Piling-Design-Re 1.pdf

May 1, 2018 | Author: Abhijit Hazarika | Category: Deep Foundation, Sand, Bending, Structural Engineering, Concrete
Share Embed Donate


Short Description

Download Piling-Design-Re 1.pdf...

Description

PIL ING DESIGN PILING CALCULATIONS

PROPOSED 33 STOREY OFFICE TOWER Plot Plo t No. 03251264 03251264 @ SEEF SEEF AREA, BAHRAIN

JULY, JUL Y, 2009 2009

List of Contents:

1.0 Location plan 2.0 Soil Report 3.0 Piling Design Calculations Calculations 3.1 900mm Bored Pile 4.0 Reinforcement Details 5.0 Load Test Procedure 6.0 Concrete Mix Design

Location Plan

Soil Report

Piling Design Calculations

900mm Bored Pile

Pile Capacity In Compression

Diamater :

900

mm, pile diameter  

FOS 1 :

3.00

factor of safety for skin friction

FOS 2 :

3.00

factor of safety for base resistance

Depth

Ultimate   Allowable friction friction

0 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10.5 11.5 12.5 14.5 15.5 16.5 18.5 19.5 20.5 21.5 22.5 23.5

0 0 0 2 6 14 23 34 48 63 79 98 124 150 179 211 247 286 333 672 1,011 1,351 2,029 2,369 2,708 3,386 3,726 4,065 4,404 4,744 5,083

Ultimate Allowable end bearing end bearing 0 0 0 126 207 2,032 1,017 892 1,052 1,199 905 1,087 3,904 2,731 3,027 3,330 5,707 5,224 5,726 5,726 5,726 5,726 5,726 5,726 5,726 5,726 5,726 5,726 5,726 5,726 5,726

0 0 0 1 2 5 8 11 16 21 26 33 41 50 60 70 82 95 111 224 337 450 676 790 903 1,129 1,242 1,355 1,468 1,581 1,694

           

Wt. of 

Pile

0 0 0 42 69 677 339 297 351 400 302 362 1,301 910 1,009 1,110 1,902 1,741 1,909 1,909 1,909 1,909 1,909 1,909 1,909 1,909 1,909 1,909 1,909 1,909 1,909

0 0 0 8 15 23 31 38 46 53 61 69 76 84 92 99 107 114 122 137 153 168 198 214 229 259 275 290 305 320 336

Ultimate   Capacity 0 0 0 128 212 2,046 1,040 926 1,099 1,262 984 1,185 4,027 2,881 3,206 3,541 5,954 5,510 6,058 6,398 6,737 7,076 7,755 8,094 8,433 9,112 9,451 9,791 10,130 10,469 10,808

Allowable

Pile Capacity (KN)

Capacity 0 0 0 35 55 659 316 271 321 367 267 326 1,266 876 977 1,081 1,878 1,722 1,897 1,995 2,093 2,191 2,387 2,484 2,582 2,778 2,876 2,974 3,071 3,169 3,267

0 0

10,000 0 0 35 128 55 212 659 316

2,046

1,040

271 926 321

5

367 267 326

1,099 1,262 984 1,185 1,266

4,027

876

2,881

977

3,206

1,081

3,541 1,878

   )   m    (    L    G   w   o    l   e    b    h    t   p   e    D

5,954

1,722

5,510

1,897

10

6,058

1,995

6,398

2,093

6,737

2,191

7,076

2,387

15

7,755

2,484

8,094

2,582

8,433

2,778

9,112

2,876

20

9,451

2,974

9,791

3,071

10,130

3,169

10,469

3,267

L pile =

19.5

m, provided pile length below road level

=

18.5

m, pile length below Cut-off level

2,876

kN, provided pile capacity

2,800

kN, Required pile capacity

P prov. P req. =

Project : Subject : Input : Diamater : Type : FOS 1 : FOS 2 : fcu : Preq : Ts = Stc : Wt :

Piling Work Calculation of Bored pile Based on BH (3)

900 Bored Pile 3 3 40 2800 0 6,364 189

mm, pile diameter

Layer Thick.

Soil Type

REF pile:

blows

1

 (m)

3

(kN/m )

Pile Total Capacity

Allowable

Sheet 1 of 2

9,000 120 1.0 0.90 0.67 1.0 200 200

kPa kPa m, water table below ground level coefficient of earth pressure ratio of sliding angle/friction angle m, cut off level below NGL max SPT allowed max allowable vertical overburden prusser 

Rock Parameters γ

penetration

25

Since Pprov > Preq ------> OK Pile length is Ad equate

factor of safety for skin friction factor of safety for base resistance N/mm2, concrete strength kN, Design Working Load kN, Design tension load Structural Capacity kN, weight of pile

SPT

10,808

Ultimate

fb(max) = fs(max) = WT = ks: δ/φ : COL = SPT (max) = Sv'(max) =

Soil Parameters RL (m)

20,000

0

For SOIL

For ROCK

RQD

quc

SPT

Sv'

ks x Sv'

(%)

(MPa)

actual

(kPa)

(kPa)

0

0 0 4 8 12 16

0 0 3 7 11 15

0.34 0.34 0.40 0.37 0.53 0.45

31 31 55 41 264 98

0.13 0.13 0.13 0.13 0.13 0.13

tan(δ)

 (Nq-1)

α

fs

Ps

fb

Pb

(kPa)

(kN)

(kPa)

(kN)

0.65 0.65 0.65 0.65 0.65 0.65

0 0 1 3 6 7

0 0 2 6 14 23

0 0 198 325 3,195 1,598

0 0 126 207 2,032 1,017

β

(mm)

0 1 1.5 2 2.5 3 3.5

           

SAND SAND SAND SAND SAND CLAY

0 19 15 3 1 39 14

1 0.5 0.5 0.5 0.5 0.5

2

4 4.5 5 5.5 6 6.5

0.5 0.5 0.5 0.5 0.5 0.5

1

2

           

CLAY CLAY CLAY CLAY CLAY SAND

8 8 8 2 3 23

300 300 300 300 300 225

17 17 17 17 17 17

16 16 16 16 16 16

8 8 8 2 3 31

21 25 29 33 38 42

19 22 26 30 34 38

0.42 0.42 0.42 0.38 0.39 0.49

68 67 65 43 45 147

0.13 0.13 0.13 0.13 0.13 0.13

0.65 0.65 0.65 0.65 0.65 0.65

8 9 11 11 13 18

34 48 63 79 98 124

1,402 1,653 1,885 1,422 1,709 6,136

892 1,052 1,199 905 1,087 3,904

7

0.5

7.5

0.5

2

 

SAND

18

300

17

16

18

46

41

0.45

93

0.13

0.65

19

150

4,293

2,731

2

 

SAND

19

300

17

16

19

50

45

0.45

95

0.13

0.65

20

179

4,758

8

3,027

0.5

2

 

SAND

20

300

17

16

20

55

49

0.45

96

0.13

0.65

22

211

5,234

3,330

8.5

0.5

2

 

SAND

27

225

17

16

36

59

53

0.49

152

0.13

0.65

26

247

8,971

5,707

9 9.5

0.5 0.5

2 2

   

SAND SAND

31 50

300 150

17 17

16 16

31 100

63 67

57 61

0.48 0.55

130 255

0.13 0.13

0.65 0.65

27 33

286 333

8,211 9,000

5,224 5,726

10.5

1

4

 

ROCK 

17

0

16

71

64

0.34

27

0.13

0.65

120

672

9,000

5,726

11.5

1

4

 

ROCK 

20

0

20

81

73

0.34

26

0.11

0.65

120

1,011

9,000

5,726

2 2 2 2 1

1 1 1 1

300 300 300 300 300 300

17 17 17 17 17 17

0 16 16 16 16 16 16

19 15 3 1 39 14

   

 

 

Project : Subject : Input : Diamater : Type : FOS 1 : FOS 2 : fcu : Preq : Ts = Stc : Wt :

Piling Work Calculation of Bored pile Based on BH (3)

900 Bored Pile 3 3 40 2800 0 6,364 189

mm, pile diameter

Layer Thick.

Soil Type

REF pile:

factor of safety for skin friction factor of safety for base resistance N/mm2, concrete strength kN, Design Working Load kN, Design tension load Structural Capacity kN, weight of pile

SPT blows

9,000 120 1.0 0.90 0.67 1.0 200 200

kPa kPa m, water table below ground level coefficient of earth pressure ratio of sliding angle/friction angle m, cut off level below NGL max SPT allowed max allowable vertical overburden prusser 

Rock Parameters γ

penetration

 (m)

Sheet 1 of 2

fb(max) = fs(max) = WT = ks: δ/φ : COL = SPT (max) = Sv'(max) =

Soil Parameters RL (m)

1

3

(kN/m )

For SOIL

For ROCK

RQD

quc

SPT

Sv'

ks x Sv'

(%)

(MPa)

actual

(kPa)

(kPa)

0

0 0 4 8 12 16

0 0 3 7 11 15

0.34 0.34 0.40 0.37 0.53 0.45

31 31 55 41 264 98

0.13 0.13 0.13 0.13 0.13 0.13

tan(δ)

 (Nq-1)

α

fs

Ps

fb

Pb

(kPa)

(kN)

(kPa)

(kN)

0.65 0.65 0.65 0.65 0.65 0.65

0 0 1 3 6 7

0 0 2 6 14 23

0 0 198 325 3,195 1,598

0 0 126 207 2,032 1,017

β

(mm)

0 1 1.5 2 2.5 3 3.5

           

SAND SAND SAND SAND SAND CLAY

0 19 15 3 1 39 14

1 0.5 0.5 0.5 0.5 0.5

2

4 4.5 5 5.5 6 6.5

0.5 0.5 0.5 0.5 0.5 0.5

1

           

CLAY CLAY CLAY CLAY CLAY SAND

8 8 8 2 3 23

300 300 300 300 300 225

17 17 17 17 17 17

16 16 16 16 16 16

8 8 8 2 3 31

21 25 29 33 38 42

19 22 26 30 34 38

0.42 0.42 0.42 0.38 0.39 0.49

68 67 65 43 45 147

0.13 0.13 0.13 0.13 0.13 0.13

0.65 0.65 0.65 0.65 0.65 0.65

8 9 11 11 13 18

34 48 63 79 98 124

1,402 1,653 1,885 1,422 1,709 6,136

892 1,052 1,199 905 1,087 3,904

7 7.5

0.5 0.5

2

   

SAND SAND

18 19

300 300

17 17

16 16

18 19

46 50

41 45

0.45 0.45

93 95

0.13 0.13

0.65 0.65

19 20

150 179

4,293 4,758

2,731 3,027

8 8.5 9 9.5 10.5 11.5

0.5 0.5 0.5 0.5 1 1

2

SAND SAND SAND SAND ROCK  ROCK 

20 27 31 50

300 225 300 150

17 17 17 17 17 20

0 0

16 16 16 16 16 20

20 36 31 100

4

           

55 59 63 67 71 81

49 53 57 61 64 73

0.45 0.49 0.48 0.55 0.34 0.34

96 152 130 255 27 26

0.13 0.13 0.13 0.13 0.13 0.11

0.65 0.65 0.65 0.65 0.65 0.65

22 26 27 33 120 120

211 247 286 333 672 1,011

5,234 8,971 8,211 9,000 9,000 9,000

3,330 5,707 5,224 5,726 5,726 5,726

12.5

1

14.5 15.5 16.5

2 1 1

4

 

ROCK 

20

67

20

91

82

0.34

25

0.11

0.77

120

1,351

9,000

5,726

4

     

ROCK  ROCK  ROCK 

20 20 20

43 83 70

20 20 20

101 121 131

91 109 118

0.34 0.34 0.34

24 23 23

0.11 0.11 0.11

0.65 0.88 0.79

120 120 120

2,029 2,369 2,708

9,000 9,000 9,000

5,726 5,726 5,726

18.5 19.5 20.5 21.5 22.5

2 1 1 1 1

4

4

         

ROCK  ROCK  ROCK  ROCK  ROCK 

20 20 20 20 20

82 69 31 97 60

20 20 20 20 20

141 161 171 181 191

127 145 154 163 172

0.34 0.34 0.34 0.34 0.34

22 21 21 21 20

0.11 0.11 0.11 0.11 0.11

0.87 0.79 0.65 0.98 0.72

120 120 120 120 120

3,386 3,726 4,065 4,404 4,744

9,000 9,000 9,000 9,000 9,000

5,726 5,726 5,726 5,726 5,726

23.5

1

4

 

ROCK 

20

83

20

200

180

0.34

20

0.11

0.88

120

5,083

9,000

5,726

2 2 2 2 1

1 1 1 1 2

2

2 2 2 4

4 4

4 4 4

1 = CLAY

300 300 300 300 300 300

17 17 17 17 17 17

0 16 16 16 16 16 16

19 15 3 1 39 14

2 = SAND

   

 

 

3 = SILT 4 = Rock

P

Pile Capacity i n Soil Skin Friction  As = surface area

Qs = 0.5 x Ks x Svb' x tan (δ) x As End Bearing

fs

Wt

fs

Qb = (Nq – 1) x Sv' x Ab Ultimate Pile Capacity = Qu = (Qb + Qs)/FOS- Wt

Pile Capacity in Rock  Ab = area of base Pile-Rock Frictional Resistance

fb

 fsr  α . β .quc =

Pile-Rock End Bearing Resistance

Figure ( 4.38 )  after williams & Pells

Table 1: RQD vs. J RQD

Pbr   fbr . Ab =

Where:

0 - 25

0.2

25 - 50

0.2

 50 - 75

0.2 - 0.5

quc :

Mpa, average unconfined compression strength along shaft

75 - 90

0.5 - 0.8

quc :

Mpa, average unconfined compression strength at base of pile

90 - 100

0.8 - 1.0

RQD : fbr =

2

  n   o    i    t   c   u   )    d    (   e   r    t   r   o   e   t    k   c   c   f   a   o   s    k   c   o   r

0.8 0.6 0.4 0.2 0 0.1

1

10

Unconfined compression strength (MPa)

%, Rock mass Designation kN/m , ultimate end bearing in rock = 2.0 x quc(base) (Rowe and Armitage, 1987)

1

J

%

*by Hobbs

Figure ( 4.39 )

100

P

Pile Capacity i n Soil Skin Friction  As = surface area

Qs = 0.5 x Ks x Svb' x tan (δ) x As End Bearing

Wt

fs

fs

Qb = (Nq – 1) x Sv' x Ab Ultimate Pile Capacity = Qu = (Qb + Qs)/FOS- Wt

Pile Capacity in Rock  Ab = area of base Pile-Rock Frictional Resistance

fb

 fsr  α . β .quc =

Figure ( 4.38 )  after williams & Pells

Table 1: RQD vs. J RQD

Pile-Rock End Bearing Resistance

Pbr   fbr . Ab =

Where:

0 - 25

0.2

25 - 50

0.2

 50 - 75

0.2 - 0.5

quc :

Mpa, average unconfined compression strength along shaft

75 - 90

0.5 - 0.8

quc :

Mpa, average unconfined compression strength at base of pile

90 - 100

0.8 - 1.0

RQD : fbr =

1

J

%

  n   o    i    t   c   u   )    d    (   e   r    t   r   o   e   t    k   c   c   f   a   o   s    k   c   o   r

0.8 0.6 0.4 0.2 0 0.1

1

10

100

Unconfined compression strength (MPa)

%, Rock mass Designation 2

kN/m , ultimate end bearing in rock = 2.0 x quc(base) (Rowe and Armitage, 1987)

*by Hobbs

Figure ( 4.39 )  after williams & Pellis

α = rock socket reduction factor 

1

β = rock socket reduction factor 

0.8   n   o    i    t   c   e   r   r    )   o   (   c   r    t   o   e   t    k   c   a   c   f   o   s    k   c   o   r

J = reduction factor for discontinuities in rock mass

Pile Capacity in Tensi on Method (1) :

Tension Pile Capacity = Qt = (Qsu)/FOS+ Wt

0.6 0.4 0.2 0 0

0.2

0.4

0.6

Mass factor ( J )

Method (2) :

Tension Pile Capacity = Qt = (Qsu) x 0.75 / FOS+ Wt

Ref. Pile =

1.0 Structural Pile Capacity: Dia = Qall = Qt = %H = FOS1 = FOS2 = L= Fcu = Fy = cover =

900 2,800 0

ADOPTED

mm, pile diameter  kN, allowable maximum load on top of pile kN, allowable maximum tension load on pile

5%

% of horizontal force with respect to the vertical force on top of pile

1.5

factor of safety for horizontal force

1.5

factor of safety for tension force

19.5

m, pile length below COL

40

N/mm2

460

N/mm2

75

mm, steel cover for pile

Proposed Reinforcement: Main reinforcement = 1.1 Forces in Concrete:

13

bars of 

20

mm, diameter 

2

0.8

1

Ref. Pile =

1.0 Structural Pile Capacity: Dia = Qall = Qt = %H = FOS1 = FOS2 = L= Fcu = Fy = cover =

900 2,800 0

2

mm, pile diameter  kN, allowable maximum load on top of pile kN, allowable maximum tension load on pile

5%

% of horizontal force with respect to the vertical force on top of pile

1.5

factor of safety for horizontal force

1.5

factor of safety for tension force

19.5

m, pile length below COL

40

N/mm2

460

N/mm2

75

mm, steel cover for pile

Proposed Reinforcement: Main reinforcement =

13

20

bars of 

mm, diameter 

1.1 Forces in Concrete: Based on B.S. 8004 , the maximum load in Concrete should not exceed  0.25 x Fcu x Area of pile 2

Maximum design load = 0.25 x fcu x 0.25 x(Dia)  x π x 1000  =

6,359

kN

>

2,800



2,543

mm



2,800

kN

0

kN

OK ----> Steel Reinf. Is Adequate

```

1.5 Additional Forces on Pile According to B.S 8004, section 7.4. 2.5.4. considering out of position tolerance of 75 mm  and out of plumb tolerance of 1:75, the loads acting on the piles can be calculated as follows: Maximum vertical load =

2,800

kN

56

kN

Horizontal load from out of  H N = Qall x FOS1

Plumb condition =

75

Assumed horizontal load =

5%

=

Total horizontal force =

x vertical load on pile 140

kN

196

kN

1.6 Spacing between the vertical bars: Maximum spacing between steel bars should be > 100 mm Dia of steel cage = Spacing between bars

2,356

mm

181

mm

OK spacin g between bars > 100 mm 1.7 Determination of Maximum Bending Moment: The pile behavior shall be assumed as an elastic beam on soil, the maximum bending moment is calculated as below:

Mf = Fm x H x T Assuming fixed pile head. Where, Mf  = bending moment in the pile. Fm = coefficient of bending moment (figure 6.39b)

T = stiffness factor = (E.I/Nh) E=

26,000

1/5

MPa, for concrete

4

I = π x d  /64  Nh = coefficient of sub grade modulus = 45 For Pile Diameter = I=

π

kN /m3, for weathered Roc k

900

4

x d  /64 =

3.22E-02

mm 4

m

T=

1.79

m

H max =

196

kN, total horizontal force

Zmax = L/T ( L = pile length) Zmax = Depth X(m) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

10.87

T (m)

1.79



11.0

Z = X/T

Fm

Mf =fm x H x T (kN.m)

0 0.28 0.56 0.84 1.11 1.39 1.67 1.95 2.23 2.51 2.79 3.07 3.34 3.62 3.90 4.18 4.46 4.74

-0.85 -0.67 -0.41 -0.17 0.01 0.14 0.21 0.25 0.25 0.23 0.20 0.16 0.12 0.09 0.05 0.03 0.01 0.00

-299 -237 -143 -61 3 48 75 87 88 81 69 56 42 30 19 10 2 0

Max. Bending Moment =

299

kN.m

Use maximum B.M =

299

kN.m

Using BS 8110 Fcu = Fy = h=

Chart for circular columns with: 40

N/mm2

460

N/mm2

900

mm

hs = h – (2xcover) – (2 xDia of shear steel reinf.) = 0.81 hs/h =

730

mm

Using the above mentioned chart: M=

2.99E+08

3

h

=

0.41

=

5.19

7.29E+08

 N =

4.20E+06

2

 h

8.10E+05

use

100Asc = Acc

0.60

%

Area of steel needed =

3,815

mm

Area of steel provided

4,082

mm2

2

area required no need for sh ear reinfo rcemen t

Since : then :

v

< 0.5 x vc

vc

no need for shear reinf., however, use nominal steel

Reinforcement Details

Reinforcement Details:

 NGL COL (Cut-off Level = -1m)

Full Length Longitudinal bars

Spiral bars 19.5m

T10@150mm

13T20 900 mm Diameter  Bored Pile

Load Test Procedure

Static Load Test Procedure: The piles shall be tested by applying loads for a specific time intervals or until the rate of settlement falls to a specific value. The test will be carried out in accordance with B.S 8004-1986.

a.

Load Measurement:

The load will be applied by a hydraulic jacks and the pressure will be recorded with a calibrated pressure gauge. The hydraulic jacks will act against a reaction system. The reaction system consists of concrete blocks arranged carefully on top of the tested pile or a tension piles to be used instead of concrete blocks.

b.

Measurement of pile settlement:

During loading the pile, the settlements are recorded with dial gauges with accuracy of 1/100.

c.

Working load test:

Pile Dia (mm)

Working load (kN)

Testing load (1.5 x working load) (kN)

Type of load

900

2,800

4,200

Compression

d.

Performance of the Test according to B.S 8004:

Load (%)

Reading (min.)

25% of working load 50% 75% 100% 50% 0% 50% 100% 125% 150% 100% 50% 0%

0, 5, 15 min 0, 5, 15 min 0, 5, 15 min 6 hrs. 0, 10 min 0, 10 min 0, 10 min 0, 10 min 0, 5, 15 min 6 hrs. 0, 10 min 0, 10 min 1 hr.

Note: The next load step shall be applied only if the rate of settlement has  become less than 0.25 mm per hour.

 A

Counter weight   Plate

6.0m

main girder  Girder

Hydraulic jack

support

Dial guage

 A Reference beam

Counter weight   Plate

6.0m

main girder    Dial guage

Hydraulic jack

support

Counter weight   Plate

6.0m

main girder    Dial guage

Hydraulic jack

Reference beam

Section (A-A)

Concrete Mix Design

support

Concrete Mix Design

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF