Pipelin Buckling crossing free span stress upheaval flow assurance expanisin fatigue design...
Useful Calculation sheets for Oil and Gas Pipeline Engineering (Offshore & Onshore) If you are intrested to order following files pls send your request to
[email protected] The price for this collection is 50 US$
Item no
Title
Filetype
Design 1
Wall thickness calculation based on asme b31.8
excel
2
Wall thickness calculation based on ASME B31.4 & B31.8 , 30 CFR Part 250, 49 CFR Parts 192 & 195 and DNV OS-F101
Mathcad
3
Wall Thickness calculation based on ISO 13623
Mathcad
4
Upheaval buckling analysis for onshore pipelines
excel
5
Wall Thickness calculation based on ISO 13623
Mathcad
6
Cathodic protection calculations for onshore pipeline
excel
7
Cathodic Protection calculations for subsea pipelines
Mathcad
8
Two phase flow calculation sheet
excel
9
Line size of gas and liquid pipelines
excel
10
DP for single and two phase flow
excel
11
calculation of Pipeline Pressure surge - water hammer
Mathcad
12
Pipeline allowable span DNV 81
Mathcad
13
Pipeline allowable span DNV 2000 F-105
Mathcad
14
Allowable span- Fatigue Life DNV GL14
Mathcad
15
expansion loop calculation
16
Subsea Pipeline expansion analysis
Mathcad
17
Subsea Pipeline on bottom stability analysis
Mathcad
18
On bottom stability check RP E305
Mathcad
19
Pipeline stability (Rock berm)
Mathcad
20
Calculation of saftey chek of pipeline fault crossing
excel
21
Anchor block design
excel
22
J-Tube anchor clamp calculation
Mathcad
23
J-Tube friction clamp calculation
Mathcad
24
Stress check of Welded neck flange
Mathcad
25
Sviwel flange design
Mathcad
excel
Useful Calculation sheets for Oil and Gas Pipeline Engineering (Offshore & Onshore) If you are intrested to order following files pls send your request to
[email protected] The price for this collection is 50 US$
Item no 26
Title Pipeline Settlement in soil
Filetype Mathcad
Construction 27
Horizontal directional drilling calculations for pipeline crossing
excel
28
Pipe stacking calculation
excel
29
Soil modeling of pipeline lies on sea bed
Mathcad
30
Pull force required for Pipeline towing
Mathcad
31
Soil pressure at touch down
Mathcad
32
Simplified analysis for determination of stinger reaction force V-lay, J-lay vs S-lay
Mathcad
General 33
Engineering units converter
excel
34
Pipes and flanges data
excel
35
Calculation of pipe basic properties
excel
36
dew point calculation from psycometric table
excel
37
Preliminary cost estimation for Offshore pipelines
excel
38
Calculation of natural gas properties based on gas composition
excel
SOME EXAMPLES:
Simplified analysis for determination of stinger reaction force V-lay, J-lay vs S-lay Pipe parameters D := 20⋅ in
D = 0.508 m
Pipe outside diameter
t := 20⋅ mm *
t = 0.02 m
Wall thickness
SMYS := 485 ⋅ MPa
Specified Minimum Yield strength
E := 210000⋅ MPa
Youngs modules
ρ st := 7850⋅
kg
density steel
3
m
Environmental paremeters y := 2500⋅ m ρ sw := 1025
Waterdepth kg
Seawater density
3
m
Lay parameter ε LCC := 0.12%
allawable beding strain in sagbend (DNV, LCC criteria)
Calculated pipe parameters
π4
2
2
As := D − ( D − 2t) ⋅
I :=
64 π
4
⋅ D − ( D − 2t)
Wdry := As⋅ ρ st⋅ g B :=
π 4
2
⋅ D ⋅ ρ sw⋅ g
Wsub := Wdry − B
Sg :=
Wdry B
Msag := ε LCC⋅
−E⋅ I 2D
4
2
As = 0.031 m
steel area
−4
I = 9.143 × 10 Wdry = 2.361 B = 2.038
4
m
kN
dry weight
m
kN
buoyancy
m
Wsub = 0.323
moment of inertia
kN
submerged weight
m
Sg = 1.159
relative density of the pipe
Msag = −226.77 kN⋅ m
allowwable bending moment in the sagbend
Stiffened Catenary Calculations in Pipline Laying problem D.A. Dixon, D.R. Rutledge, Journal of Engineering for industry, february 1968
L :=
H :=
D 2 ⋅ ε LCC
1 +
⋅ 1+
D
− 1 2
ε LCC⋅ y⋅ 2 D
− 1 2
ε LCC⋅ y⋅ 2
0.5 3
L = 2.703 × 10 m
estimate catenary lenght
H = 68.4 kN
Lay tension
− 0.5
⋅ Wsub⋅ L
dimensionless horizontal force E⋅ I
α ( L) :=
Wsub⋅ L
h( L , H) :=
3
dimensionless touchdown point
H
E⋅ I
z0( L , H) := −
Wsub⋅ L
( L2⋅ H)
Given
(
2
y = L⋅ h ( L , H) + 1
)0.5 − (h(L , H)2 + z0( L , H) 2)0.5 + α (L)2⋅
1
h(L , H) ⋅(h(L , H) 0.5
2
− z0( L , H)
)
2 0.75
−
h( L , H)
2
(h(L , H)2 + 1)2
(h(L , H) + z ( L , H) ) ⋅ E⋅I h( L , H) Msag = − h( L , H) h(L , H) + z (L , H) L 2
2
0.25
0
2
2
1.5
0
LH := Find( L , H) 3
L := LH0
L = 2.632 × 10 m
Sagbend Length
H := LH1
H = 50 kN
Required Horizontal tension for bending strain criteria
T = 852 kN
Total tension
V = 850.629 kN
Vertical tension
T := H + ( Wsub⋅ L) 2
2
V := Wsub⋅ L π 2
− atan( h ( L , H) ) +
φ := atan
H V
α ( L) ⋅ h ( L , H) ( h ( L , H) + 1 )
= 86.651 deg
lay angle from differential equation
0.75
φ = 86.67 deg
lay angle calculation
(π/2 +φ)/2
(π/2 −φ)/2
(π/2 +φ)/2 φ
φ/2
(π−φ)/2 (π−φ)/2 V - lay clv :=
19.8m sin( φ ) π
β :=
2
clv = 19.833 m
Stinger chord length and radius
clv
VRadius :=
−φ 2
Support reactions:
β = 1.665 deg
chord angle
Rvst := T⋅ 2 sin( β )
Rvst = 49.521 kN
Rh := Rvst⋅ cos( β )
Rh = 49.5 kN
d := sin( β ) ⋅ clv
d = 0.576 m
Rv := Rvst⋅ sin( β )
Rv = 1.439 kN
π
φ
4 + 2
2 cos
VRadius = 341.3 m
T
Sum H = 0
round( H − Rh) = 0 kN
Sum V = 0
round( T − V − R v) = 0 kN
Sum M = 0
round T⋅ d − Rvst⋅
V H
Rh
Rv
R
= 0 kN⋅m
clv 2
vst
V T
J - lay Rhj := H
Rhj = 49.5 kN
Rvj := V
Rvj = 850.629 kN
Rjst := T
Rjst = 852.068 kN
Rhj
R
Sum H = 0 , sum V = 0 and Sum M = 0
H
jst
Rvj S - lay Stinger chord length
β :=
φ 2
cls := 110 ⋅ m
SRadius :=
β = 43.335 deg
SRadius = 80.1 m
cls
2⋅ cos 0.5⋅ ( π − φ )
Rsst := T⋅ 2 sin( β )
Rsst = 1.169 × 10 kN
Rhs := Rsst⋅ sin( β )
Rhs = 802.568 kN
d := sin( β ) ⋅ cls
d = 75.489 m
Rvs := Rsst⋅ cos( β )
Rvs = 850.629 kN
3
Rvs
R
T
Sum H = 0
round( T − H − R hs) = 0 kN
Sum V = 0
round( V − Rvs) = 0 kN
Sum M = 0
round T⋅ d − Rsst⋅
sst
H V Rhs
= 0 kN⋅m
cls 2
Define Units and Conversions and Constants kg ≡ 1M
m ≡ 1L
s ≡ 1T
g ≡ 9.81 ⋅
C ≡ 1Q
2
s
Length Units mm ≡ 0.001⋅ m
m
in ≡ 0.0254 ⋅ m
km ≡ 1000⋅ m
Force/Pressures etc N ≡ kg⋅
m s
Pa ≡
2
N 2
kN ≡ 1000⋅ N
MPa ≡ 1000000 ⋅ Pa
6
MN ≡ 10 ⋅ N
bar ≡ 0.1⋅ MPa
m
kNm ≡ 1000⋅ N⋅ m
psi ≡
1 145
⋅ MPa
Time Units minute ≡ 60⋅ s
hour ≡ 60⋅ minute
day ≡ 24⋅ hour
6
MNm ≡ 10 ⋅ N⋅ m
year ≡ 365 ⋅ day
DASinkage Ver 1.0.1
PROJECT TITLE
PIPELINE SINKAGE CALCULATIONS
Sample calculations Sample calculations INPUT PARAMETERS
Pipe outer diameter Pipe wall thickness Thickness of corrosion coating Concrete coating thickness
d Tp Tcte Tconc
457.20 14.30 6.00 140.00
Density of steel
Ds
7850.00
mm mm mm mm Kg/m3
Density of corrosion coating
Dcte
1400.00
Kg/m3
Density of concrete
Dconc
3192.00
Kg/m3
Dw
1030.00
Kg/m3
Dprod We
1030.00 0.000
Kg/m3
γsoil
9.300
Kg/m KN/m3
C Φ
0.000 30.000
KN/m2 Degrees
P/B
Nq Nc Nγ Wp W cte W conc W cont W bouy W sub D P B QU1
18.40 30.14 15.07 156.193 12.224 855.265 148.604 454.070 718.2160 0.7492 7.0457 0.3171 22.2201
Kg/m Kg/m Kg/m Kg/m Kg/m Kg/m m KN/m m KN/m2
C NC + 0.5 B γsoil Nγ
QU2
22.2200
KN/m2
QU1 - QU2
≈
0.000
-
δ K
35 0.2013
mm N/mm
Density of water Density of pipe content Unit extra weight Submerged density of soil Cohesion of soil (For Clayey Soil only else 0) Angle of Friction of soil (For Sandy Soil only else 0) CALCULATIONS
Brinch Hansen's Bearing capacity factors Unit weight of pipe Unit weight of corrosion coating Unit weight of concrete coating Unit weight of pipeline content Bouyancy of unit length of pipe Submerged unit weight of pipe Pipe overall diameter Submerged unit weight of pipe Pipe width in contact with soil after sinkage Ultimate bearing capacity of soil
e π tan φ tan2 [45 + ( Φ / 2)] [Nq - 1] cot Φ 1.5 [Nq - 1] tan Φ π [d - Tp] Tp Ds π [d + Tcte] Tcte Dcte π [d + 2Tcte + Tconc] Tconc Dconc 0.25 π [d - 2Tp]2 Dprod 0.25 π [d + 2Tcte + 2Tconc]2 Dw W p + W e + W cte + W conc + W con t - W bouy d + 2Tcte + 2Tconc
Ultimate bearing capacity of soil Tolerance of iterations
-
RESULTS
D / 2 - [(D / 2)2 - (B / 2)2 ]1/2 P/δ
Pipe Sinkage [Refer Figure] Soil Stiffness
D
D/2 P δ QU B
DESIGN AIDE - PIPELINE ENGINEERING [http://www.narendranath.itgo.com]
Pipe Sinkage/DASinkage.xls
Pressure Drop Through a Pipe of a Two-Phase Fluid 1. Introduction A mixture of gas and oil flow through a pipeline. This worksheet will use the Lockhart-Martinelli correlation to find the two-phase pressure gradient. 2. Physical Parameters The following physical parameters are known. Pipe relative roughness
e := 0.0001
Pipe diameter
D := 150mm
Liquid flowrate
WL := 20kg⋅ s
Gas flowrate
WG := 2kg⋅ s
Liquid viscosity
µ L := 0.005 ⋅ Pa⋅ s
Gas viscosity
µ G := 1.35⋅ 10
Liquid density
ρ L := 710kg⋅ m
Gas density
ρ G := 2.73kg⋅ m
−1
−1
−5
⋅ Pa⋅ s
−3 −3
3. Mass Fluxes 2
π⋅D
Cross-sectional area of pipe
A :=
Liqud mass flux
WL GL := A
Gas mass flux
GG :=
4
WG A
2
A = 0.018 m
GL = 1131.8 GG = 113.2
kg 2
m ⋅s kg 2
m ⋅s
4. Reynolds Numbers Liquid Reynolds number
ReL :=
Gas Reynolds number
ReG :=
GL⋅ D µL GG⋅ D µG
4
ReL = 3.395 × 10
6
ReG = 1.258 × 10
5. Friction Factors The individual liquid and gas friction factors are calculated with the Colebrook equation. guess value fturb := 0.01 Given 1 fturb
= −2 ⋅ log
(
friction( Re , e) := Find fturb
e 3.7
+
2.51
Re⋅ fturb
)
Liquid friction factor Gas friction factor
( ) fG := friction( ReG , e) fL := friction ReL , e
fL = 0.023 fG = 0.013
6. Individual Pressure Gradients 2
Liquid phase pressure gradient
fL GL dPdLL := ⋅ 2 ρ L⋅ D
Gas phase pressure gradient
fG GG dPdLG := ⋅ 2 ρ G⋅ D
Pa dPdLL = 138.932 m
2
Pa dPdLG = 206.384 m
7. Lockhart-Martinelli Factor and the Total Pressure Gradient The two-phase multiplier will be calculated using the Lockhart-Martinelli paremeter and the correlations provided by Chisholm (1967). Lockhart-Martinelli factor Liquid two-phase multiplier Gas two-phase mutiplier
Xtt :=
dPdLL
Xtt = 0.82
dPdLG −1
Φ L := 1 + 18Xtt
− 2
+ Xtt
Φ G := 1 + 18Xtt + Xtt
2
0.5
Φ L = 4.942
0.5
Φ G = 4.055
Hence the total pressure gradient is calculated using both the gas and liquid two-phase multipliers. They should both be the same. Total pressure gradient
dPdLT_L := dPdLL⋅ Φ L
2
3 Pa dPdLT_L = 3.393 × 10 m
2
3 Pa dPdLT_G = 3.393 × 10 m
dPdLT_G := dPdLG⋅ Φ G
RISER LOCAL BUCKLING
INTRODUCTION This worksheet determines the possibility of local buckle occuring in the riser at the clamp locations using DNV OS F101, October 2010. INPUTS MATERIAL PROPERTIES Nominal Diameter of Pipeline
ODnom := 20in
Actual Outer Diameter of Pipeline
ODac := 20in
Wall Thickness
t := 0.812in
Pipe Material
PLmat :=
Corrosion Allowance
API 5L X42 API 5L X46 API 5L X52 API 5L X56 CA := 0.118in
DESIGN CONDITIONS Design Pressure Design Temperature
Pdes := 2010psi Tdes := 225 °F
Product Description
Product := "FWS"
Density of sea water Water Depth
ρsw := 1025⋅ kg⋅ m WD := 118.5ft
Case
Dcond :=
−3
1. Operating Case 2. Hydrotest Case
AUTOPIPE INPUTS
M F := 139321lbf ⋅ ft
Moment due to Functional Load
M E := 44427lbf ⋅ ft
Moment due to Environmental Load
SF := 9299lbf SE := 4806lbf
Axial load due to Functional Load Axial load due to Environmental Load
DNV OS F101 INPUTS γF := 1.1
Load effect factor for Functional Load, Table 4-4 DNV OS F101
γE := 1.3
Load effect factor for Environmental Load, Table 4-4 DNV OS F101
γC := 1.07
Condition Load effect factor, Table 4-5 DNV OS F101
γm := 1.15
SLS/ULS/ALS = 1.15, FLS = 1, tABLE 5.4 Material resistance factor
γsc := 1.14
Low = 1.04, Medium = 1.14, High = 1.26
fy.temp := 23MPa
Derating value due to temperature of the yield stress- Figure 2, the derating value is considered for values above 50 deg C only for Carbon steel pipes
fu.temp := 23MPa Material Strength factor - Table 5-6 DNV OS F101
αu := 0.96
DERIVED DATA
SMYS
Ssmys = 42000⋅ psi
SMTS
Usmts = 60200⋅ psi
Wall thickness to be used is
t = 0.694⋅ in 4
( ) 4 fu := ( Usmts − fu.temp) ⋅ αu = 5.459 × 10 psi fy := Ssmys − fy.temp ⋅ αu = 3.712 × 10 ⋅ psi
Pressure as a result of the water depth
Phyd := g⋅ WD⋅ ρsw = 52.657 psi fu fcb := min fy , = 3.712 × 104 psi 1.15
2 ⋅ ( t − CA) 2 3 Pbu := ⋅ fcb⋅ = 2.542 × 10 psi ODac − ( t − CA) 3
CALCULATIONS The Design Moment is given by
(
) (
M Sd := M F⋅ γF⋅ γC + M E⋅ γE
)
Inteference and Accidental loads are assumed to be Zero
The plastic capacity for a pipe is given as
(
)2
M p := fy⋅ ODac − t ⋅ t The normalised moment is given as
M Sdn :=
M Sd Mp
= 0.277
The design Effective axial force is given by
(
) (
SSd := SF⋅ γF⋅ γC + SE⋅ γE
)
Inteference and Accidental loads are assumed to be Zero
The plastic capacity of the pipe is given as
(
)
Sp := fy⋅ π⋅ ODac − t ⋅ t The normalised axial force is given as
SSd SSdn := = 0.011 Sp Factor used in combined loading strain is given as β :=
ODac < 15 t ODac 60 − t if 15 ≤ ODac ≤ 60 90 t ODac 0 if > 60 t
0.5 if
β = 0.346 Effect of the D/t ratio is given as
αp :=
Pdes − Phyd 2 < 3 Pbu Pdes − Phyd Pdes − Phyd 2 if 1 − 3 β⋅ 1 − ≥3 Pbu Pbu ( 1 − β) if
αp = 0.761
Flow stress parameter is given as
fu αc := ( 1 − β) + β⋅ = 1.163 fy
LOAD CONTROLLED CONDITION
Pipe members subjected to bending moments, effective axial force and internal overpressure shal be designed to satisfy the condition that the result of the equaltion must be less than 1
2
2 2 M Sdn γm⋅ γsc⋅ SSdn Pdes − Phyd LBpos := γm⋅ γsc⋅ + + αp⋅ = 0.351 αc αc αc⋅ Pbu
is :=
"Not Likely" if LBpos < 1 "Likely" if LBpos ≥ 1
The possibility of buckling at the location is = "Not Likely"
WALL THICKNESS CALCULATION to calculate wall thickness based on Dnv 1981 & ASME B.31.4
PREPARED BY CHECKED BY
: :
IVG
Input data: maximum water depth
dmax := 56m
minimum water depth usage factor
dmin := 20m ηh_1 := 0.72 ηh_2 := 0.5
temperature derating factor
kt := 1
seawater density
lb ρsw := 64 3 ft
maximum external pressure Pe_max := ρsw g dmax minimum external pressure Pe_min := ρsw g dmin
5
Pe_max = 5.63 10 Pa 5
Pe_min = 2.011 10 Pa
pressure design
Pd := 1100psi
outside diameter
D := 28in
corrosion allowance
CA := 2.5mm
Material API 5L X - 52
Specified Minimum Yield Stress
SMYS := 52000psi
Specified Minimum Tensile Stress
SMTS := 66000psi
Modulus Elasticity
E := 207000MPa
STANDARD DNV 1981 Zone 1: Minimum req wall thickness tDNV_1 :=
( Pd - Pe_min) D 2ηh_1 SMYS kt
tDNV_1 = 0.4 in
Nominal wall thickness tnom_1_DNV_sw := t DNV_1 + CA tnom_1_DNV_sw = 0.499 in Zone 2 Minimum req wall thickness
Nominal wall thickness
tDNV_2 :=
( Pd - Pe_min) D 2ηh_2 SMYS kt
tDNV_2 = 0.577 in
tnom_2_DNV_sw := t DNV_2 + CA tnom_2_DNV_sw = 0.675 in
STANDARD ASME B.31.4 Longitudinal joint factor
Ε := 1 8
S := 0.72 Ε SMYS
S = 2.581 10 Pa
Design hoop stress Minimum wall thickness
Nominal wall thickness
t31.4 :=
Pd D 2S
tnom_31.4_sw := t31.4 + CA
SUMMARY AND CONCLUSION DnV 1981 Zone 1 Zone 2
tnom_1_DNV_sw = 0.499 in tnom_2_DNV_sw = 0.675 in
ASME B.314 tnom_31.4_sw = 0.51 in
t31.4 = 0.411 in tnom_31.4_sw = 0.51 in
EN 8673 Subsea Pipeline Engineering
Lecture 10
Winter 2009
Lecture 10 Example #1 Riser Wall Thickness Calculation DEFINED UNITS 6
3
MPa 10 Pa
kPa 10 Pa
9
GPa 10 Pa
C K
3
kN 10 N
PIPELINE SYSTEM PARAMETERS Nominal Outside Diameter
Do 914.4mm
Initial Selection Nominal Wall Thickness (Sec.5 C203 Table 5-3)
tnom 22.1mm
Fabrication Process (Sec.7 B300 Table 7-1) [SMLS, HFW, SAW]
FAB "SAW"
Corrosion Allowance (Sec.6 D203, D204)
tcorr 6mm
Elastic Modulus
E 205GPa
Specified Minimum Yield Stress (Sec.7 B300 Table 7-5; 7-11)
SMYS 450MPa
Speciifed Minimum Tensile Stress (Sec.7 B300 Table 7-5; 7-11)
SMTS 535MPa
Coefficient of Thermal Expansion
αT 1.15 10
Poisson's Ratio
ν 0.3
Pipeline Route Length
Lp 10km
Linepipe Density
ρs 7850kg m
Riser Neoprene Coating Thickness
tc 12.5mm
Riser Neoprene Coating Density
ρc 1450kg m
5 1
C
3
3
OPERATATIONAL PARAMETERS API 38
API Gravity Product Contents Density 3
ρcont 1000 kg m
141.5 131.5 API
ρcont
3
kg
835 m
Design Pressure (Gauge)
Pd 10MPa
Safety Class (Sec.2 C200-C400) [L, M, H]
SC "H"
Design Pressure Reference Level
h ref 25m
Operational Temperature
To 45 C
Tie-in Temperature
Tti 0 C
Maximum Water Depth
h l 0m
Seawater Density
ρw 1025kg m
Hydrotest Fluid Density
ρt 1025kg m
09/02/2009
3
3
Page 1 of 5
EN 8673 Subsea Pipeline Engineering
Lecture 10
Winter 2009
DNV OS-F101 PARTIAL FACTORS AND DESIGN PARAMETERS System Operations Incidental/Design Pressure Factor (Sec.3 Table 3-1)
γinc_o 1.10
System Test Incidental/Design Pressure Factor (Sec.3 Table 3-1)
γinc_t 1.00
Material Resistance Factor (Sec.5 C205 Table 5-4)
γm 1.15
Safety Class Resistance Factor - Operatiosn (Sec.5 C206 Table 5-5)
γSC_o 1.308
Safety Class Resistance Factor - System Test (Sec.5 C206 Table 5-5)
γSC_t 1.046
Material Strength Factor (Sec.5 C306 Table 5-6)
αU 0.96
Maximum Fabrication Factor (Sec.5 C307 Table 5-7) αfab
1.00 if FAB = "SMLS"
αfab
0.85
0.93 if FAB = "HFW" 0.85 if FAB = "SAW" Diameter Fabrication Tolerance(Sec.7 G201 Table 7-17) max 0.5mm 0.0075 Do if FAB = "SMLS" Do d 610mm
ΔDo
ΔDo
3.200 mm
0.01 Do if FAB = "SMLS" Do ! 610mm min max 0.5mm 0.0075 Do 3.2mm if FAB = "HFW" Do d 610mm
min 0.005 Do 3.2mm if FAB = "HFW" Do ! 610mm
min max 0.5mm 0.0075 Do 3.2mm if FAB = "SAW" Do d 610mm min 0.005 Do 3.2mm if FAB = "SAW" Do ! 610mm
Wall Thickness Fabrication Tolerance(Sec.7 G307 Table 7-18) tfab
0.5mm if FAB = "SMLS" tnom d 4mm
tfab
1.000 mm
0.125 tnom if FAB = "SMLS" tnom ! 4mm 0.125 tnom if FAB = "SMLS" tnom t 10mm 0.100 tnom if FAB = "SMLS" tnom t 25mm 3mm if FAB = "SMLS" tnom t 30mm 0.4mm if FAB = "HFW" tnom d 6mm 0.7mm if FAB = "HFW" tnom ! 6mm 1.0mm if FAB = "HFW" tnom ! 15mm 0.5mm if FAB = "SAW" tnom d 6mm 0.7mm if FAB = "SAW" tnom ! 6mm 1.0mm if FAB = "SAW" tnom ! 10mm 1.0mm if FAB = "SAW" tnom ! 20mm
09/02/2009
Page 2 of 5
EN 8673 Subsea Pipeline Engineering
Lecture 10
Winter 2009
Material Derating (Sec.5 C300 Figure 2) ΔSMYS
0MPa if To 50C
ΔSMYS
0.00 MPa
ΔSMYS
0.00 MPa
ª T 50 C § 30MPa ·º if 50 C T 100C « o ¨ ¸» o ¬ © 50 C ¹¼ ª30MPa T 100 C § 40MPa ·º otherwise « o ¨ ¸» ¬ © 100 C ¹¼ ΔSMTS
0MPa if To 50C
ª T 50 C § 30MPa ·º if 50 C T 100C « o ¨ ¸» o ¬ © 50 C ¹¼ ª30MPa T 100 C § 40MPa ·º otherwise « o ¨ ¸» ¬ © 100 C ¹¼ fy ( SMYS ΔSMYS ) αU
fy
432 MPa
fu ( SMTS ΔSMTS) αU
fu
514 MPa
09/02/2009
Page 3 of 5
EN 8673 Subsea Pipeline Engineering
Lecture 10
Winter 2009
ENGINEERING ANALYSIS PIPELINE GEOMETRIC PROPERTIES Ast
π
Ac
π
Ap
π
ª¬Do Do 2 tnom 2
4
4
2
4
2
5
2
Ast
6.20 u 10 mm
ª¬ Do 2 tc Do º¼
Ac
3.64 u 10 mm
Do 2 tc
Ap
6.93 u 10 mm
BF
1.68 kN
Pli
11.20 MPa
Plt
11.76 MPa
Pe
0.00 MPa
4
4
2º
2
¼
2
2
BUOYANCY FORCE CALCULATION BF g m ρw Ap ρc Ac ρs Ast Buoyancy Force Check BFchk
"NEGATIVE BUOYANCY" if BF 0 "FLOTATION" otherwise
BFchk
"FLOTATION"
PRESSURE CONTAINMENT (Sec.5 D200) Local Incidental Pressure During Operations (Sec.4 B202; Sec.5 D203) Pli γinc_o Pd ρcont g h ref h l Local Incidental Pressure System Test (Sec.4 B202; Sec.5 B203 & D203) Plt
γinc_t Pd ρt g h ref h l if γinc_t Pd ρt g h ref h l t Pli 1.03 Pli if SC = "L" 1.05 Pli if SC = "M" 1.05 Pli if SC = "H"
External Hydrostatic Pressure Pe ρw g h l Characteristic Yield Resistance - Operations (Sec.5 D203)
§ ©
fcb_o min¨ fy
· ¸ 1.15 ¹ fu
fcb_o
432.00 MPa
fcb_t
450.00 MPa
Characteristic Yield Resistance - System Test (Sec.5 D203) fcb_t min§¨ SMYS
©
09/02/2009
SMTS · 1.15
¸ ¹
Page 4 of 5
EN 8673 Subsea Pipeline Engineering
Lecture 10
Winter 2009
Wall Thickness Requirement - Operations (Sec.5 D202 Eqn.5.7) Do
t1_o 1
2
γSC_o γm Pli Pe
2 3
t1_o
15.19 mm
fcb_o
Minimum Wall Thickness -Operations (Sec.5 C202 Table 5-2) tmin_o t1_o tfab tcorr
tmin_o
22.19 mm
Wall Thickness Requirement - System Test (Sec.5 D202 Eqn.5.7) Do
t1_t 1
2
γSC_t γm Plt Pe
2 3
t1_t
12.28 mm
fcb_t
Minimum Wall Thickness - System Test (Sec.5 C202 Table 5-2) tmin_t t1_t tfab
tmin_t
13.28 mm
Minimum Wall Thickness Requirement for Pressure Containment tmin max tmin_o tmin_t
tmin
22.19 mm
WALL THICKNESS DESIGN CHECK - PRESSURE CONTAINMENT Wall Thickness Check - Pressure Containment tmin_chk_o
"WT PRESSURE CONTAINMENT OPERATIONS OK" if t nom ! tmin_o "INCREASE WT PRESSURE CONTAINMENT OPERATIONS"
tmin_chk_o
otherwise
"INCREASE WT PRESSURE CONTAINMENT OPERATIONS"
Wall Thickness Check - System Test tmin_chk_t
"WT PRESSURE CONTAINMENT SYSTEM TEST OK"
if t nom ! tmin_t
"INCREASE WT PRESSURE CONTAINMENT SYSTEM TEST" tmin_chk_t
09/02/2009
otherwise
"WT PRESSURE CONTAINMENT SYSTEM TEST OK"
Page 5 of 5