Physics CPP-FIITJEE
March 31, 2017 | Author: sanits591 | Category: N/A
Short Description
Download Physics CPP-FIITJEE...
Description
FTTT'CC I AlPr UR
cPP-1
Maths
CENT RE
Ghapter Practice prob lems
" ' 'Baircl,es-Xl(CTY
lf the.normals
at rwo points p and
ofordinates pand O is
G)qd 1
A tangent to
a
4
Jl = 4ar
;o,!2
intersect at a thfud point
]
G){zqz.Eq) ve
ex in
p,
3f +ly_6aag=g
from when 3 distinct normals can be drawn
6
The va lue
ofl
forwhich the equarion
ror j*
f
(D) None ofrhese
(sx- t2y+
tlf
is: (D) None ofrhese
l3
(l0r-5):+(l0y_7)2=D(5r+l2yr-7)2
G)-i*
given by:
is
28
(c)
3
Z.!ep =
@)+
ro{",}),,,
t2
(B)
''(+'?)
and S is the focus of the Parabola the
@;
zt=5+3i
Ji
point represented by z, w.,e,. o,I -----l _ - _o , ts -, when
"ro4
(c)
+
{D) none orthese
1c1l,i=z1t
then the maximum vatue ot lrz + z, I
@)
(D) an arc of a circte
otl,l=314
ts
$1-z
Gt
Ji +z
j
G)
it
(o)7
The value of tn(-1)
iA) does not
exist
(B) 2ln
(D)
O
ANSWER KEY
1.A2.83.C4.A5.D6.D 7. D 8. 8
FIIT.lCC
9. D
10.
A
11.D
12. C 5
t.
HEJCC IAIPUR,
Maths
CENTRE
GPP
Ghapter Practice Prdtlems
for JEE, 2Ol7
CPP-7
Class
COMPLEXNUMBER
't. 2,
Common roots
of
the equation z3
+Zl
-
Xl
+22+1 =Oandztes*21@+1=0is............
l.f points coresponding to the complex numbers zr, zz, 23 and zlarc lhe vertic€s of a rhombus, taken in ordei, then for a non-zero real number k {A) z1 -2.=ik(zz-z) (B)21-72=ik(4-41 (C)21 +7. =k(zr+41 lD) z, + 7, = k! zt +z.l
3. . 4.
lf z1 and zz are two comprex numbers such rhar (A) (B) -
nt4
rtz
'll f(x)
lzl-z2l=llal-lz2l lC) xtz
is equar
l, then argz, - argz2 1o1 o-
to
and g(x) are two potynomiats such that the potynomial h(x) = x f(x3) r x, g(xu) is divisible by x' +x +1 , then (A) f(1) =s(t) ,(B) f(1)+-s( i) (c)f(1)=s(1),a0 (D)f{l)= j(1) +0
5.
conside. a square oABC in the argand plane, where o'. is origin ind A A(ze). Then the equation of = the circle that can 'be inscribed in this square is; ( vertices oi squarb are gi-ven in antictockwile order)
(A)tz-a(l+Dt=tzot
zl,-a{'9=6r r"tf,-{-l=r.r
1e1
(D) none
of
these
For a complex number z, the minimum value of lzl + | z - coscr - isinol is
6.
(B)l
{A)0
The rcots of equalion 2n = (z +1)' (A) are vertices of regular polygon (C) are collinear
7
8,
Let
z
=l-t +i
+r+2, Wherb
{A) A hyperbola
{A) r
10.
-i+(2+Ji)
{4)(=)=
ellipse
(C) A straight
tine
maximum area that can be inscribed in the curve jz
-
(D)_1_(
2 il =2,1s 2 +2i
2_6)
k, then points A (21), B(22),c(3, o) and D(2, o) (taken in crockwise sense)
(A) lie on a circle only for k >
0
Let'z'be
a complex number
and ,a'be a real parameter such lhal z2 + az+
(A) locus
of z is a pair of srraight Ines
{c) lzl
:
(D) None of these.
1a;-r-qz*J3; (C)1+(2-Ji)
(C)lieonacircle Vk € R 11.
of
(B) lle on a circle (D) none of these
t is a real parameter. The locus of z in the Arq and plane is
(B)An
one .vertex of the triangre remaining vertices is / a.e
9.
{D) flone of these
2
i
-
3x + q
-
(B)a
g, s a R and a
{
4'-
(C)a>5
ar- a + 3 < o rs satisfied by atleast one real.r: (C)a (B) SP =
b > 1.
4.
Astraightline touc.fres both f + f = Sandtf = 16x. Show that its equation is y= 11y + i;.
5.
From a variable point P, on a fixed nomal to lhe parahla = qa*, two normah are drawn Show that the chord joining the feet of lhese two normals is paralbl to a ,i)€d lin€.
6.
lf the normal at any polnt P on th€ ellipse cuts the major and minor axis in Cr and G respoctively and C be the centre of theellipse then show a'zCCf + 6fo6'z= (." i,1,.
7
Consider the ellipse x2 +
=
ulz
- b int€irs€d in /ou, oi"tir.t
f
b
the parabda.
31 = 6and a pointPonitin lhe first quadrant at a distance of 2 units
centre. Find the eccentric angle of P.
I
I 10.
pon15
from the
The ellipse
is rotated through a right angle in its own plane about iB eenre which is fixed. 5-# =, Prove thatthe logy? I thg po,lnt of lntens€cti,on of the tang€nts to the elllpso ln [s origlnal ard in the rlew position ls (x' + \f) (t' + f a' g'l = \a' 42lxy. lf two @lnts are taken on lhe minor axb of an ellipse at lhe same disiance from the centre as ttle foci, prove that the sum of the squares of the perpendiculars fiom these polnts on any tangenl lo the eflipse is constant. Show that for all real p, the line Zgx + ellipse
y
rtl-f,
= 1 touches a fixed ellipse. Find the eccentricity ot this
ANSWERS Subroct : Mathematics
Topic : Parabola
&tllipse
Eatch : xl
OBJECTIVE
(B) 8. (8) 1s. (A) ?z.lcl 2e.(c) 1.
2
4.
10. (A)
(c) 11.(c)
5.{A)
s. (C)
12.(^)
13. (D)
16. (A)
14. {A)
17. (B)
18. (B)
1e. (B)
20. (8)
21. (Bl
23. (B)
24.(c)
25.
{c)
26.(c)
27. (Dl
28. (A)
(A)
6.
(c)
7.
(8)
,
30. (D)
SUBJECTIVE 2. syz - 1?ax + 8a2 = 0.
fIITJCC
3. (B)
7. nl4
3
View more...
Comments