * ID=3.476, U=1 $ LINK NAME=A2-A, FROM=A2, TO=A, * IDNAME=A2-A, IDFROM=A2, IDTO=A, * RATE(ESTI)=6928.98486, PRINT

1-52

PIPEPHASE EXAMPLE

IPR NAME=IPR2, TYPE=VOGEL, * IVAL=BASIS, 2, * RVAL=QMAX, 18000 / VOGCON, 0.2 / VOGEXP, 1 / * UPTIME,1 / OPEN,1 TUBING NAME=Z005, LENGTH=5500, DEPTH=5200, * U=1 PIPE NAME=Z006, LENGTH=800, ECHG=-5, * ID=3.476, U=1 $ LINK NAME=A3-A, FROM=A3, TO=A, * IDNAME=A3-A, IDFROM=A3, IDTO=A, * RATE(ESTI)=7012.80273, PRINT IPR NAME=IPR3, TYPE=VOGEL, * IVAL=BASIS, 2, * RVAL=QMAX, 17500 / VOGCON, 0.2 / VOGEXP, 1 / * UPTIME,1 / OPEN,1 TUBING NAME=Z008, LENGTH=5000, DEPTH=4950, * U=1 PIPE NAME=Z009, LENGTH=1100, ECHG=5, * ID=3.476, U=1 $ LINK NAME=A4-A, FROM=A4, TO=A, * IDNAME=A4-A, IDFROM=A4, IDTO=A, * RATE(ESTI)=6926.01465, PRINT IPR NAME=IPR4, TYPE=VOGEL, * IVAL=BASIS, 2, * RVAL=QMAX, 19000 / VOGCON, 0.2 / VOGEXP, 1 / * UPTIME,1 / OPEN,1 TUBING NAME=Z011, LENGTH=5500, DEPTH=5300, * U=1 PIPE NAME=Z012, LENGTH=850, ECHG=0, * ID=3.476, U=1 $ LINK NAME=A5-A, FROM=A5, TO=A, * IDNAME=A5-A, IDFROM=A5, IDTO=A, * RATE(ESTI)=7284.01758, PRINT IPR NAME=IPR5, TYPE=VOGEL, * IVAL=BASIS, 2, * RVAL=QMAX, 18100 / VOGCON, 0.2 / VOGEXP, 1 / * UPTIME,1 / OPEN,1 TUBING NAME=Z014, LENGTH=5440, DEPTH=5100, * U=1 PIPE NAME=Z015, LENGTH=500, ECHG=0, * ID=3.476, U=1 $ LINK NAME=B-C, FROM=B, TO=C, * IDNAME=B-C, IDFROM=B, IDTO=C, * RATE(ESTI)=45254.34766, PRINT PIPE NAME=Z022, LENGTH=3000, ID=19, * U=1 $ LINK NAME=C-D, FROM=C, TO=D, * IDNAME=C-D, IDFROM=C, IDTO=D, * RATE(ESTI)=20707.19727, PRINT PIPE NAME=Z033, LENGTH=15000, ECHG=100, * ID=23, U=1 $ LINK NAME=C-E, FROM=C, TO=E, * IDNAME=C-E, IDFROM=C, IDTO=E, * RATE(ESTI)=38321.96875, PRINT PIPE NAME=Z044, LENGTH=1.150e+005, ECHG=300, * ID=23, U=1 $ LINK NAME=D-E, FROM=D, TO=E, * IDNAME=D-E, IDFROM=D, IDTO=E, * RATE(ESTI)=37340.39063, PRINT PIPE NAME=Z043, LENGTH=1.100e+005, ECHG=200, * ID=23, U=1 $ LINK NAME=E-F, FROM=E, TO=F, * IDNAME=E-F, IDFROM=E, IDTO=F, * RATE(ESTI)=75662.35156, PRINT

PIPEPHASE Application Briefs

1-53

PIPE NAME=Z045, LENGTH=1.400e+005, ECHG=-550, * ID=29, U=1 $ LINK NAME=G-D, FROM=G, TO=D, * IDNAME=G-D, IDFROM=G, IDTO=D, * RATE(ESTI)=16633.19336, PRINT PIPE NAME=Z042, LENGTH=16000, ECHG=-100, * ID=15.25, U=1 $ LINK NAME=G1-G, FROM=G1, TO=G, * IDNAME=G1-G, IDFROM=G1, IDTO=G, * RATE(ESTI)=4807.5415, PRINT TUBING NAME=Z034, LENGTH=7000, DEPTH=6000, * ID=2.441, U=1 PIPE NAME=Z035, LENGTH=500, ID=4, * U=1 $ LINK NAME=G2-G, FROM=G2, TO=G, * IDNAME=G2-G, IDFROM=G2, IDTO=G, * RATE(ESTI)=4608.28027, PRINT TUBING NAME=Z036, LENGTH=7100, DEPTH=6200, * ID=2.441, U=1 PIPE NAME=Z037, LENGTH=1000, ECHG=-5, * ID=4, U=1 $ LINK NAME=G3-G, FROM=G3, TO=G, * IDNAME=G3-G, IDFROM=G3, IDTO=G, * RATE(ESTI)=2453.23657, PRINT TUBING NAME=Z038, LENGTH=6900, DEPTH=5900, * ID=2.441, U=1 PIPE NAME=Z039, LENGTH=600, ECHG=-5, * ID=4, U=1 $ LINK NAME=G4-G, FROM=G4, TO=G, * IDNAME=G4-G, IDFROM=G4, IDTO=G, * RATE(ESTI)=4764.13477, PRINT TUBING NAME=Z040, LENGTH=7050, DEPTH=6000, * ID=2.441, U=1 PIPE NAME=Z041, LENGTH=750, ECHG=0, * ID=4, U=1 $ LINK NAME=H-C, FROM=H, TO=C, * IDNAME=H-C, IDFROM=H, IDTO=C, * RATE(ESTI)=13774.82227, PRINT PIPE NAME=Z032, LENGTH=33000, ECHG=-50, * ID=12, U=1 $ LINK NAME=H1-H, FROM=H1, TO=H, * IDNAME=H1-H, IDFROM=H1, IDTO=H, * RATE(ESTI)=4547.59766, PRINT TUBING NAME=Z023, LENGTH=9000, DEPTH=7500, * ID=2.441, U=1 TUBING NAME=Z024, LENGTH=4500, DEPTH=4000, * ID=2.992, U=1 PIPE NAME=Z025, LENGTH=1000, ID=4, * U=1 $ LINK NAME=H2-H, FROM=H2, TO=H, * IDNAME=H2-H, IDFROM=H2, IDTO=H, * RATE(ESTI)=4570.75391, PRINT TUBING NAME=Z026, LENGTH=9100, DEPTH=7550, * ID=2.441, U=1 TUBING NAME=Z027, LENGTH=4500, DEPTH=4100, * ID=2.992, U=1 PIPE NAME=Z028, LENGTH=500, ECHG=-5, * ID=4, U=1 $ LINK NAME=H3-H, FROM=H3, TO=H, * IDNAME=H3-H, IDFROM=H3, IDTO=H, * RATE(ESTI)=4656.4707, PRINT TUBING NAME=Z029, LENGTH=8900, DEPTH=7400, * ID=2.441, U=1

1-54

PIPEPHASE EXAMPLE

TUBING NAME=Z030, LENGTH=4300, DEPTH=3900, * ID=2.992, U=1 PIPE NAME=Z031, LENGTH=650, ECHG=5, * ID=4, U=1 $ LINK NAME=I-B, FROM=I, TO=B, * IDNAME=I-B, IDFROM=I, IDTO=B, * RATE(ESTI)=9930.89844, PRINT PIPE NAME=Z021, LENGTH=3000, ECHG=-100, * ID=10, U=1 $ LINK NAME=I1-I, FROM=I1, TO=I, * IDNAME=I1-I, IDFROM=I1, IDTO=I, * RATE(ESTI)=5054.75, PRINT TUBING NAME=Z017, LENGTH=6000, DEPTH=5000, * ID=2.441, U=1 PIPE NAME=Z018, LENGTH=500, ECHG=10, * ID=4, U=1 $ LINK NAME=I2-I, FROM=I2, TO=I, * IDNAME=I2-I, IDFROM=I2, IDTO=I, * RATE(ESTI)=4876.14844, PRINT TUBING NAME=Z019, LENGTH=6100, DEPTH=5200, * ID=2.441, U=1 PIPE NAME=Z020, LENGTH=650, ECHG=0, * ID=4, U=1 $ $ End of keyword file... $ END

Case Execution The pressure drop correlations are used to calculate the flow regime in the wells and pipelines. In addition PIPEPHASE also uses the Taitel-Dukler-Barnea flow pattern map to determine the flow pattern at the exit of each link.

Results For Link A1-A, it can seen that the flow pattern at the outlet (X) straddles the boundary between the Annular and Intermittent flow regimes (see Figure 1-45).

PIPEPHASE Application Briefs

1-55

Figure 1-45: Flow Regime Map

1-56

PIPEPHASE EXAMPLE

Example 9 - Gas Condensate Network Simulation Objective In the simulation, PIPEPHASE determine the amount of gas delivered to each terminal as well as the unknown source flow rates. The conditions in the network are such that liquid condensate should not form.

Simulation Model Rich gas is gathered from several sources and distributed to two terminals. There are numerous loops and crossovers in the distribution system. The flows are known for sources 1, 2, 3 and 4. Also, the pressures are fixed at other sources and terminals. The user must determine the amount of gas delivered to each terminal as well as the unknown source flow rates. The conditions in the network are such that liquid condensate should not form. However, the user should ensure that this is in fact the case. All lines are insulated and the gas can be assumed to be isothermal everywhere. The user can disregard heat transfer between the distribution network and surrounding environment. Figure 1-46: Gas- Condensate-Network

PIPEPHASE Application Briefs

1-57

Figure 1-47: Schematic Representation of Gas - Condensate - Network

In order to check for condensation, the fluid is modeled as a gas condensate system with gravity data supplied for both the gas and condensate phases (see Figure 1-48). The pressure drop calculations are performed using the Dukler-Eaton-Flannigan correlation. Figure 1-48: Gas Condensate PVT Data Dialog Box

1-58

PIPEPHASE EXAMPLE

Input Data $General Data Section $ TITLE PROBLEM=EXAMPLE9, USER=SIMSCI, DATE=03/04/99 $ DESCRIPTION GAS GATHERING AND DISTRIBUTION SYSTEM $ DIMENSION RATE(GV)=CFD, LENGTH=MI,IN, DENSITY=SPGR $ CALCULATION NETWORK, Condensate $ FCODE PIPE=MOODY $ DEFAULT IDPIPE=4.026, IDTUBING=4.026, IDANNULUS=6.065 $ PRINT INPUT=FULL, DEVICE=FULL, PLOT=FULL, * PROPERTY=FULL, FLASH=FULL, MAP=TAITEL, * CONNECT=NONE, SUMMARY=BOTH, DATABASE=FULL, * SIMULATOR=PART $ SEGMENT AUTO=OFF, DLHORIZ(MI)=0.189, DLVERT(MI)=0.095 $ $Network Data Section $ NETWORK DATA $ SOLUTION PBALANCE, FLOWAL=3, MAXITER=40 $ TOLERANCE PRESSURE=0.1 $ $PVT Data Section $ PVT PROPERTY DATA $ SET SETNO=1, GRAV(COND,SPGR)=0.802, GRAV(GAS,SPGR)=0.708, * GRAV(WATER,SPGR)=1 $ $Structure Data Section $ STRUCTURE DATA $ SOURCE NAME=1, IDNAME=1, PRIORITY=0, * SETNO=1, PRES(ESTI)=263, TEMP=85, * RATE=85, CGR=0, WGR=0, * XCORD=0, YCORD=310 $ SOURCE NAME=2, IDNAME=2, PRIORITY=0, * SETNO=1, PRES(ESTI)=259, TEMP=85, * RATE=50, CGR=0, WGR=0, * XCORD=0, YCORD=60 $ SOURCE NAME=3, IDNAME=3, PRIORITY=0, * SETNO=1, PRES(ESTI)=269, TEMP=85, * RATE=150, CGR=0, WGR=0, * XCORD=580, YCORD=-610 $ SOURCE NAME=4, IDNAME=4, PRIORITY=0, * SETNO=1, PRES(ESTI)=280, TEMP=85, * RATE=150, CGR=0, WGR=0, * XCORD=1215, YCORD=-580 $ SOURCE NAME=5, IDNAME=5, PRIORITY=0, * SETNO=1, PRES=240, TEMP=85, * RATE(ESTI)=4, CGR=0, WGR=0, * XCORD=1915, YCORD=305 $ SOURCE NAME=6, IDNAME=6, PRIORITY=0, * SETNO=1, PRES=250, TEMP=85, * RATE(ESTI)=4, CGR=0, WGR=0, * XCORD=1905, YCORD=620

PIPEPHASE Application Briefs

1-59

$ SOURCE NAME=7, IDNAME=7, PRIORITY=0, * SETNO=1, PRES=250, TEMP=85, * RATE(ESTI)=4, CGR=0, WGR=0, * XCORD=415, YCORD=700 $ SINK NAME=10, IDNAME=10, PRES=200, * RATE(ESTI)=135, XCORD=160, YCORD=-330 SINK NAME=11, IDNAME=11, PRES=200, * RATE(ESTI)=312, XCORD=1910, YCORD=15 $ JUNCTION NAME=A, IDNAME=A, PRES(ESTI)= 246, * XCORD=720, YCORD=330 JUNCTION NAME=B, IDNAME=B, PRES(ESTI)= 252, * XCORD=715, YCORD=80 JUNCTION NAME=C, IDNAME=C, PRES(ESTI)= 232, * XCORD=885, YCORD=-100 JUNCTION NAME=D, IDNAME=D, PRES(ESTI)= 259, * XCORD=1075, YCORD=-150 JUNCTION NAME=E, IDNAME=E, PRES(ESTI)= 258, * XCORD=1305, YCORD=-180 JUNCTION NAME=F, IDNAME=F, PRES(ESTI)= 229, * XCORD=1450, YCORD=105 JUNCTION NAME=G, IDNAME=G, PRES(ESTI)= 234, * XCORD=1325, YCORD=260 JUNCTION NAME=G1, IDNAME=G1, PRES(ESTI)= 235, * XCORD=1250, YCORD=395 JUNCTION NAME=H, IDNAME=H, PRES(ESTI)= 246, * XCORD=1160, YCORD=565 JUNCTION NAME=I, IDNAME=I, PRES(ESTI)= 248, * XCORD=880, YCORD=485 JUNCTION NAME=J1, IDNAME=J1, PRES(ESTI)= 246, * XCORD=420, YCORD=330 JUNCTION NAME=J2, IDNAME=J2, PRES(ESTI)= 246, * XCORD=345, YCORD=80 JUNCTION NAME=J3, IDNAME=J3, PRES(ESTI)= 246, * XCORD=900, YCORD=-360 JUNCTION NAME=J4, IDNAME=J4, PRES(ESTI)= 246, * XCORD=1580, YCORD=-60 JUNCTION NAME=J5, IDNAME=J5, PRES(ESTI)= 246, * XCORD=1550, YCORD=330 JUNCTION NAME=J6, IDNAME=J6, PRES(ESTI)= 246, * XCORD=1440, YCORD=650 $ $ LINK NAME=1-J1, FROM=1, TO=J1, * IDNAME=1-J1, IDFROM=1, IDTO=J1, * PRINT PIPE NAME=Z001, LENGTH=1.000e-003, ID=22.75, * ISOTHERMAL $ LINK NAME=1A-A, FROM=J1, TO=A, * IDNAME=1A-A, IDFROM=J1, IDTO=A, * PRINT PIPE NAME=Z008, LENGTH=0.5, ID=8.125, * ISOTHERMAL $ LINK NAME=1B-A, FROM=J1, TO=A, * IDNAME=1B-A, IDFROM=J1, IDTO=A, * PRINT PIPE NAME=Z009, LENGTH=0.568, ID=10.25, * ISOTHERMAL $ LINK NAME=2-J2, FROM=2, TO=J2, * IDNAME=2-J2, IDFROM=2, IDTO=J2, * PRINT PIPE NAME=Z002, LENGTH=1.000e-003, ID=22.75, * ISOTHERMAL $ LINK NAME=2A-B, FROM=J2, TO=B, * IDNAME=2A-B, IDFROM=J2, IDTO=B, * PRINT

1-60

PIPEPHASE EXAMPLE

PIPE NAME=Z010, LENGTH=1.136, ID=8.125, * ISOTHERMAL $ LINK NAME=2B-B, FROM=J2, TO=B, * IDNAME=2B-B, IDFROM=J2, IDTO=B, * PRINT PIPE NAME=Z011, LENGTH=1, ID=8.125, * ISOTHERMAL $ LINK NAME=2C-B, FROM=J2, TO=B, * IDNAME=2C-B, IDFROM=J2, IDTO=B, * PRINT PIPE NAME=Z012, LENGTH=1.136, ID=10.25, * ISOTHERMAL $ LINK NAME=3-J3, FROM=3, TO=J3, * IDNAME=3-J3, IDFROM=3, IDTO=J3, * PRINT PIPE NAME=Z003, LENGTH=1.000e-003, ID=22.75, * ISOTHERMAL $ LINK NAME=3A-D, FROM=J3, TO=D, * IDNAME=3A-D, IDFROM=J3, IDTO=D, * PRINT PIPE NAME=Z014, LENGTH=0.189, ID=8.125, * ISOTHERMAL $ LINK NAME=3B-D, FROM=J3, TO=D, * IDNAME=3B-D, IDFROM=J3, IDTO=D, * PRINT PIPE NAME=Z015, LENGTH=0.227, ID=12.25, * ISOTHERMAL $ LINK NAME=4-E, FROM=J4, TO=E, * IDNAME=4-E, IDFROM=J4, IDTO=E, * PRINT PIPE NAME=Z016, LENGTH=1.5, ID=12.25, * ISOTHERMAL $ LINK NAME=4-F, FROM=J4, TO=F, * IDNAME=4-F, IDFROM=J4, IDTO=F, * PRINT PIPE NAME=Z017, LENGTH=1.5, ID=12.25, * ISOTHERMAL $ LINK NAME=4-J4, FROM=4, TO=J4, * IDNAME=4-J4, IDFROM=4, IDTO=J4, * PRINT PIPE NAME=Z004, LENGTH=1.000e-003, ID=22.75, * ISOTHERMAL $ LINK NAME=5-J5, FROM=5, TO=J5, * IDNAME=5-J5, IDFROM=5, IDTO=J5, * PRINT PIPE NAME=Z005, LENGTH=1.000e-003, ID=22.75, * ISOTHERMAL $ LINK NAME=5A-G, FROM=J5, TO=G, * IDNAME=5A-G, IDFROM=J5, IDTO=G, * PRINT PIPE NAME=Z019, LENGTH=1, ID=12.25, * ISOTHERMAL $ LINK NAME=5B-G, FROM=J5, TO=G, * IDNAME=5B-G, IDFROM=J5, IDTO=G, * PRINT PIPE NAME=Z020, LENGTH=1, ID=8.125, * ISOTHERMAL $ LINK NAME=6-J6, FROM=6, TO=J6, * IDNAME=6-J6, IDFROM=6, IDTO=J6, * PRINT

PIPEPHASE Application Briefs

1-61

PIPE NAME=Z006, LENGTH=1.000e-003, ID=22.75, * ISOTHERMAL $ LINK NAME=6A-H, FROM=J6, TO=H, * IDNAME=6A-H, IDFROM=J6, IDTO=H, * PRINT PIPE NAME=Z021, LENGTH=0.398, ID=8.125, * ISOTHERMAL $ LINK NAME=6B-H, FROM=J6, TO=H, * IDNAME=6B-H, IDFROM=J6, IDTO=H, * PRINT PIPE NAME=Z022, LENGTH=0.379, ID=8.125, * ISOTHERMAL $ LINK NAME=7-I, FROM=7, TO=I, * IDNAME=7-I, IDFROM=7, IDTO=I, * PRINT PIPE NAME=Z023, LENGTH=2, ID=12.25, * ISOTHERMAL $ LINK NAME=A-G, FROM=A, TO=G, * IDNAME=A-G, IDFROM=A, IDTO=G, * PRINT PIPE NAME=Z026, LENGTH=6, ID=22.75, * ISOTHERMAL $ LINK NAME=B-A, FROM=B, TO=A, * IDNAME=B-A, IDFROM=B, IDTO=A, * PRINT PIPE NAME=Z028, LENGTH=2, ID=8.125, * ISOTHERMAL $ LINK NAME=B-C, FROM=B, TO=C, * IDNAME=B-C, IDFROM=B, IDTO=C, * PRINT PIPE NAME=Z029, LENGTH=8, ID=15.25, * ISOTHERMAL $ LINK NAME=C-10, FROM=C, TO=10, * IDNAME=C-10, IDFROM=C, IDTO=10, * PRINT PIPE NAME=Z013, LENGTH=0.5, ID=12.25, * ISOTHERMAL $ LINK NAME=D-C, FROM=D, TO=C, * IDNAME=D-C, IDFROM=D, IDTO=C, * PRINT PIPE NAME=Z034, LENGTH=3.5, ID=15.25, * ISOTHERMAL $ LINK NAME=D-E, FROM=D, TO=E, * IDNAME=D-E, IDFROM=D, IDTO=E, * PRINT PIPE NAME=Z039, LENGTH=0.379, ID=12.25, * ISOTHERMAL $ LINK NAME=D-F, FROM=D, TO=F, * IDNAME=D-F, IDFROM=D, IDTO=F, * PRINT PIPE NAME=Z037, LENGTH=0.189, ID=12.25, * ISOTHERMAL PIPE NAME=Z038, LENGTH=1, ID=13.25, * ISOTHERMAL $ LINK NAME=E-F, FROM=E, TO=F, * IDNAME=E-F, IDFROM=E, IDTO=F, * PRINT PIPE NAME=Z040, LENGTH=1, ID=12.25, * ISOTHERMAL $ LINK NAME=F-11, FROM=F, TO=11, *

1-62

PIPEPHASE EXAMPLE

IDNAME=F-11, IDFROM=F, IDTO=11, * PRINT PIPE NAME=Z018, LENGTH=1, ID=22.75, * ISOTHERMAL $ LINK NAME=G-C, FROM=G, TO=C, * IDNAME=G-C, IDFROM=G, IDTO=C, * PRINT PIPE NAME=Z033, LENGTH=1.5, ID=15.25, * ISOTHERMAL $ LINK NAME=G-F, FROM=G, TO=F, * IDNAME=G-F, IDFROM=G, IDTO=F, * PRINT PIPE NAME=Z035, LENGTH=1, ID=20.75, * ISOTHERMAL PIPE NAME=Z036, LENGTH=1, ID=22.75, * ISOTHERMAL $ LINK NAME=G1-G, FROM=G1, TO=G, * IDNAME=G1-G, IDFROM=G1, IDTO=G, * PRINT PIPE NAME=Z032, LENGTH=1, ID=12.25, * ISOTHERMAL $ LINK NAME=H-G, FROM=H, TO=G1, * IDNAME=H-G, IDFROM=H, IDTO=G1, * PRINT PIPE NAME=Z030, LENGTH=3, ID=12.25, * ISOTHERMAL $ LINK NAME=H-G1, FROM=H, TO=G1, * IDNAME=H-G1, IDFROM=H, IDTO=G1, * PRINT PIPE NAME=Z031, LENGTH=3, ID=12.25, * ISOTHERMAL $ LINK NAME=I-H, FROM=I, TO=H, * IDNAME=I-H, IDFROM=I, IDTO=H, * PRINT PIPE NAME=Z027, LENGTH=4, ID=12.25, * ISOTHERMAL $ LINK NAME=IA-A, FROM=I, TO=A, * IDNAME=IA-A, IDFROM=I, IDTO=A, * PRINT PIPE NAME=Z024, LENGTH=10, ID=10.25, * ISOTHERMAL $ LINK NAME=IB-A, FROM=I, TO=A, * IDNAME=IB-A, IDFROM=I, IDTO=A, * PRINT PIPE NAME=Z025, LENGTH=10, ID=10.25, * ISOTHERMAL $ $ End of keyword file... $ END

Case Execution - Calculation Segment In PIPEPHASE for the purpose of calculations all flow devicespipes, risers, tubing and annuli are divided into a number of segments. These divisions are called Calculation Segments and are where a majority of the pressure drop and heat transfer calculations take place. PIPEPHASE Application Briefs

1-63

The momentum and heat balances for the segment allow prediction of its inlet and outlet pressures and temperatures. If the inlet pressure and temperature for the segment are known, the equations yield the outlet pressure and temperature. If both end conditions are known, the equations can be manipulated to give the fluid flowrate(s). The calculation segment pressure drop and temperature change equations are the core of PIPEPHASE's calculation capability. For long flow devices, the calculation segments are strung together and the solution procedure is a marching algorithm. Calculation begins at the end of the flow device with known conditions. The heat and momentum balance equations are solved for this first segment and the conditions at the other end are found. These calculated conditions become the known conditions for the next segment. Solution progresses sequentially until the end of the flow device is reached. If there is another flow device connected serially to the first, as in a single-link problem, calculation progresses through this device in the same way as the first. If the next device is not a flow device but a piece of equipment such as a pump, the equipment characteristic equations are solved in the same way as the calculation segment equations. If a junction is reached i.e., the system is a network, different procedures are used.

1-64

PIPEPHASE EXAMPLE

Network Calculations The network equations are formulated based on a modification of Kirchoffs two laws for flow of fluids in a network: ■

The sum of the mass flows in a junction is zero.



The sum of the pressure drops around any loop is zero.

The network model contains nodes and link performance models. A network link calculation is similar to a single-link calculation. The flows are balanced at all nodes and the pressures calculated at any node must be the same independent of the calculation path (link calculation sequence). When the network problem is set up correctly, these equations are square - the number of unknown flows and pressures are equal to the number of independent equations. Since links are connected via common nodes, the behavior of one link directly affects all connected links. Hence, it is essential to solve the equations simultaneously. The Iterative Newton-Raphson method is used to simultaneously solve the non-linear equations. The derivatives are calculated numerically. There are two main methods in PIPEPHASE to set up the simultaneous equations: 1.

The first method is as follows :



Set the node pressures (so it honors Kirchoffs second law)



Calculate the link flows and check if Kirchoff's first law is honored.

Iterate till convergence within tolerance is reached on the flow imbalance errors. The error vector consists of the flow balance errors. This is called MBAL method in PIPEPHASE. 2.

In the second method, set the link flow (so that Kirchoff's first law is honored) and calculate the link pressure drops and check if Kirchoff's second law is honored at each node. Iterate till convergence within tolerance is reached on the node pressure residuals. The node pressure errors make up the residual error vector in the equations. This is called PBAL method in PIPEPHASE.

Note: MBAL method is only available in PIPEPHASE for the single phase fluid models.

PIPEPHASE Application Briefs

1-65

Results To reduce the size of the network problem in PBAL, an algorithm identifies segments of the network that does not require an iterative simultaneous solution. These segments called Spurs are identified and set aside until the remainder of the network calculation has converged. These spur links are then solved by a simple forward pressure drop calculation after the main network solution has converged. As a part of the Jacobian matrix element calculations, numerical derivative of the link outlet pressure with respect to link inlet pressure and link flow rate are calculated using small link inletpressure and link flow perturbations. Figure 1-49: Network Calculation Methods Dialog Box

Oftentimes, taking a full Newton step can cause divergence instead of convergence. To overcome such problems, PIPEPHASE has some inbuilt, intelligent damping as well as user definable damping parameters to stabilize the convergence path. In PBAL, if the rms error of the pressure-error vector begins to diverge a step, the halving algorithm is used to dampen (reduce) the Newton-Raphson step. In these sub-iterations, no derivatives are calculated. The user can specify a constant damping factor (SCALE keyword) or can limit the change in flow rate (QDAMP) and/or pressure change (PDAMP) in the Newton vector without changing the direction of the Newton vector. The amount of required damping really depends on the network flow performance characteristics.

1-66

PIPEPHASE EXAMPLE

Example 10 - Steam Line Sizing Simulation Objective A steam line has been designed with an 8-inch nominal diameter. The projected maximum steam flow and the source conditions are now know and the user needs to verify that the diameter is correct.

Simulation Model This is a single link calculation. The fluid is defined as steam in order to use the stored steam table properties. In this simulation, steam supply quality is 97% at a pressure of 170 psig and the maximum expected flow rate is 33,000 lb/hr. The pipeline is suspended in air and has a layer of insulation. The ambient conditions and the pipeline and insulation properties are constant and are defined globally. Only the pipe lengths and elevation changes are then required in the Link Device Data dialog box. Figure 1-50: Steam Line Sizing

PIPEPHASE Application Briefs

1-67

Figure 1-51: Schematic Representation of Steam Line Sizing

Click Sizing in the Link Device Data dialog box to display Line Sizing dialog box (see Figure 1-52). Figure 1-52: Line Sizing

1-68

PIPEPHASE EXAMPLE

Input Data $General Data Section $ TITLE PROBLEM=EXAMPLE10, USER=SIMSCI, DATE=10/01/97 $ DESCRIPTION STEAM LINE SIZING CALCULATION $ DIMENSION TEMPERATURE=C, RATE(W)=LBHR $ CALCULATION NETWORK, Steam $ FCODE PIPE=BBM, PALMER=0.9, 0.7, * TUBING=BBM, PALMER=0.924, 0.685, * ANNULUS=BBM, PALMER=0.924, 0.685 $ DEFAULT IDPIPE=8, IDTUBING=8, IDANNULUS=6.065, * ROUGH(IN)=3.0000e-003, TAMBIENT=60, * THKPIPE=0.625, THKINS=2, 0, * 0, 0, 0, * CONPIPE=28.5, CONINS=0.02, 0.015, * 0.015, 0.015, 0.015, * HINSIDE=0, HOUTSIDE=0, HRADIANT=0, * AIR, COND=0.015, VISC=0.02, * DENSITY(SPGR)=1, VELO=15 $ PRINT INPUT=FULL, DEVICE=FULL, PLOT=FULL, * PROPERTY=FULL, FLASH=FULL, MAP=TAITEL, * CONNECT=NONE, SUMMARY=BOTH, DATABASE=FULL, * SIMULATOR=PART, SLUG=BRILL $ SEGMENT AUTO=OFF, DLHORIZ(FT)=2000, DLVERT(FT)=500 $ $Network Data Section $ NETWORK DATA $ SOLUTION PBALANCE, FLOWAL=1 $ TOLERANCE PRESSURE=0.1 $ $PVT Data Section $ PVT PROPERTY DATA $ SET SETNO=1, GRAV(WATER,SPGR)=1 CORRELATION WPROP=Super $ $Structure Data Section $ STRUCTURE DATA $ SOURCE NAME=STM, IDNAME=STM, PRIORITY=0, * SETNO=1, PRES=170, RATE=33000, * QUALITY=97, XCORD=0, YCORD=-125 $ SINK NAME=SINK, IDNAME=SINK, PRES(ESTI)=1, * RATE(ESTI)=1, XCORD=1000, YCORD=-125 $ $ $ LINK NAME=LINK, FROM=STM, TO=SINK, * IDNAME=LINK, IDFROM=STM, IDTO=SINK, * PRINT PIPE NAME=Z001, LENGTH=10, ECHG=10, * AIR PIPE NAME=Z002, LENGTH=30, ECHG=0, * AIR PIPE NAME=Z003, LENGTH=5, ECHG=-5, * AIR PIPE NAME=Z004, LENGTH=100, ECHG=0, *

PIPEPHASE Application Briefs

1-69

AIR PIPE NAME=Z005, LENGTH=20, ECHG=20, * AIR PIPE NAME=Z006, LENGTH=105, ECHG=0, * AIR PIPE NAME=Z007, LENGTH=15, ECHG=-15, * AIR $ $ End of keyword file... $ END $ $Line Sizing Data Section $ GSIZE LINK DATA $ LINK NAME=LINK DEVICE NAME = ALL LINE ID = 1.049, 1.61, 2.067, 2.469, 3.068, * 3.548, 4.026, 5.074, 6.065, 7.981, * 10.02, 11.938, 13.124, 15, 16.876, * 18.814, 22.626 $ END GUI DATA

Case Execution The required line diameter is determined by running a sizing calculation. The line will be sized to meet maximum erosional velocity. If no pipe sizes are defined, PIPEPHASE will select from the standard schedule 40 sizes.

Results To run a sizing calculation, the user needs to select Line Sizing as the configuration type in Run Simulation and View Results dialog box (see Figure 1-53). Line sizing results can be viewed in the ASCII output report (see Figure 1-54).

1-70

PIPEPHASE EXAMPLE

Figure 1-53: Run Simulation and View Results Dialog Box

Note: In PIPEHASE 9.3, the Excel reports do not support the

display of line sizing calculations. Figure 1-54: Out Report

PIPEPHASE Application Briefs

1-71

Example 11 - Gas - Lift Manifold Simulation Objective A network simulation is created which attempts to model two gaslifted wells. Normally, in PIPEPHASE, a Gas Lift Valve is employed. Here, the user wants to model the gas injection manifold in addition to the actual wells. To accomplish this, the user has added an extra source node called GAS. However, in PIPEPHASE it is not possible to mix fluid types. This means that the user cannot create a simulation, which has Blackoil and single-phase gas fluids. Therefore, the GAS source may be defined as a Blackoil source. A workaround is to define the GAS source as having a negligible flow rate (5 bbl/d) and a considerable Gas/Oil Ratio (400,000 ft3/ bbl). This effectively turns the source node into a gas source. However, for material balance calculations, the solver uses the standard Blackoil volume flow rates as a basis for the Newton method. So, for a large number of gas streams, small changes in oil volume rates result in significant variations in the total mass. As a result, the Jacobian derivative calculations become inaccurate. To overcome this problem the Mass Based Perturbation feature option can be used (see Figure 1-57).

Simulation Model The simulation model for the above example is shown in Figure 1-55.

1-72

PIPEPHASE EXAMPLE

Figure 1-55: Gas- Lift - Manifold Model

Input Data $General Data Section $ TITLE PROBLEM=NETWORK, DATE=06/27/02 $ DESCRIPTION Two Blackoil Wells on Gas Lift 12 and 23. DESCRIPTION Mass based derivatives allow to model DESCRIPTION Lift Gas source as Blackoil Source with DESCRIPTION very high GOR $ DIMENSION RATE(LV)=BPD $ CALCULATION NETWORK, Blackoil, PRANDTL, * MASS $ FCODE TUBING=HB $ DEFAULT NOMD=4, SCHE= 40, NOMT=3.5, * SCHT=TB01, IDANNULUS=6.065, TGRAD=1.75, * AIR, COND=0.015, VISC=0.02, * DENSITY(SPGR)=1, VELO=10, HAUSEN $ PRINT INPUT=FULL, DEVICE=FULL, PLOT=FULL, * PROPERTY=FULL, FLASH=FULL, MAP=TAITEL, * CONNECT=NONE, ITER, SUMMARY=BOTH, * DATABASE=FULL, SIMULATOR=PART $ SEGMENT AUTO=OFF, DLHORIZ(FT)=150, DLVERT(FT)=100, * MAXSTEPS=50 $ $Network Data Section $ NETWORK DATA $ SOLUTION PBALANCE, FLOWAL=2, NOLOOP=2, * STEP=1, MAXITER=40, QDAMP=1000, *

PIPEPHASE Application Briefs

1-73

PDAMP=100 $ TOLERANCE PRESSURE=0.25 $ $PVT Data Section $ PVT PROPERTY DATA $ SET SETNO=1, GRAV(OIL,API)=183.67256, GRAV(GAS,SPGR)=0.89, * GRAV(WATER,SPGR)=1.023, CONT=2.3, 1.4, * 0.73 SET SETNO=2, GRAV(OIL,API)=64.60739, GRAV(GAS,SPGR)=0.79, * GRAV(WATER,SPGR)=1 $ $Structure Data Section $ STRUCTURE DATA $ SOURCE NAME=GAS, IDNAME=GAS, PRIORITY=0, * SETNO=2, PRES(ESTI)=2900, TEMP=120, * RATE=5, GOR=4.000e+005, WCUT=0, * XCORD=235, YCORD=-125 $ SOURCE NAME=W-12, IDNAME=W-12, PRIORITY=0, * SETNO=1, PRES=4400, TEMP=172, * RATE(ESTI)=10000, GOR=190, WCUT=5, * XCORD=0, YCORD=1339 $ SOURCE NAME=W-23, IDNAME=W-23, PRIORITY=0, * SETNO=1, PRES=4205, TEMP=169, * RATE(ESTI)=10000, GOR=210, WCUT=8, * XCORD=1705, YCORD=1385 $ SINK NAME=SINK, IDNAME=SINK, PRES=500, * RATE(ESTI)=20000, XCORD=1088, YCORD=246 $ JUNCTION NAME=INJ1, IDNAME=INJ1, TROCK=161, * XCORD=424, YCORD=965 JUNCTION NAME=INJ2, IDNAME=INJ2, TROCK=161, * XCORD=1275, YCORD=932 JUNCTION NAME=J-12, IDNAME=J-12, XCORD=216, * YCORD=394 JUNCTION NAME=J-23, IDNAME=J-23, XCORD=1679, * YCORD=439 JUNCTION NAME=J-GAS, IDNAME=J-GA, XCORD=866, * YCORD=34 JUNCTION NAME=J-M, IDNAME=J-M, XCORD=848, * YCORD=420 JUNCTION NAME=J1, IDNAME=J1, XCORD=657, * YCORD=651 JUNCTION NAME=J2, IDNAME=J2, XCORD=1053, * YCORD=653 $ $ LINK NAME=1, FROM=W-12, TO=INJ1, * IDNAME=1, IDFROM=W-12, IDTO=INJ1 IPR NAME=I088, TYPE=PI, * IVAL=BASIS, 3, * RVAL=PI, 25.5 / UPTIME,1 TUBING NAME=T082, LENGTH=7873, DEPTH=1549, * U=1 TUBING NAME=T083, LENGTH=6909, DEPTH=1664, * U=1 TUBING NAME=T084, LENGTH=4882, DEPTH=1689, * U=1 TUBING NAME=T085, LENGTH=2909, DEPTH=1683, * U=1 TUBING NAME=T086, LENGTH=1673, DEPTH=1344, * U=1 TUBING NAME=T087, LENGTH=633, DEPTH=544, * U=1 $

1-74

PIPEPHASE EXAMPLE

LINK NAME=2, FROM=INJ1, TO=J1, * IDNAME=2, IDFROM=INJ1, IDTO=J1 TUBING NAME=T090, LENGTH=5687, DEPTH=5456, U=1 TUBING NAME=T091, LENGTH=3689, DEPTH=3627, U=1 TUBING NAME=T092, LENGTH=2597, DEPTH=2585, U=1 TUBING NAME=T093, LENGTH=1505, DEPTH=1500, U=1 TUBING NAME=T094, LENGTH=560, DEPTH=560, * U=1 $ LINK NAME=3, FROM=J1, TO=J-M, * IDNAME=3, IDFROM=J1, IDTO=J-M PIPE NAME=P063, LENGTH=634, 1257, * 2568, 3599, 2564, * 1478, ECHG=36, 78, * 125, 359, 189, * 123, AIR $ LINK NAME=4, FROM=J2, TO=J-M, * IDNAME=4, IDFROM=J2, IDTO=J-M PIPE NAME=P065, LENGTH=789, 1254, * 2569, 2564, 2365, * 2487, 1259, ECHG=54, * 124, 214, 124, * 236, 247, 125, * AIR $ LINK NAME=5, FROM=INJ2, TO=J2, * IDNAME=5, IDFROM=INJ2, IDTO=J2 TUBING NAME=T102, LENGTH=5050, DEPTH=5000, U=1 TUBING NAME=T103, LENGTH=3010, DEPTH=3000, U=1 TUBING NAME=T104, LENGTH=1500, DEPTH=1500, U=1 $ LINK NAME=6, FROM=W-23, TO=INJ2, * IDNAME=6, IDFROM=W-23, IDTO=INJ2 TUBING NAME=T096, LENGTH=8510, DEPTH=4683, U=1 TUBING NAME=T097, LENGTH=7546, DEPTH=4650, U=1 TUBING NAME=T098, LENGTH=5519, DEPTH=4652, U=1 TUBING NAME=T099, LENGTH=3546, DEPTH=3403, U=1 TUBING NAME=T100, LENGTH=2310, DEPTH=2290, U=1 $ LINK NAME=GAS-W12, FROM=J-GAS, TO=J-12, * IDNAME=GAS-, IDFROM=J-GA, IDTO=J-12, * INJECT PIPE NAME=P121, LENGTH=1256, 2567, * 2155, ECHG=86, 125, * 189, NOMD=2, SCHED= 40, * AIR $ LINK NAME=GAS1, FROM=GAS, TO=J-GAS, * IDNAME=GAS1, IDFROM=GAS, IDTO=J-GA, * INJECT PIPE NAME=P119, LENGTH=1256, 5789, * 4556, ECHG=356, 598, * 256, NOMD=2, SCHED= 40, * WATER, THKINS=0.35, 0, * 0, 0, 0, * CONINS=0.02, 0.015, 0.015, * 0.015, 0.015 $ LINK NAME=GAS-W23, FROM=J-GAS, TO=J-23, *

PIPEPHASE Application Briefs

* * * *

* * *

* * * * *

1-75

IDNAME=GAS2, IDFROM=J-GA, IDTO=J-23, * INJECT PIPE NAME=P130, LENGTH=1257, 2568, * 2478, 2698, ECHG=125, * 256, 257, 236, * NOMD=2, SCHED= 40, AIR $ LINK NAME=INJ-W23, FROM=J-23, TO=INJ2, * IDNAME=INJ-, IDFROM=J-23, IDTO=INJ2, * INJECT REGULATOR NAME=R139, PRES=9999 ANNULUS NAME=A132, LENGTH=1500, DEPTH=1500, ODTUBE=4.339, U=1 ANNULUS NAME=A133, LENGTH=3102, DEPTH=3000, ODTUBE=4.339, U=1 ANNULUS NAME=A134, LENGTH=5200, DEPTH=5000, ODTUBE=4.339, U=1 CHOKE NAME=C003, PERKINS, ID=0.25 $ LINK NAME=INJ-W12, FROM=J-12, TO=INJ1, * IDNAME=INJ3, IDFROM=J-12, IDTO=INJ1, * INJECT REGULATOR NAME=R138, PRES=9999 ANNULUS NAME=A123, LENGTH=560, DEPTH=560, * ODTUBE=4.339, U=1 ANNULUS NAME=A124, LENGTH=1505, DEPTH=1500, ODTUBE=4.339, U=1 ANNULUS NAME=A125, LENGTH=2597, DEPTH=2585, ODTUBE=4.339, U=1 ANNULUS NAME=A126, LENGTH=3689, DEPTH=3627, ODTUBE=4.339, U=1 ANNULUS NAME=A127, LENGTH=5687, DEPTH=5456, ODTUBE=4.339, U=1 CHOKE NAME=C002, PERKINS, ID=0.25 $ LINK NAME=LAST, FROM=J-M, TO=SINK, * IDNAME=LAST, IDFROM=J-M, IDTO=SINK SEPARATOR NAME=S068, PERCENT(GAS)=10 PIPE NAME=P067, LENGTH=4578, 4575, * 6589, 3256, 2457, * 2314, ECHG=-598, 645, * -568, -541, 667, * 256, AIR $ $ End of keyword file... $ END

* * *

* * * *

Case Execution In the General menu, select Calculation Methods and then click on the Network Data button as shown in Figure 1-56.

1-76

PIPEPHASE EXAMPLE

Figure 1-56: Network Calculation Methods

This displays the Network Convergence Data dialog box as shown in Figure 1-57. Check the Mass Based Perturbation option. Figure 1-57: Network Convergence Data

Results With the Mass Based Perturbation option checked, the solver uses the total mass flow rate basis to perturb the flow rates for all sources and links. As a result, more accurate derivatives are calculated resulting in a more stable simulation, which the solver is able to successfully converge.

PIPEPHASE Application Briefs

1-77

Example 11A - Link Groups for Subsurface Junctions Simulation Objective The basic objective of this simulation is to illustrate Link Groups in PIPEPHASE using Example 11A.

Input Data A link group LINE1 is defined for LINK 1 & 2. $ LINK NAME=1, FROM=W-12, TO=INJ1, * IDNAME=1, IDFROM=W-12, IDTO=INJ1, * SUBLINE=LINE1 IPR NAME=I088, TYPE=PI, * IVAL=BASIS, 3, * RVAL=PI, 25.5 / UPTIME,1 TUBING NAME=T082, LENGTH=13560, DEPTH=7005, * U=1 TUBING NAME=T083, LENGTH=12596, DEPTH=7120, * U=1 TUBING NAME=T084, LENGTH=10569, DEPTH=7145, * U=1 TUBING NAME=T085, LENGTH=8596, DEPTH=7139, * U=1 TUBING NAME=T086, LENGTH=7360, DEPTH=6800, * U=1 TUBING NAME=T087, LENGTH=6320, DEPTH=6000, * U=1 $ LINK NAME=2, FROM=INJ1, TO=J1, * IDNAME=2, IDFROM=INJ1, IDTO=J1, * SUBLINE=LINE1 TUBING NAME=T090, LENGTH=5687, DEPTH=5456, * U=1 TUBING NAME=T091, LENGTH=3689, DEPTH=3627, * U=1 TUBING NAME=T092, LENGTH=2597, DEPTH=2585, * U=1 TUBING NAME=T093, LENGTH=1505, DEPTH=1500, * U=1 TUBING NAME=T094, LENGTH=560, DEPTH=560, * U=1 $

1-78

PIPEPHASE EXAMPLE

Results With the Link Group LINE1, a combined report of the LINKS 1 and 2 is obtained. BASE CASE LINK "LINE" DEVICE DETAIL REPORT

PIPEPHASE Application Briefs

1-79

Table 1-3:

Link "Line" Device Detail Report

PRESSURE AND TEMPERATURE REPORT DEVICE SEGM NO NAME AND TYPE

I088

INSID E DIAM. (IN)

0000

I MWD & OR LENGTH O FROM INLET

TVD OR ELEV CHNG (FT)

CALC PRES (PSIG)

CAL C TEM P (F)

13560.0

7005.1

4400.0

172.0

I

OVERA AMB TEMP LL U(F) FACT (BTU/ HRFT2F )

PI = (IPR) T082

0000

3.068

25.5000

13560.0

O

7005.1

3993.8

172.0

13560.0

I

7005.1

3993.8

172.0

172.0

0001

13540.7

7007.4

3992.8

172.0 1.000

172.0

0002

13521.4

7009.7

3991.7

172.0 1.000

172.1

0003

13502.2

7012.0

3990.6

172.0 1.000

172.1

0004

13482.9

7014.3

3989.6

172.0 1.000

172.2

0005

13463.6

7016.6

3988.5

172.0 1.000

172.2

0006

13444.3

7018.9

3987.4

172.0 1.000

172.2

0007

13425.0

7021.2

3986.4

172.0 1.000

172.3

0008

13405.8

7023.5

3985.3

172.0 1.000

172.3

0009

13386.5

7025.8

3984.2

172.0 1.000

172.4

00010

13367.2

7028.1

3983.2

172.0 1.000

172.4

00011

13347.9

7030.4

3982.1

172.0 1.000

172.4

00012

13328.6

7032.7

3981.0

172.0 1.000

172.5

00013

13309.4

7035.0

3980.0

172.0 1.000

172.5

00014

13290.1

7037.3

3978.9

172.0 1.000

172.6

00015

13270.8

7039.6

3977.9

172.0 1.000

172.6

00016

13251.5

7041.9

3976.8

172.0 1.000

172.6

00017

13232.2

7044.2

3975.7

172.0 1.000

172.7

00018

13213.0

7046.5

3974.7

172.0 1.000

172.7

00019

13193.7

7048.8

3973.6

172.0 1.000

172.8

If the option "Reduced Output with Link Group" is checked, the Link Group is not showed in the output report.

1-80

PIPEPHASE EXAMPLE

PIPEPHASE Application Briefs

1-81

Example 12 - Nodal Analysis Simulation Model In this simulation the user attempts to carry out a Nodal Analysis on a single well.

Simulation Model The simulation is created in a similar manner as any other single link PIPEPHASE simulation. The pressures are fixed at the source and sink and the flow rate is calculated by the PIPEPHASE. Figure 1-58: Well Nodal Analysis

Once the simulation has been set up, the user clicks Nodal in the Link Device Data dialog box.

1-82

PIPEPHASE EXAMPLE

Figure 1-59: Nodal Analysis Dialog Box

Here, the user can select the Node around which the Nodal Analysis will take place. The Node can be any of the devices in the link. In this case, the well choke has been selected. The next step is to select a series of flow rates. The performance of the well will be analyzed at each of these flow rates. Finally, Inflow and Outflow parameters are selected. For each of these parameters, a series of values is entered by the user. In this case, the Reservoir Pressure and ID of the surface pipeline have been chosen.

PIPEPHASE Application Briefs

1-83

Input Data $General Data Section $ TITLE PROJECT=NODAL, USER=SIMSCI, DATE=04/03/02 $ DESCRIPTION Nodal Analysis of a production well. DESCRIPTION This is a blackoil model. $ DIMENSION RATE(LV)=BPD $ CALCULATION NETWORK, Blackoil, PRANDTL $ DEFAULT IDPIPE=4.026, IDTUBING=4.026, IDANNULUS=6.065, * HAUSEN $ PRINT INPUT=FULL, DEVICE=FULL, PLOT=FULL, * PROPERTY=FULL, FLASH=FULL, MAP=TAITEL, * CONNECT=NONE, SUMMARY=BOTH, DATABASE=FULL, * SIMULATOR=PART, VFPT=EXCEL, SLUG=BRILL $ SEGMENT AUTO=ON, DLHORIZ(FT)=2000, DLVERT(FT)=500 $ $Network Data Section $ NETWORK DATA $ SOLUTION PBALANCE, FLOWAL=1 $ TOLERANCE PRESSURE=0.1 $ $PVT Data Section $ PVT PROPERTY DATA $ SET SETNO=1, GRAV(OIL,API)=31.00001, GRAV(GAS,SPGR)=0.79, * GRAV(WATER,SPGR)=1.01, CONT=0.65, 0.83, * 0 $ $Structure Data Section $ STRUCTURE DATA $ SOURCE NAME=S001, IDNAME=S001, PRIORITY=0, * SETNO=1, PRES=5400, TEMP=180, * RATE(ESTI)=6000, GOR=450, WCUT=3, * XCORD=0, YCORD=-414 $ SINK NAME=D002, IDNAME=D002, PRES=100, * RATE(ESTI)=1, XCORD=795, YCORD=-414 $ $ $ LINK NAME=L003, FROM=S001, TO=D002, * IDNAME=L003, IDFROM=S001, IDTO=D002 IPR NAME=I005, TYPE=PI, * IVAL=BASIS, 3, * RVAL=PI, 12 / UPTIME,1 TUBING NAME=T006, LENGTH=8500, DEPTH=6500, * NOMD=2.875, SCHED=TB01, HOLEID=8, * TIME=360, DIFFUSIVITY=0.96, TGRAD=1.5, * MEDIUM=1, 5, * IDCASING=5, * ODTUBING=3, * ODCASING=5.1, * EMIS=0.95, 0, * EMOS=0.95, 0, * CPAN=0.25, 0, * CONANN=0.01875, 0.5, * CONCAS=25, 25, * BETANN=1.410e-003, 0, *

1-84

PIPEPHASE EXAMPLE

VISANN=0.0223, 0, * DENANN(LBFT3)=8.9632e-004, 0, * VELANN=0, 0, * CONEARTH=1 TUBING NAME=T007, LENGTH=3570, DEPTH=3000, * NOMD=2.875, SCHED=TB01, HOLEID=7, * TIME=300, DIFFUSIVITY=0.96, TGRAD=1, * MEDIUM=1, 5, * IDCASING=5, * ODTUBING=3, * ODCASING=5.1, * EMIS=0.95, 0, * EMOS=0.95, 0, * CPAN=0.25, 0, * CONANN=0.01875, 0.5, * CONCAS=25, 25, * BETANN=1.410e-003, 0, * VISANN=0.0223, 0, * DENANN(LBFT3)=8.9632e-004, 0, * VELANN=0, 0, * CONEARTH=1 CHOKE NAME=C008, FN, ID=1.5 PIPE NAME=P009, LENGTH=300, ECHG=5, * NOMD=6, SCHED= 40, AIR, * TAMB=60 PIPE NAME=P010, LENGTH=459, ECHG=7, * NOMD=6, SCHED= 40, AIR, * TAMB=60 PIPE NAME=P011, LENGTH=15000, ECHG=36, * NOMD=6, SCHED= 40, SOIL, * BDTOP=36, TAMB=54 $ $ End of keyword file... $ END $ $Sensitivity Analysis Data Section $ GSENSITIVITY ANALYSIS LINK DATA $ LINK NAME=L003 NODE NAME=C008 FLOW RATE=500, 1500, 2500, * 4000, 6000, 7000, * 8000, 9000, 10000, 12000 DESCRIPTION INFLOW= DEPLETED, 3YEARSPRES, * LOWPRES, CURRENTPRES, * HIGHPRESS DESCRIPTION OUTFLOW= 3INCH, 35INCH, * 4INCH, 5INCH, * 6INCH INFLOW NAME=S001, * PRES=4000, 4500, 5000, 5500, 6000 OUTFLOW NAME=P009, * ID=3, 3.5, 4, 5, 6, * NAME=P010, * ID=3, 3.5, 4, 5, 6, * NAME=P011, * ID=3, 3.5, 4, 5, 6 $ END GUI DATA

PIPEPHASE Application Briefs

1-85

Case Execution The Nodal Analysis calculations in PIPEPHASE will vary all the flow rates and the parameters selected and solve the well model multiple times in order to generate a Nodal Analysis plot. To launch a Nodal Analysis run in PIPEPHASE the user need to select Nodal Analysis as the Simulation Type in the Run Simulation and Vew Results dialog box as shown in Figure 1-60. Figure 1-60: Nodal Analysis

Results After solving the simulation, click RAS to display PIPEPHASE Results Access System dialog box. Selects File/New to display the dialog box as shown below. Select the appropriate RAS database. The Nodal Analysis results for this particular simulation are found in L003 - the name of the link in this particular simulation.

1-86

PIPEPHASE EXAMPLE

Figure 1-61: RAS Database

After opening the RAS database, the user selects Special Plots. The Nodal Analysis plot is displayed. Note: RAS plots can also be generated in Excel.

Nodal Analysis Plot The intersection points of the curves represent actual operating conditions for the well. For example, in the plot (Figure 1-62), we have highlighted the intersection of the 3" pipeline curve with a High Pressure, [6,000 psig] Reservoir pressure curve. Under these conditions, we can expect to produce 6,700 bbl/day with an upstream choke pressure of approx 2,000 psig (pressure is always the inlet of the device selected as the node - in this case, the well choke).

PIPEPHASE Application Briefs

1-87

Figure 1-62: Nodal Analysis of Pressure

1-88

PIPEPHASE EXAMPLE

Example 13 - Hydrate Analysis for Compositional Fluids Simulation Objective In this simulation, a simple composition network model has been created. For compositional simulation, the user has the option of adding a Hydrate Unit to analyze the potential of hydrate formation in the network.

Simulation Model Hydrate analysis can only be conducted at a Node. A Node in PIPEPHASE is defined as a Source, Sink or Junction. There are a total of four Nodes in this simulation - two sources S001 & S003, Junction J004 and Sink D002. Therefore, for this network, hydrate analysis can only be conducted at four points. The user will need to break up the links and add more junctions if required, to analyze for hydrates at other points in the network. The simulation model is shown in Figure 1-63. Figure 1-63: Compositional- Network-Hydrates

For this simulation, the user decides to select S003, J004 & D002. The hydrates unit in PIPEPHASE also allows the user to simulate the effect of adding Hydrate inhibitors such as Methanol, Salt, EG, DEG & TEG. PIPEPHASE Application Briefs

1-89

Figure 1-64: Hydrate Unit Operation

Users can conduct hydrate analysis at any node in a compositional network as shown in Figure 1-64. Figure 1-65: Define Hydrate Calculation

Users can also simulate the effects of a hydrate inhibitor such as Methanol. Users are required to enter a temperature or pressure range over which they would like to determine the potential for forming hydrates.

1-90

PIPEPHASE EXAMPLE

Input Data $General Data Section $ TITLE PROJECT=HYDRATEEVAL, PROBLEM=NETWORK, USER=SIMSCI, * DATE=06/20/02, SITE=BREA $ DESCRIPTION Simple Compositional Network DESCRIPTION Evaluate Temperature and Pressure Profiles DESCRIPTION Generate Phase Envelopes in Excel via RAS DESCRIPTION Superimpose Hydrate Curves with different MEOH concs. $ DIMENSION Metric, DUTY=KJHR $ CALCULATION NETWORK, Compositional, PRANDTL $ FCODE PIPE=TACITE $ DEFAULT NOMD=8, SCHE= 40, IDTUBING=102.26035, * IDANNULUS=154.05092, TAMBIENT=15.9, * AIR, COND=0.02232, VISC=0.02, * DENSITY(SPGR)=1, VELO=16.09344, HAUSEN $ PRINT INPUT=FULL, DEVICE=FULL, PLOT=FULL, * PROPERTY=FULL, FLASH=FULL, MAP=TAITEL, * CONNECT=FULL, SUMMARY=BOTH, DATABASE=FULL, * SIMULATOR=PART $ SEGMENT AUTO=ON, DLHORIZ(M)=609.59967, * DLVERT(M)=152.39992 $ $Component Data Section $ COMPONENT DATA $ LIBID 1, CO2 / * 2, C1 / * 3, C2 / * 4, C3 / * 5, IC4 / * 6, NC4 / * 7, NC5 / * 8, NC6 / * 9, NC7 / * 10, NC10 , BANK=PROCESS, SIMSCI $ PHASE VL=1,10 $ $Network Data Section $ NETWORK DATA $ SOLUTION PBALANCE, FLOWAL=2, STEP=1 $ TOLERANCE PRESSURE=0.07 $ $Thermodynamic Data Section $ THERMODYNAMIC DATA $ METHOD SET=SET01, SYSTEM(VLE)=SRKS, DENSITY(L)=SRKS $ KVALUE BANK=SimSci $ $PVT Data Section $ PVT PROPERTY DATA $ SET SETNO=1, SET=SET01 $

PIPEPHASE Application Briefs

1-91

$Structure Data Section $ STRUCTURE DATA $ SOURCE NAME=S001, IDNAME=S001, PRIORITY=0, * PRES=129, TEMP=62, RATE(ESTI,W)=96000, * XCORD=0, YCORD=979, * COMP(M)=1, 0.99 / 2, 20 / 3, 21 / * 4, 52 / 5, 2.11 / 6, 1.4 / * 7, 0.75 / 8, 0.75 / 9, 0.5 / * 10, 0.5 $ SOURCE NAME=S003, IDNAME=S003, PRIORITY=0, * PRES=126, TEMP=59, RATE(ESTI,W)=56000, * XCORD=245, YCORD=399, * COMP(M)=1, 1 / 2, 59 / 3, 21 / * 4, 15 / 5, 1.25 / 6, 1 / * 7, 0.5 / 8, 0.5 / 9, 0.25 / * 10, 0.5 $ SINK NAME=D002, IDNAME=D002, PRES=80, * RATE(ESTI)=1.500e+005, XCORD=1005, YCORD=664 $ JUNCTION NAME=J004, IDNAME=J004, XCORD=465, * YCORD=759 $ $ LINK NAME=L005, FROM=S003, TO=J004, * IDNAME=L005, IDFROM=S003, IDTO=J004 PIPE NAME=P012, LENGTH=234, 1235, * 6789, 4567, 1549, * ECHG=9, 124, 98, * 34, 45, AIR PIPE NAME=P011, LENGTH=156, AIR SEPARATOR NAME=S013, * COMPONENT=100 / 0 / 0 / * 0 / 0 / 0 / * 0 / 0 / 0 / * 0 $ $ LINK NAME=L006, FROM=S001, TO=J004, * IDNAME=L006, IDFROM=S001, IDTO=J004 PIPE NAME=P015, LENGTH=2594, 2564, * 3598, 2679, 2578, * ECHG=58, 65, 59, * 78, 93, AIR SEPARATOR NAME=S016, PERCENT(GAS)=15 $ LINK NAME=L008, FROM=J004, TO=D002, * IDNAME=L008, IDFROM=J004, IDTO=D002 PIPE NAME=P018, LENGTH=596, 1579, * 1566, 4851, 849, * ECHG=-59, -54, -89, * -23, -94, AIR $ $UNIT OPERATION Data Section $ UNIT OPERATION DATA $ HYDRATE UID=H019, NAME=EVALUATE MEOH INJECTION RATES EVALUATE STREAM=D002, POINTS=30, IPRES=0.14, * MAXPRES=150, TESTIMATE=-5, INHIB(MEOH)=20, * 30 EVALUATE STREAM=J004, POINTS=30, IPRES=0.14, * MAXPRES=150, TESTIMATE=-5, INHIB(MEOH)=20, * 30 EVALUATE STREAM=S003, POINTS=30, IPRES=0.5, * MAXPRES=150, TESTIMATE=-3, INHIB(MEOH)=20, * 30 $

1-92

PIPEPHASE EXAMPLE

$ End of keyword file... $ END

Case Execution After fully specifying the option in the Hydrate unit, the user can launch the simulation. Hydrate analysis will be conducted after the network simulation is solved and the final temperature, pressure and compositional profiles are calculated. To view the analysis in Microsoft Excel, the following procedure is to be followed 1.

Click Run and solve the simulation. The generation of output reports does take some time and therefore, users should ensure that their simulation has been solved and converged before generating complex output reports.

2.

Select Print Options under the General menu. Ensure that the Ability to Generate Excel Database option is set to Full. The content of the report is controlled from this dialog box. For example, if you want to have Flow Pattern Maps generated for each of the links in the simulation, ensure that the option is highlighted.

Figure 1-66: Print Options

PIPEPHASE Application Briefs

1-93

3.

Click Run.

4.

Click Excel located at the top right-hand corner of the dialog box. This brings up the Excel Reports dialog box.

5.

In this dialog, the user can choose the reports that need to be displayed in Excel. By default, all the options are selected. The user should judiciously select the reports to be displayed, especially for large simulation models that contain numerous nodes and links. The Links Reports in particular can take several minutes to generate.

6.

The user also needs to select Run Options located at the top right-hand corner of the dialog box. Run Simulation simply runs and solves the simulation. Create Database creates a Microsoft Access database with all the data to be displayed in the Excel Reports. This option must be selected if the user wishes to generate an Excel Report. Finally, the Create Excel Report creates a detailed Excel Report.

Figure 1-67: Run Simulation and View Results

7.

1-94

After selecting the various options in the Excel Reports dialog box, the user clicks Run Current Network. In the case above, it skips running and converging the network model (it assumes the user has previously converged the simulation), creates the Access database and subsequently the Excel Report. PIPEPHASE EXAMPLE

8.

The Excel Report makes extensive use of hyperlinks allowing the user to easily navigate through the report and find the information that is desired.

Figure 1-68: Excel Report

9.

In this case, we wish to review the hydrate analysis at Nodes S003, J004 & D002. Click L008 to review a detailed report for the link terminating at the network Sink D002.

PIPEPHASE Application Briefs

1-95

Figure 1-69: Phase Envelope

10. The Phase envelope generated by PIPEPHASE is for fluid composition present in the final link. The green link represents the traverse for the link - the pressure and temperature profile described by the fluid as it passes through the pipeline. Clearly, the fluid starts as a single phase gas and ends up in the twophase region of the phase envelope at the terminus. 11. Three hydrate curves are shown. The right curve simulates the hydrate curve without the presence of any methanol. The middle curve simulates the hydrate curve with 20 wt% Methanol. The left curve shows the hydrate curve with 30 wt% methanol. 12. According to this curve, without the presence of an inhibitor, it is thermodynamically possible to form hydrates at the network sink. By using PIPEPHASE, engineers can evaluate flow assurance strategies to minimize the risk of forming hydrates in wells and production networks.

1-96

PIPEPHASE EXAMPLE

Example 14 - Choke Sizing and MChokes in PIPEPHASE Simulation Objective The Choke device in PIPEPHASE can be used to model a well or surface choke. Chokes are used to control the rate of production of fluid from a well and are essential components for controlling and managing field production.

Simulation Model The Simulation Model for this example is shown in Figure 1-70. This simulates a single blackoil well. Figure 1-70: Sizing and Chokes

In this simulation, double click the link - L -90 to bring up the Device Data dialog box (see Figure 1-71). The well contains a gas lift valve and a choke, M004.

PIPEPHASE Application Briefs

1-97

Figure 1-71: Device Data Dialog Box

Click on the Choke device to brings up the Choke dialog box (see Figure 1-72). In addition to specifying the choke diameter and having the simulator calculate the flow rate through the choke, PIPEPHASE allows the user to make a number of alternate specifications. The user can specify either the Upstream or Down Stream pressure around the Choke. Figure 1-72: Device Data Dialog Box

1-98

PIPEPHASE EXAMPLE

PIPEPHASE will in turn calculate the corresponding flow rate and choke diameter. Very often users prefer to specify the Upstream Pressure as this can be more easily measured. The actual Choke diameter can be difficult to ascertain as erosion can very often mean that the actual diameter no longer corresponds to the setting. (e.g. a choke setting of 34/64 might in fact corresponding to a choke opening of 38/64). Invoking Upstream or Downstream Pressure specification transforms the Choke device into a MChoke.

Input Data $General Data Section $ TITLE PROJECT=CHOKESIZING, PROBLEM=EX14, USER=JAB, * DATE=10/21/02, SITE=BREA $ DESCRIPTION Use PIPEPHASE to size a choke. DESCRIPTION Set the pressure upstream of the choke to 1500 psig DESCRIPTION PIPEPHASE calculates the choke diameter of 0.61" DESCRIPTION to ensure the upstream pressure spec is met $ DIMENSION RATE(LV)=BPD $ CALCULATION NETWORK, Blackoil $ DEFAULT IDPIPE=4.026, IDTUBING=4.026, IDANNULUS=6.065 $ PRINT INPUT=FULL, DEVICE=PART, PLOT=FULL, * PROPERTY=FULL, FLASH=FULL, MAP=TAITEL, * CONNECT=FULL, SUMMARY=BOTH, DATABASE=FULL, * SIMULATOR=PART $ SEGMENT AUTO=OFF, DLHORIZ(FT)=2000, DLVERT(FT)=500 $ $Network Data Section $ NETWORK DATA $ SOLUTION PBALANCE, FLOWAL=1 $ TOLERANCE PRESSURE=0.1 $ $PVT Data Section $ PVT PROPERTY DATA $ SET SETNO=1, GRAV(OIL,API)=35.00001, GRAV(GAS,SPGR)=0.6, * GRAV(WATER,SPGR)=1.02 LIFTGAS GRAV(GAS,SPGR)=0.65 $ $Structure Data Section $ STRUCTURE DATA $ SOURCE NAME=W-35, IDNAME=W-35, PRIORITY=0, * SETNO=1, PRES=5500, TEMP=120, * RATE(ESTI)=1000, GOR=100, WCUT=10, * XCORD=0, YCORD=363 $ SINK NAME=SINK, IDNAME=SINK, PRES=350, * RATE(ESTI)=1000, XCORD=997, YCORD=-69 $ $

PIPEPHASE Application Briefs

1-99

$ LINK NAME=L-90, FROM=W-35, TO=SINK, * IDNAME=L-90, IDFROM=W-35, IDTO=SINK TUBING NAME=T001, LENGTH=10000, DEPTH=8525, * ID=2.441, U=1 GLVALVE NAME=G002, RATE=1.5 TUBING NAME=T003, LENGTH=7000, DEPTH=5820, * ID=2.441, U=1 MCHOKE NAME=M004, PUPS=1500 PIPE NAME=P005, LENGTH=500, 2678, * 2978, ECHG=56, 21, * 268, ID=6, U=1 $ $ End of keyword file... $ END

Case Execution Internally PIPEPHASE uses special logic to solve a well or network model containing a MChoke. In the case of this simulation model, PIPEPHASE breaks the link into two parts at the MChoke. The first link runs from the source to the entrance of the MChoke. The Source Pressure and Upstream Choke Pressure become the boundary conditions and PIPEPHASE calculates the corresponding flow rate. The second link runs from the outlet of the MChoke to the Sink. The calculated flow rate and the sink pressure become the boundary conditions for the link and PIPEPHASE calculates the corresponding pressure at the outlet of the MChoke. PIPEPHASE in effects creates an internal Sub-Network in order to solve to the Upstream Pressure specification set by the user. This allows PIPEPHASE to quickly and stably solve large production networks contains tens or hundreds of wells.

Results When generating Excel Reports, users should go to the Print Options in the General menu and select the Merge Subnetworks option (see Figure 1-73). This ensures that when the Excel Report for the simulation is generated, the internal links generated by PIPEPHASE will remain hidden and the reports doesn't include references to artificial nodes and links corresponding to the subnetworks created by the solver.

1-100

PIPEPHASE EXAMPLE

Figure 1-73: Print Options Dialog Box

Examining the Excel Reports users can view the pressure and temperature profiles created by PIPEPHASE (see Figure 1-74). In this case PIPEPHASE has calculated a pressure drop of 1,061 psi across the choke.

PIPEPHASE Application Briefs

1-101

Figure 1-74: Pressure and Temperature Profile

1-102

PIPEPHASE EXAMPLE

Example 15 - The Gilbert Choke Model in PIPEPHASE Simulation Objective This example illustrates availability of the Gilbert Family of Choke Models in PIPEPHASE. It is important to note that the Gilbert Choke Model assumes critical flow. Unlike the Fortunati, UEDA and Perkins Models, the Gilbert Choke Model cannot model subcritical flow through the choke.

Simulation Model Simulation Model for this example is shown in Figure 1-75. Figure 1-75: Gilbert Choke Model

In this simulation, double click the LINK to bring up the Device Data dialog box. The well contains a choke, CHK1. Click Choke to bring up the Choke dialog box (see Figure 1-76). Under Choke Specification, select Calculate Pressure Drop from the drop down list (see Figure 1-76).

PIPEPHASE Application Briefs

1-103

Figure 1-76: Choke Dialog Box

1-104

PIPEPHASE EXAMPLE

Input Data $General Data Section $ TITLE PROJECT=GILBERT, PROBLEM=EX15, USER=SIMSCI, * DATE=10/01/97, SITE=BREA $ DESCRIPTION This single well model employs the Gilbert choke model to DESCRIPTION calculate the pressure drop. $ DIMENSION Metric, RATE(LV)=CMHR, LENGTH=M,IN, * DENSITY=SPGR $ OUTDIMENSION Metric, ADD $ CALCULATION NETWORK, Blackoil $ FCODE TUBING=HB $ DEFAULT IDPIPE=102.26, IDTUBING=102.26, IDANNULUS=154.05099 $ PRINT INPUT=FULL, DEVICE=FULL, PLOT=FULL, * PROPERTY=FULL, FLASH=FULL, MAP=TAITEL, * CONNECT=NONE, SUMMARY=BOTH, DATABASE=FULL, * SIMULATOR=PART, SLUG=BRILL $ SEGMENT AUTO=OFF, NHOR=10, NVER=10 $ $Network Data Section $ NETWORK DATA $ SOLUTION PBALANCE, FLOWAL=1, MAXITER=30 $ TOLERANCE PRESSURE=6.895e-003 $ $PVT Data Section $ PVT PROPERTY DATA $ SET SETNO=1, GRAV(OIL,SPGR)=0.876, GRAV(GAS,SPGR)=0.71, * GRAV(WATER,SPGR)=1.05 $ $Structure Data Section $ STRUCTURE DATA $ SOURCE NAME=RES, IDNAME=RES, PRIORITY=0, * SETNO=1, PRES=400, TEMP=110, * RATE(ESTI)=50, GOR=320, WCUT=5, * XCORD=0, YCORD=-125 $ SINK NAME=SEPR, IDNAME=SEPR, PRES=25, * RATE(ESTI)=1, XCORD=1000, YCORD=-125 $ $ $ LINK NAME=LINK, FROM=RES, TO=SEPR, * IDNAME=LINK, IDFROM=RES, IDTO=SEPR, * PRINT IPR NAME=IPR , TYPE=VOGEL, * IVAL=BASIS, 3, * RVAL=QMAX, 10000 / VOGCON, 0.2 / VOGEXP, 1 / * UPTIME,1 / OPEN,1 COMPLETION NAME=Z001, JONES, TUNNEL=45, * PERFD=10, SHOTS=25, LENGTH=10 TUBING NAME=TUB1, LENGTH=1830, DEPTH=1710, * ID=3.873, U=4.882 CHOKE NAME=CHK1, GILBERT, ID=1 PIPE NAME=LINE, LENGTH=1250, ECHG=15, * ID=8, ROUGH(IN)=0.18, U=4.882

PIPEPHASE Application Briefs

1-105

$ $ End of keyword file... $ END $ $Sensitivity Analysis Data Section $ GSENSITIVITY ANALYSIS LINK DATA $ LINK NAME=LINK NODE NAME=CHK1 FLOW RATE=40, 50, 60, * 70 DESCRIPTION INFLOW= 450 BAR, 400 BAR, * 350 BAR DESCRIPTION OUTFLOW= 3 1/2 IN DIA, 4 IN DIA, * 4 1/2 IN DIA, 5 IN DIA INFLOW NAME=RES, * PRES=450, 400, 350 OUTFLOW NAME=LINE, * ID=3.5, 4, 4.5, 5 $ $ $VFP Table Generation Data Section $ GVFP TABLE GENERATION DATA SECTION $ LINK NAME=LINK ACTIVATE=1 COMPLETE=Y INFLOWOUTFLOW=1 RATE[0]=50.000 RATE[1]=100.000 RATE[2]=150.000 RATE[3]=200.000 RATE[4]=300.000 BHPWHP[0]=400.000 GORCGR[0]=60.000 GORCGR[1]=65.000 GORCGR[2]=70.000 GORCGR[3]=75.000 GORCGR[4]=80.000 GORCGR[5]=85.000 GORCGR[6]=90.000 GORCGR[7]=100.000 WCTWGR[0]=0.000 WCTWGR[1]=2.000 WCTWGR[2]=4.000 WCTWGR[3]=6.000 WCTWGR[4]=8.000 WCTWGR[5]=10.000 WCTWGR[6]=12.000 WCTWGR[7]=14.000 GINJR[0]=0.000 GEND END GUI DATA

1-106

PIPEPHASE EXAMPLE

Case Execution One advantage of the Gilbert Choke Model is the fact that engineers can add coefficients to their own coefficients in order to tune the choke model so that it matches the measured behavior of actual chokes in the field.

Results In PIPEPHASE, users can employ Netopt optimizer to vary the Gilbert coefficients, to match measures pressure drops across the choke. Note: Use online help for details concerning the choke models and various network solver options available in PIPEPHASE (see Figure 1-77). Figure 1-77: PIPEHASE Online Help

PIPEPHASE Application Briefs

1-107

Example 16 - The New DPDT Device - Can be used to Model Compressors Simulation Objective In PIPEPHASE 8.0, the DPDT device was upgraded to allow the user to enter multiple curves at a fixed inlet or outlet pressure to the device. This was done to allow users to simulate the behavior of a compressor. Until then, the user could only add a single curve of pressure and temperature drop versus flow rate. Traditionally, the DPDT device was employed to simulate a blackbox. If there is something in the well or pipeline that cannot be rigorously modeled by PIPEPHASE, it has a measurable effect on the pressure and temperature profile for the link, and is a function of flow rate. Instead of modeling it rigorously, the engineer can simply enters a single curve of flow rate versus pressure drop and temperature drop.

Simulation Model The Simulation Model for this example is shown in Figure 1-78. Figure 1-78: DPPT - as - Compressor

In this simulation, double click the link L1 to bring up the Device Data dialog box (see Figure 1-79). It is observed that DPDT (D001) is one of the devices found in link L1.

1-108

PIPEPHASE EXAMPLE

Figure 1-79: Device Data Dialog Box

Click DPDT to bring up the DPDT Device dialog box (see Figure 1-80). Figure 1-80: DPDT Device Dialog Box.

PIPEPHASE Application Briefs

1-109

Check Multiple Curves as indicated in the above figure to make the Multiple Curves group box available for data entry. Select or Enter data as shown in Figure 1-80. Click Pressure 1 Curve.. to bring up the General Spread Sheet - DPDT: Pressure 1 Curve dialog. Enter data as indicated in Figure 1-81. Follow the same procedure for the remaining pressure curves. Figure 1-81: General Spread Sheet - DPDT: Pressure 1 Curve

1-110

PIPEPHASE EXAMPLE

Input Data $General Data Section $ TITLE PROJECT=DPDTDEVICE, PROBLEM=EX16, USER=SIMSCI, * DATE=10/21/02, SITE=BREA $ DESCRIPTION Enhancements to the DPDT device allow users to DESCRIPTION enter multiple curves for pressure and temperature at DESCRIPTION fixed inlet or outlet pressures. This enable one to enter DESCRIPTION operating curves for compressors/expanders/pumps $ DIMENSION RATE(GV)=CFD $ CALCULATION NETWORK, Gas $ DEFAULT IDPIPE=4.026, IDTUBING=4.026, IDANNULUS=6.065 $ PRINT INPUT=FULL, DEVICE=PART, PLOT=FULL, * PROPERTY=FULL, FLASH=FULL, MAP=TAITEL, * CONNECT=NONE, SUMMARY=BOTH, DATABASE=FULL, * SIMULATOR=PART $ SEGMENT AUTO=OFF, DLHORIZ(FT)=2000, DLVERT(FT)=500 $ $Network Data Section $ NETWORK DATA $ SOLUTION PBALANCE, FLOWAL=1, NOFR, * MAXITER=20, QDAMP=1, HALVINGS=0 $ TOLERANCE PRESSURE=0.1 $ $PVT Data Section $ PVT PROPERTY DATA $ SET SETNO=1, GRAV(SPGR)=0.65, CPRATIO=1.3 $ $Structure Data Section $ STRUCTURE DATA $ SOURCE NAME=GAS-SOURCE, IDNAME=GAS-, PRIORITY=0, * SETNO=1, PRES(ESTI)=100, TEMP=95, * RATE=22.491, XCORD=0, YCORD=193 $ SINK NAME=SINK, IDNAME=SINK, PRES=400, * RATE(ESTI)=20, XCORD=1048, YCORD=-126 $ $ $ LINK NAME=L1, FROM=GAS-SOURCE, TO=SINK, * IDNAME=L1, IDFROM=GAS-, IDTO=SINK PIPE NAME=P001, LENGTH=500, ECHG=10, * NOMD=8, SCHED= 40, U=1 DPDT NAME=D001, POUTCRV=125, 250, * 300, 450, * CRV1=5, 88.42, 122.43 / 10, 57.47, 62.89 / * 15, 42.33, 42.27 / 20, 33.42, 31.83 / * 25, 27.61, 25.53 / 100, 7.7, 6.43, * CRV2=5, 168.39, 123.58 / 10, 110, 63.79 / * 15, 81.26, 42.97 / 20, 64.29, 32.4 / * 25, 53.19, 26.02 / 100, 14.78, 6.57, * CRV3=5, 200.58, 124.02 / 10, 131.28999, 64.14 / * 15, 97.11, 43.26 / 20, 76.89, 32.64 / * 25, 63.66, 26.21 / 100, 17.73, 6.63, * CRV4=5, 297.85999, 125.31 / 10, 196.17999, 65.22 / * 15, 145.64999, 44.13 / 20, 115.64, 33.35 / * 25, 95.9, 26.82 / 100, 26.88, 6.82

PIPEPHASE Application Briefs

1-111

PIPE NAME=P002, LENGTH=500, ECHG=-5, * NOMD=6, SCHED= 40, U=1 $ $ End of keyword file... $ END

Case Execution The efficiency of a compressor is a function of pressure and flow rate. By allowing users to enter different curves for different inlet pressures, they were able to more closely simulate the performance of an actual compressor. PIPEPHASE uses linear interpolation to determine the corresponding pressure and temperature change for inlet pressures lying in-between the specified inlet pressures. The reasons for using a DPDT device instead of an actual compressor device include speed and the fact that actual measured field data can be directly inputted into the simulation model. Apart from modeling compressors, measured field data provided to the DPDT device can simulate pumps, booster pumps and wet gas compressors.

Results The ability to enter measured field data and have PIPEPHASE use linear interpolation to calculate the outlet pressure and temperature means the engineer does not need to calculate efficiencies for the more rigorous compressor and pump device models.

1-112

PIPEPHASE EXAMPLE

Example 17 - Generate a Vertical Flow Performance (VFP) Table to Represent a Well Simulation Objective PIPEPHASE, apart from modeling a well rigorously, has also the ability to generate a Vertical Flow Performance (VFP) table. A VFP table can be read to determine the performance of a well. It provides details of properties such as flowing Well Head Pressure, Well Head Temperature and Gas Oil Ratio for different Flow and Gas Injection rates. The main reasons for using VFP tables are calculation speed (it is a lot faster for PIPEPHASE to linearly interpolate a table instead of rigorously solving a detailed well model) and also for their ability to incorporate results for third party well simulators in a PIPEPHASE network model.

Simulation Model In the simulation model, EX17-GENERATE-VFP-TABLES, PIPEPHASE generates two VFP tables. The performance of well W-23 is characterized using inflow performance curves. For inflow performance curves, the user specifies the bottom hole pressure, so that PIPEPHASE can calculate the wellhead conditions. The well W-56 uses outflow performance tables to characterize its performance. In this case, the user specifies the wellhead pressure, so that PIPEPHASE can calculate the bottom hole conditions. Simulations to determine the pressure drop in the well can use either of the two curves.

PIPEPHASE Application Briefs

1-113

Figure 1-82: GENERATE-VFP-TABLES

The PIPEPHASE Network Model is set up in exactly the same way as every other Network Model. The devices required to simulate the behavior of the well are IPR devices, Tubing and Gas Lift Valves. In addition, a VFP device is added to each of the links (L-12 and L23) representing the wells. Figure 1-83: Link Device Data Dialog Box

1-114

PIPEPHASE EXAMPLE

Note: The VFP device in Figure 1-83: Link Device Data is

inactive. All the active devices (IPR E012, Tubing E001, Gas Lift Valve E011, Tubing E009 and Pipe E003) will be incorporated into the data generated in the VFP table. To exclude Pipe E003 for the VFP table generation, deactivate the device when the table is being generated. To use the VFP table for a network simulation, the user is advised to deactivate all the devices whose effects were included in the VFP table except for the Gas Lift Valve. If the gas lift rate was a parameter in the VFP curve, the GLVALVE needs to be active and must physically occur before the active VFP device. For further details, see Example18.

Input Data $ General Data Section $ TITLE PROJECT=VFPTABLES, PROBLEM=EX17, USER=SIMSCI, * DATE=10/10/02, SITE=BREA $ DESCRIPTION Generate VFP Tables to represent a link DESCRIPTION Run this simulation model as a network DESCRIPTION Then select Generate VFP Table and run again DESCRIPTION Two VFP tables will be generated and exported to Excel $ DIMENSION RATE(LV)=BPD $ CALCULATION NETWORK, Blackoil, PRANDTL $ DEFAULT NOMD=4, SCHE= 40, NOMT=4, * SCHT=TB01, IDANNULUS=6.065 $ PRINT INPUT=FULL, DEVICE=FULL, PLOT=FULL, * PROPERTY=FULL, FLASH=SUMMARY, MAP=TAITEL, * CONNECT=NONE, SUMMARY=BOTH, DATABASE=FULL, * SIMULATOR=PART, OPTIMIZER=FULL $ SEGMENT AUTO=ON, DLHORIZ(FT)=2000, DLVERT(FT)=500 $ $ Network Data Section $ NETWORK DATA $ SOLUTION PBALANCE, FLOWAL=2, STEP=1, * MAXITER=30 $ TOLERANCE PRESSURE=0.1 $ $ PVT Data Section $ PVT PROPERTY DATA $ SET SETNO=1, GRAV(OIL,API)=30, GRAV(GAS,SPGR)=0.75, * GRAV(WATER,SPGR)=1.002 LIFTGAS GRAV(GAS,SPGR)=0.8 $ $ Structure Data Section $ STRUCTURE DATA $ SOURCE NAME=W-23, IDNAME=W-23, PRIORITY=0, * SETNO=1, PRES=3499, TEMP=180, *

PIPEPHASE Application Briefs

1-115

RATE(ESTI)=6000, GOR=108, WCUT=0, * XCORD=0, YCORD=652 $ SOURCE NAME=W-56, IDNAME=W-56, PRIORITY=0, SETNO=1, PRES=3505, TEMP=181, * RATE(ESTI)=6000, GOR=102, WCUT=10.5, * XCORD=694, YCORD=669 $ SINK NAME=SINK, IDNAME=SINK, PRES=750, * RATE(ESTI)=10000, XCORD=1254, YCORD=-5 $ JUNCTION NAME=J-4, IDNAME=J-4, PRES(ESTI)= XCORD=396, YCORD=180 $ $ LINK NAME=L-12, FROM=W-23, TO=J-4, * IDNAME=L-12, IDFROM=W-23, IDTO=J-4 IPR NAME=E012, TYPE=PI, * IVAL=BASIS, 3, * RVAL=PI, 25.5 / UPTIME,1 / OPEN,1 TUBING NAME=E001, LENGTH=8010, DEPTH=8010, U=1 GLVALVE NAME=E011, RATE=1.5 TUBING NAME=E009, LENGTH=6810, DEPTH=6810, U=1 $D~IPR NAME=V001, MODEL=31 PIPE NAME=E003, LENGTH=231, U=1 $ LINK NAME=L-23, FROM=W-56, TO=J-4, * IDNAME=L-23, IDFROM=W-56, IDTO=J-4 IPR NAME=E013, TYPE=PI, * IVAL=BASIS, 3, * RVAL=PI, 20.1 / UPTIME,1 / OPEN,1 TUBING NAME=E004, LENGTH=8111, DEPTH=8111, U=1 GLVALVE NAME=E010, RATE=1.5 TUBING NAME=E008, LENGTH=6445, DEPTH=6445, U=1 $D~IPR NAME=V002, MODEL=31 PIPE NAME=E006, LENGTH=103, U=1 $ LINK NAME=L-3, FROM=J-4, TO=SINK, * IDNAME=L-3, IDFROM=J-4, IDTO=SINK PIPE NAME=E007, LENGTH=4500, ECHG=15, * U=1 $ $ End of keyword file... $ END

*

1000, *

* *

* *

$ $ VFP Table Generation Data Section $ GVFP TABLE GENERATION DATA SECTION $ LINK NAME=L-23 ACTIVATE=1 COMPLETE=Y INFLOWOUTFLOW=2 RATE[0]=100.000 RATE[1]=1000.000 RATE[2]=2000.000 RATE[3]=3000.000 RATE[4]=4000.000 RATE[5]=5000.000 RATE[6]=6000.000 RATE[7]=7000.000 BHPWHP[0]=500.000 BHPWHP[1]=1000.000 BHPWHP[2]=1500.000 GORCGR[0]=102.000

1-116

PIPEPHASE EXAMPLE

WCTWGR[0]=10.500 GINJR[0]=0.500 GINJR[1]=1.000 GINJR[2]=1.500 GINJR[3]=2.000 GINJR[4]=2.500 GINJR[5]=3.000 GINJR[6]=3.500 GEND $ $ VFP Table Generation Data Section $ GVFP TABLE GENERATION DATA SECTION $ LINK NAME=L-12 ACTIVATE=1 COMPLETE=Y INFLOWOUTFLOW=1 RATE[0]=100.000 RATE[1]=1000.000 RATE[2]=2000.000 RATE[3]=3000.000 RATE[4]=4000.000 RATE[5]=5000.000 RATE[6]=6000.000 RATE[7]=7000.000 BHPWHP[0]=3500.000 GORCGR[0]=108.000 WCTWGR[0]=0.000 GINJR[0]=0.500 GINJR[1]=1.000 GINJR[2]=1.500 GINJR[3]=2.000 GINJR[4]=2.500 GINJR[5]=3.000 GINJR[6]=3.500 GEND END GUI DATA

Case Execution To generate a VFP table, the user needs to specify the type - either an Inflow or an Outflow table. In this simulation for well W23, the user selects the Inflow table. Additionally, the user also has to decide and enter the number of Flow Rates (Q), Gas/Oil Ratio (GOR), Gas Injection Rates (QGINJ), Bottom Hole Pressure (BHP) and Water Cut (WCT) that needs to be included in the table. Note: For an outflow VFP table, the curve is for Bottom Hole

Pressures versus flow rate parametric changes in Well Head Pressures. In this example, the user has selected independent flow rates ranging from 100 to 7,000 bbl/d and 8 gas injection rates ranging from 500 to 3,500 MM ft3/d.

PIPEPHASE Application Briefs

1-117

1.

Click VFP Tables in Link Device Data dialog box to view VFP Table Generation dialog box. Activate the device as shown in Figure 1-84.

Note: Users need to check Activate and/or Edit VFP Data in VFP Table Table Generation dialog box to generate a VFP table. Figure 1-84: VFP Table Generation

2.

Specify the type of performance curve, either Inflow or Outflow from the drop-down list.

3.

Click on the individual properties button in the Black Oil Data grid (Figure 1-85) and enter the details as indicated in the VFP Table Generation Data - Rates (Q).

Figure 1-85: General Spread Sheet - VFP Table Data

1-118

PIPEPHASE EXAMPLE

4.

Click Insert/Append Row to introduce a new row. Click Delete Row to delete a row in the general spread sheet.

Results After satisfying the conditions specified in steps 1-4, click button on the main toolbar. Select VFP Table Generation from the Type drop down list in the Run Simulation and View Results dialog box and click Run. PIPEPHASE will automatically run the simulation multiple times in order to generate data for each of the Flow Rates and Gas Injection Rates requested by the user. The VFP table will be saved as a comma delimited Excel file in the same directory as the simulation. It is automatically named with the corresponding PIPEPHASE simulation name and the link name represented by the table. The user can use MS-Excel to examine and modify the contents of the file.

PIPEPHASE Application Briefs

1-119

Example 18 - Using the Vertical Flow Performance (VFP) Table to Represent a Well Simulation Objective Using the VFP table to represent a well in PIPEPHASE makes it easy and fast to interpolate data in the table instead of rigorously calculating and solving a detailed well model. VFP tables can be particularly effective in boosting the performance of large network simulations containing a number of wells.

Simulation Model In the simulation model, EX18-USING-VFP-TABLES, the user has modified Example17 so that PIPEPHASE simply reads the VFP tables created in Example17. Figure 1-86: USING-VFP-TABLES

In Figure 1-86: Link Device Data, notice that all the devices have been disabled except for the VFP table and Gas Lift Valve. By clicking on the VFP device, you will notice that it is pointing to the VFP table created in Example 17.

1-120

PIPEPHASE EXAMPLE

Figure 1-87: Link Device Data Dialog Box

Input Data $ General Data Section $ TITLE PROJECT=VFPTABLES, PROBLEM=EX18, USER=SIMSCI, * DATE=10/10/02, SITE=BREA $ DESCRIPTION This example uses the VFP Tables already generated DESCRIPTION in EX17. $ DIMENSION RATE(LV)=BPD $ CALCULATION NETWORK, Blackoil, PRANDTL $ DEFAULT NOMD=4, SCHE= 40, NOMT=4, * SCHT=TB01, IDANNULUS=6.065 $ PRINT INPUT=NONE, DEVICE=PART, PLOT=FULL, * PROPERTY=FULL, FLASH=SUMMARY, MAP=TAITEL, * CONNECT=NONE, SUMMARY=BOTH, DATABASE=FULL, * SIMULATOR=PART, OPTIMIZER=FULL, VFPT=EXCEL $ SEGMENT AUTO=ON, DLHORIZ(FT)=2000, DLVERT(FT)=500 $ $ Network Data Section $ NETWORK DATA $ SOLUTION PBALANCE, FLOWAL=2, STEP=1, * MAXITER=30 $ TOLERANCE PRESSURE=0.1 $ $ PVT Data Section $ PVT PROPERTY DATA $ SET SETNO=1, GRAV(OIL,API)=30, GRAV(GAS,SPGR)=0.75, * GRAV(WATER,SPGR)=1.002 LIFTGAS GRAV(GAS,SPGR)=0.8 $ $ Structure Data Section $ STRUCTURE DATA $

PIPEPHASE Application Briefs

1-121

SOURCE NAME=W-23, IDNAME=W-23, PRIORITY=0, * SETNO=1, PRES=3499, TEMP=180, * RATE(ESTI)=6000, GOR=108, WCUT=0, * XCORD=0, YCORD=652 $ SOURCE NAME=W-56, IDNAME=W-56, PRIORITY=0, * SETNO=1, PRES=3505, TEMP=181, * RATE(ESTI)=6000, GOR=102, WCUT=10.5, * XCORD=694, YCORD=669 $ SINK NAME=SINK, IDNAME=SINK, PRES=750, * RATE(ESTI)=10000, XCORD=1254, YCORD=-5 $ JUNCTION NAME=J-4, IDNAME=J-4, PRES(ESTI)= 1000, * XCORD=396, YCORD=180 $ $ LINK NAME=L-12, FROM=W-23, TO=J-4, * IDNAME=L-12, IDFROM=W-23, IDTO=J-4, * XCOR=331,242,151, YCOR=325,451,583 $D~IPR NAME=E012, TYPE=PI, * $D~ IVAL=BASIS, 3, * $D~ RVAL=PI, 25.5 / UPTIME,1 / OPEN,1 $D~TUBING NAME=E001, LENGTH=8010, DEPTH=8010, * $D~ U=1 GLVALVE NAME=E011, RATE=1.5 $D~TUBING NAME=E009, LENGTH=6810, DEPTH=6810, * $D~ U=1 IPR NAME=V001, MODEL=31 $D~PIPE NAME=E003, LENGTH=231, U=1 $ LINK NAME=L-23, FROM=W-56, TO=J-4, * IDNAME=L-23, IDFROM=W-56, IDTO=J-4 $D~IPR NAME=E013, TYPE=PI, * $D~ IVAL=BASIS, 3, * $D~ RVAL=PI, 20.1 / UPTIME,1 / OPEN,1 $D~TUBING NAME=E004, LENGTH=8111, DEPTH=8111, * $D~ U=1 GLVALVE NAME=E010, RATE=1.5 $D~TUBING NAME=E008, LENGTH=6445, DEPTH=6445, * $D~ U=1 IPR NAME=V002, MODEL=31 $D~PIPE NAME=E006, LENGTH=103, U=1 $ LINK NAME=L-3, FROM=J-4, TO=SINK, * IDNAME=L-3, IDFROM=J-4, IDTO=SINK PIPE NAME=E007, LENGTH=4500, ECHG=15, * U=1 $ $ End of keyword file... $ END

Case Execution The run time for this simulation model is extremely fast as PIPEPHASE interpolates values directly from the VFP table instead of rigorously calculating pressure and temperature profiles along the tubing. It should be noted that since the VFP table contains data for different gas injection rates, the effect of the Gas Lift Valve can be simulated. For this reason, the Gas Lift Valve is active (see Figure 1-87) and is present before the VFP device. 1-122

PIPEPHASE EXAMPLE

1.

Activate the VFP device shown in Figure 1-87.

2.

Click on the VFP device to display the VFP Table Device dialog box (see Figure 1-88).

Note: Users can create a new VFP Table by clicking on the Create New VFP Table button. Enter VFP Table Dimensions and click Edit VFP Table Data to enter the data. Figure 1-88: VFP Table Dialog Box

3.

Click VFP File in VFP Table Device dialog box to select the relevant VFP file.

4.

Click on Edit VFP Table Data…button to display the VFP Table Data dialog box (see Figure 1-89).

Figure 1-89: VFP Table Data Dialog Box

PIPEPHASE Application Briefs

1-123

5.

Click on the individual properties button in the Edit Values grid to view/edit the VFP table data (see Figure 1-84).

Figure 1-90: VFP Table Data - Rates (Q) Dialog Box

Results After satisfying the conditions specified from steps 1-5, click button on the main toolbar. Select Network from the Type drop down list in the Run Simulation and View Results dialog box (Figure 1-91) and click Run.

1-124

PIPEPHASE EXAMPLE

Figure 1-91: Run Simulation and View Results

The validity of the solution generated while employing VFP tables depends entirely on the range of data present in the tables. If the user attempts to solve the model at flow rates that exceed the values stored in the table, the results generated by PIPEPHASE could be erroneous. PIPEPHASE linearly extrapolates the tabular values using the last two data points in the table.

PIPEPHASE Application Briefs

1-125

Example 19 - Generate PVT Data using PIPEPHASE Simulation Objective In the latest version of PIPEPHASE, the user's ability to generate Pressure-Volume-Temperature (PVT) files has been greatly expanded. In this simulation model, EX2_BLACKOIL-WELL has been modified to generate a PVT file when the simulation is launched.

Simulation Model In the solved simulation model, EX2_BLACKOIL-WELL, the user is aware of the Temperature (110-1010C) and Pressure range (40025 Bar) over which PVT data is required. Figure 1-92: PVT-GENERATION

To modify the PVT data, click Generate PVT Table option located in the Blackoil PVT Data dialog box (Figure 1-93).

1-126

PIPEPHASE EXAMPLE

Figure 1-93: Blackoil PVT Data Dialog Box

In this simulation model, EX19_PVT-GENERATION, the user can enter an appropriate range for pressure and temperature (Figure 1-94) over which Blackoil properties will be generated. Note: The temperature and pressure values entered should satisfy the ranges specified in Example 2. Figure 1-94: Generate Blackoil PVT Table

PIPEPHASE Application Briefs

1-127

The user can also select the Blackoil properties to be calculated by PIPEPHASE. By default, the first six properties are ALWAYS selected and calculated. In this example, the user has selected all the 18 properties to be calculated (Figure 1-95). Note: If the user is using an external PVT file, it MUST contain data for the first six properties (FVFO, SGOR, VISO, OILG, GASG, CO). The other twelve properties are optional. Figure 1-95: General Spread Sheet - PVT Table Property Selections

Before running the simulation, the user needs to verify default values in the Max PVT Table Size (Figure 1-96) sufficiently large to be able to generate the requested PVT file. By default, a maximum of 10 PVT files can be calculated in a single simulation. In this simulation model, EX19_PVT-GENERATION, a single PVT file is considered for calculation. Hence, the default value remains unchanged and in addition to the initial six, all twelve optional properties have been selected. Therefore, the default Number of Additional Properties can remain unchanged at 12 (Figure 1-96). However, a total of 40 pressure points (10 to 400 Bar in increments of 10 Bar) and a total of 31 temperature points (90 to 120ºC in increments of 1ºC) have been added. Therefore, the default values of Temperature and Pressure points need to be changed to 31 & 40 respectively (Figure 1-96).

1-128

PIPEPHASE EXAMPLE

Figure 1-96: PVT Table Dimensions

The conditions being satisfied, the user can run the simulation. PIPEPHASE will converge the simulation and also generate the PVT file, which is saved in the same directory as the PPZIP file. By default, PIPEPHASE supplies a name employing a convention that uses the simulation name. However, the user also has the option of naming the PVT file.

PIPEPHASE Application Briefs

1-129

Input Data $General Data Section $ TITLE PROBLEM=EXAMPLE2, USER=SIMSCI, DATE=10/01/97 $ DESCRIPTION BLACKOIL WELL SENSITIVITY ANALYSIS $ DIMENSION Metric, RATE(LV)=CMHR, LENGTH=M,IN, * DENSITY=SPGR $ OUTDIMENSION Metric, ADD $ CALCULATION NETWORK, PVTRUN, Blackoil $ FCODE TUBING=HB $ DEFAULT IDPIPE=102.26, IDTUBING=102.26, IDANNULUS=154.05099 $ PRINT INPUT=FULL, DEVICE=FULL, PLOT=FULL, * PROPERTY=FULL, FLASH=FULL, MAP=TAITEL, * CONNECT=NONE, SUMMARY=BOTH, DATABASE=FULL, * SIMULATOR=PART, SLUG=BRILL $ SEGMENT AUTO=OFF, NHOR=10, NVER=10 $ $Network Data Section $ NETWORK DATA $ SOLUTION PBALANCE, FLOWAL=1 $ TOLERANCE PRESSURE=6.895e-003 $ $PVT Data Section $ PVT PROPERTY DATA $ DIME MAXDIME=TABL,10 / PRES,40 / TEMP,40 / VARI,12 SET SETNO=1, GRAV(OIL,SPGR)=0.876, GRAV(GAS,SPGR)=0.71, * GRAV(WATER,SPGR)=1.05 GENERATE SETNO=1, TYPE=2, PVTFILE=EX19-PVT-GENERATION, * PVEC=10, 20, 30, * 40, 50, 60, * 70, 80, 90, * 100, 110, 120, * 130, 140, 150, * 160, 170, 180, * 190, 200, 210, * 220, 230, 240, * 250, 260, 270, * 280, 290, 300, * 310, 320, 330, * 340, 350, 360, * 370, 380, 390, * 400, TVEC=90, 91, * 92, 93, 94, * 95, 96, 97, * 98, 99, 100, * 101, 102, 103, * 104, 105, 106, * 107, 108, 109, * 110, 111, 112, * 113, 114, 115, * 116, 117, 118, * 119, 120, * PRVEC = FVFW,1 / ZFAC,1 / * SGWR,1 / VISG,1 / VISW,1 / * CW ,1 / STOG,1 / STWG,1 / * STOW,1 / CPG ,1 / CPO ,1 / * CPW ,1

1-130

PIPEPHASE EXAMPLE

$ $Structure Data Section $ STRUCTURE DATA $ SOURCE NAME=RES, IDNAME=RES, PRIORITY=0, * SETNO=1, PRES=400, TEMP=110, * RATE(ESTI)=50, GOR=320, WCUT=5, * XCORD=-53, YCORD=-131 $ SINK NAME=SEPR, IDNAME=SEPR, PRES=25, * RATE(ESTI)=1, XCORD=572, YCORD=-124 $ $ $ LINK NAME=LINK, FROM=RES, TO=SEPR, * IDNAME=LINK, IDFROM=RES, IDTO=SEPR, * PRINT, XCOR=468,312,199, YCOR=-74,-81,-80 IPR NAME=IPR , TYPE=VOGEL, * IVAL=BASIS, 2, * RVAL=QMAX, 100 / VOGCON, 0.2 / VOGEXP, 1 / * UPTIME,1 / OPEN,1 COMPLETION NAME=Z001, JONES, TUNNEL=45, * PERFD=10, SHOTS=25, LENGTH=10 TUBING NAME=TUB1, LENGTH=1830, DEPTH=1710, * ID=3.873, U=4.882 CHOKE NAME=CHK1, FN, ID=1 PIPE NAME=LINE, LENGTH=1250, ECHG=15, * ID=3.5, ROUGH(IN)=0.18, U=4.882 $ $ End of keyword file... $ END $ $Sensitivity Analysis Data Section $ GSENSITIVITY ANALYSIS LINK DATA $ LINK NAME=LINK NODE NAME=CHK1 FLOW RATE=40, 50, 60, * 70 DESCRIPTION INFLOW= 450 BAR, 400 BAR, * 350 BAR DESCRIPTION OUTFLOW= 3 1/2 IN DIA, 4 IN DIA, * 4 1/2 IN DIA, 5 IN DIA INFLOW NAME=RES, * PRES=450, 400, 350 OUTFLOW NAME=LINE, * ID=3.5, 4, 4.5, 5 $ END GUI DATA

PIPEPHASE Application Briefs

1-131

Case Execution and Results To view the generated PVT file, 1.

The user can activate the Use PVT File option in the Fluid Property Data dialog box.

Figure 1-97: Fluid Property Data

2.

Click PVT File in the Fluid Property Data dialog box, browse and select the PVT file.

Note: In PIPEPHASE 9.0, there is no limit to the number of PVT files that can be used in a given simulation model. The user can add an additional Property Set for each PVT files used. Hence, a simulation with thirty wells could have a total of 30 Property Sets, each Property Set referring to a separate PVT file.

The user can also have a combination of Property Sets, some of them using the standard Blackoil correlations available in PIPEPHASE and the others referencing separate PVT files. This allows the user tremendous flexibility in creating a simulation model. Note: If certain properties are missing from a PVT file, PIPEPHASE will automatically employ default correlations to generate the properties.

3. 1-132

click Edit Excel PVT File after selecting the PVT file. PIPEPHASE EXAMPLE

Figure 1-98: Fluid Property Data Dialog Box

The PVT data is displayed in MS-Excel. 4.

The user can edit the PVT data in the Raw Data worksheet. However, to save the modifications, the user must navigate to the Index worksheet (Figure 1-99) and click Update PVT File.

All the other worksheets simply display the data present in the Raw Data worksheet.

PIPEPHASE Application Briefs

1-133

Figure 1-99: PipephasePVTTable.xls

Note: User need to ensure that the data is in the same format as

shown in the Raw Data worksheet, when PVT data are generated by third party applications in PIPEPHASE. To view the generated Eclipse File, 1.

1-134

In the Fluid Property Data dialog box, select Use PVT File to activate the Eclipse File check box.

PIPEPHASE EXAMPLE

Figure 1-100: Fluid Property Data Dialog Box

2.

Select Use PVT File and click PVT File.

3.

Search and select the required PVT file (*.pvt).

PIPEPHASE Application Briefs

1-135

Figure 1-101: .Search Window

4.

Click Edit File. The PVT data is displayed in the Microsoft Excel application.

1-136

PIPEPHASE EXAMPLE

Figure 1-102: PVT Table in MS Excel

5.

You can edit the PVT data in the Raw Data worksheet. However, to save the modifications you must navigate to the Index worksheet and click Update PVT File. All the other worksheets just display the same data available in the Raw Data worksheet.

Note: You need to ensure that the data you have added is consistent with the already available data in the Raw Data worksheet.

PIPEPHASE Application Briefs

1-137

Example 20 - Generating Output Reports in Excel Simulation Objective In this simulation, based on EX13, a small composition network model has been created. For compositional simulation, the user has the option to add a Hydrate Unit to analyze the potential of hydrate formation in the network. Hydrate analysis can only be conducted at a "Node", which in PIPEPHASE is defined as a Source, Sink or Junction.

Simulation Model The Simulation Model for this example is shown in Figure 1-103. Figure 1-103: Compositional Network Hydrates Model

In this simulation, double click Hydrate Unit (H019) to bring up the Hydrate Unit Operation dialog box (see Figure 1-104).

1-138

PIPEPHASE EXAMPLE

Figure 1-104: Hydrate Unit Operation

Click Edit button located in Hydrate Unit Operation dialog box to display the Define Hydrate Calculation dialog box (see Figure 1-105). Users can conduct hydrate analysis at any node in a compositional network. Figure 1-105: Define Hydrate Calculation Operation

Users can also simulate the effects of a hydrate inhibitor such as Methanol. Users are required to enter a temperature or pressure range across which they would like to determine the potential for forming hydrates. After fully specifying the option in the Hydrate unit, the user can launch the simulation. Hydrate analysis will be conducted after the network simulation has been solved and the final temperature, pressure and compositional profiles have been calculated.

PIPEPHASE Application Briefs

1-139

Input Data $General Data Section $ TITLE PROJECT=HYDRATEEVAL, PROBLEM=NETWORK, USER=SIMSCI, * DATE=06/20/02, SITE=BREA $ DESCRIPTION Simple Compositional Network DESCRIPTION Evaluate Temperature and Pressure Profiles DESCRIPTION Generate Phase Envelopes in Excel via RAS DESCRIPTION Superimpose Hydrate Curves with different MEOH concs. $ DIMENSION Metric, DUTY=KJHR $ CALCULATION NETWORK, Compositional, PRANDTL $ FCODE PIPE=TACITE $ DEFAULT NOMD=8, SCHE= 40, IDTUBING=102.26035, * IDANNULUS=154.05092, TAMBIENT=15.9, * AIR, COND=0.02232, VISC=0.02, * DENSITY(SPGR)=1, VELO=16.09344, HAUSEN $ PRINT INPUT=FULL, DEVICE=FULL, PLOT=FULL, * PROPERTY=FULL, FLASH=FULL, MAP=TAITEL, * CONNECT=FULL, SUMMARY=BOTH, DATABASE=FULL, * SIMULATOR=PART $ SEGMENT AUTO=ON, DLHORIZ(M)=609.59967, * DLVERT(M)=152.39992 $ $Component Data Section $ COMPONENT DATA $ LIBID 1, CO2 / * 2, C1 / * 3, C2 / * 4, C3 / * 5, IC4 / * 6, NC4 / * 7, NC5 / * 8, NC6 / * 9, NC7 / * 10, NC10 , BANK=PROCESS, SIMSCI $ PHASE VL=1,10 $ $Network Data Section $ NETWORK DATA $ SOLUTION PBALANCE, FLOWAL=2, STEP=1 $ TOLERANCE PRESSURE=0.07 $ $Thermodynamic Data Section $ THERMODYNAMIC DATA $ METHOD SET=SET01, SYSTEM(VLE)=SRKS, DENSITY(L)=SRKS $ KVALUE BANK=SimSci $ $PVT Data Section $ PVT PROPERTY DATA $ SET SETNO=1, SET=SET01 $

1-140

PIPEPHASE EXAMPLE

$Structure Data Section $ STRUCTURE DATA $ SOURCE NAME=S001, IDNAME=S001, PRIORITY=0, * PRES=129, TEMP=62, RATE(ESTI,W)=96000, * XCORD=-979, YCORD=267, * COMP(M)=1, 0.99 / 2, 20 / 3, 21 / * 4, 52 / 5, 2.11 / 6, 1.4 / * 7, 0.75 / 8, 0.75 / 9, 0.5 / * 10, 0.5 $ SOURCE NAME=S003, IDNAME=S003, PRIORITY=0, * PRES=126, TEMP=59, RATE(ESTI,W)=56000, * XCORD=-976, YCORD=-198, * COMP(M)=1, 1 / 2, 59 / 3, 21 / * 4, 15 / 5, 1.25 / 6, 1 / * 7, 0.5 / 8, 0.5 / 9, 0.25 / * 10, 0.5 $ SINK NAME=D002, IDNAME=D002, PRES=80, * RATE(ESTI)=1.500e+005, XCORD=28, YCORD=31 $ JUNCTION NAME=J004, IDNAME=J004, XCORD=-514, * YCORD=47 $ $ LINK NAME=L005, FROM=S003, TO=J004, * IDNAME=L005, IDFROM=S003, IDTO=J004 PIPE NAME=P012, LENGTH=234, 1235, * 6789, 4567, 1549, * ECHG=9, 124, 98, * 34, 45, AIR PIPE NAME=P011, LENGTH=156, AIR SEPARATOR NAME=S013, * COMPONENT=100 / 0 / 0 / * 0 / 0 / 0 / * 0 / 0 / 0 / * 0 $ $ LINK NAME=L006, FROM=S001, TO=J004, * IDNAME=L006, IDFROM=S001, IDTO=J004 PIPE NAME=P015, LENGTH=2594, 2564, * 3598, 2679, 2578, * ECHG=58, 65, 59, * 78, 93, AIR SEPARATOR NAME=S016, PERCENT(GAS)=15 $ LINK NAME=L008, FROM=J004, TO=D002, * IDNAME=L008, IDFROM=J004, IDTO=D002 PIPE NAME=P018, LENGTH=596, 1579, * 1566, 4851, 849, * ECHG=-59, -54, -89, * -23, -94, AIR $ $UNIT OPERATION Data Section $ UNIT OPERATION DATA $ HYDRATE UID=H019, NAME=EVALUATE MEOH INJECTION RATES EVALUATE STREAM=D002, POINTS=30, IPRES=0.14, * MAXPRES=150, TESTIMATE=-5, INHIB(MEOH)=20, * 30 EVALUATE STREAM=J004, POINTS=30, IPRES=0.14, * MAXPRES=150, TESTIMATE=-5, INHIB(MEOH)=20, * 30 EVALUATE STREAM=S003, POINTS=30, IPRES=0.5, * MAXPRES=150, TESTIMATE=-3, INHIB(MEOH)=20, * 30 $

PIPEPHASE Application Briefs

1-141

$ End of keyword file... $ END

Case Execution In this simulation, there are a total of four Nodes as indicated below 1.

Two sources - S001 & S003 J

2.

Junction - J004

3.

Sink - D002

Therefore, for this network, Hydrate analysis can only be conducted at four points. The user will need to break up the links and add more junctions if it is required to analyze hydrates at other points in the network. For this simulation, the user decides to select S003, J004 & D002. The Hydrates unit in PIPEPHASE also allows the user to simulate the effect of adding Hydrate inhibitors such as Methanol, Salt, EG, DEG & TEG.

Results To view the Hydrate analysis in Microsoft Excel, the following procedure is to be followed. 1.

Select File/Run.. or click to display Run Simulation and the View Results dialog box. Click Run to solve the network.

Note: The generation of Excel output reports does take some time and therefore, users should ensure that their simulation has been solved and converged before generating complex output reports.

2.

1-142

Select Print Options under General menu to bring up the Print Options dialog box (see Figure 1-106). Ensure that the Ability to Generate Excel Database option is set to Full. The content of the Excel report is controlled from this dialog box. For example, if you want to have Flow Pattern Maps generated for each of the links in the simulation, ensure that the option is highlighted in this dialog box.

PIPEPHASE EXAMPLE

Figure 1-106: Print Options Dialog Box

3.

Select File/Run.. or click and View Results dialog box.

4.

Click Excel present in the top right-hand corner of this dialog box. This displays the Excel Reports dialog box.

5.

The user can select the reports that are to be displayed in Excel. By default, everything is selected. The user should judiciously select the reports to be displayed as large simulation models contain numerous nodes and links. The Links Reports in particular can take several minutes to generate.

6.

In the Excel Reports dialog box, the user also needs to select Run Options located at the top right- hand corner of the dialog box (see Figure 1-107).



Run Simulation - Simply runs and solves the simulation.



Create Database - Creates a Microsoft Access database with all the data to be displayed in the Excel Reports. The user must select this option to generate an Excel Report.



Create Excel Report - Creates a detailed Excel Report.

PIPEPHASE Application Briefs

to bring up the Run Simulation

1-143

Figure 1-107: Run Simulation and View Results - Excel Reports

1-144

7.

After selecting the options in the Excel Reports dialog box, the user has to click Run Current Network. In the above case (see Figure 1-107), it skips running and converging the network model (it assumes that the user has previously converged the simulation), creates the Access database, and subsequently creates the Excel Report.

8.

The Excel Report makes extensive use of hyperlinks allowing the user to easily navigate and find the required information (see Figure 1-108).

PIPEPHASE EXAMPLE

Figure 1-108: Excel Report

9.

To review the Hydrate Analysis at Nodes S003, J004 & D002, click L008 to review a detailed report of the link terminating at the network sink, D002 (see Figure 1-109).

PIPEPHASE Application Briefs

1-145

Figure 1-109: Phase Envelope Excel Chart for L008

10. The Phase Envelope generated by PIPEPHASE is for fluid composition present in the final link. The green line represents the traverse of the link - the pressure and temperature profile described by the fluid as it passes through the pipeline. Clearly, the fluid starts as a single phase gas and ends up in the twophase region of the phase envelope at the terminus. 11. Three Hydrate curves are shown. The one to the right simulates the hydrate curve without the presence of any methanol. The middle curve simulates the hydrate curve with 20 wt% Methanol. The curve to the left shows the hydrate curve with 30 wt% methanol (see graph legends for details). The above curve depicts the formation of hydrates at the network sink, which is thermodynamically possible in the absence of an inhibitor. Using PIPEPHASE, engineers can evaluate flow assurance strategies to minimize the risk of forming hydrates in wells and production networks.

1-146

PIPEPHASE EXAMPLE

Example 21A - Manifold Junction Unit Simulation Objective Production manifolds are a common feature encountered in oil, gas, and condensate fields. Manifolds are used to gather or receive flow from multiple source points (such as wells) and to direct them to any one of several possible destinations. The basic objective of this simulation is to illustrate the use of Manifold Junction unit in PIPEPHASE.

Simulation Model The network sources are well sources with known reservoir pressure and IPR.The wells are controlled by well-head chokes, with set target well head flowing pressure (PWH). This is modeled by having the choke with specified upstream pressure. The destination sink pressures are also set. The network solution will calculate the well flow rate and the choke sizes. The Simulation Model for this example is shown in Figure 1-110. Figure 1-110: Simulation Model

Network with Junction unit

Network with New Manifold Junction Unit

PIPEPHASE Application Briefs

1-147

In this example, two identical networks were configured in one problem. The upper network was designed in a traditional way with a set of nodes and links to represent the manifold flow. The bottom network was designed using the new Manifold junction unit. The figure indicates setting up the network in a traditional way can cause significant clutter and cumbersome to change and manage the junction connectivity. Usage of Manifold unit (lower network) will now help the users to remove the clutter and effectively manage the manifold connections through Manifold junction dialog box. Build the flowsheet as shown above. For the network with manifold junction, draw a link from each of the upstream nodes (source) and connect it to the manifold junction (just like connecting to a junction). Similarly, connect the manifold unit to each of its downstream nodes (sink). The manifold connectivity is specified in the Manifold unit dialog box. Double-click the manifold unit to view the below mentioned dialog box. Figure 1-111: Manifold dialog box

Specify the valve diameter and K-multiplier. This valve will be placed in each of the manifold links in the keyword input file.

1-148

PIPEPHASE EXAMPLE

Note: Check Print Detailed Reports for Manifold Links, if you

want the manifold link calculations to be printed in the output file. Click Manifold Connections to view Manifold Connection dialog box. Figure 1-112: Manifold Connections

Each incoming and outflowing stream is connected to a manifold inlet and outlet slot respectively as shown in the above figure. By default, the slot IDs are automatically generated. Users can change the Slot ID names using a maximum of 3 alpha-numeric characters. Allowable input options and their significance are explained in the dialog box. Note: The grid value '0' is useful, when using Network Utilities in a

real-time environment. This permanently deactivates the connections that are currently unavailable for on/off status manipulation. A typical scenario would be a set of new wells that are being included in the model but are not drilled/operational in the field at present. These wells can be activated sometime in the future by changing the grid value from 0 to 1 or 2 respectively. If you have two active connections for an incoming stream, the following warning message will pop up. This is because, during normal manifold operations, you do not have more than one active connection for a given incoming connection. Users can still proceed by clicking OK with the entered connection settings.

PIPEPHASE Application Briefs

1-149

Figure 1-113: Warning

Note: The manifold name and the Slot-id names are concatenated or combined to generate the corresponding junction and link names in the keyword input file.

Example: A junction name is generated as follows: "M005" + "I1" = M005-I1. The link name is generated by concatenating the manifold-name + in-Slot-ID + out-Slot-ID. For example M005-I1-O2 Click Optional Pressure Estimate to view Manifold Junction Pressure Estimates dialog box. Figure 1-114: Manifold Junction Pressure Estimates

The data entry on this dialog box is optional. If no data is entered, PIPEPHASE will use the pressure initial estimate generator to estimate the manifold junction pressures. Otherwise, pressure estimates entered will be used to calculate the junction pressures. Click Optional Valve Names to view Manifold Valve Names dialog box.

1-150

PIPEPHASE EXAMPLE

Figure 1-115: Manifold Valve Names

If no data is entered, PIPEPHASE will generate a unique name at run time. However, the unique valve name may change from run to run if any network-link contents or status are changed. Note: For real time or on-line PIPEPHASE applications, the network utilities may use an external status file(s) based on valve status. Then it is essential to have a unique and static/constant valve name for the network utilities to work properly. So it is advised that the valve name should be specified for real-time application users. Refer example 21 B for detailed explanation on Network Change Utilites.

If the manifold links has a low pressure drop, it is possible in principle to eliminate these internal low-pressure drop manifold links at calculation time without changing the final network solution. This is possible only if the incoming stream is directed to only one outflowing stream in the manifold. Select General/Calculation Methods..to view Network Calcuation Methods dialog box.

PIPEPHASE Application Briefs

1-151

Figure 1-116: Network Calculation Methods

For example, in the manifold-junction-network, Link ML01 and manifold Link M005-I1-O2 is used to connect source MS01 to Junction M005-O2. At calculation time, link M005-I1-O2 is removed and link ML01 is made to connect MS01 to M005-O2 thus eliminating link M005-I1O2 and the junction M005-I1. Eliminating these low-pressure-drop links will not change the final solution. Using this option may improve the stability of the network convergence and eliminate unnecessary link calculations. This option can be invoked by clearing the Detailed Manifolds check box in the Network Calculation Methods dialog box.

1-152

PIPEPHASE EXAMPLE

Input Data $General Data Section $ TITLE PROJECT=APPBRIEFS, PROBLEM=EXAMPLE-21A, * DATE=02/14/06 $ DESCRIPTION Network with manifold $ DIMENSION Metric, TEMPERATURE=F, RATE(W)=TDM, * RATE(GV)=CMD $ OUTDIMENSION Petroleum, DENSITY=SPGR, ADD $ CALCULATION NETWORK, Compositional, PRANDTL, * DETMANIFOLD $ FCODE TUBING=HB $ DEFAULT IDPIPE=102.26035, IDTUBING=102.26035, IDANNULUS=154.05092, * HAUSEN $ PRINT INPUT=NONE, DEVICE=FULL, PLOT=FULL, * PROPERTY=FULL, FLASH=FULL, MAP=TAITEL, * CONNECT=FULL, MERGESUB, ITER, * SUMMARY=BOTH, DATABASE=FULL, SIMULATOR=PART $ SEGMENT AUTO=OFF, DLHORIZ(M)=609.59967, * DLVERT(M)=152.39992 $ $Component Data Section $ COMPONENT DATA $ LIBID 1, N2 / * 2, CO2 / * 3, C1 / * 4, C2 / * 5, C3 / * 6, IC4 / * 7, NC4 / * 8, IC5 / * 9, NC5 , BANK=PROCESS, SIMSCI PETRO(KGM3) 10, C6PLUS, , 800.250, 198.890 $ PHASE VL=1,10 $ $Network Data Section $ NETWORK DATA $ SOLUTION PBALANCE, FLOWAL=2, STEP=1, * QDAMP=500, PDAMP=100 $ TOLERANCE PRESSURE=6.895e-003 $ $Thermodynamic Data Section $ THERMODYNAMIC DATA $ METHOD SET=SET01, SYSTEM=SRK $ WATER PROPERTY=Super $ KVALUE BANK=SimSci $ $PVT Data Section $ PVT PROPERTY DATA $

PIPEPHASE Application Briefs

1-153

SET SETNO=1, SET=SET01 $ $Structure Data Section $ STRUCTURE DATA $ SOURCE NAME=MS01, IDNAME=MS01, PRIORITY=0, SETNO=1, SET=SET01, PRES=119.1, * TEMP=150, RATE(ESTI,W)=200, NOCHECK, * XCORD=5, YCORD=5150, * COMP(M)=1, 2 / 2, 3 / 3, 68 / * 4, 13.3 / 5, 8 / 6, 2 / * 7, 5 / 8, 0.9 / 9, 1.8 / * 10, 10 $ SOURCE NAME=MS02, IDNAME=MS02, PRIORITY=0, SETNO=1, SET=SET01, PRES=119.3, * TEMP=150, RATE(ESTI,W)=200, NOCHECK, * XCORD=20, YCORD=5760, * COMP(M)=1, 2 / 2, 3 / 3, 68 / * 4, 13.3 / 5, 8 / 6, 2 / * 7, 5 / 8, 0.9 / 9, 1.8 / * 10, 10 $ SOURCE NAME=MS03, IDNAME=MS03, PRIORITY=0, SETNO=1, SET=SET01, PRES=108.7, * TEMP=150, RATE(ESTI,W)=120, NOCHECK, * XCORD=0, YCORD=6425, * COMP(M)=1, 2 / 2, 3 / 3, 68 / * 4, 13.3 / 5, 8 / 6, 2 / * 7, 5 / 8, 0.9 / 9, 1.8 / * 10, 10 $ SOURCE NAME=MS04, IDNAME=MS04, PRIORITY=0, SETNO=1, SET=SET01, PRES=98.52, * TEMP=150, RATE(ESTI,W)=173, NOCHECK, * XCORD=265, YCORD=7065, * COMP(M)=1, 2 / 2, 3 / 3, 68 / * 4, 13.3 / 5, 8 / 6, 2 / * 7, 5 / 8, 0.9 / 9, 1.8 / * 10, 10 $ SOURCE NAME=S211, IDNAME=S211, PRIORITY=0, SETNO=1, SET=SET01, PRES=119.1, * TEMP=150, RATE(ESTI,W)=200, NOCHECK, * XCORD=640, YCORD=3020, * COMP(M)=1, 2 / 2, 3 / 3, 68 / * 4, 13.3 / 5, 8 / 6, 2 / * 7, 5 / 8, 0.9 / 9, 1.8 / * 10, 10 $ SOURCE NAME=S212, IDNAME=S212, PRIORITY=0, SETNO=1, SET=SET01, PRES=119.3, * TEMP=150, RATE(ESTI,W)=200, NOCHECK, * XCORD=230, YCORD=3600, * COMP(M)=1, 2 / 2, 3 / 3, 68 / * 4, 13.3 / 5, 8 / 6, 2 / * 7, 5 / 8, 0.9 / 9, 1.8 / * 10, 10 $ SOURCE NAME=S213, IDNAME=S213, PRIORITY=0, SETNO=1, SET=SET01, PRES=108.7, * TEMP=150, RATE(ESTI,W)=120, NOCHECK, * XCORD=190, YCORD=4195, * COMP(M)=1, 2 / 2, 3 / 3, 68 / * 4, 13.3 / 5, 8 / 6, 2 / * 7, 5 / 8, 0.9 / 9, 1.8 / * 10, 10 $ SOURCE NAME=S214, IDNAME=S214, PRIORITY=0, SETNO=1, SET=SET01, PRES=98.52, * TEMP=150, RATE(ESTI,W)=173, NOCHECK, *

1-154

*

*

*

*

*

*

*

*

PIPEPHASE EXAMPLE

XCORD=325, YCORD=4715, * COMP(M)=1, 2 / 2, 3 / 3, 68 / * 4, 13.3 / 5, 8 / 6, 2 / * 7, 5 / 8, 0.9 / 9, 1.8 / * 10, 10 $ $~SINK NAME=U1T1, IDNAME=U1T1, PRES=15.148, * $~ RATE(ESTI)=1125.69995, XCORD=3630, YCORD=3650 SINK NAME=U1T2, IDNAME=U1T2, PRES=15.1475, * RATE(ESTI)=1125.69995, XCORD=3665, YCORD=4105 SINK NAME=U1T3, IDNAME=U1T3, PRES=15.1475, * RATE(ESTI)=1125.69995, XCORD=3710, YCORD=4595 $~SINK NAME=U2T1, IDNAME=U2T1, PRES=15.15, * $~ RATE(ESTI)=1, XCORD=3785, YCORD=5060 SINK NAME=U2T2, IDNAME=U2T2, PRES=15.15, * RATE(ESTI)=1000, XCORD=3780, YCORD=5655 SINK NAME=U2T3, IDNAME=U2T3, PRES=15.148, * RATE(ESTI)=1125.69995, XCORD=3825, YCORD=6230 $ JUNCTION NAME=J211, IDNAME=J211, XCORD=1610, * YCORD=3623 JUNCTION NAME=J212, IDNAME=J212, XCORD=1605, * YCORD=3943 JUNCTION NAME=J213, IDNAME=J213, XCORD=1586, * YCORD=4331 JUNCTION NAME=J214, IDNAME=J214, XCORD=1583, * YCORD=4623 $~JUNCTION NAME=TS21, IDNAME=TS21, XCORD=2007, * $~ YCORD=3750 JUNCTION NAME=U201, IDNAME=U201, XCORD=2002, * YCORD=4176 JUNCTION NAME=U202, IDNAME=U202, XCORD=2001, * YCORD=4631 $ JUNCTION MANIFOLD=M005, NAME=M005-I1, IDNAME=IJ00, * XCORD=1785, YCORD=5630 JUNCTION MANIFOLD=M005, NAME=M005-I2, IDNAME=IJ01, * XCORD=1785, YCORD=5630 JUNCTION MANIFOLD=M005, NAME=M005-I3, IDNAME=IJ02, * XCORD=1785, YCORD=5630 JUNCTION MANIFOLD=M005, NAME=M005-I4, IDNAME=IJ03, * XCORD=1785, YCORD=5630 $~JUNCTION MANIFOLD=M005, NAME=M005-O1, IDNAME=OJ00, $~ XCORD=1785, YCORD=5630 JUNCTION MANIFOLD=M005, NAME=M005-O2, IDNAME=OJ01, * XCORD=1785, YCORD=5630 JUNCTION MANIFOLD=M005, NAME=M005-O3, IDNAME=OJ02, * XCORD=1785, YCORD=5630 $ $~LINK MANIFOLD=M005, NAME=M005-I1-O1, FROM=M005-I1, $~ TO=M005-O1, IDNAME=ML00, IDFROM=IJ00, * $~ IDTO=OJ00, PRINT $~VALVE MANIFOLD=M005, IDIN=152, IDOUT=152, * $~ KMUL=8 $ LINK MANIFOLD=M005, NAME=M005-I1-O2, FROM=M005-I1, * TO=M005-O2, IDNAME=ML05, IDFROM=IJ00, * IDTO=OJ01, PRINT VALVE MANIFOLD=M005, IDIN=152, IDOUT=152, * KMUL=8 $ $~LINK MANIFOLD=M005, NAME=M005-I1-O3, FROM=M005-I1, $~ TO=M005-O3, IDNAME=ML06, IDFROM=IJ00, * $~ IDTO=OJ02, PRINT $~VALVE MANIFOLD=M005, IDIN=152, IDOUT=152, * $~ KMUL=8 $ $~LINK MANIFOLD=M005, NAME=M005-I2-O1, FROM=M005-I2, $~ TO=M005-O1, IDNAME=ML07, IDFROM=IJ01, * $~ IDTO=OJ00, PRINT $~VALVE MANIFOLD=M005, IDIN=152, IDOUT=152, * $~ KMUL=8

PIPEPHASE Application Briefs

*

*

*

*

1-155

$ LINK MANIFOLD=M005, NAME=M005-I2-O2, FROM=M005-I2, * TO=M005-O2, IDNAME=ML08, IDFROM=IJ01, * IDTO=OJ01, PRINT VALVE MANIFOLD=M005, IDIN=152, IDOUT=152, * KMUL=8 $ $~LINK MANIFOLD=M005, NAME=M005-I2-O3, FROM=M005-I2, $~ TO=M005-O3, IDNAME=ML09, IDFROM=IJ01, * $~ IDTO=OJ02, PRINT $~VALVE MANIFOLD=M005, IDIN=152, IDOUT=152, * $~ KMUL=8 $ $~LINK MANIFOLD=M005, NAME=M005-I3-O1, FROM=M005-I3, $~ TO=M005-O1, IDNAME=ML10, IDFROM=IJ02, * $~ IDTO=OJ00, PRINT $~VALVE MANIFOLD=M005, IDIN=152, IDOUT=152, * $~ KMUL=8 $ $~LINK MANIFOLD=M005, NAME=M005-I3-O2, FROM=M005-I3, $~ TO=M005-O2, IDNAME=ML11, IDFROM=IJ02, * $~ IDTO=OJ01, PRINT $~VALVE MANIFOLD=M005, IDIN=152, IDOUT=152, * $~ KMUL=8 $ LINK MANIFOLD=M005, NAME=M005-I3-O3, FROM=M005-I3, * TO=M005-O3, IDNAME=ML12, IDFROM=IJ02, * IDTO=OJ02, PRINT VALVE MANIFOLD=M005, IDIN=152, IDOUT=152, * KMUL=8 $ $~LINK MANIFOLD=M005, NAME=M005-I4-O1, FROM=M005-I4, $~ TO=M005-O1, IDNAME=ML13, IDFROM=IJ03, * $~ IDTO=OJ00, PRINT $~VALVE MANIFOLD=M005, IDIN=152, IDOUT=152, * $~ KMUL=8 $ $~LINK MANIFOLD=M005, NAME=M005-I4-O2, FROM=M005-I4, $~ TO=M005-O2, IDNAME=ML14, IDFROM=IJ03, * $~ IDTO=OJ01, PRINT $~VALVE MANIFOLD=M005, IDIN=152, IDOUT=152, * $~ KMUL=8 $ LINK MANIFOLD=M005, NAME=M005-I4-O3, FROM=M005-I4, * TO=M005-O3, IDNAME=ML15, IDFROM=IJ03, * IDTO=OJ02, PRINT VALVE MANIFOLD=M005, IDIN=152, IDOUT=152, * KMUL=8 $ LINK NAME=L211, FROM=S211, TO=J211, * IDNAME=L211, IDFROM=S211, IDTO=J211 IPR NAME=I204, TYPE=GASFLOW, * IVAL=BASIS, 1, * RVAL=COEF, 5.000e-004 / EXP, 0.75 / UPTIME,1 TUBING NAME=T002, LENGTH=1000, ID=105.53, * U=4.8824 MCHOKE NAME=C206, PUPS=70.5 PIPE NAME=P207, LENGTH=400, NOMD=6, * SCHED= 40, U=4.8824 $ LINK NAME=L212, FROM=S212, TO=J212, * IDNAME=L212, IDFROM=S212, IDTO=J212 IPR NAME=I209, TYPE=GASFLOW, * IVAL=BASIS, 1, * RVAL=COEF, 4.000e-004 / EXP, 0.75 / UPTIME,1 TUBING NAME=T003, LENGTH=1000, ID=105.53, * U=4.8824 MCHOKE NAME=C211, PUPS=60.7 PIPE NAME=P212, LENGTH=400, NOMD=6, * SCHED= 40, U=4.8824 $ LINK NAME=L213, FROM=S213, TO=J213, *

1-156

*

*

*

*

*

PIPEPHASE EXAMPLE

IDNAME=L213, IDFROM=S213, IDTO=J213 IPR NAME=I214, TYPE=GASFLOW, * IVAL=BASIS, 1, * RVAL=COEF, 6.500e-004 / EXP, 0.75 / UPTIME,1 TUBING NAME=T004, LENGTH=1000, ID=105.53, * U=4.8824 MCHOKE NAME=C216, PUPS=70.5 PIPE NAME=P217, LENGTH=400, NOMD=6, * SCHED= 40, U=4.8824 $ LINK NAME=L214, FROM=S214, TO=J214, * IDNAME=L214, IDFROM=S214, IDTO=J214 IPR NAME=I219, TYPE=GASFLOW, * IVAL=BASIS, 1, * RVAL=COEF, 8.500e-004 / EXP, 0.75 / UPTIME,1 TUBING NAME=T005, LENGTH=1000, ID=105.53, * U=4.8824 MCHOKE NAME=C221, PUPS=60 PIPE NAME=P222, LENGTH=400, NOMD=6, * SCHED= 40, U=4.8824 $ $~LINK NAME=L229, FROM=J211, TO=TS21, * $~ IDNAME=L229, IDFROM=J211, IDTO=TS21 $~VALVE NAME=V231, NOMI=6, NOMO=6, * $~ SCHED= 40, ANGLE=180, KMUL=8 $ $~LINK NAME=L233, FROM=J212, TO=TS21, * $~ IDNAME=L233, IDFROM=J212, IDTO=TS21 $~VALVE NAME=V235, NOMI=6, NOMO=6, * $~ SCHED= 40, ANGLE=180, KMUL=8 $ $~LINK NAME=L237, FROM=J213, TO=TS21, * $~ IDNAME=L237, IDFROM=J213, IDTO=TS21 $~VALVE NAME=V239, NOMI=6, NOMO=6, * $~ SCHED= 40, ANGLE=180, KMUL=8 $ $~LINK NAME=L241, FROM=J214, TO=TS21, * $~ IDNAME=L241, IDFROM=J214, IDTO=TS21 $~VALVE NAME=V243, NOMI=6, NOMO=6, * $~ SCHED= 40, ANGLE=180, KMUL=8 $ LINK NAME=L245, FROM=J211, TO=U201, * IDNAME=L245, IDFROM=J211, IDTO=U201 VALVE NAME=V247, NOMI=6, NOMO=6, * SCHED= 40, ANGLE=180, KMUL=8 $ LINK NAME=L249, FROM=J212, TO=U201, * IDNAME=L249, IDFROM=J212, IDTO=U201 VALVE NAME=V251, NOMI=6, NOMO=6, * SCHED= 40, ANGLE=180, KMUL=8 $ $~LINK NAME=L253, FROM=J213, TO=U201, * $~ IDNAME=L253, IDFROM=J213, IDTO=U201 $~VALVE NAME=V255, NOMI=6, NOMO=6, * $~ SCHED= 40, ANGLE=180, KMUL=8 $ $~LINK NAME=L257, FROM=J214, TO=U201, * $~ IDNAME=L257, IDFROM=J214, IDTO=U201 $~VALVE NAME=V259, NOMI=6, NOMO=6, * $~ SCHED= 40, ANGLE=180, KMUL=8 $ $~LINK NAME=L261, FROM=J211, TO=U202, * $~ IDNAME=L261, IDFROM=J211, IDTO=U202 $~VALVE NAME=V263, NOMI=6, NOMO=6, * $~ SCHED= 40, ANGLE=180, KMUL=8 $ $~LINK NAME=L265, FROM=J212, TO=U202, * $~ IDNAME=L265, IDFROM=J212, IDTO=U202 $~VALVE NAME=V267, NOMI=6, NOMO=6, * $~ SCHED= 40, ANGLE=180, KMUL=8 $ LINK NAME=L269, FROM=J213, TO=U202, *

PIPEPHASE Application Briefs

1-157

IDNAME=L269, IDFROM=J213, IDTO=U202 VALVE NAME=V271, NOMI=6, NOMO=6, * SCHED= 40, ANGLE=180, KMUL=8 $ LINK NAME=L273, FROM=J214, TO=U202, * IDNAME=L273, IDFROM=J214, IDTO=U202 VALVE NAME=V275, NOMI=6, NOMO=6, * SCHED= 40, ANGLE=180, KMUL=8 $ $~LINK NAME=L277, FROM=TS21, TO=U1T1, * $~ IDNAME=L277, IDFROM=TS21, IDTO=U1T1 $~PIPE NAME=P278, LENGTH=2600, NOMD=12, * $~ SCHED= 40, U=4.8824 $ LINK NAME=L279, FROM=U201, TO=U1T2, * IDNAME=L279, IDFROM=U201, IDTO=U1T2 PIPE NAME=P280, LENGTH=2600, NOMD=12, * SCHED= 40, U=4.8824 VALVE NAME=V001, NOMI=12, NOMO=12, * SCHED= 40, ANGLE=180, KMUL=8 $ LINK NAME=L281, FROM=U202, TO=U1T3, * IDNAME=L281, IDFROM=U202, IDTO=U1T3 PIPE NAME=P282, LENGTH=2600, NOMD=10, * SCHED= 40, U=4.8824 VALVE NAME=V002, NOMI=12, NOMO=12, * SCHED= 40, ANGLE=180, KMUL=8 $ $~LINK NAME=MD01, FROM=M005-O1, TO=U2T1, * $~ IDNAME=MD01, IDFROM=OJ00, IDTO=U2T1 $~PIPE NAME=P030, LENGTH=2600, NOMD=12, * $~ SCHED= 40, U=4.8824 $~VALVE NAME=V003, NOMI=12, NOMO=12, * $~ SCHED= 40, ANGLE=180, KMUL=8 $ LINK NAME=MD02, FROM=M005-O2, TO=U2T2, * IDNAME=MD02, IDFROM=OJ01, IDTO=U2T2 PIPE NAME=P032, LENGTH=2600, NOMD=12, * SCHED= 40, U=4.8824 VALVE NAME=V004, NOMI=12, NOMO=12, * SCHED= 40, ANGLE=180, KMUL=8 $ LINK NAME=MD03, FROM=M005-O3, TO=U2T3, * IDNAME=MD03, IDFROM=OJ02, IDTO=U2T3 PIPE NAME=P035, LENGTH=2600, NOMD=12, * SCHED= 40, U=4.8824 VALVE NAME=V006, NOMI=12, NOMO=12, * SCHED= 40, ANGLE=180, KMUL=8 $ LINK NAME=ML01, FROM=MS01, TO=M005-I1, * IDNAME=ML01, IDFROM=MS01, IDTO=IJ00 IPR NAME=I008, TYPE=GASFLOW, * IVAL=BASIS, 1, * RVAL=COEF, 5.000e-004 / EXP, 0.75 / UPTIME,1 TUBING NAME=T009, LENGTH=1000, ID=105.53, * U=4.8824 MCHOKE NAME=C010, PUPS=70.5 PIPE NAME=P009, LENGTH=400, NOMD=6, * SCHED= 40, U=4.8824 $ LINK NAME=ML02, FROM=MS02, TO=M005-I2, * IDNAME=ML02, IDFROM=MS02, IDTO=IJ01 IPR NAME=I013, TYPE=GASFLOW, * IVAL=BASIS, 1, * RVAL=COEF, 4.000e-004 / EXP, 0.75 / UPTIME,1 TUBING NAME=T014, LENGTH=1000, ID=105.53, * U=4.8824 MCHOKE NAME=C015, PUPS=60.7 PIPE NAME=P014, LENGTH=400, NOMD=6, * SCHED= 40, U=4.8824 $ LINK NAME=ML03, FROM=MS03, TO=M005-I3, *

1-158

PIPEPHASE EXAMPLE

IDNAME=ML03, IDFROM=MS03, IDTO=IJ02 IPR NAME=I018, TYPE=GASFLOW, * IVAL=BASIS, 1, * RVAL=COEF, 6.500e-004 / EXP, 0.75 / UPTIME,1 TUBING NAME=T021, LENGTH=1000, ID=105.53, * U=4.8824 MCHOKE NAME=C020, PUPS=70.5 PIPE NAME=P019, LENGTH=400, NOMD=6, * SCHED= 40, U=4.8824 $ LINK NAME=ML04, FROM=MS04, TO=M005-I4, * IDNAME=ML04, IDFROM=MS04, IDTO=IJ03 IPR NAME=I023, TYPE=GASFLOW, * IVAL=BASIS, 1, * RVAL=COEF, 8.500e-004 / EXP, 0.75 / UPTIME,1 TUBING NAME=T024, LENGTH=1000, ID=105.53, * U=4.8824 MCHOKE NAME=C025, PUPS=60 PIPE NAME=P024, LENGTH=400, NOMD=6, * SCHED= 40, U=4.8824 $ $ End of keyword file... $ END $ $ Begin Manifold Unit Mapping Information $ GMANIFOLD Name=[M005] In=[4], Out=[3] Input: name=[ML01] slotname=[I1] nameID=[IJ00] Input: name=[ML02] slotname=[I2] nameID=[IJ01] Input: name=[ML03] slotname=[I3] nameID=[IJ02] Input: name=[ML04] slotname=[I4] nameID=[IJ03] Output: name=[MD01] slotname=[O1] nameID=[OJ00] Output: name=[MD02] slotname=[O2] nameID=[OJ01] Output: name=[MD03] slotname=[O3] nameID=[OJ02] Row: in=[ML01] out=[MD01] map=[1] pest=[] nameIDValve=[] Row: in=[ML01] out=[MD02] map=[2] pest=[] nameIDValve=[] Row: in=[ML01] out=[MD03] map=[1] pest=[] nameIDValve=[] Row: in=[ML02] out=[MD01] map=[1] pest=[] nameIDValve=[] Row: in=[ML02] out=[MD02] map=[2] pest=[] nameIDValve=[] Row: in=[ML02] out=[MD03] map=[1] pest=[] nameIDValve=[] Row: in=[ML03] out=[MD01] map=[1] pest=[] nameIDValve=[] Row: in=[ML03] out=[MD02] map=[1] pest=[] nameIDValve=[] Row: in=[ML03] out=[MD03] map=[2] pest=[] nameIDValve=[] Row: in=[ML04] out=[MD01] map=[1] pest=[] nameIDValve=[] Row: in=[ML04] out=[MD02] map=[1] pest=[] nameIDValve=[] Row: in=[ML04] out=[MD03] map=[2] pest=[] nameIDValve=[] $ $ End Manifold Unit Mapping Information $

nameIDLink=[ML00] nameIDLink=[ML05] nameIDLink=[ML06] nameIDLink=[ML07] nameIDLink=[ML08] nameIDLink=[ML09] nameIDLink=[ML10] nameIDLink=[ML11] nameIDLink=[ML12] nameIDLink=[ML13] nameIDLink=[ML14] nameIDLink=[ML15]

Case Execution If there are N incoming streams and M out-flowing streams in a manifold, then there is M x N manifold links required to represent the flow in the manifold. Each incoming stream will have M connecting links, one to each outlet stream. During normal operation, an incoming stream is directed to only one outlet stream. All other (M-1) connecting links from an incoming stream are turned off at any given time. (See grayed out

PIPEPHASE Application Briefs

1-159

links in network figure for a traditional manifold). In very unusual situations, the operator may direct flow from one incoming stream to multiple destinations. Using this Manifold connectivity, users can regularly change and redirect the flows easily.

Results & Discussion Select File/Run or click to view Run Simulation and View Results dialog box. Click Run to solve the network. Select Output File under Report and click View to generate a .out file to view the report. Below is a sample device summary of the results.The calculated choke sizes are underlined. BASE CASE DEVICE SUMMARY C O R R

------- OUTLET -----INSIDE MEAS ELEV INSITU DIAM LENGTH CHNG PRESS: TEMP: QUALITY (MM) (M) (M) (BAR) (F) (FRAC) ---- ---- ---- ---- -------- --------- ------- ------- ------ ------L211 ***SOURCE*** RATE= 493.42 (TDM) 119.10 150.0 QUAL= S211 119.10 150.0 I204 IPR 0.00 0.00 0.00 88.34 150.0 0.00 T002 TBNG HB 105.53 1000.00 1000.00 70.50 133.2 0.57 0.00 0.00 17.16 88.4 0.00 C206 MCHO FN 22.54 P207 PIPE BM 154.10 400.00 0.00 16.00 86.1 0.64 J211**JUNCTION** PRES= 16.00 (BAR) TEMP= 86.1 (F) LINK DEVI DEVI NAME NAME TYPE

L212

L245

L249

L279

L213

1-160

AVG. LIQ HOLDUP -----0.55 0.00 0.17 0.00 0.07

***SOURCE*** RATE= 477.36 (TDM) 119.30 150.0 QUAL= S212 119.30 150.0 I209 IPR 0.00 0.00 0.00 77.53 150.0 0.00 T003 TBNG HB 105.53 1000.00 1000.00 60.70 132.7 0.59 0.00 0.00 17.11 93.3 0.00 C211 MCHO FN 24.21 P212 PIPE BM 154.10 400.00 0.00 16.00 90.8 0.65 J212**JUNCTION** PRES= 16.00 (BAR) TEMP= 90.8 (F)

0.55

**JUNCTION** RATE= 493.42 (TDM) 16.00 86.1 QUAL= J211 16.00 86.1 V247 VALV CH 154.10 0.00 0.00 16.00 86.1 0.00 U201**JUNCTION** PRES= 16.00 (BAR) TEMP= 88.4 (F)

0.64

**JUNCTION** RATE= 477.36 (TDM) 16.00 90.8 QUAL= J212 16.00 90.8 V251 VALV CH 154.10 0.00 0.00 16.00 90.8 0.00 U201**JUNCTION** PRES= 16.00 (BAR) TEMP= 88.4 (F)

0.65

**JUNCTION** RATE= 970.78 (TDM) 16.00 88.4 QUAL= U201 16.00 88.4 P280 PIPE BM 303.30 2600.00 0.00 15.15 84.4 0.65 V001 VALV CH 303.30 0.00 0.00 15.15 84.4 0.00 U1T2 *** SINK *** PRES= 15.15 (BAR) TEMP= 84.4 (F)

0.65

***SOURCE*** RATE= 458.24 (TDM) S213 I214 IPR 0.00 0.00 0.00 T004 TBNG HB 105.53 1000.00 1000.00

0.56

108.70 108.70 87.98 70.50

150.0 QUAL= 150.0 150.0 0.00 133.2 0.57

0.00 0.16 0.00 0.06

0.00

0.00

0.09 0.00

0.00 0.17

PIPEPHASE EXAMPLE

C216 MCHO FN 21.77 P217 PIPE BM 154.10 J213**JUNCTION** PRES=

L214

0.00 0.00 18.25 90.0 400.00 0.00 17.36 88.1 17.36 (BAR) TEMP= 88.1 (F)

0.00 0.64

***SOURCE*** RATE= 554.93 (TDM) 98.52 150.0 QUAL= S214 98.52 150.0 I219 IPR 0.00 0.00 0.00 77.64 150.0 0.00 T005 TBNG HB 105.53 1000.00 1000.00 60.00 132.6 0.59 0.00 0.00 18.73 96.1 0.00 C221 MCHO FN 26.45 P222 PIPE BM 154.10 400.00 0.00 17.36 93.3 0.65 J214**JUNCTION** PRES= 17.36 (BAR) TEMP= 93.3 (F)

0.00 0.08

0.57 0.00 0.16 0.00 0.07

DEVICE SUMMARY C O R R

------- OUTLET -----INSIDE MEAS ELEV INSITU DIAM LENGTH CHNG PRESS: TEMP: QUALITY (MM) (M) (M) (BAR) (F) (FRAC) ---- ---- ---- ---- -------- --------- ------- ------- ------ ------**********************************CONTINUED************************** L269 **JUNCTION** RATE= 458.24 (TDM) 17.36 88.1 QUAL= J213 17.36 88.1 V271 VALV CH 154.10 0.00 0.00 17.36 88.1 0.00 U202**JUNCTION** PRES= 17.36 (BAR) TEMP= 90.9 (F) LINK DEVI DEVI NAME NAME TYPE

L273

L281

ML01

ML03

ML02

MD02

AVG. LIQ HOLDUP -----0.64 0.00

**JUNCTION** RATE= 554.93 (TDM) 17.36 93.3 QUAL= J214 17.36 93.3 V275 VALV CH 154.10 0.00 0.00 17.36 93.3 0.00 U202**JUNCTION** PRES= 17.36 (BAR) TEMP= 90.9 (F)

0.65

**JUNCTION** RATE= 1013.17 (TDM) 17.36 90.9 QUAL= U202 17.36 90.9 P282 PIPE BM 254.50 2600.00 0.00 15.14 84.8 0.65 V002 VALV CH 303.30 0.00 0.00 15.14 84.8 0.00 U1T3 *** SINK *** PRES= 15.15 (BAR) TEMP= 84.8 (F)

0.64

***SOURCE*** RATE= 493.42 (TDM) 119.10 150.0 QUAL= MS01 119.10 150.0 I008 IPR 0.00 0.00 0.00 88.34 150.0 0.00 T009 TBNG HB 105.53 1000.00 1000.00 70.50 133.2 0.57 0.00 0.00 17.16 88.5 0.00 C010 MCHO FN 22.54 P009 PIPE BM 154.10 400.00 0.00 16.00 86.1 0.64 IJ00**JUNCTION** PRES= 16.00 (BAR) TEMP= 86.1 (F)

0.55

***SOURCE*** RATE= 458.24 (TDM) 108.70 150.0 QUAL= MS03 108.70 150.0 I018 IPR 0.00 0.00 0.00 87.98 150.0 0.00 T021 TBNG HB 105.53 1000.00 1000.00 70.50 133.2 0.57 0.00 0.00 17.05 88.2 0.00 C020 MCHO FN 21.70 P019 PIPE BM 154.10 400.00 0.00 16.07 86.2 0.64 IJ02**JUNCTION** PRES= 16.07 (BAR) TEMP= 86.2 (F)

0.56

***SOURCE*** RATE= 477.36 (TDM) 119.30 150.0 QUAL= MS02 119.30 150.0 I013 IPR 0.00 0.00 0.00 77.53 150.0 0.00 T014 TBNG HB 105.53 1000.00 1000.00 60.70 132.7 0.59 0.00 0.00 17.11 93.3 0.00 C015 MCHO FN 24.21 P014 PIPE BM 154.10 400.00 0.00 16.00 90.8 0.65 IJ01**JUNCTION** PRES= 16.00 (BAR) TEMP= 90.8 (F)

0.55

**JUNCTION** RATE= 970.78 (TDM) 16.00 88.4 QUAL= OJ01 16.00 88.4 P032 PIPE BM 303.30 2600.00 0.00 15.15 84.5 0.65 V004 VALV CH 303.30 0.00 0.00 15.15 84.5 0.00 U2T2 *** SINK *** PRES= 15.15 (BAR) TEMP= 84.5 (F)

0.65

PIPEPHASE Application Briefs

0.00

0.09 0.00

0.00 0.17 0.00 0.07

0.00 0.17 0.00 0.07

0.00 0.16 0.00 0.06

0.09 0.00

1-161

DEVICE SUMMARY C O R R

------- OUTLET -----INSIDE MEAS ELEV INSITU DIAM LENGTH CHNG PRESS: TEMP: QUALITY (MM) (M) (M) (BAR) (F) (FRAC) ---- ---- ---- ---- -------- --------- ------- ------- ------ ------**********************************CONTINUED************************** ML17 **JUNCTION** RATE= 493.42 (TDM) 16.00 86.1 QUAL= IJ00 16.00 86.1 V003 VALV CH 152.00 0.00 0.00 16.00 86.1 0.00 OJ01**JUNCTION** PRES= 16.00 (BAR) TEMP= 88.4 (F) LINK DEVI DEVI NAME NAME TYPE

ML20

ML04

MD03

ML24

ML27

-----0.64 0.00

**JUNCTION** RATE= 477.36 (TDM) 16.00 90.8 QUAL= IJ01 16.00 90.8 V005 VALV CH 152.00 0.00 0.00 16.00 90.8 0.00 OJ01**JUNCTION** PRES= 16.00 (BAR) TEMP= 88.4 (F)

0.65

***SOURCE*** RATE= 554.93 (TDM) 98.52 150.0 QUAL= MS04 98.52 150.0 I023 IPR 0.00 0.00 0.00 77.64 150.0 0.00 T024 TBNG HB 105.53 1000.00 1000.00 60.00 132.6 0.59 0.00 0.00 17.55 94.4 0.00 C025 MCHO FN 26.31 P024 PIPE BM 154.10 400.00 0.00 16.07 91.3 0.65 IJ03**JUNCTION** PRES= 16.07 (BAR) TEMP= 91.3 (F)

0.57

**JUNCTION** RATE= 1013.17 (TDM) 16.07 89.0 QUAL= OJ02 16.07 89.0 P035 PIPE BM 303.30 2600.00 0.00 15.15 84.8 0.65 V006 VALV CH 303.30 0.00 0.00 15.15 84.8 0.00 U2T3 *** SINK *** PRES= 15.15 (BAR) TEMP= 84.8 (F)

0.65

**JUNCTION** RATE= 458.24 (TDM) 16.07 86.2 QUAL= IJ02 16.07 86.2 V007 VALV CH 152.00 0.00 0.00 16.07 86.2 0.00 OJ02**JUNCTION** PRES= 16.07 (BAR) TEMP= 89.0 (F)

0.64

**JUNCTION** RATE= 554.93 (TDM) 16.07 IJ03 16.07 V008 VALV CH 152.00 0.00 0.00 16.07 OJ02**JUNCTION** PRES= 16.07 (BAR) TEMP= 89.0 (F)

1-162

AVG. LIQ HOLDUP

91.3 QUAL= 91.3 91.3 0.00

0.00

0.00 0.16 0.00 0.06

0.09 0.00

0.00 0.65 0.00

PIPEPHASE EXAMPLE

Example 21B - Network Change Utilities Simulation Objective Production manifolds are a common feature encountered in oil, gas and condensate fields. Manifolds are used to gather or receive flow from multiple source points (such as wells) and direct them to any one of the several possible destinations. Field users often, have to change the ‘On' and 'Off' status of sources, sinks, and manifold links (valves). In the earlier version of PIPEPHASE, to correctly effect these changes, users had to manually identify and turn off all the associated dead links and nodes that are affected by this change. This can be a tedious exercise. The Network Change Utilities automates this process and makes it much easier. The users can specify the source(s), sinks, and links that needs to be turned off. For example, the manifold link's on-off status can also be changed to re-direct the flow. The network utilities intelligently identifies and automatically shuts all redundant/dead nodes and links. The basic objective of this simulation is to illustrate the use of Network Change utilities unit in PIPEPHASE.

Simulation Model The simulation model described in example 21 A has been used to explain network utility scenario in PIPEPHASE. The Simulation Model for this example is shown in Figure 1-117.

PIPEPHASE Application Briefs

1-163

Figure 1-117: Simulation Model

Network with Junction unit

Network with New Manifold Junction Unit Note: Refer example 21 A for a detailed description on the network.

Input Data $General Data Section $ TITLE PROJECT=APPBRIEFS, PROBLEM=EXAMPLE-21B, * DATE=02/14/06 $ DESCRIPTION Use of Network Utilities $ DIMENSION Metric, TEMPERATURE=F, RATE(W)=TDM, * RATE(GV)=CMD $ OUTDIMENSION Petroleum, DENSITY=SPGR, ADD $ CALCULATION NETWORK, Compositional, PRANDTL, * DETMANIFOLD $ FCODE TUBING=HB $ DEFAULT IDPIPE=102.26035, IDTUBING=102.26035, IDANNULUS=154.05092, * HAUSEN $ PRINT INPUT=NONE, DEVICE=FULL, PLOT=FULL, * PROPERTY=FULL, FLASH=FULL, MAP=TAITEL, * CONNECT=FULL, MERGESUB, ITER, * SUMMARY=BOTH, DATABASE=FULL, SIMULATOR=PART $ SEGMENT AUTO=OFF, DLHORIZ(M)=609.59967, * DLVERT(M)=152.39992 $ $Component Data Section $ COMPONENT DATA

1-164

PIPEPHASE EXAMPLE

$ LIBID 1, N2 / * 2, CO2 / * 3, C1 / * 4, C2 / * 5, C3 / * 6, IC4 / * 7, NC4 / * 8, IC5 / * 9, NC5 , BANK=PROCESS, SIMSCI PETRO(KGM3) 10, C6PLUS, , 800.250, 198.890 $ PHASE VL=1,10 $ $Network Data Section $ NETWORK DATA $ SOLUTION PBALANCE, FLOWAL=2, STEP=1, * QDAMP=500, PDAMP=100 $ TOLERANCE PRESSURE=6.895e-003 $ $Thermodynamic Data Section $ THERMODYNAMIC DATA $ METHOD SET=SET01, SYSTEM=SRK $ WATER PROPERTY=Super $ KVALUE BANK=SimSci $ $PVT Data Section $ PVT PROPERTY DATA $ SET SETNO=1, SET=SET01 $ $Structure Data Section $ STRUCTURE DATA $ SOURCE NAME=MS01, IDNAME=MS01, PRIORITY=0, SETNO=1, SET=SET01, PRES=119.1, * TEMP=150, RATE(ESTI,W)=200, NOCHECK, * XCORD=5, YCORD=5150, * COMP(M)=1, 2 / 2, 3 / 3, 68 / * 4, 13.3 / 5, 8 / 6, 2 / * 7, 5 / 8, 0.9 / 9, 1.8 / * 10, 10 $ SOURCE NAME=MS02, IDNAME=MS02, PRIORITY=0, SETNO=1, SET=SET01, PRES=119.3, * TEMP=150, RATE(ESTI,W)=200, NOCHECK, * XCORD=20, YCORD=5760, * COMP(M)=1, 2 / 2, 3 / 3, 68 / * 4, 13.3 / 5, 8 / 6, 2 / * 7, 5 / 8, 0.9 / 9, 1.8 / * 10, 10 $ SOURCE NAME=MS03, IDNAME=MS03, PRIORITY=0, SETNO=1, SET=SET01, PRES=108.7, * TEMP=150, RATE(ESTI,W)=120, NOCHECK, * XCORD=0, YCORD=6425, * COMP(M)=1, 2 / 2, 3 / 3, 68 / * 4, 13.3 / 5, 8 / 6, 2 / * 7, 5 / 8, 0.9 / 9, 1.8 / * 10, 10 $ SOURCE NAME=MS04, IDNAME=MS04, PRIORITY=0,

PIPEPHASE Application Briefs

*

*

*

*

1-165

SETNO=1, SET=SET01, PRES=98.52, * TEMP=150, RATE(ESTI,W)=173, NOCHECK, * XCORD=265, YCORD=7065, * COMP(M)=1, 2 / 2, 3 / 3, 68 / * 4, 13.3 / 5, 8 / 6, 2 / * 7, 5 / 8, 0.9 / 9, 1.8 / * 10, 10 $ SOURCE NAME=S211, IDNAME=S211, PRIORITY=0, * SETNO=1, SET=SET01, PRES=119.1, * TEMP=150, RATE(ESTI,W)=200, NOCHECK, * XCORD=640, YCORD=3020, * COMP(M)=1, 2 / 2, 3 / 3, 68 / * 4, 13.3 / 5, 8 / 6, 2 / * 7, 5 / 8, 0.9 / 9, 1.8 / * 10, 10 $ SOURCE NAME=S212, IDNAME=S212, PRIORITY=0, * SETNO=1, SET=SET01, PRES=119.3, * TEMP=150, RATE(ESTI,W)=200, NOCHECK, * XCORD=230, YCORD=3600, * COMP(M)=1, 2 / 2, 3 / 3, 68 / * 4, 13.3 / 5, 8 / 6, 2 / * 7, 5 / 8, 0.9 / 9, 1.8 / * 10, 10 $ SOURCE NAME=S213, IDNAME=S213, PRIORITY=0, * SETNO=1, SET=SET01, PRES=108.7, * TEMP=150, RATE(ESTI,W)=120, NOCHECK, * XCORD=190, YCORD=4195, * COMP(M)=1, 2 / 2, 3 / 3, 68 / * 4, 13.3 / 5, 8 / 6, 2 / * 7, 5 / 8, 0.9 / 9, 1.8 / * 10, 10 $ SOURCE NAME=S214, IDNAME=S214, PRIORITY=0, * SETNO=1, SET=SET01, PRES=98.52, * TEMP=150, RATE(ESTI,W)=173, NOCHECK, * XCORD=325, YCORD=4715, * COMP(M)=1, 2 / 2, 3 / 3, 68 / * 4, 13.3 / 5, 8 / 6, 2 / * 7, 5 / 8, 0.9 / 9, 1.8 / * 10, 10 $ $~SINK NAME=U1T1, IDNAME=U1T1, PRES=15.148, * $~ RATE(ESTI)=1125.69995, XCORD=3630, YCORD=3650 SINK NAME=U1T2, IDNAME=U1T2, PRES=15.1475, * RATE(ESTI)=1125.69995, XCORD=3665, YCORD=4105 SINK NAME=U1T3, IDNAME=U1T3, PRES=15.1475, * RATE(ESTI)=1125.69995, XCORD=3710, YCORD=4595 $~SINK NAME=U2T1, IDNAME=U2T1, PRES=15.15, * $~ RATE(ESTI)=1, XCORD=3785, YCORD=5060 SINK NAME=U2T2, IDNAME=U2T2, PRES=15.15, * RATE(ESTI)=1000, XCORD=3780, YCORD=5655 SINK NAME=U2T3, IDNAME=U2T3, PRES=15.148, * RATE(ESTI)=1125.69995, XCORD=3825, YCORD=6230 $ JUNCTION NAME=J211, IDNAME=J211, XCORD=1610, * YCORD=3623 JUNCTION NAME=J212, IDNAME=J212, XCORD=1605, * YCORD=3943 JUNCTION NAME=J213, IDNAME=J213, XCORD=1586, * YCORD=4331 JUNCTION NAME=J214, IDNAME=J214, XCORD=1583, * YCORD=4623 $~JUNCTION NAME=TS21, IDNAME=TS21, XCORD=2007, * $~ YCORD=3750 JUNCTION NAME=U201, IDNAME=U201, XCORD=2002, * YCORD=4176 JUNCTION NAME=U202, IDNAME=U202, XCORD=2001, * YCORD=4631 $

1-166

PIPEPHASE EXAMPLE

JUNCTION MANIFOLD=M005, NAME=M005-I1, IDNAME=IJ00, * XCORD=1785, YCORD=5630 JUNCTION MANIFOLD=M005, NAME=M005-I2, IDNAME=IJ01, * XCORD=1785, YCORD=5630 JUNCTION MANIFOLD=M005, NAME=M005-I3, IDNAME=IJ02, * XCORD=1785, YCORD=5630 JUNCTION MANIFOLD=M005, NAME=M005-I4, IDNAME=IJ03, * XCORD=1785, YCORD=5630 $~JUNCTION MANIFOLD=M005, NAME=M005-O1, IDNAME=OJ00, $~ XCORD=1785, YCORD=5630 JUNCTION MANIFOLD=M005, NAME=M005-O2, IDNAME=OJ01, * XCORD=1785, YCORD=5630 JUNCTION MANIFOLD=M005, NAME=M005-O3, IDNAME=OJ02, * XCORD=1785, YCORD=5630 $ $~LINK MANIFOLD=M005, NAME=M005-I1-O1, FROM=M005-I1, $~ TO=M005-O1, IDNAME=ML00, IDFROM=IJ00, * $~ IDTO=OJ00, PRINT $~VALVE MANIFOLD=M005, IDIN=152, IDOUT=152, * $~ KMUL=8 $ LINK MANIFOLD=M005, NAME=M005-I1-O2, FROM=M005-I1, * TO=M005-O2, IDNAME=ML05, IDFROM=IJ00, * IDTO=OJ01, PRINT VALVE MANIFOLD=M005, IDIN=152, IDOUT=152, * KMUL=8 $ $~LINK MANIFOLD=M005, NAME=M005-I1-O3, FROM=M005-I1, $~ TO=M005-O3, IDNAME=ML06, IDFROM=IJ00, * $~ IDTO=OJ02, PRINT $~VALVE MANIFOLD=M005, IDIN=152, IDOUT=152, * $~ KMUL=8 $ $~LINK MANIFOLD=M005, NAME=M005-I2-O1, FROM=M005-I2, $~ TO=M005-O1, IDNAME=ML07, IDFROM=IJ01, * $~ IDTO=OJ00, PRINT $~VALVE MANIFOLD=M005, IDIN=152, IDOUT=152, * $~ KMUL=8 $ LINK MANIFOLD=M005, NAME=M005-I2-O2, FROM=M005-I2, * TO=M005-O2, IDNAME=ML08, IDFROM=IJ01, * IDTO=OJ01, PRINT VALVE MANIFOLD=M005, IDIN=152, IDOUT=152, * KMUL=8 $ $~LINK MANIFOLD=M005, NAME=M005-I2-O3, FROM=M005-I2, $~ TO=M005-O3, IDNAME=ML09, IDFROM=IJ01, * $~ IDTO=OJ02, PRINT $~VALVE MANIFOLD=M005, IDIN=152, IDOUT=152, * $~ KMUL=8 $ $~LINK MANIFOLD=M005, NAME=M005-I3-O1, FROM=M005-I3, $~ TO=M005-O1, IDNAME=ML10, IDFROM=IJ02, * $~ IDTO=OJ00, PRINT $~VALVE MANIFOLD=M005, IDIN=152, IDOUT=152, * $~ KMUL=8 $ $~LINK MANIFOLD=M005, NAME=M005-I3-O2, FROM=M005-I3, $~ TO=M005-O2, IDNAME=ML11, IDFROM=IJ02, * $~ IDTO=OJ01, PRINT $~VALVE MANIFOLD=M005, IDIN=152, IDOUT=152, * $~ KMUL=8 $ LINK MANIFOLD=M005, NAME=M005-I3-O3, FROM=M005-I3, * TO=M005-O3, IDNAME=ML12, IDFROM=IJ02, * IDTO=OJ02, PRINT VALVE MANIFOLD=M005, IDIN=152, IDOUT=152, * KMUL=8 $ $~LINK MANIFOLD=M005, NAME=M005-I4-O1, FROM=M005-I4, $~ TO=M005-O1, IDNAME=ML13, IDFROM=IJ03, * $~ IDTO=OJ00, PRINT

PIPEPHASE Application Briefs

*

*

*

*

*

*

*

*

1-167

$~VALVE MANIFOLD=M005, IDIN=152, IDOUT=152, * $~ KMUL=8 $ $~LINK MANIFOLD=M005, NAME=M005-I4-O2, FROM=M005-I4, * $~ TO=M005-O2, IDNAME=ML14, IDFROM=IJ03, * $~ IDTO=OJ01, PRINT $~VALVE MANIFOLD=M005, IDIN=152, IDOUT=152, * $~ KMUL=8 $ LINK MANIFOLD=M005, NAME=M005-I4-O3, FROM=M005-I4, * TO=M005-O3, IDNAME=ML15, IDFROM=IJ03, * IDTO=OJ02, PRINT VALVE MANIFOLD=M005, IDIN=152, IDOUT=152, * KMUL=8 $ LINK NAME=L211, FROM=S211, TO=J211, * IDNAME=L211, IDFROM=S211, IDTO=J211 IPR NAME=I204, TYPE=GASFLOW, * IVAL=BASIS, 1, * RVAL=COEF, 5.000e-004 / EXP, 0.75 / UPTIME,1 TUBING NAME=T002, LENGTH=1000, ID=105.53, * U=4.8824 MCHOKE NAME=C206, PUPS=70.5 PIPE NAME=P207, LENGTH=400, NOMD=6, * SCHED= 40, U=4.8824 $ LINK NAME=L212, FROM=S212, TO=J212, * IDNAME=L212, IDFROM=S212, IDTO=J212 IPR NAME=I209, TYPE=GASFLOW, * IVAL=BASIS, 1, * RVAL=COEF, 4.000e-004 / EXP, 0.75 / UPTIME,1 TUBING NAME=T003, LENGTH=1000, ID=105.53, * U=4.8824 MCHOKE NAME=C211, PUPS=60.7 PIPE NAME=P212, LENGTH=400, NOMD=6, * SCHED= 40, U=4.8824 $ LINK NAME=L213, FROM=S213, TO=J213, * IDNAME=L213, IDFROM=S213, IDTO=J213 IPR NAME=I214, TYPE=GASFLOW, * IVAL=BASIS, 1, * RVAL=COEF, 6.500e-004 / EXP, 0.75 / UPTIME,1 TUBING NAME=T004, LENGTH=1000, ID=105.53, * U=4.8824 MCHOKE NAME=C216, PUPS=70.5 PIPE NAME=P217, LENGTH=400, NOMD=6, * SCHED= 40, U=4.8824 $ LINK NAME=L214, FROM=S214, TO=J214, * IDNAME=L214, IDFROM=S214, IDTO=J214 IPR NAME=I219, TYPE=GASFLOW, * IVAL=BASIS, 1, * RVAL=COEF, 8.500e-004 / EXP, 0.75 / UPTIME,1 TUBING NAME=T005, LENGTH=1000, ID=105.53, * U=4.8824 MCHOKE NAME=C221, PUPS=60 PIPE NAME=P222, LENGTH=400, NOMD=6, * SCHED= 40, U=4.8824 $ $~LINK NAME=L229, FROM=J211, TO=TS21, * $~ IDNAME=L229, IDFROM=J211, IDTO=TS21 $~VALVE NAME=V231, NOMI=6, NOMO=6, * $~ SCHED= 40, ANGLE=180, KMUL=8 $ $~LINK NAME=L233, FROM=J212, TO=TS21, * $~ IDNAME=L233, IDFROM=J212, IDTO=TS21 $~VALVE NAME=V235, NOMI=6, NOMO=6, * $~ SCHED= 40, ANGLE=180, KMUL=8 $ $~LINK NAME=L237, FROM=J213, TO=TS21, * $~ IDNAME=L237, IDFROM=J213, IDTO=TS21 $~VALVE NAME=V239, NOMI=6, NOMO=6, *

1-168

PIPEPHASE EXAMPLE

$~ SCHED= 40, ANGLE=180, KMUL=8 $ $~LINK NAME=L241, FROM=J214, TO=TS21, * $~ IDNAME=L241, IDFROM=J214, IDTO=TS21 $~VALVE NAME=V243, NOMI=6, NOMO=6, * $~ SCHED= 40, ANGLE=180, KMUL=8 $ LINK NAME=L245, FROM=J211, TO=U201, * IDNAME=L245, IDFROM=J211, IDTO=U201 VALVE NAME=V247, NOMI=6, NOMO=6, * SCHED= 40, ANGLE=180, KMUL=8 $ LINK NAME=L249, FROM=J212, TO=U201, * IDNAME=L249, IDFROM=J212, IDTO=U201 VALVE NAME=V251, NOMI=6, NOMO=6, * SCHED= 40, ANGLE=180, KMUL=8 $ $~LINK NAME=L253, FROM=J213, TO=U201, * $~ IDNAME=L253, IDFROM=J213, IDTO=U201 $~VALVE NAME=V255, NOMI=6, NOMO=6, * $~ SCHED= 40, ANGLE=180, KMUL=8 $ $~LINK NAME=L257, FROM=J214, TO=U201, * $~ IDNAME=L257, IDFROM=J214, IDTO=U201 $~VALVE NAME=V259, NOMI=6, NOMO=6, * $~ SCHED= 40, ANGLE=180, KMUL=8 $ $~LINK NAME=L261, FROM=J211, TO=U202, * $~ IDNAME=L261, IDFROM=J211, IDTO=U202 $~VALVE NAME=V263, NOMI=6, NOMO=6, * $~ SCHED= 40, ANGLE=180, KMUL=8 $ $~LINK NAME=L265, FROM=J212, TO=U202, * $~ IDNAME=L265, IDFROM=J212, IDTO=U202 $~VALVE NAME=V267, NOMI=6, NOMO=6, * $~ SCHED= 40, ANGLE=180, KMUL=8 $ LINK NAME=L269, FROM=J213, TO=U202, * IDNAME=L269, IDFROM=J213, IDTO=U202 VALVE NAME=V271, NOMI=6, NOMO=6, * SCHED= 40, ANGLE=180, KMUL=8 $ LINK NAME=L273, FROM=J214, TO=U202, * IDNAME=L273, IDFROM=J214, IDTO=U202 VALVE NAME=V275, NOMI=6, NOMO=6, * SCHED= 40, ANGLE=180, KMUL=8 $ $~LINK NAME=L277, FROM=TS21, TO=U1T1, * $~ IDNAME=L277, IDFROM=TS21, IDTO=U1T1 $~PIPE NAME=P278, LENGTH=2600, NOMD=12, * $~ SCHED= 40, U=4.8824 $ LINK NAME=L279, FROM=U201, TO=U1T2, * IDNAME=L279, IDFROM=U201, IDTO=U1T2 PIPE NAME=P280, LENGTH=2600, NOMD=12, * SCHED= 40, U=4.8824 VALVE NAME=V001, NOMI=12, NOMO=12, * SCHED= 40, ANGLE=180, KMUL=8 $ LINK NAME=L281, FROM=U202, TO=U1T3, * IDNAME=L281, IDFROM=U202, IDTO=U1T3 PIPE NAME=P282, LENGTH=2600, NOMD=10, * SCHED= 40, U=4.8824 VALVE NAME=V002, NOMI=12, NOMO=12, * SCHED= 40, ANGLE=180, KMUL=8 $ $~LINK NAME=MD01, FROM=M005-O1, TO=U2T1, * $~ IDNAME=MD01, IDFROM=OJ00, IDTO=U2T1 $~PIPE NAME=P030, LENGTH=2600, NOMD=12, * $~ SCHED= 40, U=4.8824 $~VALVE NAME=V003, NOMI=12, NOMO=12, * $~ SCHED= 40, ANGLE=180, KMUL=8

PIPEPHASE Application Briefs

1-169

$ LINK NAME=MD02, FROM=M005-O2, TO=U2T2, * IDNAME=MD02, IDFROM=OJ01, IDTO=U2T2 PIPE NAME=P032, LENGTH=2600, NOMD=12, * SCHED= 40, U=4.8824 VALVE NAME=V004, NOMI=12, NOMO=12, * SCHED= 40, ANGLE=180, KMUL=8 $ LINK NAME=MD03, FROM=M005-O3, TO=U2T3, * IDNAME=MD03, IDFROM=OJ02, IDTO=U2T3 PIPE NAME=P035, LENGTH=2600, NOMD=12, * SCHED= 40, U=4.8824 VALVE NAME=V006, NOMI=12, NOMO=12, * SCHED= 40, ANGLE=180, KMUL=8 $ LINK NAME=ML01, FROM=MS01, TO=M005-I1, * IDNAME=ML01, IDFROM=MS01, IDTO=IJ00 IPR NAME=I008, TYPE=GASFLOW, * IVAL=BASIS, 1, * RVAL=COEF, 5.000e-004 / EXP, 0.75 / UPTIME,1 TUBING NAME=T009, LENGTH=1000, ID=105.53, * U=4.8824 MCHOKE NAME=C010, PUPS=70.5 PIPE NAME=P009, LENGTH=400, NOMD=6, * SCHED= 40, U=4.8824 $ LINK NAME=ML02, FROM=MS02, TO=M005-I2, * IDNAME=ML02, IDFROM=MS02, IDTO=IJ01 IPR NAME=I013, TYPE=GASFLOW, * IVAL=BASIS, 1, * RVAL=COEF, 4.000e-004 / EXP, 0.75 / UPTIME,1 TUBING NAME=T014, LENGTH=1000, ID=105.53, * U=4.8824 MCHOKE NAME=C015, PUPS=60.7 PIPE NAME=P014, LENGTH=400, NOMD=6, * SCHED= 40, U=4.8824 $ LINK NAME=ML03, FROM=MS03, TO=M005-I3, * IDNAME=ML03, IDFROM=MS03, IDTO=IJ02 IPR NAME=I018, TYPE=GASFLOW, * IVAL=BASIS, 1, * RVAL=COEF, 6.500e-004 / EXP, 0.75 / UPTIME,1 TUBING NAME=T021, LENGTH=1000, ID=105.53, * U=4.8824 MCHOKE NAME=C020, PUPS=70.5 PIPE NAME=P019, LENGTH=400, NOMD=6, * SCHED= 40, U=4.8824 $ LINK NAME=ML04, FROM=MS04, TO=M005-I4, * IDNAME=ML04, IDFROM=MS04, IDTO=IJ03 IPR NAME=I023, TYPE=GASFLOW, * IVAL=BASIS, 1, * RVAL=COEF, 8.500e-004 / EXP, 0.75 / UPTIME,1 TUBING NAME=T024, LENGTH=1000, ID=105.53, * U=4.8824 MCHOKE NAME=C025, PUPS=60 PIPE NAME=P024, LENGTH=400, NOMD=6, * SCHED= 40, U=4.8824 $ $ End of keyword file... $ END $ $ Begin Manifold Unit Mapping Information $ GMANIFOLD Name=[M005] In=[4], Out=[3] Input: name=[ML01] slotname=[I1] nameID=[IJ00] Input: name=[ML02] slotname=[I2] nameID=[IJ01] Input: name=[ML03] slotname=[I3] nameID=[IJ02]

1-170

PIPEPHASE EXAMPLE

Input: name=[ML04] slotname=[I4] nameID=[IJ03] Output: name=[MD01] slotname=[O1] nameID=[OJ00] Output: name=[MD02] slotname=[O2] nameID=[OJ01] Output: name=[MD03] slotname=[O3] nameID=[OJ02] Row: in=[ML01] out=[MD01] map=[1] pest=[] nameIDValve=[] Row: in=[ML01] out=[MD02] map=[2] pest=[] nameIDValve=[] Row: in=[ML01] out=[MD03] map=[1] pest=[] nameIDValve=[] Row: in=[ML02] out=[MD01] map=[1] pest=[] nameIDValve=[] Row: in=[ML02] out=[MD02] map=[2] pest=[] nameIDValve=[] Row: in=[ML02] out=[MD03] map=[1] pest=[] nameIDValve=[] Row: in=[ML03] out=[MD01] map=[1] pest=[] nameIDValve=[] Row: in=[ML03] out=[MD02] map=[1] pest=[] nameIDValve=[] Row: in=[ML03] out=[MD03] map=[2] pest=[] nameIDValve=[] Row: in=[ML04] out=[MD01] map=[1] pest=[] nameIDValve=[] Row: in=[ML04] out=[MD02] map=[1] pest=[] nameIDValve=[] Row: in=[ML04] out=[MD03] map=[2] pest=[] nameIDValve=[]

nameIDLink=[ML00] nameIDLink=[ML05] nameIDLink=[ML06] nameIDLink=[ML07] nameIDLink=[ML08] nameIDLink=[ML09] nameIDLink=[ML10] nameIDLink=[ML11] nameIDLink=[ML12] nameIDLink=[ML13] nameIDLink=[ML14] nameIDLink=[ML15]

$ $ End Manifold Unit Mapping Information $ $

Results & Discussion Click to view Run Simulation and View Results window. Select the drop-down menu under Action to view the following options. ■

Remap Network



Remap Network From File

PIPEPHASE Application Briefs

1-171

Figure 1-118: Run Simulation and View Results

1-172

PIPEPHASE EXAMPLE

Remap Network Select Remap Network to activate Nodes and Links to Exclude button. Click Run to create remapped network and the inputname_status.csv file. Click Nodes and Links to Exclude to view and/or modify FluidFlowEditData.xls (see below). Figure 1-119: PipephaseEditData

Here, users can alter source and sink exclude status and edit Pressure, Flow-rate and Temperature data manually. Click Save & Close to save and exit to Run Simulation and View Results dialog box. Click Run with Action - Remap Network in the Run Simulation and View Results dialog box.This action will generate and perform the following automatically, which is transparent to the user: 1.

A master-network keyword input file (MNF) from the current GUI data base is generated (*_MNF.inp). This file turns on all nodes and links in the network.

2.

Overlay the excluded source-sink status and its corresponding data to generate a updated input keyword file. For example, if the status of S211 and MS01 is entered 0, in the FluidFlowEditdata.xls. GUI, you can observe the corresponding sources have been disabled in the modified intermediate Pipephase keyword input file. A inputfile_status.csv file is also created.

PIPEPHASE Application Briefs

1-173

3.

Import the new updated keyword file into the GUI effectively updating the GUI network data with the latest network configuration.

The GUI database has now been updated as per instruction in the FluidFlowEditData.xls Excel spread sheet. Remap Network from File Once the inputfile_status.csv has been created, the Network Change Utilities may also be used to make network status changes to other nodes and links as well via the Update Network From File option. 1.

Select Remap Network From File to activate View Status File button. Click this button to view inputname_status.csv.

Figure 1-120: Inputname_status.csv

1-174

PIPEPHASE EXAMPLE

Note: This file will be created after going through steps (1) to (3)

mentioned in Remap Network section. 2.

Edit the inputname_status.csv, maintaining the file format as follows: ●

3.

The file automatically includes the excluded nodes and the Manifold.

Save and close the inputname_status.csv file.

Note: You will get a runtime error, if you click Run in Run

Simulation and View Results dialog box with opened .csv file. Also, you will lose the data, if you have not saved the file (.csv). 4.

Select Remap Network from File and click Run in Run Simulation and View Results dialog box. You can observe the changes made in inputname_status.csv getting reflected in PFD.

When the user selects the steps outlined in the Update-network and run options, the status file is generated automatically. Alternatively the user can manually create this csv file in Excel using the format shown below and go through steps (1 to 4) outlined above under Update Network from File to effect the desired changes. Important Note regarding Network Change Utilities The advantage of using Remap Network From File is that users can quickly change the status of the manifold connections, nodes, and links using a single file. Do not use the FluidFlowEdit.xls file for this purpose. This file is only used for initially setting the excluded sources and sinks. The inputfile_status.csv is used for all subsequent changes. The Remap Network and Run combination will overwrite the inputfile_status.csv file. It is recommended that you also manually save a copy of the inputfile_status.csv file especially if you have included manually the entered data, so you can recover the file incase the inputfile_status.csv file inadvertently gets overwritten.

PIPEPHASE Application Briefs

1-175

Example 22 - PIPEPHASE-GEM Integration Simulation Objective Many operators want to know how their gathering system are impacting maximum production with the primary objective of optimizing their operations including the reservoir factors, gathering, and processing. The most important applications for these types of integrations may include: ●

Offshore oil and gas fields



Onshore oil and gas fields



Onshore gas storage fields



Onshore CBM and shale gas fields



Onshore CO2 EOR fields



CO2 sequestration at coal-fired power plants

In order to achieve a successful coupling between PIPEPHASE (wells, surface pipelines, equipment Simulator) and GEM (Reservoir Simulator), the user will have to find an appropriate set of EOS methods. This will be particularly important when pseudo components are used - a common case for the reservoir simulator.

Simulation Model This example describes the integration procedure: The integration can be set up from the following windows in PIPEPHASE:

1-176

PIPEPHASE EXAMPLE

Figure 1-121: Reservoir Interface Data

Figure 1-122: Reservoir Simulator Interface Data

This simulation is a simple example to illustrate the link between the PIPEPHASE network simulator and the GEM reservoir simulator. PIPEPHASE Application Briefs

1-177

You must run a licensed version of GEM on your computer before you run the integrated network and reservoir simulations. Locate the GEM Simulator EXE using the Find… button. You may add GEM EXE commands, but this is not required as the default commands are provided. These settings are stored in the PIPEPHASE.INI file for use in all simulations. Next, setup the reservoir simulation by selecting GEM as the Reservoir Simulator and entering the Reservoir Input File Name. The GEM *.DAT file must have a different name from the PIPEPPHASE simulation so that you can view the output files from both simulators. You may control the order in which you run and pass information to the simulators by editing the log file using the View Run Sequence button. You may restore the default sequence at any time by clicking the Default Sequence button. The network and reservoir simulators are run sequentially with progressing time steps. While these simulators run, information on the streams is passed between the two models. PIPEPHASE injection wells are passed as feed streams to the GEM reservoir model while GEM production wells provide feed streams for the PIPEPHASE network model. By default, all PIPEPHASE and GEM streams with the same name are linked. You may exclude streams from the integration using the Linked Streams option. The feed streams connected to each simulator are defined by the composition, rate, pressure and temperature of the stream. For single component streams, the vapor quality is also used. The IPR Table Convergence Method is used to ensure that the pressures and flow rates agree between the two models. In stand-alone PIPEPHASE, the IPR model has a pressure drop associated with it that provides a simplified model for the reservoir behavior. In the integrated simulation, the IPR model does not have a pressure drop (outside of network tolerance) as GEM accurately models the reservoir. For each time step, the GEM reservoir model generates an IPR table for each well which gives the curve of pressure verses flow rate. This IPR table is then used in the PIPEPHASE network calculation methods to identify the solution points that will satisfy the production and injection wells for both the surface network and the reservoir models. This solution is translated into target conditions for the reservoir model. You may view the information being passed between the simulators in the RESFILENAME.LD* files. 1-178

PIPEPHASE EXAMPLE

The most critical part of the integration is to define the integration times. The GEM reservoir model is expected to run at frequent time steps and is interrupted occasionally to interface with PIPEPHASE. These interruptions are defined by a combination of 1.

The maximum time increment selected by the user

2.

The synchronization time

3.

The network model is changed in the PIPEPHASE defined time.

The basic time step the user defines is Maximum Time Step which is 120 days in this example. Smaller time steps are more accurate, but this increases the computation time and output results. Larger time steps can be used for stable operations, but smaller time steps should be used when there are significant operational changes. The automatic synchronization allows you to take a defined number of Sync Iterations at Sync Time Steps at startup, after a well has been opened or closed, or after a network optimization simulation has been performed. Integration times are also introduced for each time defined in the PIPEPHASE Time Stepping data section. These time steps allow you to change data for the network model. Optimization runs will optimize the network at these time steps. You may reduce the PIPEPHASE results files by selecting the Print Reports Only at Network Defined Time Steps option. The end times for both the network and reservoir model should match. If you use the reservoir model restart feature, you should also use the PIPEPHASE Restart From Time option which is defined in the Network Methods window. The Maximum Iterations and Tolerances are not used in the base GEM integration. These can be used in projects. An example usage case is provided in the Stars reservoir model example.

Input Data $ SIMSCI PIPEPHASE Version 9.6 Beta keyword file... $ $General Data Section $ TITLE PROJECT=DEMOS, PROBLEM=EX22, USER=SIMSCI, * DATE=11/16/10 $ DESCRIPTION PIPEPHASE GEM INTEGRATION $

PIPEPHASE Application Briefs

1-179

DIMENSION RATE(W)=LBD $ CALCULATION NETWORK, Compositional, LOGFILE, * TRUEMWD $ DEFAULT IDPIPE=4.026, IDTUBING=4.026, IDANNULUS=6.065, * TAMBIENT=65, UPIPE=1, UTUBING=0.05, * UANNULUS=1 $ PRINT INPUT=FULL, DEVICE=FULL, PLOT=FULL, * PROPERTY=FULL, FLASH=FULL, MAP=TAITEL, * CONNECT=NONE, ITER, SUMMARY=BOTH, * DATABASE=FULL, SIMULATOR=PART $ SEGMENT AUTO=OFF, DLHORIZ(FT)=2000, DLVERT(FT)=250, * MAXSTEPS=500 $ LIMITS PRES(MIN)=0, TEMP(MIN)=-110, TEMP(MAX)=900 $ $Component Data Section $ COMPONENT DATA $ LIBID 1, C1 / * 2, C2 / * 3, C3 / * 4, NC4 / * 5, NC5 / * 6, NC6 , BANK=SIMSCI , PROCESS PETRO(API) 7, C7-9, 114.430, 62.141, 249.200 / * 8, C10-11, 144.830, 47.498, 349.800 / * 9, C12-14, 177.780, 41.071, 435.700 / * 10, C15PLUS, 281.000, 46.794, 599.900 LIBID 11, H2O , BANK=SIMSCI , PROCESS $ PHASE VL=1,11 $ ASSAY CHARACTERIZE=SimSci, MW=SimSci, CONVERSION=API94, * CURVEFIT=IMPR, FIT=SPLINE $ $Network Data Section $ NETWORK DATA $ SOLUTION PBALANCE, FLOWAL=2, NOFR $ TOLERANCE PRESSURE=0.01 $ RESERVOIR SIMULATOR = GEM, FNAM = GEM_EX22, CONVERGENCE = IPRTABLE, * MAXITER=10, DTMA=30.000000 $ $Thermodynamic Data Section $ THERMODYNAMIC DATA $ METHOD SET=SET01, SYSTEM=PR, DENSITY(L)=SRKS $ WATER PROPERTY=Super $ KVALUE BANK=SimSci $ $PVT Data Section $ PVT PROPERTY DATA $ SET SETNO=1, SET=SET01 $ $Structure Data Section $ STRUCTURE DATA $

1-180

PIPEPHASE EXAMPLE

SOURCE NAME=PRODUCER, IDNAME=PROD, PRIORITY=0, * SETNO=1, SET=SET01, PRES=4000, * TEMP=200, RATE(ESTI,W)=80000, NOCHECK, * XCORD=0, YCORD=-639, * COMP(M)=1, 0.6793 / 2, 0.099 / 3, 0.0591 / * 4, 0.0517 / 5, 0.0269 / 6, 0.0181 / * 7, 0.0399 / 8, 0.0122 / 9, 8.000e-003 / * 10, 5.800e-003 / 11, 0.031 $ SOURCE NAME=SINJ, IDNAME=SINJ, PRIORITY=0, * SETNO=1, SET=SET01, PRES=3900, * TEMP=130, RATE(ESTI,W)=1000, XCORD=135, * YCORD=-260, * COMP(M)=1, 0.7786 / 2, 0.1123 / 3, 0.0607 / * 4, 0.0357 / 5, 9.000e-003 / 6, 2.500e-003 / * 7, 1.000e-003 / 8, 3.900e-005 / 9, 4.000e-006 / * 10, 1.000e-006 $ SINK NAME=DPRD, IDNAME=DPRD, PRES=1200, * RATE(ESTI)=926, XCORD=957, YCORD=-529 SINK NAME=INJECTOR, IDNAME=INJE, PRES=4800, * RATE(ESTI)=10000, XCORD=1528, YCORD=-119 $ $ $ LINK NAME=LINJ, FROM=SINJ, TO=INJECTOR, * IDNAME=LINJ, IDFROM=SINJ, IDTO=INJE, * INJECT, XCOR=588,513,329, YCOR=-141,-139,-186 PIPE NAME=P001, LENGTH=1000, ID=7, * U=0.05, TAMB=65 TUBING NAME=T002, LENGTH=7000, DEPTH=7000, * ID=7 IPR NAME=I004, TYPE=TABULAR, * IVAL=BASIS, 5 / IMODEL, 0, * RVAL=PWF11, 4681.08008 / PWF12, 5048.22021 / PWF13, 5415.3501 / * PWF14, 5782.49023 / PWF15, 6149.62988 / PWF16, 6516.75977 / * PWF17, 6883.8999 / PWF18, 7251.02979 / PWF19, 7618.16992 / * PWF110, 7985.2998 / QF11, 2332.05005 / QF12, 71397.89844 / * QF13, 1.405e+005 / QF14, 2.095e+005 / QF15, 2.786e+005 / * QF16, 3.477e+005 / QF17, 4.167e+005 / QF18, 4.858e+005 / * QF19, 5.549e+005 / QF110, 6.239e+005 / UPTIME,1 / * PRES1, 0 $ LINK NAME=LPRD, FROM=PRODUCER, TO=DPRD, * IDNAME=LPRD, IDFROM=PROD, IDTO=DPRD, * XCOR=592,458,374, YCOR=-526,-567,-575 IPR NAME=I003, TYPE=TABULAR, * IVAL=BASIS, 2 / IMODEL, 0, * RVAL=PWF11, 2847.84009 / PWF12, 2531.40991 / PWF13, 2214.98999 / * PWF14, 1898.56006 / PWF15, 1582.13 / PWF16, 1265.70996 / * PWF17, 949.28003 / PWF18, 632.85303 / PWF19, 316.427 / * PWF110, 0 / QF11, 0 / QF12, 30.50304 / * QF13, 69.56053 / QF14, 108.61843 / QF15, 147.6754 / * QF16, 186.73241 / QF17, 225.79041 / QF18, 264.84741 / * QF19, 303.9054 / QF110, 342.9624 / UPTIME,1 / * PRES1, 3600 TUBING NAME=T001, LENGTH=7000, DEPTH=7000, * ID=7, U=1, TGRAD=1 PIPE NAME=P002, LENGTH=1000, ID=7 $ $Time Stepping Data Section $ TIMESTEPPING CHANGE TIME=5, 730 $End of TIME-STEPPING Data Section $ $ End of keyword file... $ END

PIPEPHASE Application Briefs

1-181

Results & Discussion There are several tools available to analyze the results from the combined network and reservoir models. This example highlights several key areas which include: 1.

PIPEPHASE Output Report

2.

PIPEPHASE Excel® Output Report

3.

GEM Output Report

4.

GEM Post Processing Tools

5.

SIM4ME Portal

Step 1 : PIPEPHASE Output Report Prior to starting detailed post processing, you should scan the PIPEPHASE output file to verify the simulation setup. The TIME STEP report shows the well conditions for the reservoir and surface models. These results should be in reasonable agreement, but will not be exact due to the differences in the PVT packages between the simulators and time synchronization. Modeling options are discussed in Step 3. You should scan the output file to look for instances where the surface network needs modifications to support the declining reservoir. Your first pass at the integrated simulation will not provide an optimum design for the lifetime of the reservoir. Look for instances where either the network or reservoir model no longer solves, indicating that the system is no longer feasible. Consider what steps should be taken to modify the network or enhance production from the reservoir.

1-182

PIPEPHASE EXAMPLE

Figure 1-123: PIPEPHASE Output Report

Step 2 : PIPEPHASE Excel® Output Report The Excel® report provides a convenient summary of the CMG and PIPEPHASE wells as illustrated below. The data tables are provided automatically, but you can also create plots to analyze the results. This example looks at plots for the bottom hole pressure, oil rate, and gas rate for the PRODUCER well. As discussed previously, there will not be exact agreement for the wells between the reservoir and network models due to the different PVT packages and time synchronization. The reservoir simulation must model the x-y-z axis over time and often uses a simple PVT model and reduced component slate. In this example, PIPEPHASE uses the same component slate but opts to use the API method for densities. Accurate density predictions are essential for network hydraulic calculations. Custom projects may allow separate component slates with mapping between the models so that the network simulator may have a larger component slate than the reservoir simulator. These options are up to the user and the selections will be different based on the individual applications. PIPEPHASE Application Briefs

1-183

After selecting the fluid property models, you must select the IPR models to use for each well. The IPR defines the flow rate expected for a given pressure where the flow rate may be given as weight basis, liquid volume basis or gas basis (standard conditions). By selecting the correct IPR model, you can ensure that the parameters that are important to you match between the simulators. In this example, the PRODUCER well uses the LV basis IPR model provides a good match for liquid rates, but not gas rates. The gas rates would be better matched with the GV or WT model. The remaining issue to a good match involves the time step and synchronization time. While PIPEPHASE sets the target conditions for the reservoir model, the plots show that it takes time for the reservoir to stabilize at these conditions. Figure 1-124: Excel® Output Report

1-184

PIPEPHASE EXAMPLE

Figure 1-125: PIPEPHASE and GEM Bottomhole PRESSURES FOR WELL PRODUCER

PIPEPHASE Application Briefs

1-185

Figure 1-126: Oil Rate Comparison

1-186

PIPEPHASE EXAMPLE

Figure 1-127: Gas Rate Comparison

PIPEPHASE Application Briefs

1-187

Step 3 : GEM Output Report The GEM output file also provides well summaries and output diagnostics at each time step. The reservoir will run at more frequent time steps than the surface network. You can look for cases where the reservoir simulator takes exceptionally small time steps for indications of problems in the reservoir such as water flooding. Figure 1-128: GEM Ouput Report

1-188

PIPEPHASE EXAMPLE

Step 4 : GEM Post Processing Tools The GEM post processing tools are the best way to view the reservoir results. Refer to the Stars example for tips on using these tools. Step 5 : SIM4ME Portal Over the lifetime of the reservoir, the original surface network may not be able to support the declining reservoir. It is likely you will need to make changes to the operating conditions or introduce equipment such as pump or compressors to continue or optimize the production. Using the SIM4ME Portal allows you to interact with the combined network and reservoir simulation at any point in time. Simulation data used in this workflow is shown below. When running from the SIM4MEPortal, the simulation is paused at each integration time step if the PAUSE command is used in the log file. This allows you to view intermediate results and change network conditions during the simulation. You must press the RUN button to progress the simulation. You may use the “Run To Time” variable to progress the simulation to a specified time. You may change the “Maximum Production Time Step” to increase or decrease the base time network. You may not change the number of iterations or synchronization time as this should be constant for the entire simulation. When running simulations interactively, you may not be interested in viewing the results each time. You may use the “Print Reports” option to enable or disable reports. Information viewed in the Portal is for the most recently stored case, so the data will not be updated when you bypass the reports. This option gives you greater control of the output compared to the PIPEPHASE option to Print Reports Only at Network Defined Time Steps. At the end of the reservoir simulation time, the reservoir simulation will end. You may continue to view the simulation results for the final time step. You may also change data and rerun the network solution. In this case, small time steps are taken to identify these additional cases that do not include the reservoir model.

PIPEPHASE Application Briefs

1-189

Figure 1-129: PIPEPHASE - GEM Integration using SIM4ME® Portal

Figure 1-130: Current Production Time

1-190

PIPEPHASE EXAMPLE

Figure 1-131: Simulation Results

When running from the SIM4MEPortal, the simulation is paused at each integration time step if the PAUSE command is used in the log file. This allows you to view intermediate results and change network conditions during the simulation. You must press the RUN button to progress the simulation. You may use the Run To Time variable to progress the simulation to a specified time. You may use the Maximum Production Time Step option to increase or decrease the base time network. You cannot change the number of iterations or synchronization time as this should be constant for the entire simulation. When running simulations interactively, you may not be interested in viewing the results each time. You may use the Print Reports option to enable or disable reports. Information viewed in the Portal is for the most recently stored case, so the data will not be updated when you bypass the reports. This option gives you greater control of the output compared to the PIPEPHASE option to Print Reports Only at Network Defined Time Steps. At the end of the reservoir simulation time, the reservoir simulation will end. You may continue to view the simulation results for the final time step. You may also change data and rerun the network solution. In this case, small time steps are taken to identify these additional cases that do not include the reservoir model.

PIPEPHASE Application Briefs

1-191

Example 23 – Long pipeline using a Drag Reduction Agent Simulation Objective Alternatives to using DRAs to increase capacity or reduce pressure energy losses, may include building new pump stations, increasing the number and/or size of existing main line pumps, building new pipeline, etc. This endeavor could be quite expensive. The purpose of this example is to show the advantages of using drag reduction agents to increase capacity for a given pressure drop or decrease frictional pressure losses for a given capacity or flow rate.

Simulation Model This example describes the use of the DRA feature in PIPEPHASE. A 150-mi pipeline with some elevation changes is being considered for DRA injection. Figure 1-132: Pipeline Profile

To find the original DRA concentration, reduce the inlet pipeline pressure from 1857 psig to 1197 psig without reducing its current capacity (526 bbl/day of liquids). Note that the pipeline outlet pressure must be maintained at 200 psig due to contractual commitments.

1-192

PIPEPHASE EXAMPLE

Input Data $ SIMSCI PIPEPHASE Version 9.6 keyword file... $ $General Data Section $ TITLE DATE=09/10/10 $ $ DIMENSION RATE(LV)=BPD $ CALCULATION NETWORK, Blackoil, PRANDTL, * TRUEMWD $ DEFAULT IDPIPE=4.026, IDTUBING=4.026, IDANNULUS=6.065, * HAUSEN $ PRINT INPUT=FULL, DEVICE=FULL, PLOT=FULL, * PROPERTY=FULL, FLASH=FULL, MAP=NONE, * CONNECT=NONE, MERGESUB, ITER, * SUMMARY=BOTH, DATABASE=FULL, SIMULATOR=PART $ SEGMENT AUTO=OFF, DLHORIZ(FT)=2000, DLVERT(FT)=500 $ LIMITS PRES(MIN)=0 $ $Network Data Section $ NETWORK DATA $ SOLUTION PBALANCE, FLOWAL=2, STEP=1 $ TOLERANCE PRESSURE=0.1 $ $PVT Data Section $ PVT PROPERTY DATA $ SET SETNO=1, GRAV(OIL,API)=35.00001, GRAV(GAS,SPGR)=0.6, * GRAV(WATER,SPGR)=1 $ $Structure Data Section $ STRUCTURE DATA $ SOURCE NAME=S000, IDNAME=S000, PRIORITY=0, * SETNO=1, PRES(ESTI)=4500, TEMP=120, * RATE=500, GOR=12, WCUT=5, * XCORD=0, YCORD=378 $ SINK NAME=D000, IDNAME=D000, PRES=299, * RATE(ESTI)=1, XCORD=1013, YCORD=627 $ $ $ LINK NAME=PIPELINE, FROM=S000, TO=D000, * IDNAME=PIPE, IDFROM=S000, IDTO=D000, * XCOR=717,670,331, YCOR=434,112,268, DRATYPE=5, DRAPPM=150 PIPE NAME=P001, LENGTH=2.112e+006, 5.280e+005, * 1.056e+006, 5.280e+005, 7.920e+005, * ECHG=1, 2, 3, * 5, -10 $ $Case Study Data Section $ CASE STUDY DATA DESCRIPTION Change initial DRA concentration to 0 PPM PARAMETER CCLASS=LINK , CNAME=PIPELINE , VARI=DRA INI CONC, * Value=0 $ End of keyword file... $END

PIPEPHASE Application Briefs

1-193

Results and Discussion Several case studies were created by changing the initial DRA concentration at the pipeline inlet. The range of changes were from 0 ppm to 200 ppm. It was found that the initial DRA concentration at 150 ppm meets the desired criteria. The results shown below in ( Figure 1-133), reflect both the pressure profile without DRA (blue curve) and the pressure profile with an initial DRA concentration of 150 ppm (red curve). Figure 1-133: Pressure Profile Comparison

As it can be inferred from (Figure 1-133), DRA usage may become a great asset for an operator as far as cost and disruptive changes to a pipeline operation.

1-194

PIPEPHASE EXAMPLE

The effective DRA concentration along the pipeline is shown in (Figure 1-134). Figure 1-134: Effective DRA Concentration

PIPEPHASE Application Briefs

1-195

1-196

PIPEPHASE EXAMPLE

Index A Annular , 1-55

F flow distribution , 1-49 flow pattern , 1-55

B Beggs-Brill-Moody , 1-11 Blackoil properties , 1-128 Blackoil Well , 1-9 Brill , 1-37

flow perturbations , 1-66 flow regime map , 1-33 fluid phase envelope , 1-30 full , v-iii

G

Buried Gas Pipeline , 1-24 buried pipeline , 1-24

Gas Gathering and Distribution System , 1-57 Gas Lift Valve , 1-72

C Calculation Methods , 1-40 Calculation Segments , 1-63 case study summary , 1-22 Chokes , 1-97 compositional fluid , 1-32 critical flow , 1-103

D Detailed Manifolds , 1-149 discharge pressure , 1-7 distillation columns , 1-18 DPDT device , 1-22, 1-108, 1-112 Dukler-Eaton-Flannigan , 1-58

E Edit Excel PVT File , 1-132 Excel , 1-7 Excel Report , 1-7 Excel reports , 1-71

67

Gaslift Analysis , 1-44 gathering system , 1-49 Generate PVT Table , 1-126 Gilbert Choke Model , 1-103 Global Defaults , 1-25 gravel-packed , 1-10

H Hagedorn and Brown , 1-50 heat balances , 1-64 Hydrate analysis , 1-135 hydrate curves , 1-30 hydrate formation , 1-89 Hydrate inhibitors , 1-89 Hydrate Unit , 1-89

I Index , 1-133 Input Data , v-iii Intermittent flow , 1-55 isothermal heat transfer , 1-1

Index

J Jacobian matrix , 1-66

K

non-linear equations , 1-65

O Offshore Gas Pipeline , 1-30 Optional Pressure Estimate , 1-147

Kirchoffs , 1-65

L Line Sizing , 1-70 Link Summary reports , 1-32 Looped Blackoil Gathering System , 1-49

Output , v-iii

P PBAL method , 1-65 Pigging , 1-39 Pipeline Sphering , 1-39 PPZIP , 1-129

M

pressure drop , 1-1 pressure losses , 1-18 Pressure-Volume-Temperature , 1-126

Manifold Manifold Connections , 1-146 Optional Pressure Estimate , 1-147 Print Detailed Reports , 1-146 Mass Based Perturbation , 1-72

Print Options , 1-37 Problem Description , v-iii pump , 1-7 PVT file , 1-132

Max PVT Table Size , 1-128 maximum erosional velocity , 1-70

R

MBAL method , 1-65 MChoke , 1-99, 1-100

RAS , 1-86

Metric units , 1-29

RAS database , 1-86

Microsoft Access database , 1-7

reference source , 1-50

Multiple Curves , 1-110

Refinery Heat Exchanger Network , 1-18 Reservoir pressure curve , 1-87

N Netopt optimizer , 1-107

Result Access System , 1-16 RSA Special Plots , 1-16 Run Current Network , 1-94, 1-141

Network , 1-14 Network Change Utilities , 1-159, 1-160

S

Network Convergence Data , 1-19 Network Data button , 1-76

separator pressure , 1-9

Newton-Raphson method , 1-65

Simulation Techniques , v-iii

No Reverse Flow , 1-19

single link calculation , 1-67

Nodal Analysis , 1-15, 1-82

Single Link Example , 1-1

Nodal Analysis plot , 1-86

Sizing , 1-68

Node , 1-89

slug catcher , 1-30

Node Summary reports , 1-32

slugging models , 1-37

PIPEPHASE Application Briefs

68

Brill , 1-37 Norris , 1-37 Scott , 1-37 Slugging Report , 1-37 Soave-Redlich-Kwong , 1-32 Special Plots , 1-16, 1-87 Sphering , 1-39

U Update Network , 1-170 Update Network from File , 1-172 Update PVT File , 1-133 Use PVT File , 1-132

Spurs , 1-66 Steam Line Sizing , 1-67

V

Sub-Network , 1-100 Vertical Flow Performance , 1-113

T

View Profile , 1-26 Vogel coefficient , 1-9

TACITE , 1-43 Taitel-Dukler-Barnea , 1-33, 1-55

W

Tubing , 1-114 wells , 1-49

69

Index

PIPEPHASE Application Briefs

70

Invensys Systems, Inc. 26561 Rancho Parkway South Lake Forest, CA 92630 United States of America http://iom.invensys.com

Global Customer Support Inside U.S.: 1-866-746-6477 Outside U.S.: 1-508-549-2424 or contact your local Invensys Representative. Email: [email protected] Website: http://support.ips.invensys.com

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF