Piling-Design-Re 1.pdf
Short Description
Download Piling-Design-Re 1.pdf...
Description
PIL ING DESIGN PILING CALCULATIONS
PROPOSED 33 STOREY OFFICE TOWER Plot Plo t No. 03251264 03251264 @ SEEF SEEF AREA, BAHRAIN
JULY, JUL Y, 2009 2009
List of Contents:
1.0 Location plan 2.0 Soil Report 3.0 Piling Design Calculations Calculations 3.1 900mm Bored Pile 4.0 Reinforcement Details 5.0 Load Test Procedure 6.0 Concrete Mix Design
Location Plan
Soil Report
Piling Design Calculations
900mm Bored Pile
Pile Capacity In Compression
Diamater :
900
mm, pile diameter
FOS 1 :
3.00
factor of safety for skin friction
FOS 2 :
3.00
factor of safety for base resistance
Depth
Ultimate Allowable friction friction
0 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10.5 11.5 12.5 14.5 15.5 16.5 18.5 19.5 20.5 21.5 22.5 23.5
0 0 0 2 6 14 23 34 48 63 79 98 124 150 179 211 247 286 333 672 1,011 1,351 2,029 2,369 2,708 3,386 3,726 4,065 4,404 4,744 5,083
Ultimate Allowable end bearing end bearing 0 0 0 126 207 2,032 1,017 892 1,052 1,199 905 1,087 3,904 2,731 3,027 3,330 5,707 5,224 5,726 5,726 5,726 5,726 5,726 5,726 5,726 5,726 5,726 5,726 5,726 5,726 5,726
0 0 0 1 2 5 8 11 16 21 26 33 41 50 60 70 82 95 111 224 337 450 676 790 903 1,129 1,242 1,355 1,468 1,581 1,694
Wt. of
Pile
0 0 0 42 69 677 339 297 351 400 302 362 1,301 910 1,009 1,110 1,902 1,741 1,909 1,909 1,909 1,909 1,909 1,909 1,909 1,909 1,909 1,909 1,909 1,909 1,909
0 0 0 8 15 23 31 38 46 53 61 69 76 84 92 99 107 114 122 137 153 168 198 214 229 259 275 290 305 320 336
Ultimate Capacity 0 0 0 128 212 2,046 1,040 926 1,099 1,262 984 1,185 4,027 2,881 3,206 3,541 5,954 5,510 6,058 6,398 6,737 7,076 7,755 8,094 8,433 9,112 9,451 9,791 10,130 10,469 10,808
Allowable
Pile Capacity (KN)
Capacity 0 0 0 35 55 659 316 271 321 367 267 326 1,266 876 977 1,081 1,878 1,722 1,897 1,995 2,093 2,191 2,387 2,484 2,582 2,778 2,876 2,974 3,071 3,169 3,267
0 0
10,000 0 0 35 128 55 212 659 316
2,046
1,040
271 926 321
5
367 267 326
1,099 1,262 984 1,185 1,266
4,027
876
2,881
977
3,206
1,081
3,541 1,878
) m ( L G w o l e b h t p e D
5,954
1,722
5,510
1,897
10
6,058
1,995
6,398
2,093
6,737
2,191
7,076
2,387
15
7,755
2,484
8,094
2,582
8,433
2,778
9,112
2,876
20
9,451
2,974
9,791
3,071
10,130
3,169
10,469
3,267
L pile =
19.5
m, provided pile length below road level
=
18.5
m, pile length below Cut-off level
2,876
kN, provided pile capacity
2,800
kN, Required pile capacity
P prov. P req. =
Project : Subject : Input : Diamater : Type : FOS 1 : FOS 2 : fcu : Preq : Ts = Stc : Wt :
Piling Work Calculation of Bored pile Based on BH (3)
900 Bored Pile 3 3 40 2800 0 6,364 189
mm, pile diameter
Layer Thick.
Soil Type
REF pile:
blows
1
(m)
3
(kN/m )
Pile Total Capacity
Allowable
Sheet 1 of 2
9,000 120 1.0 0.90 0.67 1.0 200 200
kPa kPa m, water table below ground level coefficient of earth pressure ratio of sliding angle/friction angle m, cut off level below NGL max SPT allowed max allowable vertical overburden prusser
Rock Parameters γ
penetration
25
Since Pprov > Preq ------> OK Pile length is Ad equate
factor of safety for skin friction factor of safety for base resistance N/mm2, concrete strength kN, Design Working Load kN, Design tension load Structural Capacity kN, weight of pile
SPT
10,808
Ultimate
fb(max) = fs(max) = WT = ks: δ/φ : COL = SPT (max) = Sv'(max) =
Soil Parameters RL (m)
20,000
0
For SOIL
For ROCK
RQD
quc
SPT
Sv'
ks x Sv'
(%)
(MPa)
actual
(kPa)
(kPa)
0
0 0 4 8 12 16
0 0 3 7 11 15
0.34 0.34 0.40 0.37 0.53 0.45
31 31 55 41 264 98
0.13 0.13 0.13 0.13 0.13 0.13
tan(δ)
(Nq-1)
α
fs
Ps
fb
Pb
(kPa)
(kN)
(kPa)
(kN)
0.65 0.65 0.65 0.65 0.65 0.65
0 0 1 3 6 7
0 0 2 6 14 23
0 0 198 325 3,195 1,598
0 0 126 207 2,032 1,017
β
(mm)
0 1 1.5 2 2.5 3 3.5
SAND SAND SAND SAND SAND CLAY
0 19 15 3 1 39 14
1 0.5 0.5 0.5 0.5 0.5
2
4 4.5 5 5.5 6 6.5
0.5 0.5 0.5 0.5 0.5 0.5
1
2
CLAY CLAY CLAY CLAY CLAY SAND
8 8 8 2 3 23
300 300 300 300 300 225
17 17 17 17 17 17
16 16 16 16 16 16
8 8 8 2 3 31
21 25 29 33 38 42
19 22 26 30 34 38
0.42 0.42 0.42 0.38 0.39 0.49
68 67 65 43 45 147
0.13 0.13 0.13 0.13 0.13 0.13
0.65 0.65 0.65 0.65 0.65 0.65
8 9 11 11 13 18
34 48 63 79 98 124
1,402 1,653 1,885 1,422 1,709 6,136
892 1,052 1,199 905 1,087 3,904
7
0.5
7.5
0.5
2
SAND
18
300
17
16
18
46
41
0.45
93
0.13
0.65
19
150
4,293
2,731
2
SAND
19
300
17
16
19
50
45
0.45
95
0.13
0.65
20
179
4,758
8
3,027
0.5
2
SAND
20
300
17
16
20
55
49
0.45
96
0.13
0.65
22
211
5,234
3,330
8.5
0.5
2
SAND
27
225
17
16
36
59
53
0.49
152
0.13
0.65
26
247
8,971
5,707
9 9.5
0.5 0.5
2 2
SAND SAND
31 50
300 150
17 17
16 16
31 100
63 67
57 61
0.48 0.55
130 255
0.13 0.13
0.65 0.65
27 33
286 333
8,211 9,000
5,224 5,726
10.5
1
4
ROCK
17
0
16
71
64
0.34
27
0.13
0.65
120
672
9,000
5,726
11.5
1
4
ROCK
20
0
20
81
73
0.34
26
0.11
0.65
120
1,011
9,000
5,726
2 2 2 2 1
1 1 1 1
300 300 300 300 300 300
17 17 17 17 17 17
0 16 16 16 16 16 16
19 15 3 1 39 14
Project : Subject : Input : Diamater : Type : FOS 1 : FOS 2 : fcu : Preq : Ts = Stc : Wt :
Piling Work Calculation of Bored pile Based on BH (3)
900 Bored Pile 3 3 40 2800 0 6,364 189
mm, pile diameter
Layer Thick.
Soil Type
REF pile:
factor of safety for skin friction factor of safety for base resistance N/mm2, concrete strength kN, Design Working Load kN, Design tension load Structural Capacity kN, weight of pile
SPT blows
9,000 120 1.0 0.90 0.67 1.0 200 200
kPa kPa m, water table below ground level coefficient of earth pressure ratio of sliding angle/friction angle m, cut off level below NGL max SPT allowed max allowable vertical overburden prusser
Rock Parameters γ
penetration
(m)
Sheet 1 of 2
fb(max) = fs(max) = WT = ks: δ/φ : COL = SPT (max) = Sv'(max) =
Soil Parameters RL (m)
1
3
(kN/m )
For SOIL
For ROCK
RQD
quc
SPT
Sv'
ks x Sv'
(%)
(MPa)
actual
(kPa)
(kPa)
0
0 0 4 8 12 16
0 0 3 7 11 15
0.34 0.34 0.40 0.37 0.53 0.45
31 31 55 41 264 98
0.13 0.13 0.13 0.13 0.13 0.13
tan(δ)
(Nq-1)
α
fs
Ps
fb
Pb
(kPa)
(kN)
(kPa)
(kN)
0.65 0.65 0.65 0.65 0.65 0.65
0 0 1 3 6 7
0 0 2 6 14 23
0 0 198 325 3,195 1,598
0 0 126 207 2,032 1,017
β
(mm)
0 1 1.5 2 2.5 3 3.5
SAND SAND SAND SAND SAND CLAY
0 19 15 3 1 39 14
1 0.5 0.5 0.5 0.5 0.5
2
4 4.5 5 5.5 6 6.5
0.5 0.5 0.5 0.5 0.5 0.5
1
CLAY CLAY CLAY CLAY CLAY SAND
8 8 8 2 3 23
300 300 300 300 300 225
17 17 17 17 17 17
16 16 16 16 16 16
8 8 8 2 3 31
21 25 29 33 38 42
19 22 26 30 34 38
0.42 0.42 0.42 0.38 0.39 0.49
68 67 65 43 45 147
0.13 0.13 0.13 0.13 0.13 0.13
0.65 0.65 0.65 0.65 0.65 0.65
8 9 11 11 13 18
34 48 63 79 98 124
1,402 1,653 1,885 1,422 1,709 6,136
892 1,052 1,199 905 1,087 3,904
7 7.5
0.5 0.5
2
SAND SAND
18 19
300 300
17 17
16 16
18 19
46 50
41 45
0.45 0.45
93 95
0.13 0.13
0.65 0.65
19 20
150 179
4,293 4,758
2,731 3,027
8 8.5 9 9.5 10.5 11.5
0.5 0.5 0.5 0.5 1 1
2
SAND SAND SAND SAND ROCK ROCK
20 27 31 50
300 225 300 150
17 17 17 17 17 20
0 0
16 16 16 16 16 20
20 36 31 100
4
55 59 63 67 71 81
49 53 57 61 64 73
0.45 0.49 0.48 0.55 0.34 0.34
96 152 130 255 27 26
0.13 0.13 0.13 0.13 0.13 0.11
0.65 0.65 0.65 0.65 0.65 0.65
22 26 27 33 120 120
211 247 286 333 672 1,011
5,234 8,971 8,211 9,000 9,000 9,000
3,330 5,707 5,224 5,726 5,726 5,726
12.5
1
14.5 15.5 16.5
2 1 1
4
ROCK
20
67
20
91
82
0.34
25
0.11
0.77
120
1,351
9,000
5,726
4
ROCK ROCK ROCK
20 20 20
43 83 70
20 20 20
101 121 131
91 109 118
0.34 0.34 0.34
24 23 23
0.11 0.11 0.11
0.65 0.88 0.79
120 120 120
2,029 2,369 2,708
9,000 9,000 9,000
5,726 5,726 5,726
18.5 19.5 20.5 21.5 22.5
2 1 1 1 1
4
4
ROCK ROCK ROCK ROCK ROCK
20 20 20 20 20
82 69 31 97 60
20 20 20 20 20
141 161 171 181 191
127 145 154 163 172
0.34 0.34 0.34 0.34 0.34
22 21 21 21 20
0.11 0.11 0.11 0.11 0.11
0.87 0.79 0.65 0.98 0.72
120 120 120 120 120
3,386 3,726 4,065 4,404 4,744
9,000 9,000 9,000 9,000 9,000
5,726 5,726 5,726 5,726 5,726
23.5
1
4
ROCK
20
83
20
200
180
0.34
20
0.11
0.88
120
5,083
9,000
5,726
2 2 2 2 1
1 1 1 1 2
2
2 2 2 4
4 4
4 4 4
1 = CLAY
300 300 300 300 300 300
17 17 17 17 17 17
0 16 16 16 16 16 16
19 15 3 1 39 14
2 = SAND
3 = SILT 4 = Rock
P
Pile Capacity i n Soil Skin Friction As = surface area
Qs = 0.5 x Ks x Svb' x tan (δ) x As End Bearing
fs
Wt
fs
Qb = (Nq – 1) x Sv' x Ab Ultimate Pile Capacity = Qu = (Qb + Qs)/FOS- Wt
Pile Capacity in Rock Ab = area of base Pile-Rock Frictional Resistance
fb
fsr α . β .quc =
Pile-Rock End Bearing Resistance
Figure ( 4.38 ) after williams & Pells
Table 1: RQD vs. J RQD
Pbr fbr . Ab =
Where:
0 - 25
0.2
25 - 50
0.2
50 - 75
0.2 - 0.5
quc :
Mpa, average unconfined compression strength along shaft
75 - 90
0.5 - 0.8
quc :
Mpa, average unconfined compression strength at base of pile
90 - 100
0.8 - 1.0
RQD : fbr =
2
n o i t c u ) d ( e r t r o e t k c c f a o s k c o r
0.8 0.6 0.4 0.2 0 0.1
1
10
Unconfined compression strength (MPa)
%, Rock mass Designation kN/m , ultimate end bearing in rock = 2.0 x quc(base) (Rowe and Armitage, 1987)
1
J
%
*by Hobbs
Figure ( 4.39 )
100
P
Pile Capacity i n Soil Skin Friction As = surface area
Qs = 0.5 x Ks x Svb' x tan (δ) x As End Bearing
Wt
fs
fs
Qb = (Nq – 1) x Sv' x Ab Ultimate Pile Capacity = Qu = (Qb + Qs)/FOS- Wt
Pile Capacity in Rock Ab = area of base Pile-Rock Frictional Resistance
fb
fsr α . β .quc =
Figure ( 4.38 ) after williams & Pells
Table 1: RQD vs. J RQD
Pile-Rock End Bearing Resistance
Pbr fbr . Ab =
Where:
0 - 25
0.2
25 - 50
0.2
50 - 75
0.2 - 0.5
quc :
Mpa, average unconfined compression strength along shaft
75 - 90
0.5 - 0.8
quc :
Mpa, average unconfined compression strength at base of pile
90 - 100
0.8 - 1.0
RQD : fbr =
1
J
%
n o i t c u ) d ( e r t r o e t k c c f a o s k c o r
0.8 0.6 0.4 0.2 0 0.1
1
10
100
Unconfined compression strength (MPa)
%, Rock mass Designation 2
kN/m , ultimate end bearing in rock = 2.0 x quc(base) (Rowe and Armitage, 1987)
*by Hobbs
Figure ( 4.39 ) after williams & Pellis
α = rock socket reduction factor
1
β = rock socket reduction factor
0.8 n o i t c e r r ) o ( c r t o e t k c a c f o s k c o r
J = reduction factor for discontinuities in rock mass
Pile Capacity in Tensi on Method (1) :
Tension Pile Capacity = Qt = (Qsu)/FOS+ Wt
0.6 0.4 0.2 0 0
0.2
0.4
0.6
Mass factor ( J )
Method (2) :
Tension Pile Capacity = Qt = (Qsu) x 0.75 / FOS+ Wt
Ref. Pile =
1.0 Structural Pile Capacity: Dia = Qall = Qt = %H = FOS1 = FOS2 = L= Fcu = Fy = cover =
900 2,800 0
ADOPTED
mm, pile diameter kN, allowable maximum load on top of pile kN, allowable maximum tension load on pile
5%
% of horizontal force with respect to the vertical force on top of pile
1.5
factor of safety for horizontal force
1.5
factor of safety for tension force
19.5
m, pile length below COL
40
N/mm2
460
N/mm2
75
mm, steel cover for pile
Proposed Reinforcement: Main reinforcement = 1.1 Forces in Concrete:
13
bars of
20
mm, diameter
2
0.8
1
Ref. Pile =
1.0 Structural Pile Capacity: Dia = Qall = Qt = %H = FOS1 = FOS2 = L= Fcu = Fy = cover =
900 2,800 0
2
mm, pile diameter kN, allowable maximum load on top of pile kN, allowable maximum tension load on pile
5%
% of horizontal force with respect to the vertical force on top of pile
1.5
factor of safety for horizontal force
1.5
factor of safety for tension force
19.5
m, pile length below COL
40
N/mm2
460
N/mm2
75
mm, steel cover for pile
Proposed Reinforcement: Main reinforcement =
13
20
bars of
mm, diameter
1.1 Forces in Concrete: Based on B.S. 8004 , the maximum load in Concrete should not exceed 0.25 x Fcu x Area of pile 2
Maximum design load = 0.25 x fcu x 0.25 x(Dia) x π x 1000 =
6,359
kN
>
2,800
2,543
mm
2,800
kN
0
kN
OK ----> Steel Reinf. Is Adequate
```
1.5 Additional Forces on Pile According to B.S 8004, section 7.4. 2.5.4. considering out of position tolerance of 75 mm and out of plumb tolerance of 1:75, the loads acting on the piles can be calculated as follows: Maximum vertical load =
2,800
kN
56
kN
Horizontal load from out of H N = Qall x FOS1
Plumb condition =
75
Assumed horizontal load =
5%
=
Total horizontal force =
x vertical load on pile 140
kN
196
kN
1.6 Spacing between the vertical bars: Maximum spacing between steel bars should be > 100 mm Dia of steel cage = Spacing between bars
2,356
mm
181
mm
OK spacin g between bars > 100 mm 1.7 Determination of Maximum Bending Moment: The pile behavior shall be assumed as an elastic beam on soil, the maximum bending moment is calculated as below:
Mf = Fm x H x T Assuming fixed pile head. Where, Mf = bending moment in the pile. Fm = coefficient of bending moment (figure 6.39b)
T = stiffness factor = (E.I/Nh) E=
26,000
1/5
MPa, for concrete
4
I = π x d /64 Nh = coefficient of sub grade modulus = 45 For Pile Diameter = I=
π
kN /m3, for weathered Roc k
900
4
x d /64 =
3.22E-02
mm 4
m
T=
1.79
m
H max =
196
kN, total horizontal force
Zmax = L/T ( L = pile length) Zmax = Depth X(m) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5
10.87
T (m)
1.79
≈
11.0
Z = X/T
Fm
Mf =fm x H x T (kN.m)
0 0.28 0.56 0.84 1.11 1.39 1.67 1.95 2.23 2.51 2.79 3.07 3.34 3.62 3.90 4.18 4.46 4.74
-0.85 -0.67 -0.41 -0.17 0.01 0.14 0.21 0.25 0.25 0.23 0.20 0.16 0.12 0.09 0.05 0.03 0.01 0.00
-299 -237 -143 -61 3 48 75 87 88 81 69 56 42 30 19 10 2 0
Max. Bending Moment =
299
kN.m
Use maximum B.M =
299
kN.m
Using BS 8110 Fcu = Fy = h=
Chart for circular columns with: 40
N/mm2
460
N/mm2
900
mm
hs = h – (2xcover) – (2 xDia of shear steel reinf.) = 0.81 hs/h =
730
mm
Using the above mentioned chart: M=
2.99E+08
3
h
=
0.41
=
5.19
7.29E+08
N =
4.20E+06
2
h
8.10E+05
use
100Asc = Acc
0.60
%
Area of steel needed =
3,815
mm
Area of steel provided
4,082
mm2
2
area required no need for sh ear reinfo rcemen t
Since : then :
v
< 0.5 x vc
vc
no need for shear reinf., however, use nominal steel
Reinforcement Details
Reinforcement Details:
NGL COL (Cut-off Level = -1m)
Full Length Longitudinal bars
Spiral bars 19.5m
T10@150mm
13T20 900 mm Diameter Bored Pile
Load Test Procedure
Static Load Test Procedure: The piles shall be tested by applying loads for a specific time intervals or until the rate of settlement falls to a specific value. The test will be carried out in accordance with B.S 8004-1986.
a.
Load Measurement:
The load will be applied by a hydraulic jacks and the pressure will be recorded with a calibrated pressure gauge. The hydraulic jacks will act against a reaction system. The reaction system consists of concrete blocks arranged carefully on top of the tested pile or a tension piles to be used instead of concrete blocks.
b.
Measurement of pile settlement:
During loading the pile, the settlements are recorded with dial gauges with accuracy of 1/100.
c.
Working load test:
Pile Dia (mm)
Working load (kN)
Testing load (1.5 x working load) (kN)
Type of load
900
2,800
4,200
Compression
d.
Performance of the Test according to B.S 8004:
Load (%)
Reading (min.)
25% of working load 50% 75% 100% 50% 0% 50% 100% 125% 150% 100% 50% 0%
0, 5, 15 min 0, 5, 15 min 0, 5, 15 min 6 hrs. 0, 10 min 0, 10 min 0, 10 min 0, 10 min 0, 5, 15 min 6 hrs. 0, 10 min 0, 10 min 1 hr.
Note: The next load step shall be applied only if the rate of settlement has become less than 0.25 mm per hour.
A
Counter weight Plate
6.0m
main girder Girder
Hydraulic jack
support
Dial guage
A Reference beam
Counter weight Plate
6.0m
main girder Dial guage
Hydraulic jack
support
Counter weight Plate
6.0m
main girder Dial guage
Hydraulic jack
Reference beam
Section (A-A)
Concrete Mix Design
support
Concrete Mix Design
View more...
Comments