pilares.pdf
Short Description
Download pilares.pdf...
Description
UNIVERSIDADE UNIVERSIDADE FEDERAL DO RIO GRANDE GR ANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA CIVIL
PROJE PROJE TO DE PI LARE S DE CONCRE CONCRE TO ARMADO
AMÉRICO CAMPOS FILHO
2014
SUMÁRIO 1 – Dimensões Dimensões ......................................... ............................................................... ............................................ ............................................ ....................................... ................. 1.1 – Dimensões Dimensões mínimas mínimas das seções seções transversais dos pilares .............................. .................................................. .................... 1.2 – Cobrimento Cobrimento da da armadura dos pilares ............................................... ......................................................................... ................................. ....... 2 – Cálculo Cálculo das solicitações solicitações nos pilares pilares ......................................... ............................................................... ............................................ ...................... 2.1 - Estruturas Estruturas de nós nós fixos e estruturas estruturas de nós moveis moveis ....................................... ........................................................... .................... 2.2 – Contraventamento Contraventamento .......................................... ................................................................ .............................................. ............................................. ..................... 2.3 – Imperfeições Imperfeições geométricas geométricas ............................ ...................................................... ................................................... ........................................... .................. 2.4 - Elementos Elementos isolados ............................................ .................................................................. ............................................ .......................................... .................... 2.5 - Dispensa da consideração consideração dos esforços esforços globais de 2ª ordem ........................................ ............................................ .... 2.5.1 - Parâmetro de instabilidade .............................................. .................................................................... ............................................ ......................... ... 2.5.2 - Coeficiente z ............................................. ................................................................... ............................................ ............................................ ......................... ... 2.6 - Análise Análise de estruturas estruturas de nós nós fixos ............................. ................................................... ............................................ .................................. ............ 2.7 – Processo Processo simplificado simplificado para para o cálculo das das solicitações solicitações nas estruturas estruturas usuais usuais de edifícios 3 - Análise de elementos isolados isolados .............................................. .................................................................... ............................................ .......................... .... 3.1 – Generalidade Generalidadess ................... ..................................... .................................... .................................... .................................... .......................... ........ 3.2 - Dispensa da análise dos efeitos locais de 2ª ordem .................................. ........................................................ ......................... ... 3.3 - Determinação Determinação dos efeitos locais locais de 2ª ordem ordem ................................................ .................................................................... .................... 3.3.1 - Barras submetidas submetidas a flexo-compressão .............................................. .................................................................... ............................ ...... 3.3.2 - Método exato exato ..................................... ........................................................... ............................................ ............................................ ................................. ........... 3.3.3 - Métodos aproximados aproximados ........................ .............................................. ............................................ ............................................ ................................ .......... 3.3.3.1 - Método do pilar padrão padrão com curvatura aproximada ............................ .................................................. .......................... 3.3.3.2 - Método do pilar padrão com rigidez aproximada .......................................... .................................................... .......... 3.3.3.3 - Método do pilar padrão acoplado a diagramas diagramas M, N, 1/r ................................. ............................................ ........... 3.3.3.4 - Método do pilar padrão para pilares da seção retangular, submetidos à flexão composta oblíqua ........................................... ................................................................. ............................................ ............................................ ................................ .......... 3.3.3.5 – Resumo Resumo das exigências da da NBR6118:2014 para para verificação de pilares esbeltos ....... ....... 4 – Dimensionamento Dimensionamento das seções seções à flexão composta composta oblíqua ......................... ............................................... .......................... .... 5 – Recomendações Recomendações relativas relativas ao detalhamento detalhamento dos dos pilares ................................. ....................................................... ...................... 5.1 - Proteção contra contra flambagem das das barras ................................... ......................................................... ........................................... ..................... 5.2 – Disposições Disposições gerais relativas às às armaduras dos pilares pilares .......................................... ...................................................... ............ 5.2.1 – Introdução Introdução .................................. ........................................................ ............................................ ............................................ ........................................ .................. 5.2.2 - Armaduras Armaduras longitudinais longitudinais ............................... ..................................................... ............................................ ........................................... ..................... 5.2.2.1 - Diâmetro mínimo e taxa de armadura ................................ ...................................................... ......................................... ................... 5.2.2.2 - Distribuição transversal transversal ..................................... ........................................................... ............................................ .................................... .............. 5.2.2.3 – Comprimento Comprimento de espera espera ...................................... ............................................................ ............................................ .................................. ............ 5.2.3 - Armaduras transversais ............................................... ..................................................................... ............................................ ............................. ....... 5.2.4 – Detalhamento Detalhamento dos pilares pilares ......................... .................................................. ............................................... ............................................ ...................... 6 – Exemplos Exemplos ...................... ............................................ ............................................ ............................................ ............................................ ..................................... ............... Anexo – Aço Aço destinado a armaduras para estruturas de concreto armado (NBR7480:2007) (NBR7480:2007) ...
1 1 1 4 4 5 5 8 8 8 8 9 10 12 12 12 13 13 13 13 13 14 14 14 15 15 16 16 17 17 17 17 18 18 19 19 21 34
1 – Dimensões Dimensões Os pilares dos edifícios correntes, com estrutura em concreto armado, têm, em geral, seções transversais constantes de piso a piso (concreto e aço). As seções transversais podem apresentar a forma quadrada, retangular, circular ou de uma figura composta por retângulos (seções L, T, U).
1.1 – Dimensões Dimensões mínimas das seções transversais transversais dos pilares As dimensões mínimas da seção transversal de pilares são fixadas no item 13.2.3 da NBR6118:2014. NBR6118:2014. Conforme este item, a seção transversal de pilares não deve apresentar dimensão menor que 19 cm. Em casos especiais, permite-se a consideração de dimensões entre 19 cm e 14 cm, desde que se multipliquem as ações a serem consideradas no dimensionamento por um coeficiente adicional n, de acordo com o indicado na tabela abaixo. Em qualquer caso, a norma não permite pilar com seção transversal de área inferior a 360 cm 2.
Tabela – Valores Valores do coeficiente adicional b (cm)
19
n
1,00
18 1,05
17 1,10
16 1,15
n
15 1,20
14 1,25
Nesta tabela, b é a menor dimensão da seção transversal transversal do pilar e n = 1,95 – 0,05 0,05 b é um coeficiente que deve majorar os esforços solicitantes finais de cálculo nos pilares, quando do dimensionamento. dimensionamento.
1.2 – Cobrimento Cobrimento da armadura dos pilares Segundo o item 6 da NBR6118:2014 (diretrizes para durabilidade das estruturas de concreto), as estruturas de concreto devem ser projetadas e construídas de modo que, sob as condições ambientais previstas na época do projeto e quando utilizadas conforme preconizado em projeto, conservem suas segurança, estabilidade e aptidão em serviço durante o prazo correspondente correspondente à sua vida útil. A agressividade do meio ambiente está relacionada às ações físicas e químicas que atuam sobre as estruturas de concreto, independentemente das ações mecânicas, das variações volumétricas de origem térmica, da retração hidráulica e outras previstas no dimensionamento das estruturas de concreto.
Departamento de Engenharia Civil – Universidade Universidade Federal do Rio Grande do Sul
1
Nos projetos das estruturas correntes, a agressividade ambiental pode ser classificada de acordo com o apresentado na seguinte tabela e pode ser avaliada, simplificadamente, segundo as condições de exposição da estrutura ou de suas partes.
Tabela - Classes de agressividade ambiental Classe de agressividade ambiental (CAA) I
Agressividade
Classificação geral do tipo de ambiente para efeito de projeto
Risco de deterioração da estrutura
Fraca
Rural Submersa
Insignificante
II
Moderada
Urbana 1), 2)
Pequeno
III
Forte
IV
Muito forte
Marinha1) Industrial1), 2) Industrial ), ) Respingos de maré
Grande Elevado
1)
Pode-se admitir um microclima com uma classe de agressividade mais branda (um nível acima) para ambientes internos secos (salas, dormitórios, banheiros, cozinhas e áreas de serviço de apartamentos residenciais e conjuntos comerciais ou ambientes com concreto revestido com argamassa e pintura). 2)
Pode-se admitir uma classe de agressividade mais branda (um nível acima) em: obras em regiões de clima seco, com umidade relativa do ar menor ou igual a 65%, partes da estrutura protegidas de chuva em ambientes predominantemente secos, ou regiões onde chove raramente. 3)
Ambientes quimicamente agressivos, tanques industriais, galvanoplastia, branqueamento em indústrias de celulose e papel, armazéns de fertilizantes, indústrias químicas.
No item 7 da NBR6118:2014, são apresentados os critérios de projeto visando a durabilidade das estruturas de concreto. No item 7.4, são referenciados os critérios relativos à qualidade do concreto e cobrimento da armadura. A durabilidade das estruturas é altamente dependente das características do concreto e da espessura e qualidade do concreto do cobrimento da armadura. Ensaios comprobatórios de desempenho da durabilidade da estrutura frente ao tipo e nível de agressividade previsto em projeto devem estabelecer os parâmetros mínimos a serem atendidos. Na falta destes e devido à existência de uma forte correspondência entre a relação água/cimento ou água/aglomerante, a resistência à compressão do concreto e sua durabilidade, permite-se adotar os requisitos mínimos expressos na tabela seguinte.
Departamento de Engenharia Civil – Universidade Federal do Rio Grande do Sul
2
Tabela - Correspondência entre classe de agressividade e qualidade do concreto Concreto
Tipo
Classe de agressividade (tabela 1) II III
I Relação água/aglomerante em massa Classe de concreto (NBR 8953)
IV
CA
0,65
0,60
0,55
0,45
CP
0,60
0,55
0,50
0,45
CA
C20
C25
C30
C40
CP
C25
C30
C35
C40
NOTAS: CA - Componentes e elementos estruturais de concreto armado CP - Componentes e elementos estruturais de concreto protendido
O cobrimento mínimo da armadura é o menor valor que deve ser respeitado ao longo de todo o elemento considerado e que se constitui num critério de aceitação. Para garantir o cobrimento mínimo (cmin) o projeto e a execução devem considerar o cobrimento nominal (cnom), que é o cobrimento mínimo acrescido da tolerância de execução ( c). Assim as dimensões das armaduras e os espaçadores devem respeitar os cobrimentos nominais, estabelecidos na tabela abaixo para c=10 mm. Nas obras correntes o valor de c deve ser maior ou igual a 10 mm. Quando houver um adequado controle de qualidade e rígidos limites de tolerância da variabilidade das medidas durante a execução pode ser adotado o valor c = 5 mm, mas a exigência de controle rigoroso deve ser explicitada nos desenhos de projeto. Os cobrimentos nominais e mínimos estão sempre referidos à superfície da armadura externa, em geral à face externa do estribo. O cobrimento nominal de uma determinada barra deve sempre ser maior ou igual ao seu próprio diâmetro. cnom barra A dimensão máxima característica do agregado graúdo, utilizado no concreto não pode superar em 20% a espessura nominal do cobrimento, ou seja: dmax 1,2 cnom
Departamento de Engenharia Civil – Universidade Federal do Rio Grande do Sul
3
Tabela- Correspondência entre classe de agressividade ambiental e cobrimento nominal para c=10mm Tipo de estrutura
Concreto armado
Componente ou elemento
I
Laje2) Viga/Pilar
20 25
Elementos estruturais em contato com o solo 4)
Concreto protendido1) )
Laje Viga/Pilar
Classe de agressividade ambiental II III Cobrimento nominal mm 25 35 30 40 30
25 30
30 35
IV3) 45 50
40
50
40 45
50 55
Cobrimento nominal da bainha ou dos fios, cabos e cordoalhas. O cobrimento da armadura passiva deve respeitar os cobrimentos para concreto armado . 2)
Para a face superior de lajes e vigas que serão revestidas com argamassa de contrapiso, com revestimentos finais secos tipo carpete e madeira, com argamassa de revestimento e acabamento tais como pisos de elevado desempenho, pisos cerâmicos, pisos asfálticos, e outros tantos, as exigências desta tabela podem ser substituídas pelo item 7.4.7.5 respeitado um cobrimento nominal 15 mm. 3) Nas faces inferiores de lajes e vigas de reservatórios, estações de tratamento de água e esgoto, condutos de esgoto, canaletas de efluentes e outras obras em ambientes química e intensamente agressivos a armadura deve ter cobrimento nominal 45mm. 4) No trecho dos pilares em contato com o solo junto aos elementos de fundação, a armadura deve ter cobrimento nominal ≥ 45 mm.
2 – Cálculo das solicitações nos pilares Conforme o item 15.4 da NBR6118:2014, sob a ação das cargas verticais e horizontais, os nós da estrutura de um edifício deslocam-se horizontalmente. Os esforços de segunda ordem decorrentes desses deslocamentos são chamados efeitos globais de 2 ª ordem. Nas barras da estrutura, como um lance de pilar, os respectivos eixos não se mantêm retilíneos, surgindo aí efeitos locais de 2 ª ordem que, em princípio, afetam principalmente os esforços solicitantes ao longo delas.
2.1 - Estruturas de nós fixos e estruturas de nós moveis As estruturas são consideradas, para efeito de cálculo, como de nós fixos, quando os deslocamentos horizontais dos nós são pequenos, e, por decorrência, os efeitos globais de 2 ª ordem são desprezáveis (inferiores a 10% dos respectivos esforços de 1 ª ordem). Nessas estruturas, basta considerar os efeitos locais de 2 ª ordem. As estruturas de nós móveis são aquelas onde os deslocamentos horizontais não são pequenos e, em decorrência, os efeitos globais de 2 ª ordem são importantes (superiores a 10% dos respectivos esforços de 1 ª ordem). Nessas estruturas devem ser considerados tanto os esforços de 2 ª ordem globais como os locais.
Departamento de Engenharia Civil – Universidade Federal do Rio Grande do Sul
4
2.2 - Contraventamento Por conveniência de análise, é possível identificar, dentro da estrutura, subestruturas que, devido à sua grande rigidez a ações horizontais, resistem à maior parte dos esforços decorrentes dessas ações. Essas subestruturas são chamadas subestruturas de contraventamento. Os elementos que não participam da subestrutura de contraventamento são chamados elementos contraventados. As subestruturas de contraventamento podem ser de nós fixos ou de nós moveis.
2.3 – Imperfeições geométricas Segundo o item 11.3.3.4 da NBR6118:2014, na verificação do estado limite último das estruturas reticuladas, devem ser consideradas as imperfeições geométricas do eixo dos elementos estruturais da estrutura descarregada. Essas imperfeições podem ser divididas em dois grupos: imperfeições globais e imperfeições locais.
a) Imperfeições globais Na análise global dessas estruturas, sejam elas contraventadas ou não, deve ser considerado um desaprumo dos elementos verticais conforme mostra a figura abaixo.
Figura - Imperfeições geométricas globais sendo: 1min = 1/300 para estruturas
reticuladas e imperfeições locais;
1máx 1/200.
A sobreposição de vento e desaprumo não é necessária quando o menor valor entre eles não ultrapassar 30% do maior valor. Essa comparação pode ser feita com os momentos totais na base da construção e em cada direção e sentido da aplicação da ação do vento. Nesta comparação, deve- se considerar o desaprumo correspondente a θ 1, não se considerando θ 1mín. Quando a superposição for necessária, deve-se combinar com o vento o desaprumo correspondente a θ1, não se considerando θ1mín. Se o efeito de desaprumo for predominante, o valor do ângulo deve atender θ 1mín. Nessa combinação, admite-se considerar ambas as ações atuando na mesma direção e sentido como equivalentes a uma ação de vento, portanto como carga variável, artificialmente amplificada para cobrir a superposição.
Departamento de Engenharia Civil – Universidade Federal do Rio Grande do Sul
5
b) Imperfeições locais No caso de elementos que ligam pilares contraventados a pilares de contraventamento, usualmente vigas e lajes, deve ser considerada a tração decorrente do desaprumo do pilar contraventado (figura a). No caso da verificação de um lance de pilar, deve ser considerado o efeito do desaprumo ou da falta de retilineidade do eixo do pilar (figuras b e c, respectivamente).
Figura - Imperfeições geométricas locais Admite-se que, nos casos usuais, a consideração apenas da falta de retilineidade ao longo do lance de pilar seja suficiente.
c) Momento mínimo O momento total M1d,mín de primeira ordem, isto é, o momento de primeira ordem acrescido dos efeitos das imperfeições locais, deve respeitar o valor mínimo dado por: M1d,mín = Nd (0,015 + 0,03h) onde: h é a altura total da seção transversal na direção considerada, em metros. Nas estruturas reticuladas usuais admite-se que o efeito das imperfeições locais esteja atendido se for respeitado esse valor de momento total mínimo. A este momento devem ser acrescidos os momentos de segunda ordem. Para pilares de seção retangular, pode-se definir uma envoltória mínima de 1ª ordem, tomada a favor da segurança, de acordo com a figura abaixo.
Departamento de Engenharia Civil – Universidade Federal do Rio Grande do Sul
6
Figura – Envoltória mínima de primeira ordem Neste caso, a verificação do momento mínimo pode ser considerada atendida quando, no dimensionamento adotado, obtém-se uma envoltória resistente que englobe a envoltória mínima de primeira ordem. Quando houver a necessidade de calcular os efeitos locais de 2ª ordem em alguma das direções do pilar, a verificação do momento mínimo deve considerar ainda a envoltória mínima com 2ª ordem. Para pilares de seção retangular, quando houver a necessidade de calcular os efeitos locais de 2ª ordem, a verificação do momento mínimo pode ser considerada atendida quando, no dimensionamento adotado, obtém-se uma envoltória resistente que englobe a envoltória mínima com 2ª ordem, cujos momentos totais são calculados a partir dos momentos mínimos de 1ª ordem. A consideração desta envoltória mínima pode ser realizada através de duas análises à flexão composta normal, calculadas de forma isolada e com momentos fletores mínimos de 1ª ordem atuantes nos extremos do pilar, nas suas direções principais.
Figura - Envoltória mínima com 2ª ordem
Departamento de Engenharia Civil – Universidade Federal do Rio Grande do Sul
7
2.4 - Elementos isolados São considerados elementos isolados (item 15.4.4 – NBR6118:2014), os seguintes: a) os elementos estruturais isostáticos; b) os elementos contraventados; c) os elementos das estruturas de contraventamento de nós fixos; d) os elementos das subestruturas de contraventamento de nós moveis desde que, aos esforços nas extremidades, obtidos numa análise de 1 ª ordem, sejam acrescentados os determinados por análise global de 2 ª ordem.
2.5 - Dispensa da consideração dos esforços globais de 2ª ordem Os processos aproximados, apresentados a seguir, podem ser utilizados para verificar a possibilidade de dispensa da consideração dos esforços globais de 2 ª ordem, ou seja, para indicar se a estrutura pode ser classificada como de nós fixos, sem necessidade de cálculo rigoroso.
2.5.1 - Parâmetro de instabilidade Uma estrutura reticulada simétrica pode ser considerada como sendo de nós fixos se seu parâmetro de instabilidade for menor que o valor 1 conforme a expressão: Htot Nk /(EcsIc )
sendo:
onde:
1=0,2+ 0,1n
se: n 3
1=0,6
se: n 4
n é o número de andares acima da fundação ou de um nível pouco deslocável do subsolo; Htot é a altura total da estrutura, medida a partir do topo da fundação ou de um nível pouco deslocável do subsolo; Nk é a somatória de todas as cargas verticais atuantes na estrutura (a partir do nível considerado para o cálculo de H tot), com seu valor característico; EcsIc representa a somatória dos valores de rigidez de todos os pilares na direção considerada; o valor de I c deve ser calculado considerando as seções brutas dos pilares.
2.5.2 - Coeficiente
z
O coeficiente z de avaliação da importância dos esforços de segunda ordem global é válido para estruturas reticuladas de no mínimo quatro andares. Ele pode ser determinado a partir dos resultados de uma análise linear de primeira ordem. O valor de z para cada combinação de carregamento é dado pela expressão:
Departamento de Engenharia Civil – Universidade Federal do Rio Grande do Sul
8
z 1
1 M tot ,d M 1,tot ,d
onde: M1,tot,d é o momento de tombamento, ou seja, a soma dos momentos de todas as forças horizontais da combinação considerada, com seus valores de cálculo, em relação à base da estrutura; Mtot,d é a soma dos produtos de todas as forças verticais atuantes na estrutura, na combinação considerada, com seus valores de cálculo, pelos deslocamentos horizontais de seus respectivos pontos de aplicação, obtidos da análise de 1 ª ordem; Considera-se que a estrutura é de nós fixos se for obedecida a condição: z 1,1.
2.6 - Análise de estruturas de nós fixos Nas estruturas de nós fixos, o cálculo pode ser realizado considerando cada elemento comprimido isoladamente, como barra vinculada nas extremidades aos demais elementos estruturais que ali concorrem, onde se aplicam os esforços obtidos pela análise da estrutura efetuada segundo a teoria de 1 ª ordem. A análise dos efeitos locais de 2 ª ordem deve ser realizada de acordo com o estabelecido no item 15.8 da NBR6118:2014. O comprimento equivalente e do elemento comprimido (pilar), suposto vinculado em ambas as extremidades, deve ser o menor dos seguintes valores: e = 0 +
onde:
h
e =
0 é
a distância entre as faces internas dos elementos estruturais, supostos horizontais, que vinculam o pilar; h é a altura da seção transversal do pilar, medida no plano da estrutura em estudo; é a distância entre os eixos dos elementos estruturais aos quais o pilar está vinculado.
Departamento de Engenharia Civil – Universidade Federal do Rio Grande do Sul
9
2.7 – Processo simplificado para o cálculo das solicitações nas estruturas usuais de edifícios Para efeitos de projeto, os pilares dos edifícios podem ser classificados em três categorias: pilares intermediários, pilares de extremidade e pilares de canto. Os pilares intermediários estão basicamente submetidos a cargas axiais de compressão. Como as vigas e lajes, que se apoiam nestes pilares, não sofrem interrupção total sobre os mesmos, admitem-se como desprezáveis os momentos fletores transmitidos para os pilares. A situação básica de projeto para os pilares intermediários é, portanto, a de compressão centrada. Os pilares de extremidade, em princípio, estão submetidos a flexão normal composta. A flexão decorre da interrupção sobre o pilar, da viga perpendicular à borda considerada. No caso dos pilares de canto, em virtude da interrupção das vigas situadas nas duas bordas, existe uma situação de projeto de flexão oblíqua composta. Em todos os casos considerados, é importante observar que as situações de projeto levam em conta somente os esforços solicitantes iniciais, que são os esforços de 1 ª ordem decorrentes apenas das cargas atuantes sobre a estrutura. Para o dimensionamento dos pilares, devem ser consideradas as excentricidades mínimas, que são também excentricidades de 1 ª ordem, bem como, no caso de pilares esbeltos, as excentricidades de 2 ª ordem.
Figura – Arranjos estruturais dos pilares de edifícios (P.B.Fusco, Estruturas de Concreto – Solicitações Normais)
Departamento de Engenharia Civil – Universidade Federal do Rio Grande do Sul
10
Segundo o item 14.6.6.1 da NBR6118:2014, pode ser utilizado o modelo clássico de viga contínua, simplesmente apoiada nos pilares, para o estudo das cargas verticais. Quando não for realizado o cálculo exato da influência da solidariedade dos pilares com a viga, deve ser considerado, nos apoios extremos, momento fletor igual ao momento de engastamento perfeito multiplicado pelos coeficientes estabelecidos nas seguintes equações: no tramo superior do pilar:
-
r sup r vig
r inf r sup
no tramo inferior do pilar:
-
r inf r r r vig inf sup
onde: r i é o coeficiente de rigidez do elemento i no nó considerado, avaliada conforme indicado na figura abaixo.
Figura - Aproximação em apoios extremos Os coeficientes de rigidez são calculados através das expressões r inf
2 I inf inf
;
r sup
2 I sup sup
;
I vig r vig vig
onde Iinf e Isup são os momentos principais centrais de inércia das seções transversais dos trechos inferior e superior do pilar e I vig é o momento principal central de inércia da seção transversal da viga, considerando a contribuição das lajes.
Departamento de Engenharia Civil – Universidade Federal do Rio Grande do Sul
11
3 - Análise de elementos isolados 3.1 - Generalidades As recomendações do item 15.8 da NBR6118:2014, que serão apresentadas a seguir são aplicáveis apenas a elementos isolados de seção constante e armadura constante ao longo de seu eixo, submetidos a flexo-compressão. Os pilares devem ter índice de esbeltez menor ou igual a 200 ( 200). Apenas no caso de postes com força normal menor que 0,10f cdAc, o índice de esbeltez pode ser maior que 200. Para pilares com índice de esbeltez superior a 140, na análise dos efeitos locais de 2ª ordem, deve-se multiplicar os esforços solicitantes finais de cálculo por um coeficiente adicional γn1 = 1 + [0,01.(λ – 140) / 1,4].
3.2 - Dispensa da análise dos efeitos locais de 2ª ordem Os esforços locais de 2 ª ordem em elementos isolados podem ser desprezados quando o índice de esbeltez for menor que o valor limite 1 estabelecido neste item. O índice de esbeltez deve ser calculado pela expressão: = e/i
sendo e o comprimento equivalente do pilar e i o raio de giração mínimo da seção transversal. O valor de 1 depende de diversos fatores, mas os preponderantes são: - a excentricidade relativa de 1 ª ordem e1/h; - a vinculação dos extremos da coluna isolada; - a forma do diagrama de momentos de 1ª ordem. O valor de 1 pode ser calculado pela expressão: 1
25 12,5e1 / h b
sendo: 35 1 90
onde o valor de b para pilares biapoiados, sem cargas transversais, deve ser calculado por:
b
0,60 0,40
M B M A
0,40
Os momentos M A e M B são os momentos de 1ª ordem nos extremos do pilar. Deve ser adotado para M A o maior valor absoluto ao longo do pilar biapoiado e para M B o sinal positivo, se tracionar a mesma face que M A, e negativo em caso contrário. Se o pilar apresentar momentos menores do que o momento mínimo, estabelecido no item 11.3.3.4.3 da NBR6118:2014, b deve ser tomado igual a 1. Departamento de Engenharia Civil – Universidade Federal do Rio Grande do Sul
12
3.3 - Determinação dos efeitos locais de 2ª ordem 3.3.1 - Barras submetidas a flexo-compressão O cálculo pode ser feito pelo método exato ou por métodos aproximados. A consideração da fluência deve obrigatoriamente ser realizada em pilares com índice de esbeltez > 90.
3.3.2 - Método exato Consiste na análise não-linear de 2 ª ordem efetuada com discretização adequada da barra, consideração da relação momento-curvatura real em cada seção, e consideração da nãolinearidade geométrica de maneira não aproximada. O método exato é obrigatório para >140.
3.3.3 - Métodos aproximados A determinação dos esforços locais de 2 ª ordem pode ser feita por métodos aproximados como o do pilar padrão e o do pilar padrão melhorado.
3.3.3.1 - Método do pilar padrão com curvatura aproximada Pode ser empregado apenas no cálculo de pilares com 90, seção constante e armadura simétrica e constante ao longo de seu eixo. A não-linearidade geométrica é considerada de forma aproximada, supondo-se que a deformação da barra seja senoidal. A não-linearidade física é considerada através de uma expressão aproximada da curvatura na seção crítica. O momento total máximo no pilar deve ser calculado pela expressão:
M d , tot b M 1d A, N d
2
e
1
10 r
M 1d A,
onde, 1/r a curvatura na seção crítica, que pode ser avaliada pela expressão aproximada: 1
r
0,005
h( 0,5)
0,005
h
sendo: e
= Nd / (Ac f cd)
M1d,A M1d,min onde, h é a altura da seção na direção considerada. O momento M1d,A e o coeficiente b têm as mesmas definições do item 3.2, sendo M1d,A o valor de cálculo de 1ª ordem do momento M A.
Departamento de Engenharia Civil – Universidade Federal do Rio Grande do Sul
13
3.3.3.2 - Método do pilar padrão com rigidez aproximada Pode ser empregado apenas no cálculo de pilares com 90, seção retangular constante, armadura simétrica e constante ao longo de seu eixo. O momento total máximo no pilar deve ser calculado pela expressão: M d ,tot
b M1d,A 1
2
M1d,A M 1d,min
120 /
sendo o valor da rigidez adimensional dado, aproximadamente, pela expressão:
32 1 5
M d, tot h.N d
As variáveis h, , M1d,A e b são as mesmas definidas no item anterior. Usualmente duas ou três iterações são suficientes quando se optar por um cálculo iterativo. Este procedimento recai na formulação direta dada abaixo:
A 5. h N d . 2e 2 2 A. M d ,tot B . M d ,tot C 0, onde : B h . N d 5. h . b . M 1d , A 320 C N d . h 2 . b . M 1d , A
M d ,tot
B
B 2 4 . A.C 2 . A
3.3.3.3 - Método do pilar padrão acoplado a diagramas M, N, 1/r A determinação dos esforços locais de 2 ª ordem em pilares com 140 pode ser feita pelo método do pilar padrão ou pilar padrão melhorado, utilizando-se para a curvatura da seção crítica valores obtidos de diagramas M, N, 1/r específicos para o caso.
3.3.3.4 - Método do pilar padrão para pilares da seção retangular, submetidos à flexão composta oblíqua Quando a esbeltez de um pilar de seção retangular submetido à flexão composta oblíqua for menor que 90 ( 200
4 – Dimensionamento das seções à flexão composta oblíqua Conforme o item 17.2.5 da NBR6118:2014, nas situações de flexão simples ou composta oblíqua pode ser adotada a aproximação dada pela expressão de interação:
Departamento de Engenharia Civil – Universidade Federal do Rio Grande do Sul
15
MRd,x MRd,y =1 + M M Rd,xx Rd,yy
onde: MRd,x; MRd,y são as componentes do momento resistente de cálculo em flexão oblíqua composta, segundo os dois eixos principais de inércia x e y, da seção bruta, com um esforço normal resistente de cálculo N Rd igual à normal solicitante N Sd. Estes são os valores que se deseja obter; MRd,xx; MRd,yy são os momentos resistentes de cálculo segundo cada um dos referidos eixos em flexão composta normal, com o mesmo valor de N Rd. Estes valores são calculados a partir do arranjo e da quantidade de armadura em estudo; é um expoente cujo valor depende de vários fatores, entre eles
o valor da força normal, a forma da seção, o arranjo da armadura e de suas porcentagens. Em geral pode ser adotado =1, a favor da segurança. No caso de seções retangulares pode se adotar =1,2.
5 – Recomendações relativas ao detalhamento dos pilares 5.1 - Proteção contra flambagem das barras De acordo com o item 18.2.4 da NBR6118:2014, sempre que houver possibilidade de flambagem das barras da armadura, situadas junto à superfície do elemento estrutural, devem ser tomadas precauções para evitá-la. Os estribos poligonais garantem contra a flambagem as barras longitudinais situadas em seus cantos e as por eles abrangidas, situadas no máximo à distância de 20 t do canto, se nesse trecho de comprimento 20 t não houver mais de duas barras, não contando a de canto. Quando houver mais de duas barras nesse trecho ou barra fora dele, deve haver estribos suplementares. Se o estribo suplementar for constituído por uma barra reta, terminada em ganchos, ele deve atravessar a seção do elemento estrutural e os seus ganchos devem envolver a barra longitudinal.
Figura - Proteção contra flambagem das barras
Departamento de Engenharia Civil – Universidade Federal do Rio Grande do Sul
16
No caso de estribos curvilíneos cuja concavidade esteja voltada para o interior do concreto, não há necessidade de estribos suplementares. Se as seções das barras longitudinais se situarem em uma curva de concavidade voltada para fora do concreto, cada barra longitudinal deve ser ancorada pelo gancho de um estribo reto ou pelo canto de um estribo poligonal.
5.2 – Disposições gerais relativas às armaduras dos pilares 5.2.1 - Introdução As exigências, que seguem (item 18.4 da NBR6118:2014), referem-se a pilares cuja maior dimensão da seção transversal não exceda cinco vezes a menor dimensão, e não são válidas para as regiões especiais. Quando a primeira condição não for satisfeita, o pilar deve ser tratado como pilar parede, aplicando-se o disposto no item 18.5 da NBR6118:2014.
5.2.2 - Armaduras longitudinais 5.2.2.1 - Diâmetro mínimo e taxa de armadura O diâmetro das barras longitudinais não deve ser inferior a 10 mm e nem superior 1/8 da menor dimensão transversal. A taxa geométrica de armadura deve respeitar os valores máximos e mínimos especificados no item 17.3.5.3 da NBR6118:2014. Conforme este item, a taxa de armadura deve ter o valor mínimo, expresso a seguir:
min
A s ,mín Ac
0 ,15
f cd f yd
0 ,40%
sendo: = Nd/(Ac.f cd)
onde é o valor da força normal adimensionalizada. A tabela abaixo fornece valores para min, com o uso de aço CA-50 e considerando c = 1,4 e s = 1,15.
Tabela - Taxas mínimas de armadura de pilares Valores de mín f ck (MPa)
20
25
30
35
0,1
0,400%
0,400%
0,400%
0,400%
0,400%
0,400%
0,400%
0,400%
0,400%
0,400%
0,400%
0,400%
0,2
0,400%
0,400%
0,400%
0,400%
0,400%
0,400%
0,400%
0,400%
0,400%
0,400%
0,400%
0,3
0,400%
0,400%
0,400%
0,400%
0,400%
0,400%
0,400%
0,407%
0,444%
0,481%
0,4
0,400%
0,400%
0,400%
0,400%
0,400%
0,444%
0,493%
0,542%
0,591%
0,5
0,400%
0,400%
0,400%
0,431%
0,493%
0,554%
0,616%
0,678%
0,6
0,400%
0,400%
0,444%
0,518%
0,591%
0,665%
0,739%
0,7
0,400%
0,431%
0,518%
0,604%
0,690%
0,776%
0,8
0,400%
0,493%
0,591%
0,690%
0,789%
0,887%
40
45
50
55
60
65
70
75
80
85
90
0,400%
0,400%
0,400%
0,400%
0,400%
0,419%
0,444%
0,518%
0,554%
0,591%
0,628%
0,665%
0,641%
0,690%
0,739%
0,789%
0,838%
0,887%
0,739%
0,801%
0,863%
0,924%
0,986%
1,047%
1,109%
0,813%
0,887%
0,961%
1,035%
1,109%
1,183%
1,257%
1,331%
0,863%
0,949%
1,035%
1,121%
1,208%
1,294%
1,380%
1,466%
1,553%
0,986%
1,084%
1,183%
1,281%
1,380%
1,479%
1,577%
1,676%
1,774%
Para aço CA-50, c = 1,4 e s = 1,15
Departamento de Engenharia Civil – Universidade Federal do Rio Grande do Sul
17
A maior armadura possível em pilares deve ser 8% da seção real, considerando-se inclusive a sobreposição de armadura existente em regiões de emenda. As, máx = 8,0% Ac
5.2.2.2 - Distribuição transversal As armaduras longitudinais devem ser dispostas na seção transversal de forma a garantir a adequada resistência do elemento estrutural. Em seções poligonais, deve existir pelo menos uma barra em cada vértice; em seções circulares, no mínimo seis barras distribuídas ao longo do perímetro. O espaçamento livre entre as faces das barras longitudinais, medido no plano da seção transversal, fora da região de emendas, deve ser igual ou superior ao maior dos seguintes valores: -
20 mm; o diâmetro da barra, do feixe ou da luva; 1,2 vezes a dimensão máxima do agregado graúdo. Para feixes de barras, deve-se considerar o diâmetro do feixe:
√ .
Esses valores se aplicam também às regiões de emendas por traspasse das barras. Quando estiver previsto no plano de concretagem o adensamento através de abertura lateral na face da forma, o espaçamento das armaduras deve ser suficiente para permitir a passagem do vibrador. O espaçamento máximo entre eixos das barras, ou de centros de feixes de barras, deve ser menor ou igual a duas vezes a menor dimensão no trecho considerado, sem exceder 400 mm.
5.2.2.3 – Comprimento de espera Conforme o item 9.5.2.3 da NBR6118:2014, o comprimento de espera das barras da armadura longitudinal dos pilares deve ser calculado por 0c
b
A s ,calc A s ,ef
0c ,min
sendo 0c, min o maior valor entre 0,6 b , 15 e 200mm. O valor b é o comprimento de ancoragem básico. Este comprimento é definido como o comprimento reto de uma barra de armadura necessário para ancorar a força limite A sf yd nessa barra, admitindo, ao longo desse comprimento, resistência de aderência uniforme e igual a f bd. O comprimento de ancoragem básico é dado por: b
f yd 4 f bd
25
Departamento de Engenharia Civil – Universidade Federal do Rio Grande do Sul
18
A resistência de aderência, para barras nervuradas, pode ser calculada pela expressão f bd 1 ,125 f ct ,m
- para concretos de classe até C50: f ct ,m 0 ,3 f ck
2 / 3
MPa
- para concretos de classes de C50 até C90: f ct ,m 2 ,12 ln1 0 ,11 f ck MPa
Para o aço CA-50, o comprimento de ancoragem básico pode ser obtido, em função do valor característico da resistência à compressão do concreto, da tabela abaixo. f ck [MPa] b
15 53
20 44
25 38
30 34
35 30
40 28
45 26
50 26
55 26
≥60 25
5.2.3 - Armaduras transversais A armadura transversal de pilares, constituída por estribos e, quando for o caso, por grampos suplementares, deve ser colocada em toda a altura do pilar, sendo obrigatória sua colocação na região de cruzamento com vigas e lajes. O diâmetro dos estribos em pilares não deve ser inferior a 5 mm nem a 1/4 do diâmetro da barra isolada ou do diâmetro equivalente do feixe que constitui a armadura longitudinal. O espaçamento longitudinal entre estribos, medido na direção do eixo do pilar, para garantir o posicionamento, impedir a flambagem das barras longitudinais e garantir a costura das emendas de barras longitudinais nos pilares usuais, deve ser igual ou inferior ao menor dos seguintes valores:
200 mm; menor dimensão da seção; 24 para CA-25, 12 para CA-50.
Pode ser adotado o valor t e1y,mín, a situação de projeto é a única situação de cálculo. N 1000 kN Mx 1000 4 40 kN.m My 1000 6 60 kN.m h x 30 cm; h y 40 cm; d' 5 cm - dimensionamento indireto, através do processo simplificado do item 17.2.5.2 da NBR-6118 (2014): 1, 2 1, 2 M M x y 1 M xx M yy 1, 2
1, 2
40 60 422 1,00 OK . 73,32 103,70 solução adotada: 4 22 (4 x 3,801 = 15,20 cm 2) - dimensionamento direto à flexo-compressão oblíqua: * armadura igual nos quatro cantos: A s,total = 13,40 cm 2 (solução adotada: 4 22) * armadura igual nas quatro faces: A s,total = 15,97 cm 2 - armadura transversal: adotando-se para a armadura longitudinal 422 (15,20 cm2) e estribos de 5 mm, têm-se 20 cm 30 cm h x s t 12 12 x 2,2 26,4 cm 2 2 como t 5 mm / 4 5,5 mm 90GPa t 90 0,5 20,5 cm f y k 0,5 2,2 resultando estribos 5 c / 20 cm.
Exemplo 4: N = 1400 kN Mx = 0 e1x = Mx/N = 0 My = 0 e1y = My/N = 0 Departamento de Engenharia Civil – Universidade Federal do Rio Grande do Sul
28
ℓ e =
4m
3 ,46 e 3 ,46 400 46 ,1 x 30 e h x 3 ,46 h 3 ,46 e 3 ,46 400 34 ,6 y 40 h y e1,mín = 1,5 cm + 0,03 h e1x,mín 1,5 cm 0,03 h x 1,5 0,03 30 2,4 cm e1x
b 1
e1y ,mín 1,5 cm 0,03 h y 1,5 0,03 40 2,7 cm e1y
1
25 12,5e1 / h
b
35 1 90
25 1 35
x 1 e2 x 0 pilar esbelto y 1 e2 y 0 - determinação dos efeitos locais de segunda ordem para 90 :
com curvatura aproximada método do pilar padrão com rigidez aproximada (a) curvatura aproximada: e x bx e1x e 2 x e1x e1x e1x , mín 2 0,005 e , com 0,5 1 e2 x 10 0 , 5 h x N d A c f cd e1x e1x , mín 2,4 cm 1,4 1400 0,91 30 40 2,5 / 1,4 400 e2x 10
2
0,005
0,91 0,5 30
1,89 cm
bx e1x e2 x 2,4 1,89 4,29 cm e1x 2,4 cm
ex
(b) rigidez aproximada:
bx e1x e1x 2 e x 1 x 120 / 32 1 5 e x h x Departamento de Engenharia Civil – Universidade Federal do Rio Grande do Sul
29
- procedimento iterativo: arbitra-se, inicialmente, que e x = e1x = 2,4 cm - primeira iteração: 2,4 32 1 5 44,80 30
2,4
ex
;
1
2
46,1 120 44,80
3,97 cm
- segunda iteração:
3,97 32 1 5 53,17 30
;
ex
;
ex
;
ex
2,4 2
3,60 cm
2
3,67 cm
2
3,66 cm
46,1 1 120 53,17
- terceira iteração:
3,60 32 1 5 51,20 30
2,4 46,1 1 120 51,20
- quarta iteração:
3,67 32 1 5 51,57 30
2,4 46,1 1 120 51,57
- solução direta:
A 5 x2 . h x 46 ,12 .30 2 A .e x B .e x C 0 , onde : B h x 5 . bx .e1 x 30 5 .1.2 ,4 1 ,39680 3840 3840 C h x . bx .e1 x 30 .1 .2 ,4 72 e x
B
B 2 4 . A .C 2 . A
1 ,39680
1 ,39680 2 4 .5 .( 72 ) 2 .5
3 ,66 cm
- situação de cálculo:
e x e1x e2 x 3,66 cm e y e1y, mín 2,7 cm N 1400 kN Mx 1400 3,66 51,24 kN.m My 1400 2,7 37,80 kN.m h x 30 cm; h y 40 cm; d ' 5 cm - dimensionamento direto à flexo-compressão oblíqua: * armadura igual nos quatro cantos: A s,total = 22,67 cm 2 * armadura igual nas quatro faces: A s,total = 25,22 cm 2 (adotado: 820 8x3,142=25,14 cm 2) - detalhamento: adotando-se para a armadura transversal estribos de 5 mm, têm-se
Departamento de Engenharia Civil – Universidade Federal do Rio Grande do Sul
30
20 cm 30 cm h x st 12 12 x 2 24 cm como t 5 mm / 4 5 mm resultando estribos 5 c / 20 cm.
OK .
* espaçamento das barras: 2 cm e 1, má x 2 cm 1,2 d má x 1,2 1,9 2,3 cm 30 2 2,5 2 0,5 3 2 9 cm 2,3 cm OK . e 2
* proteção contra flambagem: 30 2 2,5 2 0,5 2
11cm 20 t 20 0,5 10 cm estribos 2 40 2 2,5 2 0,5 2 16 cm 20 t 20 0,5 10 cm sy 2 sx
sup lementares nas duas direções
Exemplo 5: N = 366,9 kN 3669
A
M x 36,69 kN.m e1x A
B
M x 9,17 kN.m e1x B
366,9
A
B
ℓ e =
366,9
366,9
M y 11,01kN.m e1x B
917
9173
A
M y 91,73 kN.m e1y
10 cm
2,5 cm
25 cm
1101 366,9
3 cm
7,5 m
750 e 86,5 3 , 46 3 , 46 x 30 hx 3,46 e h 3,46 e 3,46 750 64,9 y 40 hy
Departamento de Engenharia Civil – Universidade Federal do Rio Grande do Sul
31
- direção x: A e1x,mín 1,5 cm 0,03 h x 1,5 0,03 30 2,4 cm e1x 10 cm
bx 0,60 0,40 25 12,5
1x
e1x
B
(2,5)
e1x
10
0,40 bx 0,60 0,40 A
A
e1x hx
25 12,5
bx x 86,5 1x 58,3
0,50
0,50 0,40 bx 0,50
10 30 58,3
(35
1x 90)
e 2 x 0 ( pilar esbelto)
- rigidez aproximada:
bx e1x e1x 2 e x x 1 120 / 32 1 5 e x h x - solução direta:
A 5 2 x . h x 86 ,5 2 .30 2 A .e x B .e x C 0 , onde : B h x 5 . bx .e1 x 30 5 .0 ,5 .10 53 ,455 3840 3840 C h x . bx .e1 x 30 .0 ,5 .10 150 e x
B
B 2 4 . A .C 2 . A
53 ,455 53 ,455 2 4 .5 .( 150 ) 2 .5
13 cm
e x 13 cm( seção int ermediária ) e1 x 10 cm( seção de extremidad e ) - direção y: A e1y ,mín 1,5 cm 0,03 h y 1,5 0,03 40 2,7 cm e1y 25 cm
by 0,60 0,40 25 12,5
1y
e1y
B
(3)
e1y
25
0,40 by 0,60 0,40 A
A
e1y hy
25 12,5
0,55 0,40 by 0,55
25 40 59,7
(35 1y 90) 0,55 by y 64,9 1y 59,7 e2 y 0 ( pilar esbelto)
Departamento de Engenharia Civil – Universidade Federal do Rio Grande do Sul
32
- rigidez aproximada:
by e1y e1y e y 2 y 1 120 / 32 1 5 e y h y - solução direta:
A 5 2 y . h y 64 ,9 2 .40 2 A .e y B .e y C 0 , onde : B h y 5 . by .e1 y 40 5 .0 ,55 .25 72 ,6251 3840 3840 C h y . by .e1 y 40 .0 ,55 .25 550 e x
B
B 2 4 . A .C 2 . A
72 ,6251 72 ,62512 4 .5 .( 550 ) 2 .5
20 ,02 cm
e y 20 ,02 cm( seção int ermediária ) e1 y 25 cm( seção de extremidad e ) duas
situações de projeto:
- seção intermediária: N 366,9 kN Mx 366,9 13 47,70 kN.m My 366,9 20,02 73,45 kN.m 2 As ,total 14,61cm armadura igual nos quatro cantos -seção de extremidade: N 366,9 kN Mx 366,9 10 36,69 kN.m My 366,9 25 91,73 kN.m 2 As,total 15,44 cm armadura igual nos quatro cantos solução: 4 25 (19,64 cm 2)
Departamento de Engenharia Civil – Universidade Federal do Rio Grande do Sul
33
View more...
Comments