pipeline design calculations.pdf

July 23, 2017 | Author: jimallen212 | Category: Density, Pipeline Transport, Viscosity, Flow Measurement, Gases
Share Embed Donate


Short Description

Pipelin Buckling crossing free span stress upheaval flow assurance expanisin fatigue design...

Description

Useful Calculation sheets for Oil and Gas Pipeline Engineering (Offshore & Onshore) If you are intrested to order following files pls send your request to [email protected] The price for this collection is 50 US$

Item no

Title

Filetype

Design 1

Wall thickness calculation based on asme b31.8

excel

2

Wall thickness calculation based on ASME B31.4 & B31.8 , 30 CFR Part 250, 49 CFR Parts 192 & 195 and DNV OS-F101

Mathcad

3

Wall Thickness calculation based on ISO 13623

Mathcad

4

Upheaval buckling analysis for onshore pipelines

excel

5

Wall Thickness calculation based on ISO 13623

Mathcad

6

Cathodic protection calculations for onshore pipeline

excel

7

Cathodic Protection calculations for subsea pipelines

Mathcad

8

Two phase flow calculation sheet

excel

9

Line size of gas and liquid pipelines

excel

10

DP for single and two phase flow

excel

11

calculation of Pipeline Pressure surge - water hammer

Mathcad

12

Pipeline allowable span DNV 81

Mathcad

13

Pipeline allowable span DNV 2000 F-105

Mathcad

14

Allowable span- Fatigue Life DNV GL14

Mathcad

15

expansion loop calculation

16

Subsea Pipeline expansion analysis

Mathcad

17

Subsea Pipeline on bottom stability analysis

Mathcad

18

On bottom stability check RP E305

Mathcad

19

Pipeline stability (Rock berm)

Mathcad

20

Calculation of saftey chek of pipeline fault crossing

excel

21

Anchor block design

excel

22

J-Tube anchor clamp calculation

Mathcad

23

J-Tube friction clamp calculation

Mathcad

24

Stress check of Welded neck flange

Mathcad

25

Sviwel flange design

Mathcad

excel

Useful Calculation sheets for Oil and Gas Pipeline Engineering (Offshore & Onshore) If you are intrested to order following files pls send your request to [email protected] The price for this collection is 50 US$

Item no 26

Title Pipeline Settlement in soil

Filetype Mathcad

Construction 27

Horizontal directional drilling calculations for pipeline crossing

excel

28

Pipe stacking calculation

excel

29

Soil modeling of pipeline lies on sea bed

Mathcad

30

Pull force required for Pipeline towing

Mathcad

31

Soil pressure at touch down

Mathcad

32

Simplified analysis for determination of stinger reaction force V-lay, J-lay vs S-lay

Mathcad

General 33

Engineering units converter

excel

34

Pipes and flanges data

excel

35

Calculation of pipe basic properties

excel

36

dew point calculation from psycometric table

excel

37

Preliminary cost estimation for Offshore pipelines

excel

38

Calculation of natural gas properties based on gas composition

excel

SOME EXAMPLES:

Simplified analysis for determination of stinger reaction force V-lay, J-lay vs S-lay Pipe parameters D := 20⋅ in

D = 0.508 m

Pipe outside diameter

t := 20⋅ mm *

t = 0.02 m

Wall thickness

SMYS := 485 ⋅ MPa

Specified Minimum Yield strength

E := 210000⋅ MPa

Youngs modules

ρ st := 7850⋅

kg

density steel

3

m

Environmental paremeters y := 2500⋅ m ρ sw := 1025

Waterdepth kg

Seawater density

3

m

Lay parameter ε LCC := 0.12%

allawable beding strain in sagbend (DNV, LCC criteria)

Calculated pipe parameters



 π4

2

2

As := D − ( D − 2t) ⋅

I :=

 64  π

4

⋅ D − ( D − 2t)

Wdry := As⋅ ρ st⋅ g B :=

π 4

2

⋅ D ⋅ ρ sw⋅ g

Wsub := Wdry − B

Sg :=

Wdry B

Msag := ε LCC⋅

−E⋅ I 2D

 4

2

As = 0.031 m

steel area

−4

I = 9.143 × 10 Wdry = 2.361 B = 2.038

4

m

kN

dry weight

m

kN

buoyancy

m

Wsub = 0.323

moment of inertia

kN

submerged weight

m

Sg = 1.159

relative density of the pipe

Msag = −226.77 kN⋅ m

allowwable bending moment in the sagbend

Stiffened Catenary Calculations in Pipline Laying problem D.A. Dixon, D.R. Rutledge, Journal of Engineering for industry, february 1968

L :=

H :=

D 2 ⋅ ε LCC

1 +



⋅ 1+

D

 − 1 2

ε LCC⋅ y⋅ 2 D

 − 1 2

ε LCC⋅ y⋅ 2

0.5 3

L = 2.703 × 10 m

estimate catenary lenght

H = 68.4 kN

Lay tension

− 0.5

⋅ Wsub⋅ L

dimensionless horizontal force E⋅ I

α ( L) :=

Wsub⋅ L

h( L , H) :=

3

dimensionless touchdown point

H

E⋅ I

z0( L , H) := −

Wsub⋅ L

( L2⋅ H)

Given

( 

2

y = L⋅ h ( L , H) + 1

)0.5 − (h(L , H)2 + z0( L , H) 2)0.5 + α (L)2⋅ 

1

h(L , H) ⋅(h(L , H) 0.5

2

− z0( L , H)

)

2 0.75



h( L , H)

2



(h(L , H)2 + 1)2

(h(L , H) + z ( L , H) )  ⋅ E⋅I h( L , H) Msag =  − h( L , H) h(L , H) + z (L , H) L 2

2

0.25

0

2

2

1.5

0

LH := Find( L , H) 3

L := LH0

L = 2.632 × 10 m

Sagbend Length

H := LH1

H = 50 kN

Required Horizontal tension for bending strain criteria

T = 852 kN

Total tension

V = 850.629 kN

Vertical tension

T := H + ( Wsub⋅ L) 2

2

V := Wsub⋅ L π 2



− atan( h ( L , H) ) +

φ := atan

H V

α ( L) ⋅ h ( L , H) ( h ( L , H) + 1 )

 = 86.651 deg

lay angle from differential equation

0.75

φ = 86.67 deg

lay angle calculation

(π/2 +φ)/2

(π/2 −φ)/2

(π/2 +φ)/2 φ

φ/2

(π−φ)/2 (π−φ)/2 V - lay clv :=

19.8m sin( φ ) π

β :=

2

clv = 19.833 m

Stinger chord length and radius

clv

VRadius :=

−φ 2

Support reactions:

β = 1.665 deg

chord angle

Rvst := T⋅ 2 sin( β )

Rvst = 49.521 kN

Rh := Rvst⋅ cos( β )

Rh = 49.5 kN

d := sin( β ) ⋅ clv

d = 0.576 m

Rv := Rvst⋅ sin( β )

Rv = 1.439 kN

π

φ

4 + 2

2 cos

VRadius = 341.3 m

T

Sum H = 0

round( H − Rh) = 0 kN

Sum V = 0

round( T − V − R v) = 0 kN

Sum M = 0

round T⋅ d − Rvst⋅

V H

Rh

Rv

R



 = 0 kN⋅m

clv 2

vst

V T

J - lay Rhj := H

Rhj = 49.5 kN

Rvj := V

Rvj = 850.629 kN

Rjst := T

Rjst = 852.068 kN

Rhj

R

Sum H = 0 , sum V = 0 and Sum M = 0

H

jst

Rvj S - lay Stinger chord length

β :=

φ 2



cls := 110 ⋅ m

SRadius :=

β = 43.335 deg

SRadius = 80.1 m

cls



2⋅ cos 0.5⋅ ( π − φ )

Rsst := T⋅ 2 sin( β )

Rsst = 1.169 × 10 kN

Rhs := Rsst⋅ sin( β )

Rhs = 802.568 kN

d := sin( β ) ⋅ cls

d = 75.489 m

Rvs := Rsst⋅ cos( β )

Rvs = 850.629 kN

3

Rvs

R

T

Sum H = 0

round( T − H − R hs) = 0 kN

Sum V = 0

round( V − Rvs) = 0 kN

Sum M = 0

round T⋅ d − Rsst⋅

sst

H V Rhs



 = 0 kN⋅m

cls 2

Define Units and Conversions and Constants kg ≡ 1M

m ≡ 1L

s ≡ 1T

g ≡ 9.81 ⋅

C ≡ 1Q

2

s

Length Units mm ≡ 0.001⋅ m

m

in ≡ 0.0254 ⋅ m

km ≡ 1000⋅ m

Force/Pressures etc N ≡ kg⋅

m s

Pa ≡

2

N 2

kN ≡ 1000⋅ N

MPa ≡ 1000000 ⋅ Pa

6

MN ≡ 10 ⋅ N

bar ≡ 0.1⋅ MPa

m

kNm ≡ 1000⋅ N⋅ m

psi ≡

1 145

⋅ MPa

Time Units minute ≡ 60⋅ s

hour ≡ 60⋅ minute

day ≡ 24⋅ hour

6

MNm ≡ 10 ⋅ N⋅ m

year ≡ 365 ⋅ day

DASinkage Ver 1.0.1

PROJECT TITLE

PIPELINE SINKAGE CALCULATIONS

Sample calculations Sample calculations INPUT PARAMETERS

Pipe outer diameter Pipe wall thickness Thickness of corrosion coating Concrete coating thickness

d Tp Tcte Tconc

457.20 14.30 6.00 140.00

Density of steel

Ds

7850.00

mm mm mm mm Kg/m3

Density of corrosion coating

Dcte

1400.00

Kg/m3

Density of concrete

Dconc

3192.00

Kg/m3

Dw

1030.00

Kg/m3

Dprod We

1030.00 0.000

Kg/m3

γsoil

9.300

Kg/m KN/m3

C Φ

0.000 30.000

KN/m2 Degrees

P/B

Nq Nc Nγ Wp W cte W conc W cont W bouy W sub D P B QU1

18.40 30.14 15.07 156.193 12.224 855.265 148.604 454.070 718.2160 0.7492 7.0457 0.3171 22.2201

Kg/m Kg/m Kg/m Kg/m Kg/m Kg/m m KN/m m KN/m2

C NC + 0.5 B γsoil Nγ

QU2

22.2200

KN/m2

QU1 - QU2



0.000

-

δ K

35 0.2013

mm N/mm

Density of water Density of pipe content Unit extra weight Submerged density of soil Cohesion of soil (For Clayey Soil only else 0) Angle of Friction of soil (For Sandy Soil only else 0) CALCULATIONS

Brinch Hansen's Bearing capacity factors Unit weight of pipe Unit weight of corrosion coating Unit weight of concrete coating Unit weight of pipeline content Bouyancy of unit length of pipe Submerged unit weight of pipe Pipe overall diameter Submerged unit weight of pipe Pipe width in contact with soil after sinkage Ultimate bearing capacity of soil

e π tan φ tan2 [45 + ( Φ / 2)] [Nq - 1] cot Φ 1.5 [Nq - 1] tan Φ π [d - Tp] Tp Ds π [d + Tcte] Tcte Dcte π [d + 2Tcte + Tconc] Tconc Dconc 0.25 π [d - 2Tp]2 Dprod 0.25 π [d + 2Tcte + 2Tconc]2 Dw W p + W e + W cte + W conc + W con t - W bouy d + 2Tcte + 2Tconc

Ultimate bearing capacity of soil Tolerance of iterations

-

RESULTS

D / 2 - [(D / 2)2 - (B / 2)2 ]1/2 P/δ

Pipe Sinkage [Refer Figure] Soil Stiffness

D

D/2 P δ QU B

DESIGN AIDE - PIPELINE ENGINEERING [http://www.narendranath.itgo.com]

Pipe Sinkage/DASinkage.xls

Pressure Drop Through a Pipe of a Two-Phase Fluid 1. Introduction A mixture of gas and oil flow through a pipeline. This worksheet will use the Lockhart-Martinelli correlation to find the two-phase pressure gradient. 2. Physical Parameters The following physical parameters are known. Pipe relative roughness

e := 0.0001

Pipe diameter

D := 150mm

Liquid flowrate

WL := 20kg⋅ s

Gas flowrate

WG := 2kg⋅ s

Liquid viscosity

µ L := 0.005 ⋅ Pa⋅ s

Gas viscosity

µ G := 1.35⋅ 10

Liquid density

ρ L := 710kg⋅ m

Gas density

ρ G := 2.73kg⋅ m

−1

−1

−5

⋅ Pa⋅ s

−3 −3

3. Mass Fluxes 2

π⋅D

Cross-sectional area of pipe

A :=

Liqud mass flux

WL GL := A

Gas mass flux

GG :=

4

WG A

2

A = 0.018 m

GL = 1131.8 GG = 113.2

kg 2

m ⋅s kg 2

m ⋅s

4. Reynolds Numbers Liquid Reynolds number

ReL :=

Gas Reynolds number

ReG :=

GL⋅ D µL GG⋅ D µG

4

ReL = 3.395 × 10

6

ReG = 1.258 × 10

5. Friction Factors The individual liquid and gas friction factors are calculated with the Colebrook equation. guess value fturb := 0.01 Given 1 fturb

= −2 ⋅ log



(

friction( Re , e) := Find fturb

e 3.7

+

2.51

 

Re⋅ fturb 

)

Liquid friction factor Gas friction factor

( ) fG := friction( ReG , e) fL := friction ReL , e

fL = 0.023 fG = 0.013

6. Individual Pressure Gradients 2

Liquid phase pressure gradient

fL GL dPdLL := ⋅ 2 ρ L⋅ D

Gas phase pressure gradient

fG GG dPdLG := ⋅ 2 ρ G⋅ D

Pa dPdLL = 138.932 m

2

Pa dPdLG = 206.384 m

7. Lockhart-Martinelli Factor and the Total Pressure Gradient The two-phase multiplier will be calculated using the Lockhart-Martinelli paremeter and the correlations provided by Chisholm (1967). Lockhart-Martinelli factor Liquid two-phase multiplier Gas two-phase mutiplier

Xtt :=

dPdLL

Xtt = 0.82

dPdLG −1

Φ L :=  1 + 18Xtt 

− 2

+ Xtt

Φ G :=  1 + 18Xtt + Xtt 

2



0.5

Φ L = 4.942

0.5



Φ G = 4.055

Hence the total pressure gradient is calculated using both the gas and liquid two-phase multipliers. They should both be the same. Total pressure gradient

dPdLT_L := dPdLL⋅ Φ L

2

3 Pa dPdLT_L = 3.393 × 10 m

2

3 Pa dPdLT_G = 3.393 × 10 m

dPdLT_G := dPdLG⋅ Φ G

RISER LOCAL BUCKLING

INTRODUCTION This worksheet determines the possibility of local buckle occuring in the riser at the clamp locations using DNV OS F101, October 2010. INPUTS MATERIAL PROPERTIES Nominal Diameter of Pipeline

ODnom := 20in

Actual Outer Diameter of Pipeline

ODac := 20in

Wall Thickness

t := 0.812in

Pipe Material

PLmat :=

Corrosion Allowance

API 5L X42 API 5L X46 API 5L X52 API 5L X56 CA := 0.118in

DESIGN CONDITIONS Design Pressure Design Temperature

Pdes := 2010psi Tdes := 225 °F

Product Description

Product := "FWS"

Density of sea water Water Depth

ρsw := 1025⋅ kg⋅ m WD := 118.5ft

Case

Dcond :=

−3

1. Operating Case 2. Hydrotest Case

AUTOPIPE INPUTS

M F := 139321lbf ⋅ ft

Moment due to Functional Load

M E := 44427lbf ⋅ ft

Moment due to Environmental Load

SF := 9299lbf SE := 4806lbf

Axial load due to Functional Load Axial load due to Environmental Load

DNV OS F101 INPUTS γF := 1.1

Load effect factor for Functional Load, Table 4-4 DNV OS F101

γE := 1.3

Load effect factor for Environmental Load, Table 4-4 DNV OS F101

γC := 1.07

Condition Load effect factor, Table 4-5 DNV OS F101

γm := 1.15

SLS/ULS/ALS = 1.15, FLS = 1, tABLE 5.4 Material resistance factor

γsc := 1.14

Low = 1.04, Medium = 1.14, High = 1.26

fy.temp := 23MPa

Derating value due to temperature of the yield stress- Figure 2, the derating value is considered for values above 50 deg C only for Carbon steel pipes

fu.temp := 23MPa Material Strength factor - Table 5-6 DNV OS F101

αu := 0.96

DERIVED DATA

SMYS

Ssmys = 42000⋅ psi

SMTS

Usmts = 60200⋅ psi

Wall thickness to be used is

t = 0.694⋅ in 4

( ) 4 fu := ( Usmts − fu.temp) ⋅ αu = 5.459 × 10 psi fy := Ssmys − fy.temp ⋅ αu = 3.712 × 10 ⋅ psi

Pressure as a result of the water depth

Phyd := g⋅ WD⋅ ρsw = 52.657 psi fu   fcb := min fy ,  = 3.712 × 104 psi  1.15 

2 ⋅ ( t − CA)  2 3 Pbu :=  ⋅ fcb⋅ = 2.542 × 10 psi  ODac − ( t − CA) 3  

CALCULATIONS The Design Moment is given by

(

) (

M Sd := M F⋅ γF⋅ γC + M E⋅ γE

)

Inteference and Accidental loads are assumed to be Zero

The plastic capacity for a pipe is given as

(

)2

M p := fy⋅ ODac − t ⋅ t The normalised moment is given as

M Sdn :=

M Sd Mp

= 0.277

The design Effective axial force is given by

(

) (

SSd := SF⋅ γF⋅ γC + SE⋅ γE

)

Inteference and Accidental loads are assumed to be Zero

The plastic capacity of the pipe is given as

(

)

Sp := fy⋅ π⋅ ODac − t ⋅ t The normalised axial force is given as

SSd SSdn := = 0.011 Sp Factor used in combined loading strain is given as β :=

 ODac    < 15  t   ODac  60 −    t  if 15 ≤  ODac  ≤ 60 90  t   ODac  0 if   > 60  t 

0.5 if

β = 0.346 Effect of the D/t ratio is given as

αp :=

 Pdes − Phyd   2    < 3 Pbu     Pdes − Phyd     Pdes − Phyd  2 if  1 − 3 β⋅  1 −   ≥3 Pbu Pbu      ( 1 − β) if

αp = 0.761

Flow stress parameter is given as

 fu  αc := ( 1 − β) + β⋅   = 1.163  fy 

LOAD CONTROLLED CONDITION

Pipe members subjected to bending moments, effective axial force and internal overpressure shal be designed to satisfy the condition that the result of the equaltion must be less than 1

2

2 2  M Sdn   γm⋅ γsc⋅ SSdn     Pdes − Phyd   LBpos :=  γm⋅ γsc⋅ +   + αp⋅   = 0.351  αc αc αc⋅ Pbu       

is :=

"Not Likely" if LBpos < 1 "Likely" if LBpos ≥ 1

The possibility of buckling at the location is = "Not Likely"

WALL THICKNESS CALCULATION to calculate wall thickness based on Dnv 1981 & ASME B.31.4

PREPARED BY CHECKED BY

: :

IVG

Input data: maximum water depth

dmax := 56m

minimum water depth usage factor

dmin := 20m ηh_1 := 0.72 ηh_2 := 0.5

temperature derating factor

kt := 1

seawater density

lb ρsw := 64 3 ft

maximum external pressure Pe_max := ρsw g dmax minimum external pressure Pe_min := ρsw g dmin

5

Pe_max = 5.63  10 Pa 5

Pe_min = 2.011  10 Pa

pressure design

Pd := 1100psi

outside diameter

D := 28in

corrosion allowance

CA := 2.5mm

Material API 5L X - 52

Specified Minimum Yield Stress

SMYS := 52000psi

Specified Minimum Tensile Stress

SMTS := 66000psi

Modulus Elasticity

E := 207000MPa

STANDARD DNV 1981 Zone 1: Minimum req wall thickness tDNV_1 :=

( Pd - Pe_min) D 2ηh_1  SMYS  kt

tDNV_1 = 0.4 in

Nominal wall thickness tnom_1_DNV_sw := t DNV_1 + CA tnom_1_DNV_sw = 0.499 in Zone 2 Minimum req wall thickness

Nominal wall thickness

tDNV_2 :=

( Pd - Pe_min) D 2ηh_2  SMYS  kt

tDNV_2 = 0.577 in

tnom_2_DNV_sw := t DNV_2 + CA tnom_2_DNV_sw = 0.675 in

STANDARD ASME B.31.4 Longitudinal joint factor

Ε := 1 8

S := 0.72 Ε SMYS

S = 2.581  10 Pa

Design hoop stress Minimum wall thickness

Nominal wall thickness

t31.4 :=

Pd D 2S

tnom_31.4_sw := t31.4 + CA

SUMMARY AND CONCLUSION DnV 1981 Zone 1 Zone 2

tnom_1_DNV_sw = 0.499 in tnom_2_DNV_sw = 0.675 in

ASME B.314 tnom_31.4_sw = 0.51 in

t31.4 = 0.411 in tnom_31.4_sw = 0.51 in

EN 8673 Subsea Pipeline Engineering

Lecture 10

Winter 2009

Lecture 10 Example #1 Riser Wall Thickness Calculation DEFINED UNITS 6

3

MPa  10 Pa

kPa  10 Pa

9

GPa  10 Pa

C K

3

kN  10 N

PIPELINE SYSTEM PARAMETERS Nominal Outside Diameter

Do  914.4mm

Initial Selection Nominal Wall Thickness (Sec.5 C203 Table 5-3)

tnom  22.1mm

Fabrication Process (Sec.7 B300 Table 7-1) [SMLS, HFW, SAW]

FAB  "SAW"

Corrosion Allowance (Sec.6 D203, D204)

tcorr  6mm

Elastic Modulus

E  205GPa

Specified Minimum Yield Stress (Sec.7 B300 Table 7-5; 7-11)

SMYS  450MPa

Speciifed Minimum Tensile Stress (Sec.7 B300 Table 7-5; 7-11)

SMTS  535MPa

Coefficient of Thermal Expansion

αT  1.15 ˜ 10

Poisson's Ratio

ν  0.3

Pipeline Route Length

Lp  10km

Linepipe Density

ρs  7850kg ˜ m

Riser Neoprene Coating Thickness

tc  12.5mm

Riser Neoprene Coating Density

ρc  1450kg ˜ m

5 1

C

3

3

OPERATATIONAL PARAMETERS API  38

API Gravity Product Contents Density 3

ρcont  1000 ˜ kg ˜ m

˜

141.5 131.5  API

ρcont

3

˜ kg

835 m

Design Pressure (Gauge)

Pd  10MPa

Safety Class (Sec.2 C200-C400) [L, M, H]

SC  "H"

Design Pressure Reference Level

h ref  25m

Operational Temperature

To  45 ˜ C

Tie-in Temperature

Tti  0 ˜ C

Maximum Water Depth

h l  0m

Seawater Density

ρw  1025kg ˜ m

Hydrotest Fluid Density

ρt  1025kg ˜ m

09/02/2009

3

3

Page 1 of 5

EN 8673 Subsea Pipeline Engineering

Lecture 10

Winter 2009

DNV OS-F101 PARTIAL FACTORS AND DESIGN PARAMETERS System Operations Incidental/Design Pressure Factor (Sec.3 Table 3-1)

γinc_o  1.10

System Test Incidental/Design Pressure Factor (Sec.3 Table 3-1)

γinc_t  1.00

Material Resistance Factor (Sec.5 C205 Table 5-4)

γm  1.15

Safety Class Resistance Factor - Operatiosn (Sec.5 C206 Table 5-5)

γSC_o  1.308

Safety Class Resistance Factor - System Test (Sec.5 C206 Table 5-5)

γSC_t  1.046

Material Strength Factor (Sec.5 C306 Table 5-6)

αU  0.96

Maximum Fabrication Factor (Sec.5 C307 Table 5-7) αfab 

1.00 if FAB = "SMLS"

αfab

0.85

0.93 if FAB = "HFW" 0.85 if FAB = "SAW" Diameter Fabrication Tolerance(Sec.7 G201 Table 7-17) max 0.5mm 0.0075 ˜ Do if FAB = "SMLS" š Do d 610mm

ΔDo 

ΔDo

3.200 ˜ mm

0.01 ˜ Do if FAB = "SMLS" š Do ! 610mm min max 0.5mm 0.0075 ˜ Do 3.2mm if FAB = "HFW" š Do d 610mm

min 0.005 ˜ Do 3.2mm if FAB = "HFW" š Do ! 610mm

min max 0.5mm 0.0075 ˜ Do 3.2mm if FAB = "SAW" š Do d 610mm min 0.005 ˜ Do 3.2mm if FAB = "SAW" š Do ! 610mm

Wall Thickness Fabrication Tolerance(Sec.7 G307 Table 7-18) tfab 

0.5mm if FAB = "SMLS" š tnom d 4mm

tfab

1.000 ˜ mm

0.125 ˜ tnom if FAB = "SMLS" š tnom ! 4mm 0.125 ˜ tnom if FAB = "SMLS" š tnom t 10mm 0.100 ˜ tnom if FAB = "SMLS" š tnom t 25mm 3mm if FAB = "SMLS" š tnom t 30mm 0.4mm if FAB = "HFW" š tnom d 6mm 0.7mm if FAB = "HFW" š tnom ! 6mm 1.0mm if FAB = "HFW" š tnom ! 15mm 0.5mm if FAB = "SAW" š tnom d 6mm 0.7mm if FAB = "SAW" š tnom ! 6mm 1.0mm if FAB = "SAW" š tnom ! 10mm 1.0mm if FAB = "SAW" š tnom ! 20mm

09/02/2009

Page 2 of 5

EN 8673 Subsea Pipeline Engineering

Lecture 10

Winter 2009

Material Derating (Sec.5 C300 Figure 2) ΔSMYS 

0MPa if To  50C

ΔSMYS

0.00 ˜ MPa

ΔSMYS

0.00 ˜ MPa

ª T  50 ˜ C ˜ § 30MPa ·º if 50 ˜ C  T  100C « o ¨ ¸» o ¬ © 50 ˜ C ¹¼ ª30MPa  T  100 ˜ C ˜ § 40MPa ·º otherwise « o ¨ ¸» ¬ © 100 ˜ C ¹¼ ΔSMTS 

0MPa if To  50C

ª T  50 ˜ C ˜ § 30MPa ·º if 50 ˜ C  T  100C « o ¨ ¸» o ¬ © 50 ˜ C ¹¼ ª30MPa  T  100 ˜ C ˜ § 40MPa ·º otherwise « o ¨ ¸» ¬ © 100 ˜ C ¹¼ fy  ( SMYS  ΔSMYS ) ˜ αU

fy

432 ˜ MPa

fu  ( SMTS  ΔSMTS) ˜ αU

fu

514 ˜ MPa

09/02/2009

Page 3 of 5

EN 8673 Subsea Pipeline Engineering

Lecture 10

Winter 2009

ENGINEERING ANALYSIS PIPELINE GEOMETRIC PROPERTIES Ast 

π

Ac 

π

Ap 

π

˜ ª¬Do  Do  2 ˜ tnom 2

4

4

2

4

2

5

2

Ast

6.20 u 10 ˜ mm

˜ ª¬ Do  2 ˜ tc  Do º¼

Ac

3.64 u 10 ˜ mm

˜ Do  2 ˜ tc

Ap

6.93 u 10 ˜ mm

BF

1.68 ˜ kN

Pli

11.20 ˜ MPa

Plt

11.76 ˜ MPa

Pe

0.00 ˜ MPa

4

4



2

¼

2

2

BUOYANCY FORCE CALCULATION BF  g ˜ m ˜ ρw ˜ Ap  ρc ˜ Ac  ρs ˜ Ast Buoyancy Force Check BFchk 

"NEGATIVE BUOYANCY" if BF  0 "FLOTATION" otherwise

BFchk

"FLOTATION"

PRESSURE CONTAINMENT (Sec.5 D200) Local Incidental Pressure During Operations (Sec.4 B202; Sec.5 D203) Pli  γinc_o ˜ Pd  ρcont ˜ g ˜ h ref  h l Local Incidental Pressure System Test (Sec.4 B202; Sec.5 B203 & D203) Plt 

γinc_t ˜ Pd  ρt ˜ g ˜ h ref  h l if γinc_t ˜ Pd  ρt ˜ g ˜ h ref  h l t Pli 1.03 ˜ Pli if SC = "L" 1.05 ˜ Pli if SC = "M" 1.05 ˜ Pli if SC = "H"

External Hydrostatic Pressure Pe  ρw ˜ g ˜ h l Characteristic Yield Resistance - Operations (Sec.5 D203)

§ ©

fcb_o  min¨ fy 

· ¸ 1.15 ¹ fu

fcb_o

432.00 ˜ MPa

fcb_t

450.00 ˜ MPa

Characteristic Yield Resistance - System Test (Sec.5 D203) fcb_t  min§¨ SMYS 

©

09/02/2009

SMTS · 1.15

¸ ¹

Page 4 of 5

EN 8673 Subsea Pipeline Engineering

Lecture 10

Winter 2009

Wall Thickness Requirement - Operations (Sec.5 D202 Eqn.5.7) Do

t1_o  1

2

˜

γSC_o ˜ γm ˜ Pli  Pe

2 3

t1_o

15.19 ˜ mm

˜ fcb_o

Minimum Wall Thickness -Operations (Sec.5 C202 Table 5-2) tmin_o  t1_o  tfab  tcorr

tmin_o

22.19 ˜ mm

Wall Thickness Requirement - System Test (Sec.5 D202 Eqn.5.7) Do

t1_t  1

2

γSC_t ˜ γm ˜ Plt  Pe

˜

2 3

t1_t

12.28 ˜ mm

˜ fcb_t

Minimum Wall Thickness - System Test (Sec.5 C202 Table 5-2) tmin_t  t1_t  tfab

tmin_t

13.28 ˜ mm

Minimum Wall Thickness Requirement for Pressure Containment tmin  max tmin_o tmin_t

tmin

22.19 ˜ mm

WALL THICKNESS DESIGN CHECK - PRESSURE CONTAINMENT Wall Thickness Check - Pressure Containment tmin_chk_o 

"WT PRESSURE CONTAINMENT OPERATIONS OK" if t nom ! tmin_o "INCREASE WT PRESSURE CONTAINMENT OPERATIONS"

tmin_chk_o

otherwise

"INCREASE WT PRESSURE CONTAINMENT OPERATIONS"

Wall Thickness Check - System Test tmin_chk_t 

"WT PRESSURE CONTAINMENT SYSTEM TEST OK"

if t nom ! tmin_t

"INCREASE WT PRESSURE CONTAINMENT SYSTEM TEST" tmin_chk_t

09/02/2009

otherwise

"WT PRESSURE CONTAINMENT SYSTEM TEST OK"

Page 5 of 5

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF