PFE PONT 2

May 8, 2017 | Author: Ikram Khalyl | Category: N/A
Share Embed Donate


Short Description

PFE PONT EHTP...

Description

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

Résumé Dans le cadre du projet de développement des provinces du Nord que le Gouvernement Marocain s’est fixé comme objectif, la Direction Provincial de l’Equipement de Taounate a lancé l’étude de l’ouvrage d’art sur l’oued Lben au niveau du PK 14+400 de la RR508.

Le franchissement actuel est assuré par un pont à poutre en béton armé de 55 m de longueur à trois travées indépendantes. (Voir Annexe) L’ouvrage dans son état actuel est étroit en égard au trafic actuel, et pour remédier à cette situation l'administration a décidé d’assurer le franchissement de l’oued par la reconstruction d’un nouvel ouvrage. Une enquête a montré que l’ouvrage se trouve sur un coude et une zone de rétrécissement du lit de l’oued, ce qui sans doute provoquera un danger pour l’ouvrage en cas de crue. D’où la solution de refaire l’étude du pont afin d’augmenter sa longueur. On note que la variante proposée est un VIPP de 4 travées de 40 m. L’élaboration du projet est prévue en trois phases : 

Etude de définition



Avant-projet



Projet d’exécution.

Pour mener à bien cette étude, on s’est basé sur : 

Les cartes topographiques au 1/50.000 de la Division de la Cartographie, pour la délimitation du bassin versant ;



Les plans cotés au 1/200 levés sur place et rattachés au système NGM ;



Instruction sur les charges et surcharges routières : Fascicule N°61 ;



Instruction sur les caractéristiques géométriques des routes en rase campagne ;



Dossier type des ouvrages d’art de la DRCR ;



Dossier type des ouvrages d’art de la SETRA ;



Rapports géotechniques du LABOSOL.

1

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

Sommaire : Résumé ................................................................................................................................................................. 1 Sommaire : .......................................................................................................................................................... 2 Liste des tableaux : ........................................................................................................................................... 7 Liste des figures :............................................................................................................................................ 10

ETUDE DE DEFINITION .................................................................................................................. 13 Chapitre I – Données du projet .................................................................................................................. 14 I-Description générale : ............................................................................................................................................................ 14 I.1- Situation : .......................................................................................................................................................................... 14 I.2- Climatologie : ................................................................................................................................................................... 14 I.3- Trafic : ................................................................................................................................................................................. 15 I.4- Tracé au droit de l’ouvrage et raccordement à la piste existante : .......................................................... 15 I.5- Aspects géotechniques :............................................................................................................................................. 15 II-Etude hydrologique : ............................................................................................................................................................ 15 II.1- Introduction : ................................................................................................................................................................. 15 II.2- Méthode statistique : .................................................................................................................................................. 16 II.3 -Méthode empirique : .................................................................................................................................................. 23 ........................................................................................................................................................................................................ 24

Chapitre II – Etude hydraulique ................................................................................................................ 26 I- Introduction .............................................................................................................................................................................. 26 II-Calcul hydraulique à l’état initial : .................................................................................................................................. 27 II.1- Capacité de l’ouvrage existant et Enquête des crues : ................................................................................. 27 II.2- Passage de crue sans ouvrage existant : ............................................................................................................ 28 II.3- Passage de crue avec ouvrage existant : ............................................................................................................ 28 III-Calcul hydraulique à l’état de projet : .......................................................................................................................... 28 III.1-Implantation de l’ouvrage projeté : ..................................................................................................................... 28 III.2-Résultats de calcul : .................................................................................................................................................... 29

Chapitre III – Définition des variantes .................................................................................................... 30 I-Introduction ............................................................................................................................................................................... 30 II- Les ponts en béton armé .................................................................................................................................................... 30 II.1- Pont à poutres en béton armé: ............................................................................................................................... 30 II.2- Pont dalle en béton armé: ........................................................................................................................................ 30 II.3- Pont à Béquilles : .......................................................................................................................................................... 31 II.4- Pont en arc: ..................................................................................................................................................................... 31 III- Ponts en béton précontraint .......................................................................................................................................... 31 III.1- Pont dalle en béton précontraint : ...................................................................................................................... 31 III.2- Pont à précontrainte par adhérence (PRAD): ................................................................................................ 31 III.3- Viaduc à travées Indépendantes à Poutres Préfabriquées (VIPP): ...................................................... 31 III.4- Pont caisson : ................................................................................................................................................................ 32 IV-Ponts métalliques ................................................................................................................................................................. 32 V-Pont bipoutre mixte............................................................................................................................................................... 33 VI-Choix des variantes .............................................................................................................................................................. 33 VI.1-Variantes proposées :................................................................................................................................................. 34 VI.2-Estimation sommaire du coût des variantes ................................................................................................... 35

2

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 ETUDE D’AVANT- PROJET ............................................................................................................. 36 Chapitre I – Prédimensionnent du tablier ............................................................................................. 37 I-Variante I: Pont à poutre en béton armé (PSI-BA) : ................................................................................................. 37 I.1- Conception générale : .................................................................................................................................................. 37 I.2- Eléments de prédimensionnement : ..................................................................................................................... 38 II-Variante II : VIPP..................................................................................................................................................................... 41 II.1- Conception générale : ................................................................................................................................................. 41 II.2- Eléments de prédimensionnement : .................................................................................................................... 42

Chapitre II- Calcul des affouillements ..................................................................................................... 45 I-Introduction ............................................................................................................................................................................... 45 I.1- l’affouillement général : .............................................................................................................................................. 45 I.2- l’affouillement local autour des piles de ponts : .............................................................................................. 45 I.3- l’affouillement dû au rétrécissement du lit de la rivière :............................................................................ 45 II-Calculs : ....................................................................................................................................................................................... 46 II.1- Affouillement général : .............................................................................................................................................. 46 II.2- Affouillement local : .................................................................................................................................................... 46 II.3- affouillement dû au rétrécissement du lit de la rivière : ............................................................................ 47 II.4- Conclusion :..................................................................................................................................................................... 47

Chapitre III – Prédimensionnent des piles ............................................................................................. 48 I-Morphologie des piles ............................................................................................................................................................ 48 I.1-Les piles de type voile : ................................................................................................................................................ 48 I.2-Les piles de type poteau : ............................................................................................................................................ 48 I.3-Les piles de type caisson : ........................................................................................................................................... 49 I.4-Les piles marteaux : ....................................................................................................................................................... 49 I.5-Les piles portiques : ....................................................................................................................................................... 49 I.6-Les piles spéciales : ........................................................................................................................................................ 49 I.7-Choix du type de pile : ................................................................................................................................................... 49 II- Eléments de prédimensionnement ............................................................................................................................... 50 II.1-Chevêtre: ........................................................................................................................................................................... 50 II.2- Fût de pile: ....................................................................................................................................................................... 50

Chapitre IV – Prédimensionnent des culées........................................................................................... 53 I- Morphologie des culées........................................................................................................................................................ 53 I.1-La culée enterrée: ........................................................................................................................................................... 53 I.2-La culée remblayée: ....................................................................................................................................................... 54 I.3-La culée creuse: ............................................................................................................................................................... 54 I.4-La culée en terre armée: .............................................................................................................................................. 54 I.5-La culée contrepoids: .................................................................................................................................................... 54 I.6-Choix du type de culée:................................................................................................................................................. 54 II-Eléments de prédimensionnement ................................................................................................................................ 54 II.1-Sommier d’appui : ......................................................................................................................................................... 54 II.2-Le mur garde-grève : ................................................................................................................................................... 55 II.3-Les murs en retour : ..................................................................................................................................................... 56 II.4-La dalle de transition :................................................................................................................................................. 56 II.5-Les fûts :............................................................................................................................................................................. 57

Chapitre V – Prédimensionnent des fondations ................................................................................... 58 I-Reconnaissances géotechniques ....................................................................................................................................... 58 I.1-Aspects géologiques de la région : .......................................................................................................................... 58

3

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 I.2-Reconnaissance du site : .............................................................................................................................................. 58 II-Choix des Fondations : ......................................................................................................................................................... 59 II.1-Rappel des résultats d’affouillement :.................................................................................................................. 59 II.2-Exploitation des résultats : ....................................................................................................................................... 59 III-Prédimensionnement ......................................................................................................................................................... 60 III.1-Fondations semi – profondes :............................................................................................................................... 60 III.2-les fondations profondes : ....................................................................................................................................... 60

Chapitre VI – Comparaison économique ................................................................................................ 63

ETUDE D’EXECUTION ..................................................................................................................... 65 Chapitre I – Inventaire des charges ......................................................................................................... 66 I-Charges permanentes ............................................................................................................................................................ 66 I.1-Les revêtements du tablier : ...................................................................................................................................... 66 I.2-Les trottoirs : .................................................................................................................................................................... 66 I.3-Les garde- corps : ............................................................................................................................................................ 67 I.4-La corniche : ...................................................................................................................................................................... 67 I.5-Inventaire des charges permanentes : .................................................................................................................. 68 II-Charges routières ................................................................................................................................................................... 68 II.1-Généralités : ..................................................................................................................................................................... 68 II.2-Le système A(l) : ............................................................................................................................................................ 71 II.3-Le système B : ................................................................................................................................................................. 71 II.4-Système Mc120 : ............................................................................................................................................................ 73 II.5-Les charges sur les trottoirs : ................................................................................................................................... 74

Chapitre II – Etude de tablier ..................................................................................................................... 75 I-Détermination des CRT des charges................................................................................................................................ 75 I.1-Aperçu général de la méthode de GUYON MASSONET: ................................................................................. 75 I.2- Eléments de calcul : ...................................................................................................................................................... 77 II-Détermination des sollicitations moyennes ............................................................................................................... 82 II.1- Les lignes d’influence : ............................................................................................................................................... 82 II.2- Calcul des sollicitations : ........................................................................................................................................... 83

Chapitre III – Etude de l’hourdis................................................................................................................ 91 I-Présentation et Données de calcul ................................................................................................................................... 91 I.1- Introduction : ................................................................................................................................................................... 91 I.2- Données de calcul : ........................................................................................................................................................ 91 II-calcul des sollicitations : ...................................................................................................................................................... 93 II.1-Calcul de la dalle entre poutres : ............................................................................................................................ 93 II.2-Calcul de la dalle en encorbellement: ................................................................................................................... 96 III-Calcul du ferraillage et vérifications............................................................................................................................. 99 III.1-Hypothèses de calcul : ............................................................................................................................................... 99 III.2-Résultats : ........................................................................................................................................................................ 99 III.3-Vérification au poinçonnement de la dalle : ................................................................................................. 100 III.4-Calcul de la prédalle : .............................................................................................................................................. 101

Chapitre IV – Etude de la précontrainte .............................................................................................. 105 I-Données de calcul ................................................................................................................................................................. 105 II-Calcul de la précontrainte ................................................................................................................................................ 107 II.1-Tableaux caractéristiques des poutres : .......................................................................................................... 107 II.2-Précontrainte dans la première famille : ......................................................................................................... 109 II.3-Précontrainte dans la deuxième famille : ........................................................................................................ 110

4

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 II.4-Disposition des câbles dans le talon à mi- portée : ..................................................................................... 112 III-Calcul d’armatures ............................................................................................................................................................ 112 III.1-Armatures de traction : .......................................................................................................................................... 112 III.2-Armatures de peau : ................................................................................................................................................ 112 III.3-Vérification de la flexion L’ELU : ........................................................................................................................ 113 IV-Relevage des câbles ........................................................................................................................................................... 115 IV.1- Effort tranchant admissible : .............................................................................................................................. 115 IV.2- Pour la première famille : .................................................................................................................................... 116 IV.3- Pour la deuxième famille : ................................................................................................................................... 118 V-résistance à la rupture par effort tranchant ............................................................................................................ 119 V.1-Vérification de la rupture vis-à-vis du cisaillement : .................................................................................. 119 V.2- Calcul des armatures transversales : ................................................................................................................ 120 VI-Pertes de précontrainte .................................................................................................................................................. 121 VI.1- Pertes instantanées : .............................................................................................................................................. 122 VI.2- Pertes différées :....................................................................................................................................................... 123 VII-Calcul des zones d’abouts ............................................................................................................................................. 125 VII.1-Effet d’un effort concentré au centre de la poutre : ................................................................................. 125 VII.2-Vérification de l’équilibre général de diffusion pure : ............................................................................ 127 VII.3-Justification de la bielle d’about........................................................................................................................ 130 VII.4-Equilibre du coin inférieur : ............................................................................................................................... 131

Chapitre V – Etude des entretoises ......................................................................................................... 132 I-Introduction ............................................................................................................................................................................ 132 II-Sollicitations sous charges permanentes.................................................................................................................. 133 II.1 – Poids propre de l’entretoise : ............................................................................................................................. 133 II.2 – Poids de l’hourdis et de la chaussée: .............................................................................................................. 133 III-Sollicitations sous surcharges routières ................................................................................................................. 135 III.1 – le système Bc : ......................................................................................................................................................... 135 III.2 – le système Bt : ......................................................................................................................................................... 136 III.3 – le système Mc120 : ................................................................................................................................................ 137 IV-Combinaisons de charges :............................................................................................................................................. 138 IV.1- Sollicitations à l’ELU :............................................................................................................................................. 138 IV.2- Sollicitations à l’ELS : ............................................................................................................................................. 138 V-Vérinage ................................................................................................................................................................................... 139 VI- Calcul du ferraillage :....................................................................................................................................................... 141 VI.1-Section adoptée: ........................................................................................................................................................ 141 VI.2-Armatures longitudinales: .................................................................................................................................... 141 VI.3-Armatures verticales: .............................................................................................................................................. 142

Chapitre VI – Etude des appareils d’appui ........................................................................................... 144 I-Introduction ............................................................................................................................................................................ 144 II-Détermination des déformations ................................................................................................................................. 145 II.1- Rotations d’appuis :.................................................................................................................................................. 145 II.2- Déplacements d’appuis : ........................................................................................................................................ 146 III-Réactions d’appuis ............................................................................................................................................................ 146 III.1-Les charges permanentes : ................................................................................................................................... 147 III.2-Les surcharges routières :..................................................................................................................................... 147 IV-Dimensionnement ELU.................................................................................................................................................... 150 IV.1-Aire de l’appareil d’appui : .................................................................................................................................... 150 IV.2-Hauteur nette d’élastomère: ................................................................................................................................ 151 IV.3-Dimensions en plan: ................................................................................................................................................ 151

5

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 IV.4-Stabilité au flambement: ........................................................................................................................................ 152 IV.5-Limite de déformation : .......................................................................................................................................... 152 IV.6-Stabilité en rotation : ............................................................................................................................................... 153 IV.7-Condition de non- glissement : ........................................................................................................................... 153 IV.8-Dimensionnement des frettes: ............................................................................................................................ 154 V-Dimensionnement ELS ...................................................................................................................................................... 154 V.1-Aire de l’appareil d’appui : ..................................................................................................................................... 154 V.2-Dimensionnement en plan de l’appareil : ........................................................................................................ 155 VI-Efforts horizontaux en tête d’appuis ......................................................................................................................... 155 VI.1-Introduction : .............................................................................................................................................................. 155 VI.2-Détermination des rigidités des appuis et des efforts de freinage : ................................................... 156 VI.3-Effets dues aux variations linéaires : ............................................................................................................... 157 VII-Vérifications du dimensionnement ELS ................................................................................................................. 158 VII.1-Limitation de la distorsion :................................................................................................................................ 158 VII.2-Condition sur la somme des contraintes de cisaillement : ................................................................... 158 VII.3-Condition de non glissement : ........................................................................................................................... 159 VII.4-Condition de non soulèvement : ....................................................................................................................... 159 VII.5-Condition sur l’épaisseur des frettes :............................................................................................................ 159

Chapitre VII – Etude des culées ................................................................................................................ 161 I-Introduction ............................................................................................................................................................................ 161 I.1-Hypothèses de calcul .................................................................................................................................................. 162 I.2-Charges permanentes : .............................................................................................................................................. 162 I.3-Actions de surcharges : ................................................................................................................................................ 163 I.4-Actions naturelles et climatiques : ........................................................................................................................... 163 I.5-Descente des charges : ............................................................................................................................................... 164 II- Mur garde grève : ............................................................................................................................................................... 165 II.1-Efforts verticaux : ....................................................................................................................................................... 165 II.2-Efforts horizontaux : ................................................................................................................................................. 165 II.3-Ferraillage : ................................................................................................................................................................... 166 III- Dalle de transition :.......................................................................................................................................................... 167 III.1-Sollicitations : ............................................................................................................................................................. 167 III.2-Armatures : .................................................................................................................................................................. 168 III.3-Corbeau d’appui de la dalle de transition : .................................................................................................... 168 IV- Mur en retour : ................................................................................................................................................................... 169 IV.1-Sollicitations : ............................................................................................................................................................. 169 IV.2-Armatures : .................................................................................................................................................................. 170 V- Chevêtre.................................................................................................................................................................................. 170 V.1-Justification vis-à-vis de la flexion : .................................................................................................................... 170 V.2-Justification vis-à-vis de la torsion : ................................................................................................................... 172 VI- Les Fûts ................................................................................................................................................................................. 174 VI.1-Ferraillage longitudinal : ....................................................................................................................................... 174 VI.2-Ferraillage transversal : ......................................................................................................................................... 175

Chapitre VIII – Etude des piles ................................................................................................................. 176 I-Introduction ............................................................................................................................................................................ 176 I.1-Charges permanentes : .............................................................................................................................................. 176 I.2-Actions de surcharges : ............................................................................................................................................. 176 I.3-Actions naturelles et climatiques : ....................................................................................................................... 177 II-Descente des charges ......................................................................................................................................................... 178 II.1-Cas de charges : ........................................................................................................................................................... 178

6

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 II.2-Combinaisons des charges : ................................................................................................................................... 178 II.3-Application numérique : ......................................................................................................................................... 179 III-Ferraillage ............................................................................................................................................................................. 179 III.1-Armatures du Chevêtre : ....................................................................................................................................... 179 III.2-Armatures des Fûts : ............................................................................................................................................... 181

Chapitre IX – Etude des fondations......................................................................................................... 182 I-fondations semi- profondes ............................................................................................................................................. 182 II-fondations profondes ........................................................................................................................................................ 183 II.1- Introduction : .............................................................................................................................................................. 183 II.2- Calcul de la capacité portante : ........................................................................................................................... 183 II.3- Calcul des pieux : ....................................................................................................................................................... 185 II.4- Calcul des semelles de liaison par la méthode des bielles : .................................................................... 190

Chapitre X – Analyse sismique ................................................................................................................. 192 I-Introduction ............................................................................................................................................................................ 192 II-Démarche de l’analyse sismique .................................................................................................................................. 193 II.1- Classification du site : .............................................................................................................................................. 193 II.2- Spectre de réponse élastique :............................................................................................................................. 193 II.3- Choix de la méthode d’analyse ............................................................................................................................ 194 II.4- Détermination des efforts provenant de la mise en mouvement du tablier ................................... 195 III-Vérification des appareils d’appui : ........................................................................................................................... 198 III.1-Résistance à la compression :.............................................................................................................................. 198 III.2-Flambement : .............................................................................................................................................................. 198 III.3-Distorsion : .................................................................................................................................................................. 199 IV-Calcul des sollicitations : ................................................................................................................................................. 200 IV.1-Inventaire des efforts sismiques : ..................................................................................................................... 200 IV.2-Combinaison des directions du séisme : ........................................................................................................ 200 IV.3-Combinaison des actions sismiques : ............................................................................................................... 201 V-Ferraillage : ............................................................................................................................................................................ 202 V.1-Hypothèses de calcul : .............................................................................................................................................. 202 V.2-Sollicitations de calcul :............................................................................................................................................ 202 V.3-Armatures :.................................................................................................................................................................... 202

Liste des tableaux : Tableau 1:Pluvimétrie mensuelle de Taounate .................................................................................................. 14 Tableau 2: débits par loi exponentielle .................................................................................................................. 17 Tableau 3:Débits par loi Gamma............................................................................................................................... 18 Tableau 4: Débits par loi Gamma généralisée ..................................................................................................... 19 Tableau 5: Débits par loi Weibul .............................................................................................................................. 20 Tableau 6: Débits par loi PearsonIII ........................................................................................................................ 21 Tableau 7: Débits par loi Gumbel ............................................................................................................................. 22 Tableau 8:Débit millénaire par Hazan-lazaravic................................................................................................ 23 Tableau 9:Débits par Fuller I ...................................................................................................................................... 23 Tableau 10:Débits par Mallet-Gauthier ................................................................................................................. 24 Tableau 11:Débits par Fuller II ................................................................................................................................. 24 Tableau 12:Comparaison des débits ....................................................................................................................... 25 Tableau 13:Débits du projet ....................................................................................................................................... 25 Tableau 14: Domaines d'utilisation des ponts courants ................................................................................. 33

7

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 Tableau 15:Critères de comparaison à portées égales .................................................................................... 34 Tableau 16:Comparaison sommaire des coûts des variantes ...................................................................... 35 Tableau 17: Hauteurs des affouillements ............................................................................................................. 47 Tableau 18: Prédimensionnement des piles du PSI-BA .................................................................................. 51 Tableau 19 : Prédimensionnement des piles du VIPP ..................................................................................... 51 Tableau 20: Valeurs caractéristiques de KA et KB ............................................................................................ 61 Tableau 21: Réactions d'appui pour les deux variantes ................................................................................. 62 Tableau 22: Charges des superstructures ............................................................................................................ 67 Tableau 23: Coefficient a1 ............................................................................................................................................ 69 Tableau 24: Largueurs V0 ............................................................................................................................................ 69 Tableau 25:Coefficient bc ............................................................................................................................................. 70 Tableau 26:Coeffient bt ................................................................................................................................................. 70 Tableau 27:Coefficient de majoration dynamique longitudinal .................................................................. 70 Tableau 28:Valeurs de la surcharge A(l) ............................................................................................................... 71 Tableau 29: Position du centre de gravité ............................................................................................................ 78 Tableau 30: Calcul du moment d'inertie ............................................................................................................... 78 Tableau 31:Valeurs de K0 et K1 .................................................................................................................................. 80 Tableau 32:Valeurs de K projet ..................................................................................................................................... 80 Tableau 33:Valeurs de Kprojet pour la poutre intermédiaire et celle de rive ........................................... 80 Tableau 34: Valeurs du CRT pour les différentes charges ............................................................................. 81 Tableau 35: Valeurs des sollicitations du poids propre .................................................................................. 83 Tableau 36: Valeurs des sollicitations du poids de l'hourdis........................................................................ 84 Tableau 37: Valeurs des sollicitations du poids des entretoises ................................................................. 84 Tableau 38: Valeurs des sollicitations du poids des superstructures ....................................................... 85 Tableau 39: Valeurs des sollicitations des charges permanentes .............................................................. 85 Tableau 40:Valeurs des sollicitations de la surcharge A(l) ........................................................................... 86 Tableau 41:Valeurs des sollicitations de la surcharge Bc .............................................................................. 87 Tableau 42:Valeurs des sollicitations de la surcharge Bt ............................................................................... 87 Tableau 43: Valeurs des sollicitations de la surcharge Br ............................................................................. 88 Tableau 44: Valeurs des sollicitations de la surcharge Mc120 .................................................................... 89 Tableau 45:Valeurs des sollicitations des surcharges de trottoir............................................................... 89 Tableau 46: Valeurs des sollicitations globales .................................................................................................. 90 Tableau 47: Moments transversal et longitudinal en hourdis ..................................................................... 95 Tableau 48:Moment de continuité sur poutres .................................................................................................. 95 Tableau 49:Moment de continuité sur entretoises ........................................................................................... 95 Tableau 50: Effet des charges permanentes sur la dalle en encorbellement ......................................... 97 Tableau 51:Moments d'encastrement sur dalle en encorbellement ........................................................ 98 Tableau 52:Ferraillage de l’hourdis entre poutres en ELU............................................................................ 99 Tableau 53:Ferraillage de l'hourdis entre poutres en ELS ............................................................................ 99 Tableau 54: armatures finales de l'hourdis entre poutres ......................................................................... 100 Tableau 55:Ferraillage de l’hourdis en encorbellement en ELU .............................................................. 100 Tableau 56:Ferraillage de l’hourdis en encorbellement en ELU .............................................................. 100 Tableau 57:Vérification au poinçonnement de l'hourdis ............................................................................ 101 Tableau 58: Contraintes admissibles du béton ............................................................................................... 106 Tableau 59: Moments en mi - travée à l'ELS ..................................................................................................... 107 Tableau 60: Caractéristiques de la section médiane ..................................................................................... 107

8

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 Tableau 61: Calendrier des mises en tension ................................................................................................... 108 Tableau 62: Inclinaisons des câbles de la première famille ....................................................................... 118 Tableau 63: Equations des câbles de la première famille ........................................................................... 118 Tableau 64: Equations des câbles de la deuxième famille .......................................................................... 119 Tableau 65: Efforts tranchants ............................................................................................................................... 119 Tableau 66: Sections des armatures d'éclatement pour chaque câble .................................................. 127 Tableau 67: Calcul des cisaillement en about................................................................................................... 129 Tableau 68: Calcul du rang ....................................................................................................................................... 131 Tableau 69: Sollicitations des entretoises sous les surcharges ................................................................ 137 Tableau 70: Calcul des efforts de vérinage ........................................................................................................ 139 Tableau 71: Contraintes de cisaillement dans l'entretoise ......................................................................... 142 Tableau 72: Sections d'armatures transversales dans l'entretoise......................................................... 143 Tableau 73: Poids du tablier au niveau des appareils d'appui .................................................................. 147 Tableau 74:Réactions d'appui dues aux différents chargements ............................................................ 149 Tableau 75:Réactions d'appui en ELU et en ELS ............................................................................................. 150 Tableau 76: Rigidités d'appuis et efforts de freinage.................................................................................... 157 Tableau 77: Distribution des efforts horizontaux sur appuis.................................................................... 158 Tableau 78: Vérifications des appareils d'appui en ELS .............................................................................. 160 Tableau 79: Charges verticales sur culée ........................................................................................................... 162 Tableau 80: Poussées horizontales des terres sur culée ............................................................................. 163 Tableau 81: Cas de charges pour culée ............................................................................................................... 164 Tableau 82: Combinaisons de calcul pour culée ............................................................................................. 164 Tableau 83: Sollicitations sur culée ...................................................................................................................... 165 Tableau 84: Moment de torsion sur le chevêtre ............................................................................................. 172 Tableau 85: Charges permanentes sur les piles .............................................................................................. 176 Tableau 86: Cas des charges pour les piles ....................................................................................................... 178 Tableau 87: Combinaisons des charges pour les piles ................................................................................. 179 Tableau 88: Sollicitations des piles....................................................................................................................... 179 Tableau 89: Sollicitations sur la semelle filante .............................................................................................. 182 Tableau 90: Valeurs de Kp........................................................................................................................................ 184 Tableau 91: Valeurs des charges de pointe et de frottement pour les pieux ...................................... 184 Tableau 92: Valeurs des charges limites à l'ELU et l’ELS............................................................................. 185 Tableau 93: Sollicitations sur les pieux............................................................................................................... 186 Tableau 94: Coefficients de réaction et modules pressiométriques ....................................................... 187 Tableau 95: Coefficients d'élasticité croisés ..................................................................................................... 187 Tableau 96: Coefficients en considérant les couches non réactives ....................................................... 188 Tableau 97: Distribution des sollicitations sur chaque pieu ...................................................................... 189 Tableau 98: Déplacement et rotations des pieux............................................................................................ 189 Tableau 99: Distribution des efforts par la méthode des bielles.............................................................. 190 Tableau 100: Efforts tranchants max induits par les pieux ........................................................................ 191 Tableau 101: Efforts du séisme longitudinal .................................................................................................... 195 Tableau 102: Efforts du séisme vertical ............................................................................................................. 196 Tableau 103: Sollicitations sismiques au pied des piles .............................................................................. 200 Tableau 104:Sollicitations sismiques au pied des culées ............................................................................ 200 Tableau 105:Combinaisons pour les piles ......................................................................................................... 201 Tableau 106:Combinaisons pour les culées ...................................................................................................... 201

9

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 Tableau 107: Combinaisons sismiques pour les piles .................................................................................. 201 Tableau 108 : Combinaisons sismiques pour les culées .............................................................................. 202 Tableau 109: Sollicitations dimensionnantes .................................................................................................. 202

Liste des figures : Figure 1: Graphe d'ajustement par la loi exponentielle .................................................................................. 17 Figure 2: Graphe d'ajustement par la loi Gamma .............................................................................................. 18 Figure 3:Graphe d'ajustement par la loi Gamma généralisée ....................................................................... 19 Figure 4: Graphe d'ajustement par la loi Weibul ............................................................................................... 20 Figure 5: Graphe d'ajustement par la loi Pearson III ....................................................................................... 21 Figure 6:Graphe d'ajustement par la loi Gumbel ............................................................................................... 22 Figure 7: Conception du PSI-BA ................................................................................................................................ 37 Figure 8 : Profil en travers type de la chaussée .................................................................................................. 38 Figure 9:Vue d'en haut de la variation de l'épaisseur d'âme pour PSI-BA .............................................. 38 Figure 10: Caractéristiques du talon pour la variante PSI-BA...................................................................... 39 Figure 11: Profil en travers du Tablier PSI-BA ................................................................................................... 40 Figure 12: Conception de la variante VIPP ........................................................................................................... 41 Figure 13:Types d'hourdis et de prédalles ........................................................................................................... 41 Figure 14: Vue d'en haut de la variation de l'épaisseur d'âme pour VIPP............................................... 43 Figure 15: Profil en travers du tablier VIPP ......................................................................................................... 44 Figure 16:Conception du chevêtre ........................................................................................................................... 50 Figure 17: Entraxe des piles VIPP ............................................................................................................................ 52 Figure 18: Prédimensionnement des culées ........................................................................................................ 57 Figure 19: Représentation du système Bc ............................................................................................................ 72 Figure 20: Représentation du système Bt............................................................................................................. 72 Figure 21: Représentation du système Br ............................................................................................................ 73 Figure 22: Représentation du système Mc120 ................................................................................................... 73 Figure 23 : Schéma du modèle de Guyon Massonnet ...................................................................................... 75 Figure 24: Graphes des lignes d'influence ............................................................................................................ 81 Figure 25: Schéma des sollicitations du poids propre ..................................................................................... 83 Figure 26 : Lignes d’influence de la surcharge A(l)........................................................................................... 85 Figure 27: Lignes d’influence de la surcharge Bc............................................................................................... 86 Figure 28: Lignes d’influence de la surcharge Bt ............................................................................................... 87 Figure 29:Lignes d’influence de la surcharge Br ................................................................................................ 88 Figure 30: Lignes d’influence de la surcharge Mc120...................................................................................... 89 Figure 31: caractéristiques de l'hourdis ................................................................................................................ 93 Figure 32:Dalle en encorbellement ......................................................................................................................... 97 Figure 33: Ferraillage de la prédalle .................................................................................................................... 104 Figure 34:Diagramme des contraintes à vide Figure 35:Diagramme des contraintes en service ............................................................................................................................................................................... 106 Figure 36: Excentricité des câbles de la première famille .......................................................................... 107 Figure 37: Excentricité des câbles de la deuxième famille ......................................................................... 107 Figure 38: Familles de câbles de précontrainte .............................................................................................. 108 Figure 39: Contraintes de la première famille Figure 40: Contraintes de la deuxième famille ............................................................................................................................................................................... 111

10

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 Figure 41: Disposition des câbles .......................................................................................................................... 112 Figure 42: Disposition des ancrages aux abouts ............................................................................................. 117 Figure 43: Tracé du câble moyen de la première famille ............................................................................ 118 Figure 44: Tracés des câbles de la deuxième famille .................................................................................... 118 Figure 45: Inclinaison des bielles .......................................................................................................................... 120 Figure 46: Diffusion des contraintes en about ................................................................................................. 125 Figure 47: Distribution des contraintes.............................................................................................................. 127 Figure 48:Schéma de la bielle d'about................................................................................................................. 130 Figure 49: caractéristiques des entretoises ...................................................................................................... 132 Figure 50: Poids propre de l'entretoise .............................................................................................................. 133 Figure 51: Effet de l'hourdis et la chaussée sur l'entretoise ...................................................................... 133 Figure 52: Partie triangulaire sur l'entretoise ................................................................................................. 134 Figure 53: Partie rectangulaire sur l'entretoise .............................................................................................. 134 Figure 54: Effet du système Bc sur l'entretoise ............................................................................................... 135 Figure 55: Effet du système Bt sur l'entretoise .............................................................................................. 136 Figure 56: Effet du système Mc120 sur l'entretoise ...................................................................................... 137 Figure 57: Disposition des vérins .......................................................................................................................... 139 Figure 58: Modélisation de l'entretoise pendant le vérinage .................................................................... 140 Figure 59: Calcul du moment Fléchissant de l'entretoise avec RDM6 ................................................... 140 Figure 60: Calcul de l'effort tranchant de l'entretoise avec RDM6 .......................................................... 140 Figure 61: Section considérée pour ferrailler l'entretoise .......................................................................... 141 Figure 62: Disposition des appareils d'appui ................................................................................................... 144 Figure 63: Constitution d'un appareil d'appui ................................................................................................. 144 Figure 64:Réaction d'appui pour une travée chargée sous le système Al ............................................ 147 Figure 65: Réaction d'appui pour deux travées chargées sous le système Al..................................... 148 Figure 66:Réaction d'appui pour une travée chargée sous le système Bc ........................................... 148 Figure 67:Réaction d'appui pour deux travées chargées sous le système Bc ..................................... 148 Figure 68: Réaction d'appui pour une travée chargée sous le système Mc120 ................................. 149 Figure 69:Réaction d'appui pour deux travées chargées sous le système Mc120 ............................ 149 Figure 70: Profil de la culée C1 ............................................................................................................................... 161 Figure 71:Réaction sur DT sous le système Bt ................................................................................................. 167 Figure 72: Moment fléchissant sur la dalle de transition ............................................................................ 168 Figure 73: Effort tranchant sur la dalle de transition ................................................................................... 168 Figure 74: Moment fléchissant (cas 1) sur le chevêtre................................................................................. 171 Figure 75: Effort tranchant Moment fléchissant (cas 1) sur le chevêtre .............................................. 171 Figure 76:Moment fléchissant (cas 2) sur le chevêtre.................................................................................. 171 Figure 77: Effort tranchant (cas 2) sur le chevêtre...................................................................................... 172 Figure 80: Moment fléchissant sur le chevêtre de la pile ............................................................................ 180 Figure 94: Effort tranchant sur le chevêtre de la pile ................................................................................... 180

11

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

Introduction générale Dans sa stratégie pédagogique, l’Ecole Hassania Des Travaux Publics considère le Projet de fin d’études comme une occasion incontournable qui permet à l’élève de mettre en adéquation ses connaissances académiques et les compétences exigées dans une entité professionnelle qu’elle soit une entreprise, un bureau d’étude ou un maitre d’ouvrage. A cet effet, le bureau d’étude BIECTRA m’as confiée l’étude du viaduc Oued Lben reliant TISSA à RAS L’oued dans la région de TAOUNATE. Présentation du rapport : L’étude de conception et dimensionnement d’un ouvrage d’art se déroule en trois phases essentielles :

-

L’étude de définition qui a pour objectif la présélection d’un ensemble de variantes qui semblent les mieux adaptées aux contraintes naturelles, fonctionnelles et financières de l’ouvrage. Elle se traduit essentiellement par une étude hydrologique et hydraulique afin de caler l’ouvrage et d’adopter une éventuelle implantation de ses éléments structuraux.

-

L’étude d’Avant-projet, qui s’attarde plutôt sur la conception et le prédimensionnement des éléments de chaque variante (tablier, appuis, fondations..) en se référant aux dispositions constructives des normes courantes. Par la suite, une estimation comparative des coûts des deux variantes s’avère fondamentale pour sélection du projet optimal.

-

La dernière phase qui est l’étude d’exécution, comporte les calculs détaillés des parties prenantes de l’ouvrage, et permet de mettre le point sur l’inventaire des charges permanentes et routières susceptibles de solliciter le pont, le calcul des sollicitations dans chaque élément, la vérification d’état des contraintes, et la détermination du ferraillage nécessaire.

12

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

ETUDE DE DEFINITION

13

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

Chapitre I – Données du projet I-Description ge ne rale : I.1- Situation : L’ouvrage d’art objet de l’étude est situé au PK 14+400 de la RR508 reliant TISSA et RAS L’OUED se trouvant à 14,4km de la RN8. Les coordonnées Lambert approximatives du site sont : (Voir Annexe)  X = 576 202

à

X = 576 208

 Y = 412 340

à

Y = 412 490

 Z = 202

à

Z = 212

I.2- Climatologie : I.2.1- Pluviométrie :

Le climat de la région est semi- continental à aride à influence méditerranéenne caractérisé par deux saisons distinctes : une saison tempérée et humide allant d’Octobre à Mai, et une saison chaude et sèche de Juin à Septembre. Les précipitations moyennes annuelles dans le bassin versant de l’ouvrage varient de 700 à 900 mm telles qu’elles ressortent des courbes isohyètes établies dans l’étude du Plan Directeur intégré d’Aménagement des Eaux des Bassins Sebou, Bouregreg, Oum Er- Rbia et Tensift. (DRPE) 1988. Le poste pluviométrique le plus proche situé au nord- ouest du projet est celle de Taounate dont les pluies moyennes mensuelles sur la période 1933-1963 sont données dans le tableau ci-après : Mois S Pluie (mm) 13

O N D J F M 61 116 186 134 119 124

A 75

M 50

J 16

J 1

A 3

Tableau 1:Pluvimétrie mensuelle de Taounate

I.2.2- Température :

La température moyenne annuelle est de 17,6 °C. Les températures moyennes maximales peuvent dépasser 29°C et les températures minimales peuvent descendre en dessous de 8°C. I.2.3- Evaporation :

L’évaporation moyenne annuelle varie entre 1600 mm enregistrée à Ourtzagh et 1800 mm à Touahar.

14

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 I.3- Trafic : D’après l’exploitation de comptage routier, édité par la DRCR et traitant le trafic routier en rase campagne de l’année 2003, la RR508 entre la RN8 et Ras el Oued supporte un trafic qui atteint environ 870 vh/j. L’actualisation de ce trafic à l'horizon 2007 à raison de 6% atteint 1100 vh/j. A la date prévisible de mise en service du projet, et pour une durée de vie supposée longue, nous pouvons admettre un trafic de classe T.P.L4 au sens du catalogue marocain de structures types de chaussées neuves.

I.4- Tracé au droit de l’ouvrage et raccordement à la piste existante : En tracé en plan, l’ouvrage sera implanté en amont du pont existant. Il est encadré du côté de Tissa par un rayon de 80.00 m et du côté de Ras el oued par un rayon de 100 m. En ce qui concerne le raccordement à la route existante, aucun problème ne se pose. (Voir Annexe)

I.5- Aspects géotechniques : D’après le rapport géotechnique, la lithologie du site est constituée des formations suivantes :  Une couverture de Terre végétale sur une épaisseur de 1 à 3m.  Une couche de dépôts alluvionnaires sur une hauteur de 1.50 à 8m.  Une formation de marne schistifiée grisâtre rencontrée à partir de 3m/TN, 7m/TN et 10m/TN.

II-Etude hydrologique : II.1- Introduction : Le but de l’étude hydrologique est d’évaluer le débit de pointe au droit du franchissement de l’oued Lben par le pont étudié. Les facteurs qui influencent les crues peuvent être classés en trois groupes : 

La surface et la forme du bassin versant, le relief et le réseau hydrographique.



La perméabilité du sol, la couverture végétale et l’emmagasinage de l’eau dans les bassins au début de la pluie.



La distribution temporelle et spatiale de la pluie.

L’estimation du débit de crue de ce bassin versant sera faite par l’application de la méthode statistique aux débits de la station hydrométrique de Tissa ainsi que la méthode empirique par les formules de Mallet Gauthier, Hazan Lazarevic et Fuller II

15

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 II.2- Méthode statistique : II.2.1- Hydrométrie

L’oued Inaouène possède une dizaine d’affluents dont l’oued Lben est principalement en rive gauche. L’alimentation de l’oued Lben se fait dans les collines marneuses de la zone prérifaine. Les apports de l’oued Lben sont contrôlés par la station hydrométrique Tissa dont les caractéristiques principales sont données ci-après :  Station

: Tissa

 N° IRE

: 1542/15

 Coordonnées Lambert

: X = 576.275,

Y = 413.920,

Z = 230

 Superficie du bassin versant : 736 km2 Au niveau de cette station, on dispose des données de débits maximums instantanés annuels de 1960 à 2003. (Voir Annexe) II.2.2- Ajustement :

Les débits maximums instantanés enregistrés au niveau de la station hydrométrique Tissa ont été ajustés par un certain nombre de lois statistiques à l’aide du logiciel HYFRAN, puis on transpose les débits trouvés au droit de l’ouvrage grâce à la loi de Francou- Rodier suivante :

Q  10

1 0,1K A     108 

6

Avec :

 Q : le débit calculé par l’ajustement statistique.  A : la surface du bassin versant de la station en question.  K : le coefficient de Francou Rodier à déterminer. Une fois K trouvé, on réapplique la formule aux données du bassin versant de l’ouvrage afin de trouver le débit du projet. Les résultats ont été comme suit :

16

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

 La loi exponentielle :

Figure 1: Graphe d'ajustement par la loi exponentielle

Avec :

S ouvrage(Km²) S stat(Km²) Q10 Q20 Q50 Q100 X²

780 736 115 150 1290 1510

K 2,32571909 2,55052071 4,37104712 4,50427449 7,86

Tableau 2: débits par loi exponentielle

17

Q ouvrage 120 157 1333 1559

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

 Loi Gamma :

Figure 2: Graphe d'ajustement par la loi Gamma

Avec :

S ouvrage(Km²) S stat(Km²) Q10 Q20 Q50 Q100 X²

780 K Q ouvrage 736 685 3,83550729 710 847 4,01511112 877 1060 4,20490293 1096 1210 4,3168806 1251 2,42

Tableau 3:Débits par loi Gamma

18

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

 Loi Gamma généralisée :

Figure 3:Graphe d'ajustement par la loi Gamma généralisée

Avec :

S ouvrage(Km²) S stat(Km²) Q10 Q20 Q50 Q100 X²

780 736 687 848 1050 1200

K

Q ouvrage

3,83797395 4,01610942 4,19688331 4,30985929 2,42

Tableau 4: Débits par loi Gamma généralisée

19

712 878 1086 1240

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

 Loi Weibul :

Figure 4: Graphe d'ajustement par la loi Weibul

Avec :

S ouvrage(Km²) S stat(Km²) Q10 Q20 Q50 Q100 X²

780 K Q ouvrage 736 693 3,84533107 718 847 4,01511112 877 1040 4,18878695 1076 1180 4,2956394 1220 4,09 Tableau 5: Débits par loi Weibul

20

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

 Loi Pearson III :

Figure 5: Graphe d'ajustement par la loi Pearson III

Avec :

S ouvrage(Km²) S stat(Km²) Q10 Q20 Q50 Q100 X²

780 736 685 845 1050 1200

K 3,83550729 4,01311097 4,19688331 4,30985929 2

Tableau 6: Débits par loi PearsonIII

21

Q ouvrage 710 875 1086 1240

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

 Loi Gumbel :

Figure 6:Graphe d'ajustement par la loi Gumbel

Avec :

S ouvrage(Km²) S stat(Km²) Q10 Q20 Q50 Q100 X²

780 736 678 824 1010 1160

K 3,82681691 3,99181886 4,16402237 4,28117644 9,12

Tableau 7: Débits par loi Gumbel

22

Q ouvrage 703 853 1045 1199

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 D’après les représentations graphiques des différentes lois et leurs tests de validité de Khi Deux, il s’avère que la distribution empirique s’ajuste à la loi de Pearson III mieux que les autres puisqu’elle offre un minimum pour χ². Ainsi, le débit centennal de projet retenu par l’ajustement statistique est :

Q= 1240 m3 /s II.3 -Méthode empirique : II.3.1- formule de Hazan-Lazaravic

Q1000 = a Sb  Q1000 : débit de fréquence de retour milléniale (m3/s)  S

: surface du B.V en km²

 a et b : coefficients variables selon la région considérée et sa pluviométrie. Les valeurs adoptées pour ces coefficients pour la région de Taounate (Rif Central). On trouve donc : S (km²) a b Q1000

780 15,55 0,776 2728,95

Tableau 8:Débit millénaire par Hazan-lazaravic

La formule Fuller I qui permet le passage d'un débit de période de retour T1 à un débit de période T2 est la suivante :

La valeur adoptée pour a est égale à 1.2. Le tableau suivant résume les débits obtenus pour différentes périodes de retour : T(ans) 10 20 50 100

Q(m3/s) 1305 1519 1803 2017

Tableau 9:Débits par Fuller I

23

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 II.3.2- Formule de Mallet-Gauthier

Q(T )  2.k.log(1  a.H).

S . 1  4. log T  log S L

 Q(T)

: débit de fréquence de retour T.

 H

: pluviométrie moyenne annuelle (900mm/an).

 T

: périodicité de la crue.

 S

: surface du B.V en km².

 K

: coefficient variant de 0,5 à 6 (k=2).

 A

: coefficient couramment pris égal à 20.

Le tableau suivant récapitule les résultats obtenus : Q10(m3/s) Q20(m3/s) Q50(m3/s) Q100(m3/s) H (mm/an) S (km²) K A L

900 780 2 20 735

711

891

1084

1210

Tableau 10:Débits par Mallet-Gauthier

II.3.3- Formule de Fuller II :

 Q (T) : débit maximal pour la période de retour T en m3/s ;  S

: surface du B.V en km²

Le tableau suivant récapitule les résultats obtenus :

Q10(m3/s) Q20(m3/s) Q50(m3/s) Q100(m3/s) S(km²) a N

780 1,2 90

740

862

Tableau 11:Débits par Fuller II

24

1022

1144

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

II.3.4- Conclusion :

Le tableau suivant résume les résultats obtenus par différentes formules : T (ans)

Mallet Gauthier

Ajustement Statistique

Hazan Lazarevik

Fuller II

10

711

710

1305

740

20

891

875

1519

862

50

1084

1086

1803

1022

100

1210

1240

2017

1144

Tableau 12:Comparaison des débits

L’application des formules empiriques Mallet Gauthier et Fuller II donne des résultats de même ordre de grandeur que ceux issus de l’ajustement statistique. Ceci montre que leurs paramètres s’adaptent au contexte régional de la zone d’étude, ce qui n’est pas le cas pour la formule de Hazan. Ainsi, on adopte la moyenne des trois approches restantes pour obtenir finalement : T(ans) 10 20 50 100

Q(m3/s) 720 876 1064 1198

Tableau 13:Débits du projet

Dès lors le débit du projet considéré est bien :

25

Q= 1200 m3/s

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

Chapitre II – Etude hydraulique I- Introduction L’objectif de cette étude est la modélisation des écoulements sur la base d’une topographie récente afin de définir les caractéristiques géométriques nécessaires au bon fonctionnement hydraulique de l’ouvrage projeté et existant. La modélisation hydraulique sera menée en régime permanent fluvial, en prenant comme condition aval la hauteur normale sous la pente topographique. Le logiciel de calcul hydraulique HEC-RAS, parfaitement connue par le MO, développé par le corps des ingénieurs de l'armée américaine et qui a été utilisé dans beaucoup de projets d'envergure au Maroc, s’avère le plus convenable pour une telle étude. Le modèle hydraulique est formé de 20 profils en travers topographiques. HEC-RAS est une abréviation de «Hydrologic Engineering Center’s River Analysis System ». C’est un code unidirectionnel permanent ou non-permanent de calcul de ligne d’eau. Il résout « l’équation de l’énergie unidimensionnelle », les pertes étant évaluées par la formule de frottement au fond de Manning-Strickler et par des formules de contraction/expansion de l’écoulement. Pour les situations rapidement variées telles que les ressauts hydrauliques, les écoulements à proximité des ponts, et les confluences de rivière, l’équation de l’énergie est remplacée par l’équation de quantité de mouvement. Dans le code HEC-RAS, la section totale est divisée en sous-sections homogènes en terme de forme et de rugosité, et chaque débit partiel Q i est calculé selon la Divided Channel Method (DCM) à l’aide de la formule de Manning-Strickler, soit :

Etapes principales de HEC-RAS :  Modélisation hydraulique : géométrie des sections  Spécification des débits de calculs pour les profils  Définition des conditions limites de l’écoulement pour calculer la hauteur initiale d’eau aux extrémités de chaque tronçon  Simulation hydraulique  Visualisation des résultats

26

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

L’étude Hydraulique s’articulera autour des points suivants :  Calcul hydraulique à l’état initial : par le biais d’une modélisation du pont initial en vue d’une : 

estimation du débit maximum observé relatif à la trace des crues relevé lors de la visite du terrain (enquête et reconnaissance des lieux).



définition des PHE à l’état initial pour la période de dimensionnement 100ans.

 Calcul hydraulique à l’état de projet : à travers la modélisation de la situation projetée en vue d’une : 

définition du pont projeté pour la variante proposée



La définition des caractéristiques hydrauliques à l’état de projet.

II-Calcul hydraulique a l’e tat initial : II.1- Capacité de l’ouvrage existant et Enquête des crues : La cote en dessus de l’ouvrage existant est de l’ordre de 212.43 m. Sous cette cote, l’ouvrage peut évacuer sans prise en considération de la revanche un débit de l’ordre de 1490 m3/s. En adoptant une revanche sous les poutres de 1.0 m, l’ouvrage peut transiter un débit de pointe de l’ordre de 980 m3/s, ce débit est d’une occurrence voisine de 40 ans. L’enquête des crues, effectuée auprès des riverains situés juste à l’aval du pont, montre que le niveau maximum atteint et constaté par les gens est de l’ordre 210 + 0.30=210. 30 m (Voir Annexe)  Interprétation:  Ce niveau de crue correspond à un débit de pointe de l’ordre de 580 m3/s. Ce débit possède une période de retour voisine de 5 ans.  Le pont existant est capable de ventiler sans revanche la crue centennale  Le pont existant est dimensionné avec une revanche confortable pour une période de retour de 40 ans.  Conclusion : La reconstruction de cet ouvrage est alors justifiée pour les raisons suivantes :  Etroitesse de l’ouvrage existant ayant une largeur actuelle de 3m.  Nécessité de protection centennale (T= 100 ans) en adoptant une revanche de 1.0 m

27

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 II.2- Passage de crue sans ouvrage existant : D’Après le tableau récapitule les résultats des calculs pour le débit centennal, à l’état initial sans ouvrage existant (Voir Annexe).Ceci permettra de mettre en relief l’effet du rétrécissement crée par le pont existant.  On remarque qu’à l’état naturel, sans ouvrage existant ni projeté, les vitesses d’écoulement varient de 2 à 4m/s.  En amont du pont existant, le PHE est de 211.50 m sous une largeur de 190 m et une vitesse d’écoulement de 3m/s.  En amont du pont projeté, le PHE est de 211.71 m sous une largeur de 193 m et une vitesse d’écoulement de 2.2m/s.

II.3- Passage de crue avec ouvrage existant : Comme l’indiquent les tableaux et les graphiques, (Voir Annexe), le passage d’une crue centennale à l’état initial s’effectue avec une cote d’eau amont de l’ordre de 211.88m, soit un remous en amont de l’ouvrage par rapport à l’état naturel de l’ordre de 40 cm. Afin d’assurer le passage de la crue centennale sous une revanche de 1.0 m avec une largeur au miroir de l’écoulement de 210 m et un coefficient de contraction vraisemblable de l’ordre de M=ouverture du pont/ largeur au miroir = 0.76, on trouve une longueur de pont à adopter d’environ 160 m.

III-Calcul hydraulique a l’etat de projet : III.1-Implantation de l’ouvrage projeté : L’emplacement, en amont du pont existant, permet :  D’éviter les affouillements qui apparaissent à l’aval du pont existant.  D’éviter le passage dans la ferme située dans la zone d’étude.  D’assurer un raccordement correct à la route existante tout en respectant les contraintes précédentes.  D’assurer un axe perpendiculaire à l’écoulement des grandes crues.  D’enjamber le lit de l’oued de manière à fournir le maximum de débouché.  De se raccorder à la piste existante suivant les règles de l’art.  D’assurer une déviation provisoire par le pont existant

28

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 Comme nous l’avons signalé précédemment, le débit de projet est le débit d’occurrence 100ans, soit 1200 m3/s. On projette un pont à poutre en béton précontraint constitué de quatre travées de 40m, soit une ligne rouge à la cote minium 215.55 m.

III.2-Résultats de calcul : L'écoulement au droit du pont projeté se fera avec une cote d'eau amont égale 212.09 m et une cote d’eau sous le pont égal à 212.02 soit un tirant d'air de 1.0 m par rapport aux sous poutres calées au minimum à 213.09 m. La vitesse aval est de l’ordre de 2.0 m/s. L’ouvrage projeté crée un remous par rapport à l’état initial de l’ordre de 20 cm (212.09 211.88m).

29

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

Chapitre III – Définition des variantes I-Introduction Lors de la phase de conception, une panoplie de types d’ouvrages s’expose devant l’ingénieur projeteur. Ce dernier est contraint de choisir le type qui s’adapte le mieux possible au contexte du projet qu’il a entre les mains. C’est dans cette perspective que le projeteur doit actualiser en permanence son background à propos des variations des prix des différentes sortes de ponts, des changements dans la réglementation technique, des nouvelles méthodes d’exécution et des nouvelles formes d’ouvrages, éventuellement des nouveaux matériaux utilisables. Ainsi, tout choix est conditionné par les contraintes techniques, économiques et esthétiques :  Les contraintes techniques se présentent dans les contraintes du site où il est implanté, les contraintes de la route qu’il supporte, et enfin les contraintes de la disponibilité du matériel et de la main d’œuvre pendant la période de l’exécution.  Les contraintes économiques résident dans le fait de choisir une variante qui présente un coût raisonnable.  Quant au côté esthétique, il faut juste signaler que la variante choisie doit être compatible avec le paysage du site.

II- Les ponts en be ton arme II.1- Pont à poutres en béton armé: C'est un pont dont l’organe porteur est une ou plusieurs poutres droites qui n’exercent qu’une réaction verticale sur leurs appuis intermédiaires ou d’extrémités et dont les efforts engendrés dans la structure sont principalement des efforts de flexion. Cette variante permet de considérer des portées variant de 15 à 30 m, il est conçu pour les passages supérieurs d’autoroutes et pour le franchissement des cours d’eau moyens.

II.2- Pont dalle en béton armé: Ce type de pont comprend une dalle en béton coulée en place à travée unique ou à plusieurs travées continues posées sur appuis et dont la gamme de portées s'étend de 8 à 18 m. Il consomme plus de béton (20 à 30% en plus que les ponts à poutres en BA) et il est plus sensible aux tassements différentiels, mais il économise considérablement en coffrage, en plus

30

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 son exécution est encore aisée ce qui réduit les frais de la main d’œuvre. Reste à noter que sa faible épaisseur s’avère convenable aux franchissements à très faible tirant d'air.

II.3- Pont à Béquilles : Le Passage Supérieur à Béquilles est constitué d’un tablier précontraint de hauteur constante ou variable. Les appuis intermédiaires sont constitués de béquilles encastrées dans le tablier, inclinées à environ 50 grades et généralement articulées en pied dans un massif de fondation.

II.4- Pont en arc: Le pont en arc exerce une réaction inclinée due à la poussée de l’arc qui a une forte composante horizontale. Lorsqu’on construit les arches les unes après les autres, les piles doivent être massives car chaque pile doit pourvoir reprendre la poussée de l’arche déjà construite. On distingue trois types de ponts en arcs :  arcs à tablier supérieur (le tablier est placé au-dessus de l’arc)  arcs à tablier intermédiaire (le tablier est placé au-dessous ou au milieu de l’arc)  arc à tablier inférieur (le tablier est suspendu à l’arc par des suspentes).

III- Ponts en be ton pre contraint III.1- Pont dalle en béton précontraint : Le Passage Supérieur ou Inférieur en Dalle Précontrainte est

constitué d’une dalle

précontrainte longitudinalement à des portées de 23 m et armée transversalement, de hauteur constante. La section transversale comprend généralement des encorbellements. Ce type de pont possède une très grande résistance au cisaillement et à la torsion, raison pour laquelle il est souvent utilisé en ouvrages biais et en ouvrages courbes.

III.2- Pont à précontrainte par adhérence (PRAD): Ce pont est constitué de poutres préfabriquées précontraintes par pré-tension. Les poutres, régulièrement espacées, à un entraxe de l’ordre de 1 m, sont solidarisées par une dalle coulée en place sur des coffrages perdus.

III.3- Viaduc à travées Indépendantes à Poutres Préfabriquées (VIPP): Le tablier de ce type est constitué de poutres précontraintes par post-tension de hauteur constante, solidarisées entre elles par des entretoises d’abouts et un hourdis .Les poutres ont

31

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 un espacement de l’ordre de 3 à 4 mètres et leur domaine d’utilisation s’étend entre 25 et 45m (exceptionnellement de 20 à 50 m). Il présente les avantages suivants :  Réduction du temps de construction grâce à la possibilité de la préfabrication des poutres avec la réalisation des fondations et des appuis de l'ouvrage (il permet de gagner environ 20 % du délai nécessaire à la réalisation du même ouvrage par le procédé de construction sur cintre).  Faible sensibilité aux tassements d'appuis.  Economie qui est due à la préfabrication des poutres et de l'exécution du hourdis coulé sur des prédalles préfabriquées. Parmi ses inconvénients, on cite :  Présence des joints de dilatation de chaussée  Incertitude des déformations différées des poutres par fluage du béton et relaxation des armatures de précontrainte.  Nécessité d’un matériel de mise en place des poutres très coûteux qui peut être utilisé de façon économique pour un nombre suffisant de poutres (minimum 12).

III.4- Pont caisson : Le tablier est précontraint par des câbles de continuité qui assurent l'assemblage des différentes travées, ainsi que de câbles de fléau qui soutiennent la structure et les différents voussoirs en phase de construction dans le cas d'une réalisation par encorbellement. La particularité du pont caisson est de pouvoir s’adapter à des profils d’ouvrages de franchissement très surbaissés, y compris avec des formes courbes très accentuées. Il peut être soit mis en place par poussage soit construits en encorbellement, permettant d'atteindre couramment des grandes portées de l'ordre de 130 ou 140 m, mais dont le domaine d'emploi s'étend jusqu'à 200 m de portée principale.

IV-Ponts me talliques Le choix des ponts métalliques est de plus en plus fréquent, vue la pluralité de leurs avantages, à savoir :  La légèreté de la structure.  Une multiplicité des conceptions architecturales.

32

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400  Une économie à la construction des appuis et des fondations, supportant une structure à poids propre moins élevé. Néanmoins, cette solution ne peut être envisagée dans notre cas, pour les raisons suivantes :  La nécessité d’un entretien régulier et coûteux pour palier au problème de la corrosion  Le prix élevé de l’acier.

V-Pont bipoutre mixte Le tablier des bipoutres mixtes est constitué d’une dalle en béton, connectée à 2 poutres métalliques, de manière à former un ensemble monolithique. Il peut être à travées indépendantes ou continues. La dalle participe à la résistance de l’ouvrage en flexion longitudinale et locale, grâce à sa connexion aux poutres métalliques par des goujons ou des cornières, et à son épaisseur de 20 à 30 cm. Les poutres sont préfabriquées en usine et transportées sur le site par tronçons de 20 à 40 m de longueur. Elles sont raboutées par soudage sur le site, assemblées aux entretoises et mises en place à l’aide d’une grue ou lancées ou ripées.

VI-Choix des variantes Chaque solution d'implantation des appuis correspond à une répartition des travées et de leur longueur. La portée la plus longue permet à son tour d'orienter le choix du type d'ouvrage le mieux adapté. Ce choix est réalisé parmi l’offre des diverses solutions de ponts courants. Le tableau ci-après récapitule les domaines d’utilisation des ponts courants, cependant on ne peut en aucun cas se baser sur ces données, sans tenir compte du coût de la main d’œuvre et du type des fondations :

Tableau 14: Domaines d'utilisation des ponts courants

33

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 Pour des variantes à portées égales, on peut vérifier d’autres critères qui sont présentés dans le tableau suivant :

Tableau 15:Critères de comparaison à portées égales

VI.1-Variantes proposées : Après élimination des solutions qui apparaissent à première vue non convenables, on adopte, à priori, les trois variantes suivantes :  Variante I : Pont à poutres en béton armé(PSIBA) : C’est un pont en béton armé, constitué de 6 travées isostatiques de 26 m, chaque travée comporte 4 poutres, en béton armé, solidarisées transversalement par le hourdis en section courante et entretoisées au niveau des appuis.  Variante II : Pont à poutres en béton précontraint(VIPP) : C’est un pont à poutres précontraintes constitué de 4 travées isostatiques de 40 m, chacune comporte 4 poutres en béton précontraint solidarisées transversalement par le hourdis en section courante et entretoisées au niveau des appuis.  Variante III : Pont dalle en béton précontraint (PSIDP) : C’est un pont dalle en béton précontraint composé de 7 travées hyperstatiques : 20 +6 x 24 +20

34

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 VI.2-Estimation sommaire du coût des variantes On donne ci-après le détail des estimations sommaires, moyennes actualisées, des coûts du tablier des différentes variantes :  Variante I (PSIBA) : 11 000 DH/m2  Variante II (VIPP) : 13 000 DH/m2  Variante III (PSIDP) : 9000 DH/m2

Variantes Variante I Variante II Variante III

Travées nombre longueur 6 26

surface tablier (m²) 1560

coût unitaire (DH/m²) 11000

coût total(DH) 17160000

4

40

1600

13000

20800000

7

20-24

1600

9000

14400000

Tableau 16:Comparaison sommaire des coûts des variantes

A partir de cette estimation sommaire on préconise les variantes I et II. En effet, la variante III (PSIDP) ne présente pas un grand avantage par rapport aux deux autres variantes, au niveau du coût du tablier pour récompenser le surcoût des piles supplémentaires qu’elle nécessitera surtout que les fondations seront fort probable de type profondes vu la vulnérabilité du sol de la région. Ajoutons à cela que les structures à travées indépendantes ont une bonne résistance vis-à-vis du séisme surtout que la zone d’implantation de l’ouvrage est sismique. Il est à signaler qu'un joint de chaussée intermédiaire est à prévoir afin de diminuer les efforts horizontaux qui vont se développer. Ainsi, dans le chapitre prochain, nous procèderons à l’étude technico-économique des deux variantes I et II pour garder la variante qui fera l’objet d’une étude détaillée par la suite.

35

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

ETUDE D’AVANTPROJET

36

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

Chapitre I – Prédimensionnent du tablier I-Variante I: Pont a poutre en beton arme (PSI-BA) : I.1- Conception générale : Cette variante est de type PSIBA, constitué de 6 travées isostatiques de 26 m de portée :

Figure 7: Conception du PSI-BA

I.1.1-Profil en travers de l’ouvrage :

 Trottoir

:

 Sur largeur

1.00 m :

0.50 m

 Chaussée :  Sur largeur  Trottoir

7.00 m :

0.50 m

:

1.00 m

 Largeur de la plate-forme : 10 m En se basant sur cette largeur, nous projetons donc une section transversale à 4 poutres en béton armé entretoisées sur appuis et solidarisées en section courante par un hourdis général en béton armé coulé sur place. I.1.2- Evacuation des eaux:

Sur un tablier de pont, l’évacuation des eaux est nécessaire non seulement du point de vue de la durabilité de la structure mais également pour la sécurité des usagers. Le recueil de l’eau dans le sens transversal se fait en donnant à la chaussée une double pente en forme de toit de 2.5% avec une pente pour les trottoirs de 2 % vers l’intérieur de la chaussée.

37

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

Ainsi, nous trouvons le profil suivant :

Figure 8 : Profil en travers type de la chaussée

I.2- Eléments de prédimensionnement : I.2.1- Poutres principales :

Suivant les instructions du dossier pilote de la DRCR (PA78), on donnera aux poutres une forme en Té avec un talon (pour le logement des armatures) et des goussets supérieures pour relier l’âme à l’hourdis.  Hauteur : L’élancement réglementaire appartient à l’intervalle [1/17 ; 1/15] Ainsi, une valeur de hp = 1.7 m équivalente à un élancement de 1/15.3, semble adéquate.  Epaisseur de l’âme : L'épaisseur de l'âme des poutres est généralement comprise entre 20 cm et 60 cm, cette largeur est variable linéairement à partir des appuis sur le quart de la portée, et constante sur la moitié centrale. Ainsi, l'épaisseur de l'âme des poutres dans la section courante sera prise égale à : ba= 0,25m. Puis, elle augmentera progressivement pour résister aux efforts tranchants maximaux au niveau des appuis pour atteindre la valeur : ba = 0,40m.

Figure 9:Vue d'en haut de la variation de l'épaisseur d'âme pour PSI-BA

38

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

 Espacement des poutres Selon le dossier PA 78 de la DRCR, on dispose de quatre poutres en section transversale. Donc, en adoptant un espacement uniforme entre les poutres, on aura un entraxe de 10/4 = 2,5m. Donc on adopte un encorbellement de 1.25 m des deux côtés.  Le talon : Pour un ouvrage à poutres en béton armé, la largeur des talons varie de 0,50 à 0,60 m lorsque la distance entre axes des poutres varie de 2,50 m à 4,00 m. Ayant un entraxe de 2,5 m, on prend alors une largeur de bt= 0,50 m. La partie verticale du talon ou pied de talon est généralement égale à h2 = 0,25m. Le talon doit permettre également un relevage aisé des câbles latéraux du talon dans l’âme, la tangente de l'angle α est normalement comprise entre 1 et 1,5. Ainsi on trouve les dimensions suivantes:

Figure 10: Caractéristiques du talon pour la variante PSI-BA

I.2.2-Le hourdis :

Le hourdis subit des sollicitations en tant que plaque fléchie, des vérifications vis-à-vis le poinçonnement par des charges locales et joue aussi le rôle d’entretoisement transversale en section courante. L’épaisseur du hourdis est généralement comprise entre 16 et 20cm selon l’espacement des poutres, donc on adopte une épaisseur du hourdis de hr=18 cm. I.2.3- Les entretoises :

 Hauteur : Il faut aménager un espace suffisant entre le chevêtre d'appui et les entretoises pour faciliter l'accès aux appareils d'appuis, et aussi pour avoir de la place aux vérins de soulèvement du

39

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 tablier. Un espace égale à la hauteur du talon semble adéquat, ainsi la hauteur de l’entretoise est : he = hp - hr - h1- h2 = 1.2 m.  Longueur : La longueur des entretoises est généralement fixée par l'espacement des poutres principales qui les relient transversalement. Dans notre cas l'espacement entre axes des poutres est de 2,50m et en retranchant l'épaisseur de l'âme au niveau de l'appui, on trouve une longueur de 2,10m entre deux poutres. Soit donc 6,3 m au niveau de chaque appui.  L’épaisseur : Il faut fixer une épaisseur pour l’entretoise afin de vérifier deux critères :  Les conditions d’enrobage des armatures et de mise en œuvre du béton.  permettre le vérinage du tablier en cas de changement d’appareils d’appuis. C’est pour ces raisons que l’on opte généralement pour une épaisseur de 0.40 m

Figure 11: Profil en travers du Tablier PSI-BA

40

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

II-Variante II : VIPP II.1- Conception générale : Le tablier VIPP propose 4 travées indépendantes de 40 m chacune :

Figure 12: Conception de la variante VIPP

Figure 13:Types d'hourdis et de prédalles

41

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

II.2- Eléments de prédimensionnement : II.2.1-Profil en travers de l’ouvrage :

    

Trottoir : Sur largeur Chaussée : Sur largeur Trottoir :

1.00 m 0.50 m 7.00 m 0.50 m 1.00 m

: :

 Largeur de la plate-forme : 10 m En se basant sur cette largeur, nous projetons donc une section transversale à 4 poutres en béton précontraint entretoisées sur appuis et solidarisées en section courante par un hourdis général en béton armé coulé sur place. II.2.2 - Poutres principales :

Suivant les instructions du dossier pilote de la DRCR (PA78), on donnera aux poutres une forme en Té avec un talon (pour le logement des câbles) et des goussets supérieures pour relier l’âme à l’hourdis.  Hauteur : L’élancement réglementaire appartient à l’intervalle [1/18 ; 1/16] Ainsi, une valeur de hp = 2.4 m équivalente à un élancement de 1/16.67, semble adéquate.  Epaisseur de l’âme : L'épaisseur de l'âme des poutres est généralement comprise entre 20 cm et 60

cm, cette

largeur est variable linéairement à partir des appuis sur le quart de la portée, et constante sur la moitié centrale. Ainsi, l'épaisseur de l'âme des poutres dans la section courante sera prise égale à : ba= 0,25m. Puis, elle augmentera progressivement pour résister aux efforts tranchants maximaux au niveau des appuis pour atteindre la valeur : ba = 0,40m.

42

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

Figure 14: Vue d'en haut de la variation de l'épaisseur d'âme pour VIPP

 Espacement des poutres Selon le dossier PA 78 de la DRCR, on dispose de quatre poutres en section transversale avec un entraxe de 2.5 m à 3.5 m. Comme les poutres sont préfabriquées et mise en place par lancement, on adopte un espacement

assez grand entre les poutres de 2.7 m et

un

encorbellement de 0.95 m des deux côtés.  Largeur de la table de compression : Dans le but d’assurer la stabilité vis-à-vis le déversement de la poutre pendant le lancement, la largeur de la table de compression doit être supérieure à 60 % de la hauteur de la poutre. Ainsi, on trouve une largeur de 1.44 m avec une hauteur verticale de 0.10 m et une hauteur incliné de 0.05m.  Gousset supérieur : Avec une pente de 1/1, on adopte une hauteur de 0.15m  Le talon : Pour un ouvrage à poutres en béton précontraint, la largeur des talons doit être relativement grande pour loger les câbles de précontrainte, ceci dit elle varie de 0,60 à 0,90 m lorsque la distance entre axes des poutres varie de 2,50 m à 3,50m. Pour plus de précision, on la calcule à l’aide de la formule suivante :

-

Largeur totale de la plate- forme : Portée de la travée Nombre de poutres par travée : Hauteur de la poutre Coefficient de 950 à 1300 (on prend une valeur de 1000)

43

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 Ainsi, on trouve bta = 0.70 m. La partie verticale du talon ou pied de talon est généralement égale à h2 = 0,25m. L’âme se raccorde à la membrure inférieure, en s’élargissant, par un gousset qui facilite, par sa forme, la descente du béton .Il doit permettre également un relevage aisé des câbles latéraux du talon dans l’âme, la tangente de l'angle est normalement comprise entre 1 et 1,5, pour une valeur de 1.45,on trouve : -

En travée : H1 = 0.32 m

-

Sur appui : H1 = 0.21 m

II.2.3-L’hourdis :

On choisit un hourdis général avec une épaisseur de 20 cm pour garantir un meilleur comportement de la structure avec usage de prédalles de 6 cm de hauteur et de portée de 60 cm posées sur les ailes des poutres. II.2.4-Les entretoises :

 Hauteur : Elle est égale à la hauteur de la poutre moins celle du talon au niveau de l’appui Donc H=2.4-0.46=1.94 m  Longueur : Elle dépend de l’entraxe et de l’épaisseur de l’âme, ainsi on trouve L= (2.7-0.4)* 3 = 6.9 m  Epaisseur : Généralement de 0,40 m

Figure 15: Profil en travers du tablier VIPP

44

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

Chapitre II- Calcul des affouillements I-Introduction L’affouillement est un phénomène lié à l’hydrodynamique des lits des rivières qui menace la stabilité des appuis des ouvrages implantés dessus. En effet, le départ des matériaux entraine un abaissement graduel du lit mettant en péril le bon fonctionnement de l’ouvrage. On distingue alors :

I.1- l’affouillement général : Dans la pratique, on évalue l’affouillement général des rivières en s’appuyant sur les résultats des reconnaissances géotechniques. A l’issue de ces derniers, on arrive à détecter le niveau où l’on a une discontinuité de la compacité du sol afin de déterminer l’épaisseur des sédiments susceptibles de se mettre en mouvement par charriage. Il semble alors plus judicieux, lorsque cela est possible, de considérer que la profondeur d’affouillement général maximale d’un cours d’eau correspond à une discontinuité de l’état de compacité des couches supérieures.

I.2- l’affouillement local autour des piles de ponts : En général, compte tenu de la forme des piles des ouvrages franchissant les cours d’eau, un système de tourbillons en fer à cheval se développe autour des piles. La courbure des lignes de courant qui en résulte fait apparaitre des vitesses descendantes à l’amont et ascendantes à l’aval des piles. C’est ainsi, que la fosse se creuse à l’avant de la pile et se développe également à l’arrière à cause de l’érosion du matériau pulvérulent.

I.3- l’affouillement dû au rétrécissement du lit de la rivière : On évoque ce type d’affouillement, lorsque l’ouvrage est implanté dans le lit de l’oued de telle sorte à rétrécir le débouché linéaire initial correspondant à la largeur au miroir.

45

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

II-Calculs : II.1- Affouillement général : 

  

: Débouché superficiel

: Largeur au miroir au niveau des PHE : Débit centennal du projet : Diamètre moyen des grains du sol à 50% de passant

II.1.1- Formule de LACY :

II.1.2- Formule de LARRAS :

II.1.3- Formule de LPEE:

II.1.4- Formule de LEVI :

II.1.5- Formule de EDF :

II.2- Affouillement local : 

: Diamètre des piles

 V : Vitesse moyenne d’écoulement II.2.1- Formule de DUNN :

II.2.2- Formule de BRENSERS :

46

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

On récapitule les résultats dans le tableau suivant : Résultats (m)

A

780

ws

75

PHE

6,89

Q100

1200

D50

0,0125

V

3

D

1

affouillement général

Données

affouillement local

formule de lacy

-4,24

formule de laras

0,41

formule de lpee

1,28

formule de levy

0,16

formule de edf

2,73

formule de dunn

0,55

formule de brensers

1,4

Tableau 17: Hauteurs des affouillements

II.3- affouillement dû au rétrécissement du lit de la rivière : II.3.1- Formule de STRAUB :

=0 

: Débouché linéaire de la section non rétrécie



: Débouché linéaire de la section rétrécie



: Débit centennal de projet

II.4- Conclusion : L’affouillement total est la somme de l’affouillement général, local et l’affouillement dû au rétrécissement de la section pour les piles et la somme de l’affouillement général et l’affouillement dû au rétrécissement de la section pour les culées.  Pour les piles : 1.28+1.4 = 2.68 m  Pour les culées : 1.28 m

47

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

Chapitre III – Prédimensionnent des piles I-Morphologie des piles Un appui est un élément intermédiaire qui permet de reporter sur le sol les efforts provenant du tablier, il comporte deux parties bien distinctes :  Une superstructure, sur laquelle repose le tablier par 1 'intermédiaire d'appareils d'appui ; elle est constituée soit par un ou plusieurs voiles, soit par une série de colonnes ou poteaux généralement surmontés d'un chevêtre  Une fondation, constituée soit par une simple semelle reposant directement sur le sol ou sur un massif de béton non armé, soit par un ensemble de pieux réunis en tête par une semelle de liaison. La conception des piles de pont prend en considération plusieurs paramètres tels que :  la nature et le mode d’exécution du tablier  la hauteur de la brèche à franchir  le type et le mode de réalisation des fondations  la nature de la voie franchie  les contraintes d’implantation et d’emplacement des appuis  les conditions mécaniques telles que la nature de liaison avec le tablier et le sol, la rigidité transversale…  les considérations d’ordre économique et même esthétique.

I.1-Les piles de type voile : Le voile continu d’épaisseur constante s’avère plus simple à modéliser puisque généralement sa longueur est égale à la largeur du tablier porté. Il présente aussi l’avantage d’engendrer un faible encombrement transversal, d’être favorable mécaniquement car l’hypothèse du chevêtre est levée et la rigidité transversale est assurée en plus de sa bonne aptitude à résister aux chocs des véhicules. Cependant il est limité à des hauteurs de 15m.

I.2-Les piles de type poteau : La pile est sous forme d’une série de colonnes ou poteaux rectangulaires qui peuvent être soit libres en tête s’ils sont placés au droit des descentes de charges par l’intermédiaire des appareils d’appuis soit surmontés par un chevêtre qui assure le transfert des descentes de charges et éventuellement des efforts horizontaux transmis par le tablier (freinage, efforts centrifuges…) en plus il permet de placer les vérins pour le relevage du tablier.

48

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 I.3-Les piles de type caisson : Elles sont utilisées pour les piles de grande hauteur pour assurer plus de rigidité vis-à-vis des efforts horizontaux. Elles doivent être vérifiées au flambement et elles sont réalisées par un coffrage grimpant avec une épaisseur comprise entre 30 et 60cm.

I.4-Les piles marteaux : Elles sont utilisées en site urbain, lorsqu’on a très peu d’espace ou en site aquatique pour limiter la perturbation des écoulements. Cette conception est, également, intéressante pour les franchissements géométriquement biais en conservant l’ouvrage mécaniquement droit. Néanmoins, elles posent quelques problèmes techniques surtout lors de la mise en place progressive des poutres qui cause un excentrement de sollicitations assez important pour les fondations et qui est différent du mode de sollicitations définitif.

I.5-Les piles portiques : Lorsque le tablier est très large, la pile marteau ne peut être envisagée. Si les piles ne sont pas de grande hauteur, leur conception mécanique s’apparente à celle d’un portique. Dans le cas des piles de grande hauteur ou si des problèmes de fondation se posent, on choisit des pilesportiques.

I.6-Les piles spéciales : Elles sont utilisées dans certains ouvrages non courants surtout en zones urbaines où les architectes créent des géométries complexes qui n’assurent pas une continuité de descente de charge et qui nécessitent des dispositions particulières d’exécution vue les difficultés de coffrage et de ferraillage.

I.7-Choix du type de pile : Vue la nature de l’ouvrage d’art en question, et après une réflexion approfondie sur les différentes variantes possibles, on opte pour la pile de type colonne à diamètre constant. Comme on a un tablier en poutres, il s’avère judicieux de placer des colonnes sous les appareils d’appuis afin d’assurer une meilleure descente de charge et d’optimiser l’épaisseur du chevêtre. D’autant plus, la forme circulaire des colonnes est aérodynamiquement compatible avec la nature de la voie franchie puisqu’elle permet un écoulement des eaux avec le moins de turbulences possibles.

49

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

II- Ele ments de pre dimensionnement II.1-Chevêtre:  largeur: Compte tenu de l'espacement à laisser entre deux poutres adjacentes, la distance entre axes des appareils d'appui de deux poutres est de l'ordre de 1,50 m, il en résulte que la plupart des piles des ponts à poutres comportent un chevêtre dont la largeur est de l'ordre de 2 m.

Figure 16:Conception du chevêtre

 Longueur : La longueur dépend des dimensions de colonnes, de la largeur du tablier et des espacements entre le bord des appareils d’appui et le bord du chevêtre. Dans notre cas, on prend une longueur de 10 m.  Hauteur : La hauteur doit être supérieure ou égale à 0,80m. On prend une hauteur d’1m.

II.2- Fût de pile: Pour le bon dimensionnement du fût de pile, il faut veiller à la vérification des critères suivants:  le critère de résistance mécanique: il fait intervenir les diverses actions auxquelles sont soumises le piles

50

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400  le critère de robustesse: en général, le fût doit être assez robuste pour résister aux chocs. L'évidement des piles n'est intéressant qu'au-delà d'une certaine hauteur lorsque l'économie de la matière est plus forte que le coût du coffrage intérieur :  en dessous de 10 m, les piles sont normalement pleines.  au-dessus de 15 m, et si la forme est régulière, les piles évidées sont plus intéressantes.  entre 10 et 15 m, le choix reste à l'initiative du projeteur.  le critère esthétique: pour assurer une apparence harmonieuse ave le paysage en question. Concernant le choix des épaisseurs à retenir, elles sont choisies en fonction de la hauteur vue de la pile, de l'épaisseur vue du tablier et de la portée des travées. C'est dans cette perspective, que le dossier pilote PP73 du SETRA propose la formule empirique suivante: E (m) = Max [0,50m ; (4H +L)/100 + 0,10m]  H:la hauteur de pile  L: la portée des travées centrales On trouve les résultats suivants: PSI-BA hauteur totale(m) portée (m) diamètre (m)

1 9,5

2 9,5

0,74

0,74

Piles 3 6 26 0,6

4 8

5 8

0,68

0,68

Tableau 18: Prédimensionnement des piles du PSI-BA

VIPP hauteur totale(m) portée (m) diamètre (m)

1 9,5 0,88

Piles 2 6 40 0,74

Tableau 19 : Prédimensionnement des piles du VIPP

51

3 5 0,7

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

D’après la deuxième condition proposée par le PP73: D>0.4 à 0.5 h tablier On trouve la valeur D = 2,4 x 0.5 = 0.96 m On arrondie la valeur la plus défavorable et on considère un diamètre de 1,00m.  Vérification au flambement: Pour les piles de hauteurs importantes et qui entrent dans la catégorie des structures élancées, on procède à une vérification vis à vis le flambement selon la méthode suivante: -

Section de la pile:

B = (π x D²)/4 = 0.785 m².

-

Inertie de la section:

I = (π x D²) /64 = 0.049m4.

-

Rayon de giration :



On considère la pile la plus grande, elle est encastrée aux niveaux de la semelle et du chevêtre avec possibilité de déplacement horizontal de ce dernier, lf est donc égal à la hauteur de la pile lf = 9.50 m d’où λ= lf/ i = 38 < 50

1,00 m

0,95 m

2,70 m

2,70 m

2,70 m

Figure 17: Entraxe des piles VIPP

52

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

Chapitre IV – Prédimensionnent des culées I- Morphologie des cule es La culée est un appui extrême très sensible assurant la liaison entre le pont et les remblais. C'est pour cela que l'on opte souvent pour des conceptions simples et surdimensionnées. Sa conception tout de même doit tenir compte des paramètres suivants :  La hauteur de la brèche à franchir et le tirant d’air sous l’ouvrage  Le type de tablier  Le niveau des fondations  L’ordre de grandeur des tassements  Les modalités d’implantation dans le terrain Toutefois, la culée doit répondre à certaines exigences afin de bien servir ses fonctions qu'on classe comme suit :

 Fonction mécanique qui nécessite: -

Une bonne transmission des efforts au sol de fondation.

-

Une limitation de déplacements horizontaux en tête de telle sorte à ne pas perturber le fonctionnement des appareils d'appui.

-

Une limitation des tassements.

-

Une

rigidité suffisante et un bon équilibre pour résister aux efforts

permanents.

 Fonction technique qui doit permettre : -

Un accès à l'intérieur de l'ouvrage.

-

Une conception d'une chambre de tirage lorsque des conduites ou des canalisations passent à l’intérieur du tablier.

I.1-La culée enterrée: C’est la configuration la plus courante, elle est caractérisée par une structure porteuse noyée dans le remblai d'accès à l'ouvrage qui est peu sollicitée par les efforts horizontaux des poussées des terres. De par sa conception, une culée enterrée suppose une implantation en

53

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 retrait par rapport aux limites extrêmes de l'obstacle franchis à cause de la présence des talus des remblais exécuté à une pente de 3/2.

I.2-La culée remblayée: C'est la combinaison de plusieurs murs en béton armé dont on cite le mur de front et les murs latéraux en aile ou en retour. De par sa composition, la culée remblayée assure à la fois une fonction porteuse et une fonction de soutènement du remblai. Pour éviter tout éventuel déséquilibre des efforts du tablier et des terres, on ne conçoit ce type de culée qu'avec fondations superficielles pour des sols de très bonne qualité.

I.3-La culée creuse: C'est une sorte de boite renversée comportant un mur de front, des murs en retour et un platelage supérieur. Sa conception est assez complexe que l'on préfère, dans la plupart des cas, allonger le tablier en passant par des culées enterrées.

I.4-La culée en terre armée: Conçue essentiellement pour les remblais et les ouvrages de soutènement, la terre armée est aussi utilisée pour les culées de ponts. On distingue deux types:

 Une tête de culée simple posée directement sur le remblai en terre armée traitée en surface pour améliorer la transmission des charges.

 Une pile-culée indépendante du massif en terre armée dont la fonction porteuse est dissociée de la fonction de soutènement.

I.5-La culée contrepoids: Ce type de culée est conçu dans des cas très particuliers, où la réaction d’appui au droit d’une culée change de signe. Donc son rôle est de faire face à tout éventuel déséquilibre sous n’importe quel type de charges.

I.6-Choix du type de culée: Compte tenu des informations déjà citées, il semble plus judicieux de concevoir pour le présent projet une culée enterrée vue la simplicité de sa conception et de sa réalisation.

II-Ele ments de pre dimensionnement II.1-Sommier d’appui : L’about du tablier repose sur cet élément dont la surface doit être traitée de telle sorte à assurer :

54

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400  L’implantation des appareils d’appui.  La mise en place des vérins pour toute opération de maintenance.  L’évacuation des eaux grâce à la pente d’arase de 2% qui piège les eaux dans une cunette contre le mur garde-grève. La dimension transversale du sommier dépend principalement du câblage et des conditions d’équilibre du bloc d’about. D’autant plus, pour une bonne disposition des armatures, on réserve une distance de 20 cm entre les appareils d’appuis et l’extrémité du sommier.  La longueur : selon le même principe utilisé pour le sommier des piles, on adopte la même longueur de 10.00 m  La largeur : B= d’+d + d’’+ b+ e d : la distance entre le mur garde grève et l’about du tablier égale au minimum à 0.50 m.

- d’ : la distance entre l’about du tablier et le nu intérieur de l’appareil d’appui égale au minimum pour les pont en précontrainte à 0.30 m.

- b : la largeur de l’appareil d’appui prise égale à 0.40 m. - d’’ : la distance entre l’extrémité du sommier et le nu extérieur de l’appareil d’appui prise de 0.20 m.

- e : épaisseur du mur garde grève 0.30m  Ainsi, on trouve B = 1,70 m.

 La hauteur : on prend une hauteur de 1,00 m pour des raisons de robustesse. II.2-Le mur garde-grève : Après achèvement du tablier, le mur garde-grève est coulé avec reprise de bétonnage sur le sommier sous forme de voile en béton armé dont la servitude se résume à la séparation physique de l’ouvrage du remblai. Ceci dit, cet élément doit résister aux :  Efforts de poussée des terres.  Efforts de freinage.  Effort transmis par la dalle de transition.

55

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 Reste à noter que l’espacement entre le tablier et le mur garde – grève se rattrape par la mise ne place de corbeaux supérieurs dont lesquels sont logées les réservations des joints de chaussée.  La longueur : sa longueur est égale à celle du tablier diminuée de l’épaisseur des deux murs en retour, on retiendra 9.4 m.  La hauteur : elle est égale à celle de tablier plus la hauteur réservée aux appareils h= ht + h’

d’appuis

Avec h’ : la hauteur de l’appareil d’appui et son bossage. On trouve donc :  PSI- BA : h = 1,70 +0,30 = 2,00 m  VIPP

: h = 2.40 + 0.30 = 2.50 m

 L’épaisseur : Selon les recommandations du dossier pilote PP73 de SETRA, on note que :  Pour une hauteur de 2 m< hg ≤ 3 m : e = 0,30 m

Ainsi, pour nos deux variantes on opte pour une épaisseur de 0.30 m

II.3-Les murs en retour : Ce sont des murets latéraux liés au mur garde-grève dont l’utilité est de retenir les terres.  L’épaisseur : elle sert à disposer les armatures et à assurer un bon bétonnage, elle doit donc appartenir à l’intervalle [0.30 m ; 0.40m]. Ainsi, une épaisseur de 0.30 m semble suffisante. La longueur : elle appartient à l’intervalle [2 m ; 6 m], on la calcule pour la formule On prend donc L = 4 m

suivante :

 La hauteur : elle est égale à la somme de celle du mur garde-grève et celle du sommier, on trouve donc pour :  PSI-BA : h = 2,00 + 1,00 = 3,00 m.  VIPP

: h = 2,50 + 1,00 = 3,50 m.

II.4-La dalle de transition : Cette dalle est destinée à atténuer les effets des dénivellations issues d’un compactage imparfait du remblai d’accès et à minimiser l’endommagement du mur garde- grève par les passages des poids lourds.

56

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400  La longueur : elle dépend essentiellement de la hauteur du remblai et appartient à l’intervalle [3 m ; 6 m], tout de même elle est calculée par le formule suivante : L = Min [6 m ; Max (3 m ; 0,60×hr)] Telle que hr est la hauteur du remblai. On adopte donc une longueur de 3 m  L’épaisseur : la dalle de transition est coulée directement sur un béton de propreté avec une épaisseur de 0,30 m.  La largeur : elle prise égale à la longueur du mur garde-grève donc 9,40 m.

II.5-Les fûts : On opte pour des colonnes de 1 m de diamètre et 2.50 m de hauteur.

En résumé, notre culée a la configuration suivante :

Figure 18: Prédimensionnement des culées

57

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

Chapitre V – Prédimensionnent des fondations I-Reconnaissances ge otechniques I.1-Aspects géologiques de la région : I.1.1- géomorphologie :

De point de vue géomorphologique, la zone du projet est située dans une zone de transition limitée au nord par la zone mésorifaine et au sud par la zone des rides prérifaines, elle se caractérise généralement par un paysage mamelonné sous forme des collines marneuses généralement ravinées à pente assez importante vers le sud. I.1.2 – tectonique :

La nature des déformations dominantes au niveau de la région est des plissements qui affectent globalement les formations marneuses molles, ces plissements sont isolés des synclinaux de Miocène poste-nappe à l’intérieur du prérif. I.1.3 – litho- stratigraphie locale :

La zone du projet renferme des formations superficielles qui sont essentiellement des alluvions récentes de Quaternaire surmontant une formation puissante de marno – calcaire bleu grisâtre de Miocène.

I.2-Reconnaissance du site : La campagne de reconnaissance menée par le laboratoire a consisté en la réalisation de :

58

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400  Sept sondages mécaniques de 20 m de profondeur chacun avec des essais

pressiométriques.  Trois puits manuels : PM1 à 4 m, PM2 à 4m, PM3 à 1.8 m. I.2.1 – Essais in situ :

Dans le but d’apprécier les caractéristiques mécaniques du sol en place, il a été procédé au droit de chaque sondage à des essais pressiométriques de Ménard. Ils nous permettent de déterminer :  La pression limite : Pl ; La pression de fluage : Pf ; Le module pressiométrique : EM Conclusion : En fin de compte, on constate que la formation de la marne schistifiée grisâtre est

dans l’ensemble surconsolidée et présente des caractéristiques mécaniques élevées. Ceci dit, la marne schistifiée grisâtre est le sol d’assise à considérer par excellence.

II-Choix des Fondations : Le type des fondations dépend de trois facteurs :  La contrainte de compression admissible sur le sol  Les risques d’affouillements dans le cas d’ouvrage en site aquatique  Les phénomènes de tassements qui doivent être compatibles avec l’intégrité des superstructures. Le type de fondations employées varie en fonction de la proximité ou de l’éloignement du bon sol par rapport au terrain naturel. Généralement on distingue principalement deux types de fondations: superficielles ou profondes.

II.1-Rappel des résultats d’affouillement :  Pour les piles : 2.68 m  Pour les culées : 1.28 m

II.2-Exploitation des résultats : II.2.1-Variante PSI-BA :

Les sondages ont été effectués à un pas de 25 m ce qui est avantageux pour la variante PSIBA puisque les sondages sont fait au droit des appuis à 1 m près. Alors on opte pour des fondations superficielles pour la pile 1 et 2, et des fondations profondes sur pieux pour le reste. (Voir Annexe)

59

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 II.2.1-Variante VIPP :

Pour la variante VIPP on se trouve contraint d’utiliser les résultats des sondages les plus proches pour donner des valeurs signifiantes. Selon les conditions géotechniques déjà citées, on propose des fondations profondes pour la ou des fondations semi - profondes avec une hauteur de gros béton de 5 m. (Voir Annexe)

III-Pre dimensionnement III.1-Fondations semi – profondes : Le niveau de la semelle est conditionné par la valeur de l’affouillement et les résultats de l’essai pressiométrique. Le niveau de la semelle est 3 m par rapport au terrain naturel.  Longueur : la longueur est conditionnée

par l’écartement extrême des éléments

verticaux de la structure. Le PP73 donne la formule simplifiée suivante : Ls = (n - 0.2) e  n : nombre des colonnes  e : l’espacement entre les colonnes

- Pour le PSI-BA : Ls = 9.5 m - Pour le VIPP :

Ls = 10.3 m

 Largeur : En se référant aux indications données à la pièce 1.3.1 du fond 73, la largeur est de 3 m.  Hauteur : En ce qui concerne la hauteur de la semelle, la condition de rigidité conduit hs ≥ (B-a)/4

à un minimum de :

On retient donc pour les deux variantes une hauteur de 1 m.

III.2-les fondations profondes : III.2.1-Niveau de la pointe des pieux : Pour assurer l’encastrement des pieux dans le

substratum, SETRA recommande de les ancrer à 3×Ф=3 m de profondeur au minimum. III.2.2-Nombre de files de pieux : Dans le cas de pieux forés, dont la résistance aux efforts

horizontaux mobilise la butée du terrain, on prévoit généralement deux files de pieux. III.2.3- Diamètre et nombre des pieux : En règle générale, il est préférable de prévoir un

nombre limité de pieux de fort diamètre plutôt qu’une forêt de petits pieux. Au Maroc, les diamètres des forages exécutés sont tel que

60

60 cm≤ ∅ ≤120 cm

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 En se basant sur le chapitre 1.3.1 du dossier pilote PP73, on peut obtenir directement, avec une bonne précision au stade de l’avant-projet, les valeurs des réactions d’appuis maximales dues au tablier sous les charges permanentes et les différentes charges routières, on utilise pour ce faire la formule suivante :



KCP : coefficient par lequel il faut multiplier la réaction d’appui due aux charges permanentes si l’ouvrage diffère de l’ouvrage moyen utilisé pour établir les abaques (on le prend égal à 1)



Lu : la largeur utile droite et Lt : largeur totale des trottoirs



KA et KB : coefficients de corrélation



KSEMB : coefficient d’excentrement applicable à R0(Bc)



KSEMC : coefficient d’excentrement applicable à R0(Mc120)

Nombre de voies (NV) 1 2 3 3,5 7 9,45 3 5,4 * 2,475 4,4 * 1,2 2,2 2,85 1 2 * 1 1,6 *

Classe KA

Kb

1ère classe 2ème classe 3ème classe 1ère classe 2ème classe 3ème classe

Tableau 20: Valeurs caractéristiques de KA et KB

 e : excentrement maximal des convois Bc et Mc120 par rapport à la longueur de la semelle Lsem.il est calculé par les relations suivantes : ; Telle qu’ESURCH désigne la largeur de chaussée chargeable. NV 2

Lu 10

61

Lt 2

KA 7

KB 2,2

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 ESURCH 8

e(Bc) 1,5

e(Mc120) 1,85

Appui Appui d'extrémité intermédiaire R0(CP) 21,5 59,5 R0(trot) 2 5,5 R0(Al) 17 29,5 R0(Bc) 51 66,5 R0(Mc120) 97,5 118,5 R (T) 381,69 818,135 PSI-BA

Lsem 10

KSEMB 1,45

KSEMC 1,555

Appui Appui d'extrémité intermédiaire R0(CP) 32,5 91 R0(trot) 3 8 R0(Al) 20 35,5 R0(Bc) 57,5 71,5 R0(Mc120) 99,5 126,5 R(T) 514,425 1174,5 VIPP

Tableau 21: Réactions d'appui pour les deux variantes

 Poids de la pile et de la culée : -

Pour une pile : P=B x D x L x 2.4 = 600 T

-

Pour une culée : P = 2.1 x B x H x L = 1050 T

B : La largeur de la semelle prise égale à 5m ; D : La distance d’ancrage avec un max de 5 m ; L : La longueur de la semelle de 10 m ; H : hauteur comptée de la base de la semelle au sommet du chevêtre : on prend 10m Le nombre de pieux est donné par la relation suivante :

-

Ω : Section du pieu (3.14 m²) ; N : Nombre de files (2 files) ; R : Réaction maximale

-

σ: Contrainte moyenne admissible de compression du pieu :

On choisit donc : 3 pieux de 1.00 m par file III.2.4- Entraxe :

Il est communément admis qu’un entraxe L de 3 fois le diamètre constitue une bonne base de départ pour le dimensionnement d’une fondation. L ≥3∅=3 m => L files = 3.00 m

62

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400  Pour PSI-BA : entraxe colonnes=2.50m =>

L rangées = 2.5 x 1.5 = 3.75 m

 Pour VIPP : entraxe colonnes=2.70m => L rangées = 2.7 x 1.5 = 4.00m III.2.5- Semelle de liaison :

 Longueur : Elle est conditionnée soit par l’écartement des colonnes soit par l’écartement entre les rangées extrêmes de pieux. Dans notre cas, Il s’agit de la deuxième condition qui mène en respectant un débord de ∅ :

-

Pour PSI-BA : Ls= (n−1) lrangées + 2∅= (3−1) × 3.75+ 2×1 = 9.5m

-

Pour VIPP

: Ls= (n−1) lrangées + 2∅ = (3−1) × 4 + 2×1 = 10m

 Largeur : En respectant comme précédemment un débord de ∅ pieu, on obtient pour les deux variantes : ls= (N−1) lfiles +2∅ = (2−1) × 3 + 2×1 = 5 m.  Hauteur : En ce qui concerne la hauteur de la semelle, la condition de rigidité conduit (

à un minimum de :

-

l : Entraxe entre les pieux

-

d : Enrobage = 0.05 m

-

b : Diamètre des fûts.

)

On retient donc : hs =1,80 m pour les deux variantes

Chapitre VI – Comparaison économique Dans ce chapitre, on mène une étude comparative des coûts des deux variantes. Elle sera basée sur un avant- métré des quantités de béton, d’acier et des équipements à mettre en place. Pourtant cette étude n’est exhaustive car elle ne cerne pas toutes les dépenses qui risquent d’être communes aux deux variantes en question. Les prix unitaires sont issus d’estimations actualisées par le bureau d’étude. Pour ce faire, on utilise les ratios suivants : Les quantités d’acier par m3 de béton sont les suivantes :  Pour la variante I: 

Tablier, Fûts, chevêtre, semelles : 130 Kg/m3



Mur en retour : 100 Kg/m3

63

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 

Mur garde grève, et corbeau : 80 Kg/m3

 Pour la variante II : 

Acier actif : 40 Kg/m3



Tablier : 80 Kg/m3 (Acier passif).



Autres : mêmes ratios que la variante I

Selon les avant-métrés indiqués en Annexe, les coûts globaux sont estimés à : 

Variante PSI-BA : 21588176 DHs



Variante VIPP

: 20009089 DHs

64

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

ETUDE D’EXECUTION

65

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

Chapitre I – Inventaire des charges I-Charges permanentes Trop souvent considérés comme accessoires, les équipements des ouvrages d’art jouent un rôle fondamental dans la conception, le calcul, le bon fonctionnement et la durabilité de la structure. En effet, par leurs poids ces équipements représentent une partie intégrale dans le calcul de dimensionnement des éléments de la structure. Tout de même, leurs caractéristiques géométriques influencent fortement la conception transversale du tablier afin d’assurer la fonction du pont vis à vis des usagers.

I.1-Les revêtements du tablier : I.1.1 – la couche d’étanchéité :

On distingue principalement deux types :  Chapes épaisses : On en trouve avec soit des épaisseurs de 35 mm soit de 30mm.  Chapes minces : Avec une épaisseur variant entre 1.5 et 3 mm, cette catégorie de chape demande une main d’œuvre très qualifiée et des coûts de réalisation élevés.  A la lumière des explications précédentes, on opte pour une chape épaisse avec une épaisseur de 35 mm et un poids volumique de 2.2 t/m. I.1.2 – la couche de roulement :

La couche de roulement est constituée par un tapis d’enrobés bitumineux dont l’épaisseur courante est de 7 à 8 cm et dont la masse volumique varie selon la qualité et la compacité entre 2.2 et 2.5 t/m.  On choisit alors une couche de 8 cm avec une densité volumique de 2.3 t/m.

I.2-Les trottoirs : Le rôle des trottoirs est de protéger les piétons en les isolant, en général par une simple surélévation, de la circulation automobile.il en existe deux types :  Trottoirs pleins  Trottoirs sur caniveau : ils comprennent une bordure, une corniche, une contre bordure et une contre corniche. Entre ces deux dernières, on pose des dalettes en béton armé avec une pente de 2 %. Pour notre projet, on a des trottoirs de longueur de 1.00m

66

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 I.3-Les garde- corps : La conception d’un garde-corps doit respecter les prescriptions du fascicule 61 titre II du CPC. Sa masse linéique varie de 20 à 50 kg/ml et sa hauteur minimale se détermine par la formule suivante :

Avec H la hauteur en m du trottoir au-dessus du sol ou de l’eau.

I.4-La corniche : La corniche a essentiellement un rôle esthétique, elle doit également servir de larmier pour éviter le ruissellement de l’eau de pluie sur les parements de la structure porteuse. Il en existe trois catégories :  Les corniches en béton coulées en place  Les corniches en béton préfabriquées  Les corniches métalliques On adopte pour notre ouvrage celles préfabriquées. Ceci dit, les charges de superstructures se présentent comme suit :

Equipement

Nombre

Revêtement

poids unitaire(t/ml)

poids total(t/ml)

2,088

Chape d'étanchéité Couche de roulement

1 1

Trottoir:

0,616 1,472

0,616 1,472

1,658

Garde- corps Corniche Préfabriquée Contre corniche Bordure Contre bordure Dalette total total sur travée (T)

2 2 2 2 2 2

0,03 0,48 0,09 0,108 0,07 0,051 3,746 149,84

Tableau 22: Charges des superstructures

67

0,06 0,96 0,18 0,216 0,14 0,102

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 I.5-Inventaire des charges permanentes : I.5.1- Poids propre

 Poids propre de la poutre seule (t) :103.22t  Poids propre de la poutre seule (t/ml) :2.58t/ml  Poids propre de l’ensemble des poutres : 412.9t  Poids propre de l'hourdis (t) : 200 t  Poids propre des entretoises (t) : 26.77 t  Total d’une travée (t) :639.7 t  Total d’une travée (t/m) : 15.99t I.5.2- Charges superstructures

 Le poids des superstructures : 149.84t

 Le poids linéique des superstructures : 3.746 t/ml I.5.3- total charges permanentes :

 Le poids total appliqué au tablier : 789.54 t  Le poids linéique est donc : 19.74 t/ml

II-Charges routie res II.1-Généralités : II.1.1- la largeur roulable :

Elle est définie comme la largeur comprise entre dispositifs de retenue ou bordures, elle comprend donc outre la chaussée proprement dite toutes les surlargeurs éventuelles telles que la bande dérasée, la bande d´arrêt, etc. LR = (Plate-forme) - (2 x Largeur d’un trottoir) Pour notre cas, la largeur roulable est : LR = 10- (2 x 1) = 8m

II.1.2- la largeur chargeable :

Elle se déduit de la largeur roulable en enlevant une bande de 0,50 m le long de chaque dispositif de retenue (glissière ou barrière) lorsqu´il en existe. Ainsi, notre largeur chargeable est : Lc = LR= 8m II.1.3- La classe du pont :

Les ponts routes sont rangés en 3 classes, en fonction de la largeur roulable et de leur destination :

68

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400  Première classe : -

Tous les ponts supportant des chaussées de largeur roulable supérieure ou égale à 7 m

-

Tous les ponts supportant des bretelles d´accès à de telles chaussées

-

Les ponts, de largeur roulable inférieure à 7 m, qui sont désignés par le C.P.S

 Deuxième classe : Les ponts, autres que ceux énumérés ci-dessus, supportant des chaussées à deux voies de largeur roulable comprise entre 5.50 m et 7 m valeurs limites exclues.

 Troisième classe : Les ponts, autres que ceux énumérés ci-dessus, supportant des chaussées à une ou deux voies de largeur roulable inférieure ou égale à 5.50 m. II.1.4- Le nombre de voies

Par convention, le nombre de voies de circulation des chaussées Nv est tel que : Nv = E (Lc /3) = E(8/3) = 2

II.1.5- La largeur d’une voie

Par convention, la largeur d’une voie de circulation, V, est donnée par la relation : V= Lc/ Nv La largeur d’une voie est donc: V= 8/2 = 4m. II.1.6- Les coefficients (a1, a2 ,bc et bt)



Les coefficients a1 et a2 dépendent de la classe du pont et du nombre de voies chargées. Les valeurs de a1 sont regroupées dans le tableau suivant: Classe du pont 1 ère 2ème 3ème

valeurs de a1

Nombre de voies chargées 1 2 3 4 >4 1 1 0,9 0,75 0,7 1 0,9 * * * 0,9 0,8 * * *

Tableau 23: Coefficient a



1

Les valeurs de a2 sont définies par la formule suivante : a2 = vo / V Avec V : largeur d’une voie.

Les valeurs de vo sont données dans le tableau ci-dessous : Classe du pont

valeurs de V0

1 ère 2ème 3ème

3,5 3 2,75

Tableau 24: Largueurs V

69

0

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 Les valeurs données aux coefficients a1 et a2 tiennent compte des majorations pour effets dynamiques. 

Les coefficients bc dépendent de la classe du pont et du nombre de files considérées. Classe du pont 1 ère 2ème 3ème

valeurs de bc

Nombre de files considérées 1 2 3 4 >4 1,2 1,1 0,95 0,8 0,7 1 1 * * * 1 0,8 * * *

Tableau 25:Coefficient b



c

Les coefficients bt dépendent de la classe du pont : Classe du pont

valeurs de bt

1 ère 2ème

1 0,9

Tableau 26:Coeffient b

t

II.1.7- Majoration dynamique

Les charges du système B sont frappées de majorations dynamiques et le coefficient de majoration applicable aux trois systèmes Bc, Br, Bt est le même pour chaque élément d´ouvrage. Le coefficient de majoration dynamique relatif à un tel élément est déterminé par la formule :

 L : la longueur de l’élément  G : la charge permanente totale sur la travée  S : la charge maximale du système B Type de La valeur de S en chargement tonnes Bc une file 60 Bc deux files 120 Bt un tandem 32 Bt deux tandems 64 Br 10 Mc120 110

valeur du coefficient 1,06 1,07 1,05 1,06 1,05 1,06

Tableau 27:Coefficient de majoration dynamique longitudinal

Récapitulons, pour l’ouvrage en question : LR = Lc = 8 m ; Nv = 2 ; V = 4m Pont de classeJgiug, I ; a1;bjgukigb = 1 ; a2 = 3.5/4= 0.875 bc = 1.2 pour une file et 1.1 pour deux ; bt = 1

70

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 II.2-Le système A(l) : Son intensité est égale au produit de la valeur A (l), donnée ci-après, par les coefficients résultant déjà cités : (

(

)

)

Ensuite, A (l) multipliée par le coefficient a2 puis par la largeur d’une voie (resp. deux voies) si elle est seule à être chargée (resp. si les deux le sont) afin d’obtenir une force linéique. On récapitule donc nos résultats dans le tableau suivant : A(l) (T/m²) Nombre de voies chargées largeur chargée a2 valeur finale A(l) (T/m)

0,922 1,000 4,000 0,875 3,228

0,922 2,000 8,000 0,875 6,456

Tableau 28:Valeurs de la surcharge A(l)

II.3-Le système B : Le système de charges B comprend trois systèmes distincts dont il y a lieu d´examiner indépendamment les effets pour chaque élément des ponts :  Le système Bc se compose de camions types ;  Le système Br se compose d´une roue isolée ;  Le système Bt se compose de groupes de deux essieux dénommés essieux-tandems. Les deux premiers systèmes Bc et Br s´appliquent à tous les ponts quelle que soit leur classe. Or, le système Bt ne s´applique qu´aux ponts de première ou de deuxième classe. II.3.1- système Bc :

On dispose sur la chaussée au plus autant de files ou convois de camions que la chaussée comporte de voies de circulation, et l´on place toujours ces files dans la situation la plus défavorable pour l´élément considéré. Le nombre de camions par file est limité à deux. La distance des deux camions d´une même file est déterminée pour produire l´effet le plus défavorable. Les camions homologues des diverses files sont disposés de front, tous les camions étant orientés dans le même sens. On présente ses caractéristiques dans la figure suivante :

71

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

Figure 19: Représentation du système Bc

II.3.2- système Bt :

Un tandem se compose de deux essieux munis de roues simples pneumatiques. Pour les ponts à une voie un seul tandem est disposé sur la chaussée, pour les ponts supportant au moins deux voies, deux tandems au plus sont disposés de front.

Figure 20: Représentation du système Bt

72

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 II.3.3- Système Br

C’est une roue isolée disposée normalement à l’axe longitudinal de la chaussée. Les caractéristiques de cette roue sont présentées sur la figure ci-dessous :

Figure 21: Représentation du système Br

Le rectangle de la roue peut être placé n’importe où sur la largeur roulable de manière à produire l’effet le plus défavorable.

II.4-Système Mc120 : Le système Mc120 se compose de véhicules type à chenilles. Il comporte deux chenilles et le rectangle d’impact de chacune d’elles est supposé uniformément chargé. Les caractéristiques du système Mc120 sont représentées dans la figure ci-dessous :

Figure 22: Représentation du système Mc120

73

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 II.5-Les charges sur les trottoirs : II.5.1- Les charges locales

Le système local comprend une charge uniformément répartie d’intensité Qtr de valeur : Qtr = 0.45 T/m². Cette charge est placée pour produire l’effet le plus défavorable. Ses effets peuvent éventuellement se cumuler avec ceux de Bc et Mc120. De plus, le système local comprend une roue de 6 T dont la surface d’impact est un carré de 0,25 m de côté à disposer sur les trottoirs en bordure d’une chaussée. II.5.2- Les charges générales

Le système général comprend une charge uniformément répartie d’intensité Qtr de valeur : Qtr= 0.15 T/m². Ce système répond aux règles d’application suivantes :  Dans le sens longitudinal, on dispose cette charge pour qu’elle produise l’effet le plus défavorable.  Dans le sens transversal, toute la largeur du trottoir est chargée, mais on peut considérer soit qu’un seul trottoir est chargé, soit que les deux le sont, de manière à obtenir l’effet le plus défavorable.  Cette charge est cumulable avec la charge A(l) et Bc si elle peut donner un effet plus défavorable.

74

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

Chapitre II – Etude de tablier I-De termination des CRT des charges I.1-Aperçu général de la méthode de GUYON MASSONET: Cette méthode a été exposée par M. Guyon dans les annales des Ponts et Chaussées de 1949.puis complétée par les tables de M. Massonnet publiées dans les annales N° 169 de l'I.B.T.P. L'ouvrage de R. Bares et C. Massonnet :" le calcul des grillages de poutres et dalles orthotropes" édition Dunod a donné en outre quelques détails pratiques pour l'application de la méthode. Elle consiste essentiellement à :  Substituer au pont réel un pont à structure continue qui a mêmes rigidités moyennes à la flexion et à la torsion que l’ouvrage réel. Mais qui est analysable rigoureusement par le calcul différentiel.  Analyser de manière approchée l’effet de répartition transversale des charges en admettant que cette répartition est la même que si la distribution des charges selon l’axe du pont était sinusoïdale de la forme :

Le moment fléchissant moyen est déterminé grâce à la méthode classique des lignes d’influence dans une poutre sur deux appuis simples. I.1.1-paramétrage:

On considère une travée indépendante, de portée L, de largeur 2b, dont l’ossature est constituée par une poutraison croisée de n poutres longitudinales (portée L, espacement b1) et de m entretoises (portée 2b, espacement L1) intermédiaires, disposées transversalement :

Figure 23 : Schéma du modèle de Guyon Massonnet

75

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 Toutes les poutres sont identiques et caractérisées par :  Leur rigidité à la flexion BP = EIP  Leur rigidité à la torsion CP = GKP De même, toutes les entretoises sont identiques, et également caractérisées par :  Leur rigidité à la flexion BE = EIE  Leur rigidité à la torsion CE = GKE Tels que:  E : module de Young.  G : module de torsion ; G = E/2(1+) ( est le coefficient de Poisson).  IP : moment d’inertie de flexion des poutres  KP : moment d’inertie de torsion des poutres  IE : moment d’inertie de flexion des entretoises  KE : moment d’inertie de torsion des entretoises. Par unité de longueur, ces rigidités deviennent :  Les rigidités de flexion : P = BP/b1 = EIP/b1 ; E = BE/L1 = EIE/L1   Les rigidités de torsion : P = CP/b1 = GKP/b1 ; E = CE/L1 = GKE/L1

Le pont est généralement fait en béton dont le coefficient de Poisson est faible de l'ordre de 1/6. Pour simplifier on pose et on obtient donc : G=E/2  P = EKP/2b1 et E = EKE/2L1

La méthode de Guyon Massonnet considère une structure comprenant des poutres principales et des entretoises, mais les entretoises ne sont pas supposées infiniment rigides. A la limite, il est possible d'appliquer la méthode à un tablier de pont à poutres sans entretoises intermédiaires: c'est alors le hourdis qui joue le rôle des entretoises. Dans ce cas, les inerties de flexion et de torsion du hourdis (hauteur: h d) représentant les entretoises sont : E = E = Ehd3/12. D’après la théorie de la flexion, si le pont se déforme suivant une surface x;y) dont les courbures valent respectivement : x2 et y2 il est siège des moments de flexion unitaires : Mx= - P (x2 ) ; My= - E (y2) et les moments de torsion unitaires: Mxy= - P (x y ) ; Myx= - E (x y )

76

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 Le comportement du pont est complètement défini par les deux paramètres principaux :  Le paramètre de torsion :  = (P + E)/2(E P) 1/2  Le paramètre d’entretoisement :  = (b/L) x (P/E) 1/4 I.1.2- Le Coefficient de Répartition Transversale (CRT) :

Sous l'effet d'une charge linéaire répartie sur une parallèle à l'axe du pont d'excentricité e suivant la loi sinusoïdale:

On peut montrer que le pont prend une déformée de la forme:

Si la charge p1, au lieu d'être répartie sur une ligne, était uniformément étalée sur la largeur 2b du pont tout en restant sinusoïdale dans le sens de l'axe, le pont prendrait une déformée cylindrique d'équation:

On appelle par définition coefficient de répartition transversale, le rapport sans dimension :

C’est le rapport du déplacement vertical d'un point du pont sous l'effet de la charge linéaire, au déplacement que prendrait ce point si la charge p était uniformément répartie sur toute la largeur du pont. Pour  quelconque, l’interpolation n’est pas linéaire. Elle est donnée par Massonnet : K = K0 + (K1 – K0) x 1/2 Où K0 = K0 (, e, y) pour  ; K1 = K1 (, e, y) pour  Les valeurs de ces coefficients sont tirées des tableaux et des abaques de Massonnet. Pour une poutre d’ordonnée y, on procède à une interpolation linéaire sur les valeurs de y données dans les tableaux de Guyon-Massonnet. Une interpolation linéaire peut se faire par rapport à .

I.2- Eléments de calcul : I.2.1- Rigidité flexionnelle :  Position du centre de gravité :

On découpe la section de la poutre en cinq sections S1, S2, S3, S4 et S5 dont y1, y2, y3, y4 et y5 sont respectivement les ordonnées des centres de gravité de ces sections, la position du centre de

gravité

de

la

section

77

totale

est

déterminée

par

la

formule

suivante

:

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 ∑ ∑ Détermination du centre de gravité S1 0,1440 Y1 2,350 S2 0,0226 Y2 2,250 S3 0,5125 Y3 1,275 S4 0,0728 Y4 0,357 S5 0,1750 Y5 0,125 Si 0,9269 Si Yi 1,0906 Y1 1,177 Y2 1,223 Tableau 29: Position du centre de gravité

 Moment d’inertie de flexion :

On a I/G= I1/G + I5/G + I2/G + I3/G + I4/G En appliquant le théorème de Huygens : Ii/G = Ii + Si d²= Ii + Si (yi-yG)² avec i=1,…5 S1 S2 S3 S4 S5

Si 0,1440 0,0226 0,5125 0,0728 0,1750

Y1 Y2 Y3 Y4 Y5 4 I(m )

Yi 2,350 2,250 1,275 0,357 0,125

d² 1,377 1,152 0,010 0,672 1,106

Ii I/G 0,00012 0,19840 0,00003 0,02607 0,17948 0,18445 0,00041 0,04931 0,00091 0,19442 0,65265

Tableau 30: Calcul du moment d'inertie

 rigidité flexionnelle des poutres : Elle est donnée par la formule suivante : P = BP/b1 = EIP/b1= 0.34453 E  Rigidité flexionnelle de l’hourdis : Elle est donnée par la formule suivante : E = BE/L1 = EIE/L1 = 0.00067 E I.2.2- Rigidité de torsion:

 Moment d’inertie de torsion : On transforme la poutre en Té avec goussets en une poutre équivalente de telle sorte que les goussets sont remplacés par des rectangles équivalents de même surface. Ainsi : -

Le talon de hauteur h1+h2 et de largeur bta est équivalent à un rectangle de même largeur et de hauteur

78

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 -

La table de compression avec gousset supérieur est équivalente à un rectangle de même largeur et de hauteur

On trouve donc : ( ( On trouve alors : G1= 0.00129

; G2 = 0.01157

)

) ; G3 =0.00479

Donc G = 0.01765  Rigidité torsionnelle de la poutre : Elle est donnée par la formule suivante : P = CP/b1 = EKP/2b1 = 0.00327E  Rigidité torsionnelle de l’hourdis : Elle est donnée par la formule suivante :E = BE/L1 = EIE/L1 = 0.00067 E

Paramètres de calcul :

 Le paramètre de torsion :  = (P + E)/2(E P) 1/2 = 0.155  Le paramètre d’entretoisement :  = (b/L) x (P/E) 1/4 =0.55

79

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 I.2.3- Tableau des coefficients de Guyon-Massonnet :

Pour on a les tableaux suivants : 

Y\\e 0 b/4 b/2 3b/4 B



-b -3b/4 -b/2 -b/4 0,4848 0,7666 1,036 1,2556 -0,0883 0,2657 0,6183 0,9592 -0,5233 -0,1538 0,223 0,6185 -0,8871 -0,5279 -0,1538 0,2657 -1,2289 -0,8871 -0,5233 -0,0883



Y\\e 0 b/4 b/2 3b/4 B

0 1,3521 1,2556 1,036 0,7666 0,4848

b/4 1,2556 1,4423 1,4571 1,3746 1,2654

b/2 1,036 1,4571 1,8274 2,0885 2,3046

3b/4 0,7666 1,3746 2,0885 2,8585 3,6081

b 0,4848 1,2654 2,3046 3,6081 5,0997

b/4 1,0981 1,194 1,1902 1,1411 1,0889

b/2 1,0016 1,1902 1,3443 1,4071 1,4308

3b/4 0,9069 1,1411 1,4071 1,6611 1,852

b 0,8255 1,0889 1,4308 1,852 2,3314

3b/4 0,8218 1,2827 1,8202 2,3871 2,9167

b 0,6189 1,1959 1,9606 2,9167 4,0098



-b 0,8255 0,6309 0,4916 0,3922 0,3153

-3b/4 0,9069 0,7192 0,5777 0,4737 0,3922

-b/2 1,0016 0,8275 0,6859 0,5777 0,4916

-b/4 1,0981 0,9595 0,8275 0,7192 0,6309

0 1,1489 1,0981 1,0016 0,9069 0,8255

Tableau 31:Valeurs de K et K 0

1

Pour avoir K ( = 0,155), on fait une interpolation à l’aide de la formule suivante : K 0,155 =K0+(K1-K0)×0.1551/2 

Y\\e 0 b/4 b/2 3b/4 B



-b -3b/4 -b/2 0,6189 0,8218 1,0225 0,1948 0,4442 0,7007 -0,1237 0,1342 0,4052 -0,3834 -0,1336 0,1342 -0,6210 -0,3834 -0,1237

-b/4 1,1936 0,9593 0,7008 0,4442 0,1948

0 1,2721 1,1936 1,0225 0,8218 0,6189

Tableau 32:Valeurs de K

b/4 1,1936 1,3445 1,3520 1,2827 1,1959

b/2 1,0225 1,3520 1,6372 1,8202 1,9606

projet

Comme la travée comporte quatre poutres symétriques, alors on se contente d’une étude de la moitié de la section transversale (b=5m), à partir de l’axe central du tablier. Ceci dit, les calculs seront faits pour une poutre de rive et une poutre intermédiaire soit donc à y= 1.35 m = 0.27 b comprise entre b/4 et b/2

et y= 4.05 m=0.81 b comprise entre 3b/4. Toute

interpolation faite, nous obtenons : 

Y\\e 0,27b 0,81b



-b 0,1694 -0,4405

-3b/4 -b/2 -b/4 0 b/4 b/2 3b/4 b 0,4194 0,6770 0,9386 1,1799 1,3451 1,3748 1,3257 1,2571 -0,1935 0,0723 0,3844 0,7731 1,2619 1,8539 2,5142 3,1791

Tableau 33:Valeurs de K

80

projet

pour la poutre intermédiaire et celle de rive

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

poutre intermédiaire 1,4000 1,2000 1,0000 0,8000 0,6000 0,4000 0,2000 -6

-5

-4

-3

0,0000 -1 0

-2

1

2

3

4

5

6

poutre de rive 3,5000 3,0000 2,5000 2,0000 1,5000 1,0000 0,5000 -6

-5

-4

-3

-2

0,0000 -1 0 -0,5000

1

2

3

4

5

6

Figure 24: Graphes des lignes d'influence

Valeur du CRT poutre de Poutre intermédiaire rive Système A(l) et Eléments de chaussée 1 torttoir 2 trottoirs Système Bc Système Bt Système Br Système Mc120

0,2712

0,2233

2 Voies

* 0,1942 0,3175 0,3019 0,3425 0,3155

0,7283 0,3214 0,3638 0,3156 0,6625 0,4047

1 Trottoir 2 Trottoirs 2 files 2 Tandems 1 Roue 1 Char

Tableau 34: Valeurs du CRT pour les différentes charges

81

Cas le plus défavorable

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

II-De termination des sollicitations moyennes II.1- Les lignes d’influence : Les lignes d’influence montrent graphiquement comment varient les diverses grandeurs qu’on rencontre habituellement, tous les effets élastiques auxquels s’intéresse la résistance des matériaux, sous l’influence d’une charge constante qui se déplace sur la structure. Notre système est constitué de quatre travées isostatiques, donc en raisonnant dans le cas des lignes d’influence sous l’action d’une charge verticale unité, on signale que cette méthode est fondée sur l’emploi du théorème des travaux virtuels. II.1.1- Modélisation et effets élastiques :

Pour déterminer les lignes d’influence, supposons qu’une seule charge P soit appliquée à la section C d’abscisse α. En écrivant que le moment des forces appliquées par rapport à B et par rapport à A est nul, nous trouvons les réactions d’appui : (

)

( )

Le moment fléchissant M (α, x) dans la section X a pour valeur (

) Pour x <

M (α, x) Pour x >

L’effort tranchant T (α, x) dans la section X d’abscisse x est : (

) Pour x <

T (α, x) ( ) Pour x > II.1.2- Charges concentrées:

L’effort tranchant T (x) et le moment fléchissant M(x) dus à des charges concentrées Pi appliquées aux sections d’abscisses αi ont pour valeurs : ∑

82



Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 II.1.3- Charges réparties :

L’effort tranchant T(x) et le moment fléchissant M(x) dus à une densité de charge p(x) ont pour valeurs :

II.2- Calcul des sollicitations : II.2.1- sollicitations dues aux charges permanentes :

 Le poids propre de la poutre : Le poids propre de la poutre est une charge répartie sur toute la poutre. Pour déterminer les sollicitations dues à cette charge, on n’a pas besoin d’utiliser le principe des lignes d’influences. Le problème se réduit à déterminer les sollicitations d’une charge répartie sur toute une poutre sur appui simple.

Figure 25: Schéma des sollicitations du poids propre

On trouve les résultats suivants : Poids propre de la poutre(T) x/l M(x) T(x) 0 0 51,6 0,1 185,76 41,28 0,2 330,24 30,96 0,3 433,44 20,64 0,4 495,36 10,32 0,5 516 0 Tableau 35: Valeurs des sollicitations du poids propre

83

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400  Le poids du hourdis : -

Le poids du hourdis supporté par la poutre intermédiaire:

-

Le poids du hourdis supporté par la poutre de rive :

Le calcul se fait de manière analogue à celle du poids propre des poutres : Poids propre de l'hourdis(T) Poutre intermédiaire poutre de rive 1,35 1,15 M(x) T(x) M(x) T(x) 0 27 0 23 97,2 21,6 82,8 18,4 172,8 16,2 147,2 13,8 226,8 10,8 193,2 9,2 259,2 5,4 220,8 4,6 270 0 230 0

Poids linéique x/l 0 0,1 0,2 0,3 0,4 0,5

Tableau 36: Valeurs des sollicitations du poids de l'hourdis

 Le poids des entretoises : Puisque les entretoises ne sont prévues qu’au niveau des appuis, celles-ci n’engendrent aucun moment fléchissant dans la travée, mais uniquement un effort tranchant au niveau des appuis x=0 et x=l. Le tableau suivant indique l’effet dû aux entretoises :

x/l 0

Poids propre des entretoises(T) Poutre de rive Poutre intermédiaire T(x) T(x) 2,231 2,619

Tableau 37: Valeurs des sollicitations du poids des entretoises

 Le poids des superstructures : Les superstructures comportent les éléments sur trottoir et les éléments sur chaussée. -

Le poids /ml des éléments sur trottoir :

-

Le poids /ml des éléments sur chaussée :

𝑟=1.658

/

𝐶h=2,088

/

Les sollicitations dues aux superstructures sont obtenus par les formules suivantes : (

84

)

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 -

nTr : Le coefficient de répartition transversale correspondant à la charge du trottoir.

-

nCh : Le coefficient de répartition transversale correspondant à la charge de chaussée.

Le tableau suivant, rassemble les résultats obtenus : Trottoir et Chaussée(T) Poutre intermédiaire poutre de rive M(x) T(x) M(x) T(x) 0 17,77 0 19,98 63,95 14,21 71,94 15,99 113,70 10,66 127,89 11,99 149,23 7,11 167,85 7,99 170,544 3,55 191,83 4.00 177,65 0 199,83 0

x/l 0 0,1 0,2 0,3 0,4 0,5

Tableau 38: Valeurs des sollicitations du poids des superstructures

TOTAL(T) Poutre intermédiaire poutre de rive M(x) T(x) M(x) T(x) 0 98,60 0 97,20 346,91 77,09 340,50 75,67 616,74 57,82 605,33 56,75 809,47 40,20 794,49 37,83 925,10 21,36 907,99 18,92 963,65 0 945,83 0

x/l 0 0,1 0,2 0,3 0,4 0,5

Tableau 39: Valeurs des sollicitations des charges permanentes

II.2.2- sollicitations dues aux surcharges routières :

 Le système A(l) : Le cas le plus défavorable revient à charger toute la longueur de la poutre tels que :

Figure 26 : Lignes d’influence de la surcharge A(l)

85

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

x/l 0 0,1 0,2 0,3 0,4 0,5

Surcharge A(l) (T) Poutre intermédiaire poutre de rive M(x) T(x) M(x) T(x) 0,00 35,02 0,00 28,83 126,06 28,36 103,80 23,35 224,11 22,41 184,53 18,45 294,15 17,16 242,19 14,13 336,17 12,61 276,79 10,38 350,17 8,75 288,32 7,21 Tableau 40:Valeurs des sollicitations de la surcharge A(l)

 La charge Bc : Les sollicitations sont calculées à l’aide de leurs lignes d’influences (Li) dans la section considérée en plaçant la charge Bc dans le sens longitudinal de la manière la plus défavorable. Tels que : ∑



Figure 27: Lignes d’influence de la surcharge Bc

86

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

x/l 0 0,1 0,2 0,3 0,4 0,5

Surcharge Bc (T) Poutre intermédiaire poutre de rive M(x) T(x) M(x) T(x) 0,00 36,94 0,00 42,33 126,46 32,46 144,90 37,19 223,77 27,97 256,40 32,05 285,21 23,49 326,80 26,91 310,77 19,00 356,08 21,77 300,45 14,52 344,27 16,64 Tableau 41:Valeurs des sollicitations de la surcharge Bc

 La charge Bt : Selon le même principe on calcule les sollicitations de ce système comme suit :

Figure 28: Lignes d’influence de la surcharge Bt

On représente les résultats dans le tableau suivant :

x/l 0 0,1 0,2 0,3 0,4 0,5

Surcharge Bt (T) Poutre intermédiaire Poutre de rive M(x) T(x) M(x) T(x) 0,00 19,11 0,00 19,98 72,35 18,09 75,63 18,91 128,31 16,04 134,14 16,77 167,89 13,99 175,51 14,63 191,09 11,94 199,76 12,48 197,90 9,89 206,88 10,34 Tableau 42:Valeurs des sollicitations de la surcharge Bt

87

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400  La charge Br : Les sollicitations sont calculées de manière analogue à celle du système Bc, tels que :

Figure 29:Lignes d’influence de la surcharge Br

Surcharge Br (T) Poutre intermédiaire Poutre de rive M(x) T(x) M(x) T(x) 0,00 3,60 0,00 6,96 12,95 3,24 25,28 6,26 23,02 2,88 44,52 5,57 30,21 2,52 58,43 4,87 34,52 2,16 66,78 4,17 35,96 1,80 69,56 3,48

x/l 0 0,1 0,2 0,3 0,4 0,5

Tableau 43: Valeurs des sollicitations de la surcharge Br

 Le système Mc120 :

Pour avoir l’effet le plus défavorable, on place la charge à une distance t de l’appui gauche de telle façon à avoir la surface max :

88

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

Figure 30: Lignes d’influence de la surcharge Mc120

x/l 0 0,1 0,2 0,3 0,4 0,5

Surcharge Mc120 (T) Poutre intermédiaire Poutre de rive M(x) T(x) M(x) T(x) 0,00 33,98 0,00 43,58 122,32 30,30 156,90 38,87 217,45 26,62 278,93 34,15 285,41 22,94 366,10 29,43 326,18 19,26 418,40 24,71 339,77 15,59 435,83 19,99

Tableau 44: Valeurs des sollicitations de la surcharge Mc120

 La charge du trottoir : Le calcul se fait de manière analogue à celui de A(l), tels que : Et

On rassemble les résultats dans le tableau suivant :

x/l 0 0,1 0,2 0,3 0,4 0,5

Surcharge trottoir (T) Poutre intermédiaire poutre de rive M(x) T(x) M(x) T(x) 0,00 1,17 0,00 2,18 4,19 0,94 7,87 1,77 7,46 0,75 13,98 1,40 9,79 0,57 18,35 1,07 11,19 0,42 20,98 0,79 11,65 0,29 21,85 0,55

Tableau 45:Valeurs des sollicitations des surcharges de trottoir

89

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

II.2.3- Combinaisons de charges

Pour le calcul des sollicitations, on utilisera les combinaisons suivantes :  A l’ELU :

 A l’ELS:

En appliquant ces formules, on résume les résultats dans le tableau qui suit :

Poutre Intermédiaire Poutre de rive

ELS

ELU

x/l

M(x) 0,00 678,03 1204,26 1580,59 1806,39 1881,66 0,00 704,86 1251,16 1626,53 1830,97 1900,31

0 0,1 0,2 0,3 0,4 0,5 0 0,1 0,2 0,3 0,4 0,5

T(x) 74,47 64,01 53,90 44,04 34,06 23,77 202,66 164,68 130,30 95,99 61,75 27,87

M(x) 0,00 503,70 894,62 1174,19 1341,93 1397,84 0,00 523,82 929,79 1208,67 1360,47 1407,88

Tableau 46: Valeurs des sollicitations globales

90

T(x) 144,32 117,17 92,28 69,07 44,67 17,77 150,62 122,42 96,89 71,41 45,99 20,65

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

Chapitre III – Etude de l’hourdis I-Pre sentation et Donne es de calcul I.1- Introduction : Il s'agit de calculer les dalles de couvertures d'un pont qui comprend également des poutres qu'il s'agisse de poutres double Té, de poutres caissons ou de poutres en simple Té. Dans notre cas, les âmes des poutres sont minces et la rigidité à la torsion de telles poutres est faible. La dalle peut donc être considérée comme simplement appuyée sur les poutres, mais il faut tenir compte de sa continuité. Les moments au centre de telles dalles se calculent en les supposant limitées au rectangle formé par les poutres et les entretoises et simplement appuyées sur celles-ci. Ces moments sont obtenus au moyen des abaques de Thenoz (1972) joints au Bulletin Technique N°1 du SETRA et le complément n°1 de 1976.

I.2- Données de calcul : I.2.1- Matériaux :

L’hourdis est un élément en béton armé d’épaisseur faible par rapport à ses autres dimensions et qui est chargé perpendiculairement à son plan moyen. Ainsi, on précise les caractéristiques de béton et d’acier à utiliser :  Résistance caractéristique du béton à 28 jours : fc28 = 25 MPa  Résistance caractéristique à la traction

: ft28 = 0.06 x fc28 + 0.6 =2.1 MPa

 Limite élastique des aciers

: fe = 500 MPa

 Contraintes admissibles en service : 

Béton : Ϭb = 0.6 x fc28 = 15 MPa



Acier : fissurations préjudiciables : Ϭs =

(



)

I.2.2- Dimensions :

 Coffrage du hourdis : -

Epaisseur de l’about du hourdis

: 0.20 m

-

Epaisseur au droit de la fin du gousset de la poutre de rive

: 0.20 m

-

Epaisseur totale à la naissance du gousset sur l’âme de la poutre : 0.35 m

-

Distance entre la fin du gousset de l’âme et l’about

: 0.595 m

-

Largeur du gousset de la poutre

: 0.30 m

91

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 -

Epaisseur de l’âme de la poutre en zone courante

: 0.25 m

-

Pente du hourdis

: 2.5 %

 Plate- forme : -

Largeur du trottoir de gauche

: 1.00 m

-

Largeur du trottoir de droite

: 1.00 m

-

Largeur roulable

: 8.00 m

-

Largeur chargeable

: 8.00 m

-

Largeur totale de la plate-forme

: 10.00 m

-

Espacement des poutres

: 2.70 m

 Superstructure : -

Hauteur du garde-corps

:1.00 m

-

Largeur en tête de la contre corniche

: 0.12 m

-

Hauteur extérieure de la contre corniche

: 0.30 m

-

Largeur de la dalette sur le trottoir

: 0.40 m

-

Largeur de la contre bordure

: 0.10 m

-

Largeur de la bordure de trottoir

: 0.17 m

-

Epaisseur de la chape d’étanchéité

: 0.035 m

-

Epaisseur du revêtement bitumineux

: 0.08 m

-

Pente du trottoir

: 2.00 %

 Charges de la superstructure : -

Chape d’étanchéité

: 2.2 t/m3

-

Revêtement bitumineux

: 2.3 t/m3

-

Corniche, contre corniche, contre bordure et dalette

: 2.5 t/m3

-

Bordure T3

: 0.108 t/ml

-

Garde- corps

: 0.06 t/ ml

92

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

II-calcul des sollicitations : II.1-Calcul de la dalle entre poutres : II.1.1- Caractéristiques de l’hourdis :

Figure 31: caractéristiques de l'hourdis

Avec :  ed : l’épaisseur de le dalle coulée en place = 0.20 m  eCh : l’épaisseur maximale de la chaussée = 0.115 m  Le : l’entraxe des poutres = 2.70 m  h1 : l’épaisseur du gousset à sa naissance = 0.15 m  ea : l’épaisseur de l’âme de poutre en section courante = 0.25 m  a : la portée de l’hourdis entre poutres= Le - ea-2 h1= 2.15 m II.1.2- Calcul des sollicitations :

 Charges permanentes : On a Alors Le moment isostatique maximal est : M0 = p a²/8 = 0.44 t.m/ml -

le moment transversal : Mag = M0 = 0.44 t.m/ml

-

le moment longitudinal : Mbg = 0.2 x M0 = 0.088 t.m/ml

-

le moment de continuité : Mc = p a²/12 = 0.29 t.m/ml

93

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

 Charges d’exploitation : Les abaques PIGEAUD permettent de déterminer les moments fléchissants au centre d'une dalle, rectangulaire simplement appuyée sur ses 4 côtés pour une charge uniformément répartie sur un rectangle concentrique à la plaque d'où l'on peut déduire, par combinaisons diverses de rectangles chargés, ceux correspondant aux surcharges civiles (Bc, Bt ou Br) ou militaires. Ma : Moment fléchissant unitaire s'exerçant au centre de la dalle dans une bande découpée dans celle-ci parallèlement à Ox (poutre de portée a et de largeur 1) sur une section perpendiculaire à Ox , c’est le moment transversal. Le moment transversal est pris égal à 0,8 fois celui issu des abaques donnant le moment fléchissant au centre d’une dalle rectangulaire appuyée sur ses quatre côtés sous l’effet des surcharges réglementaires. Mb : Moment fléchissant unitaire s'exerçant au centre de la dalle dans une bande découpée dans celle-ci parallèlement à Oy (poutre de portée b et de largeur 1), c’est le moment longitudinal. Mcp : Moment de continuité unitaire s’exerçant au milieu d’un appui de la plaque constitué par une poutre principale dans une bande découpée dans cette plaque parallèlement à oy Mce : Moment de continuité unitaire s’exerçant au milieu d’un appui de la dalle constitué par une entretoise dans une bande découpée dans cette plaque parallèlement à oy sur une section perpendiculaire à oy.  Paramètres : -

a= 2.15 m

-

b = 40 entraxe des entretoises

On doit affecter les résultats obtenus par les abaques du coefficient de majoration dynamique, du coefficient bc=1.1 ou bt=1, du coefficient des pondérations des surcharges =1.2, et du coefficient de réduction = 0.8.

94

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 Les coefficients de majoration dynamique pour le calcul du hourdis sont donnés par la formule suivante : δ = 1+ [0,4/ (1+0,2 L)] + [0,6/ (1+4G/S)] Avec : L = inf{sup(Lrive , LR) ; Portée de la poutre}=8.1 m Lrive, étant la distance entre les poutres de rive LR , étant la largeur roulable. G le poids total d’une section de couverture de longueur ‘L’ et de toute la largeur y compris les superstructures. δBc = 1.28 et δMc= 1.34  Section à mi- portée transversale :

Surcharge Camions Bc Système Bt Roue Br Système Mc120 Camions Bc Système Bt Roue Br

Bulletin Technique N°1 Abaque Page 9 24 10 25 30 45 35 50 25 41 15 30 20 35

Ma (t.m/ml)

Mb (t.m/ml)

Ma dyn (t.m/ml)

Mb dyn (t.m/ml)

2,68 2,56 1,7 3,04 * * *

* * * * 1,38 1,25 1,18

3,77 3,28 2,18 4,07 * * *

* * * * 1,94 1,6 1,51

Tableau 47: Moments transversal et longitudinal en hourdis

 Section à l’encastrement sur poutre : Moment de continuité sur poutres Bulletin Mcp Technique N°1 Surcharge (t.m/ml) Abaque Page Camions Bc 91 5 2,92 Système Bt 96 10 2,16 1 camion Bc 101 15 1,6 Système Mc120 113 27 2,7

Mcp dyn (t.m/ml) 4,11 2,77 2,05 3,62

Tableau 48:Moment de continuité sur poutres

moment de continuité sur entretoises Bulletin Mce Technique N°1 surcharge (t.m/ml) Abaque Page Système Mc120 114 28 2,7 Tableau 49:Moment de continuité sur entretoises

95

Mce dyn (t.m/ml) 3,62

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400  Sollicitations à l’ELU : Les combinaisons de charges adoptées sont les suivantes : (1.35 M0 + 1.605 Max (MBc, MBt, MBr))*0.8 Mu =Max (1.35 M0 +1.35 Mc)*0.8 0.8 est le facteur de réduction qui tient en compte l’effet de continuité en travée.

Ainsi, on trouve que : -

Le moment transversal : Mau = 5.32 t.m/ml

-

Le moment longitudinal : Mbu = 2.59 t.m/ml

-

Le moment de continuité sur poutre : Mcpu = 5.59 t.m/ml

-

Le moment de continuité sur entretoise : Mceu = 4.22 t.m/ml

 Sollicitations à l’ELS : Les combinaisons de charges adoptées sont les suivantes : (M0 + 1.2 Max (MBc, MBt, MBr))*0.8 Mu =Max ( M0 + Mc)*0.8

0.8 est le facteur de réduction qui tient en compte l’effet de continuité. Ainsi, on trouve que : -

Le moment transversal : Mas = 3.97 t.m/ml.

-

Le moment longitudinal : Mbs = 1.94 t.m/ml.

-

Le moment de continuité sur poutre : Mcps = 4.18 t.m/ml

-

Le moment de continuité sur entretoise : Mces = 3.13 t.m/ml

II.2-Calcul de la dalle en encorbellement: Généralement, la poutre se raccorde à l’hourdis par l’intermédiaire des goussets. En raison de la présence de ces goussets au droit de l’âme de la poutre, on considère comme objet d’étude la section à la naissance de gousset.

96

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 II.2.1- Caractéristiques de la section et charges permanentes :

Figure 32:Dalle en encorbellement

En se basant sur les dimensions illustrées sur la figure précédente, on établit le tableau suivant, donnant les efforts tranchants et les moments fléchissant sous les charges permanentes : Désignation T(t/ml) Poids propre 2,5x 0,2x 0,595 Chape d'étanchéité 2,2 x 0,035x 0,595 Corps du trottoir 2 x 3 x 0,165 Contre corniche 2,5 x 0,3 x 0,15 Corniche 2,5 x 0,18 Garde- corps

0,2975 0,0458 0,099 0,1125 0,45 0,06

Teg=1,0648 t/ml

Bras de levier Moment (t.m/ml) 0,2975 0,0885 0,2975 0,0136 0,0825 0,0082 0,24 0,0270 0,595 0,2678 0,595 0,0357 Meg=0,4408 t.m /ml, Mbg= 0.2*Meg=0.088t.m/ml

Tableau 50: Effet des charges permanentes sur la dalle en encorbellement

II.2.2- Charges d’exploitation :

 Charge locale du trottoir et poussée du garde-corps: La charge locale du trottoir est de l’ordre de 0.45 t/m² D’où :

Qtr = 0.45 x 0.595 = 0.2678 t/ml

La poussée sur le garde-corps compatible avec la charge locale est : Q2 = 0.05 x (1+ Largeur du trottoir) = 0.1 t/ml D’où :

Mtr = (0.2678*0.5*0.595) + (0.1*0.595)= 0.14 t.m/ml

97

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400  Calcul des sollicitations : On utilise les paramètres suivants : -

a= 2.15 m

-

b = 40 entraxe des entretoises

Me :Moment d’encastrement unitaire s'exerçant sur le bord encastré de la dalle sur une poutre principale dans une bande découpée dans celle-ci parallèlement à la petite portée sur une section perpendiculaire à ox. Mb : Moment fléchissant unitaire s'exerçant sous la charge dans une bande découpée dans celle-ci parallèlement au bord encastré. Pour une route nationale avec a inférieur à 2.30 m, le cas le plus défavorable est celui de la roue à 6 tonnes sur trottoir d’un camion Bc située à 0.10 m du bord libre de la dalle. Ainsi, on trouve les résultats suivants : moment d'encastrement Bulletin Technique N°1 Me (t.m/ml) Abaque Page 4 176 2,7 9 181 *

surcharge Roue 6t sur trottoir

Mb (t.m/ml)

Tableau 51:Moments d'encastrement sur dalle en encorbellement

 Sollicitations à l’ELU : Les combinaisons de charges adoptées sont les suivantes : Mu = (1.35 Mg + 1.605 M))*0.8 0.8 est le facteur de réduction qui tient en compte l’effet de continuité en travée. Ainsi, on trouve que : -

Le moment d’encastrement : Meu = 3.94 t.m/ml

-

Le moment longitudinal : Mbu = 2.51 t.m/ml

98

* 1,88

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400  Sollicitations à l’ELS : Les combinaisons de charges adoptées sont les suivantes : Mu = (Mg + 1.2 M)*0.8 0.8 est le facteur de réduction qui tient en compte l’effet de continuité. Ainsi, on trouve que : -

Le moment d’encastrement : Mes = 2.95 t.m/ml.

-

Le moment longitudinal :

Mbs = 1.87 t.m/ml.

III-Calcul du ferraillage et ve rifications III.1-Hypothèses de calcul :  Résistance caractéristique du béton : fc28 = 25 MPa  Limite élastique des aciers : fe = 500 MPa  Contrainte limite des aciers tendus : s = 434,78 MPa  Contrainte limite de béton : bc = 14.17 MPa  Enrobage minimal des aciers : d’ = 0.03 m  Hauteur utile : d = 0.17m.

III.2-Résultats : III.2.1- Hourdis entre poutres :

 ELU : Position du ferraillage Mu(MN.m/ml) Mi- portée transversale: transversalement 0,053 Mi- portée transversale: longitudinalement 0,026 Encastrement sur poutres 0,056 Encastrement sur entretoises 0,042





0,130 0,063 0,137 0,103

0,175 0,082 0,184 0,136

Fbc 0,336 0,157 0,355 0,263

As 7,74 3,62 8,17 6,04

Tableau 52:Ferraillage de l’hourdis entre poutres en ELU

 ELS :    Position du ferraillage Ms(MN.m/ml) b Mi- portée transversale: transversalement 0,040 0,00682 24,370 0,381 8,27 Mi- portée transversale: longitudinalement 0,019 0,00332 38,190 0,282 5,28 Encastrement sur poutres 0,042 0,00717 23,460 0,390 8,59 Encastrement sur entretoises 0,031 0,00537 28,480 0,345 7,08 Tableau 53:Ferraillage de l'hourdis entre poutres en ELS

99

Fbc 0,268 0,127 0,285 0,208

As 13,29 6,28 14,13 10,30

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400  Sections finales : Position du ferraillage Mi- portée transversale: transversalement Mi- portée transversale: longitudinalement Encastrement sur poutres Encastrement sur entretoises

As 13,29 6,28 14,13 10,30

Armatures 9 HA 14 6 HA12 10 HA 14 7 HA 14

Tableau 54: armatures finales de l'hourdis entre poutres

III.2.2- Hourdis sur encorbellement :

 ELU : Position du ferraillage Transversalement Longitudinalement

Mu(MN.m/ml) 0,039 0,025





0,096 0,061

0,127 0,079

Fbc As (cm²/ml) 0,244 5,62 0,152 3,51

Tableau 55:Ferraillage de l’hourdis en encorbellement en ELU

 ELS: Position du ferraillage transversalement longitudinalement

Ms(MN.m/ml)  K1  Fbc As(cm²/ml) b 0,029 0,005 29,640 0,336 6,803 0,194 9,636 0,019 0,003 38,760 0,279 5,202 0,123 6,118

Tableau 56:Ferraillage de l’hourdis en encorbellement en ELU

 Sections finales : On remarque que les moments de continuité pour la dalle en encorbellement sont inférieurs à ceux de continuité de la dalle entre poutres, pour ce faire on choisit le cas le plus défavorable et on uniformise le ferraillage de continuité à celui déjà trouvé en haut.

III.3-Vérification au poinçonnement de la dalle : Effort tranchant pour une charge uniformément répartie sur un rectangle concentrique à la dalle de dimensions u et v :  Au milieu de u :  Au milieu de v : Dans notre cas, on cherche à vérifier la résistance du hourdis au poinçonnement par effort tranchant sous l’effet des charges localisées du système B. Cependant, les rectangles d’impact

100

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 de ces chargements ne sont pas forcément concentriques à la dalle. On se contente donc de vérifier la condition suivante du BAEL :

Tels que : -

Qu : charge ultime à l’ELU (QuQ .Q ) avec : 

Q= 1.6 pour le système B



coefficient de majoration pour le système B

-

uc : Périmètre du rectangle de répartition en cm tel que : uc =2(u+v)

-

h : hauteur de l’hourdis

-

: coefficient de sécurité égal à 1.5

Comme la couche de roulement n’est pas en béton, la diffusion des charges se fait selon un angle de 37 ° au lieu de 45 ° qui rediffuse ces charges jusqu’au plan moyen. On trouve alors : = 0+2. an(37) hr+2.(0.5h) = 0+1,5 hr + h 𝑣=𝑣0+1,5 hr + h hr : épaisseur du revêtement Chargement Bc Bt Br

Q (KN) 60 80 100

u0 25 60 60

v0 25 25 30

u V uc 62 62,3 249 97 62,3 319 97 67,3 329

h 20 20 20

Qu 122 163 188

Qlim 374 479 494

Tableau 57:Vérification au poinçonnement de l'hourdis

En encorbellement, on a aussi : On conclue que la condition est largement vérifiée donc on n’a pas besoin d’aucune armature d’effort tranchant ou de couture.

III.4-Calcul de la prédalle : III.4.1- Géométrie:

 epd : épaisseur de la prédalle (6 cm)  lpd : longueur de la prédalle (1.36 m)  le : entraxe des poutres (2.7 m)  b, d, d : positions des aciers de levage (b= 0.50m ; d=0.40m)

101

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

III.4.2- Calcul:

Afin de bien résister aux efforts lors d sa mise en place et en service, on considère que la prédalle et d’un béton de 25 Mpa et qu’elle est siège de fissurations préjudiciables :  Manutention : Le poids propre surfacique est G= 0.06 x 2.5 =0.15 t/m² Pour une largeur d’un mètre, son poids à l’état limite ultime est de pu=1.35*0.15*1= 0.203 t/ml -

Les réactions au niveau des points de levage sont : Ra=Rb= pu .l/2 = 0.138 t La section d’acier nécessaire est donc :

-

Les moments toujours au niveau de ces points sont :

La section d’acier correspondante est 0.14 cm²/ml  Mise ne place : Après dépôt, la prédalle est soumise au moment isostatique maximal :

La section d’acier correspondante est 0.37 cm²/ml  Après coulage de l’hourdis : Le poids surfacique de l’hourdis coulé est : ph = 2.5 x (0.2-0.06) =0.35 t/m² La charge d’exploitation du chantier est

: q = 0.1 t/m²

Pour une largeur d’un mètre, la charge à l’état limite ultime est : 1.35 (0.15+0.35) + 1.5x 0.1 =0.825 t/m La prédalle est donc soumise au moment maximal : La section correspondante est 1.6 cm²/ml

102

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400  Au service : Pour les moments (voir § calcul des sollicitations dans l’ hourdis) Le moment en travée :

= 5.32 . /

La section d'armatures correspondante : Donc la section à retenir égale à : 𝑟𝑟

On retient donc

et

3=13,29

=max ( 𝑣

= 3,97 . /

1;

²/ 2;

3) = 13,29

²/

∶ 9𝐻 14

III.4.3-Contrainte de cisaillement :

 Effort tranchant :

On conclue donc qu’on n’a pas besoin d’armatures verticales pour la prédalle.  Vérification de la contrainte de cisaillement : Charges permanentes : -

Poids propre prédalle

: 0.15 t/m²

-

Hourdis

: 0.50 t/m²

-

Etanchéité

: 0.077 t/m²

-

Revêtement

: 0.184 t/m²

G

= 0.911 t/m²

-

A l’ELU : Pug = 1.35 x 1 x G = 1.23 t/ml

-

Vug = 1.36 x 1.23 /2 = 0.836 t

Charges d’exploitation :  Charge A(l) : -

PuAl = 1.605 x 1 x 1.1 =1.77t/ml.

-

Vu Al = 1.36 x PuAl /2 =1.20 t.

 Système B : la charge Br est la plus défavorable -

PuB = 1.605x1.18 x 10 = 18.94 t

-

VuB = PuB

103

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400  Système Mc120 : -

PuMc120 = 1.605x1.34 x 9.02 = 16.32 t

-

VuMc120 = PuMc120 x 0.5 = 8.16 t

 Total : -

Effort tranchant : Vu = Vug + max (VuB ; VuMc120 ; VuAL ) = 0.836+18.94 =19.78 t

-

Cisaillement :

τu = Vu/ b0 x (hpd - d’) = 0.19/(0.2-0.03) = 1.164 > 1.25 MPa (Règle de couture) τu = 1.164 MPa < min (0.2 x fc/b ; 5 MPa) = 4.67 MPa Armatures droites

Pour St =15 cm, on trouve At= 4.5 cm²on considère alors des files de grecques en T8 (At= 5.03cm²) avec un espacement e=20 cm.

St = 15cm < h h =20 cm Béton coulé sur place

e=20cm < 3h=60cm

Prédalle

Figure 33: Ferraillage de la prédalle

104

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

Chapitre IV – Etude de la précontrainte I-Donne es de calcul  Béton : fc28 =35 MPa ; ft28 = 2.7 MPa Ces grandeurs se calculent, pour un âge de béton inférieur à 28 jours, selon les formules suivantes: f cj =

j. f c 28 (MPa) ; f tj = 0,06 f cj + 0,6 (MPa) 4, 73  0,83 j

 Câbles de précontrainte : Parmi les gammes de câbles disponibles, on choisit celle correspondant aux câbles à base de torons T15S classe 1770 ayant les propriétés suivantes : 

Limite élastique : fpeg =1573 MPa



Limite de rupture : fprg = 1770 MPa



Relaxation : 



Section nominale = 150 mm²



Diamètre de gaine contenant : -

5 à 7 T15 : φg=71 mm

-

9 à 12 T15 : φg=79 mm

-

8 T15

: φg=76 mm

 Armatures d’acier: On utilise des aciers à haute adhérence de nuance Fe500  Contraintes admissibles du béton:

Pour un âge « j » du béton, les contraintes admissibles de compression et de traction correspondantes sont : 

 =0.6

𝑗

en combinaison rare



 =0.5

𝑗

en combinaisons quasi permanentes









en zone d’enrobage

𝑗 𝑗

105

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 Ainsi, on expose leurs différentes valeurs dans le tableau suivant : Contrainte (MPa) fc28 cs ci ti ts

En construction (14 jrs) 30 18 15 -2,4 -3,6

En service (>28 jrs) 35 21 17,5 -2,7 -4,05

Tableau 58: Contraintes admissibles du béton

En phase de construction, le diagramme des contraintes est le suivant :

Figure 34:Diagramme des contraintes à vide

Figure 35:Diagramme des contraintes en service

 Principe de construction : -

Préfabrication des poutres sur une aire de préfabrication,

-

Mise en tension sur les poutres de quelques câbles de précontrainte longitudinale, le plus tôt possible, pour permettre de libérer les coffrages,

-

Mise en attente des poutres sur une aire de stockage,

-

Mise en tension d'un complément de précontrainte sur le stock,

-

Mise en place des poutres sur appuis définitifs par des moyens de levage et de manutention adaptés,

-

Réalisation en place d'entretoises reliant les poutres,

-

Mise en précontrainte éventuelle des entretoises,

-

Coffrage, ferraillage et bétonnage en place du hourdis,

-

Mise en tension d'une deuxième famille de câbles de précontrainte longitudinale et dans certains cas d'une précontrainte transversale lorsque le hourdis a acquis une résistance suffisante

106

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

II-Calcul de la pre contrainte II.1-Tableaux caractéristiques des poutres : II.1.1- Moments à l’ELS en mi- travée :

Moment (MN.m) Poutre intermédiaire Poutre de rive 5,16 5,16 2,7 2,3 1,7 2,09 4,42 4,53 13,98 14,08

Eléments Poids propre de la poutre Poids propre de l'hourdis Superstructures Les charges d'exploitation Moment max

Tableau 59: Moments en mi - travée à l'ELS

II.1.2- Section médiane:

Poutre préfabriquée Poutre complète

B(m²) v(m) v'(m) I (m4) 1/B v v' v v' 0,920 1,223 1,177 0,653 0,755 0,923 0,889 1,460 0,934 1,666 1,250 0,440 0,411 0,734 Tableau 60: Caractéristiques de la section médiane

II.1.3 – Excentricité des câbles :

Compte tenu du fait que le rapport (charge permanente /charge variables) est élevé, on peut supposer que la section est sur-critique. On utilisera donc pour le calcul d’excentricité la e0=-(v’- d’)

formule :  Première famille des câbles:

e0=-(v’- d’)= -(1.177-0.1065)= - 1.0705 m

 Deuxième famille des câbles :

d’=106,5 mm

e0=-(v’- d’)= -(1.666-0.1775)= - 1.4888 m

71 mm 71 mm

Figure 36: Excentricité des câbles de la première famille

107

Figure 37: Excentricité des câbles de la deuxième famille

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 II.1.4 – Contraintes initiales:

On estime les pertes instantanées à 10%. On a:

(

)

D’où: II.1.5 – Calendrier des opérations:

Nous représentons dans le tableau suivant les différents états de précontrainte pendant l’exécution : Phase

A

b

C

d

E

Date

ta

tb

tc

td

te

Coulage du béton des poutres + amorces

Mise en tension des câbles de la 1ère famille

Coulage du béton de hourdis + complément entretoises

Mise en tension de la 2ème famille

Superstructures + Surcharges d’exploitation

-

P0 = 1.1 Pi Pi = 1.2 P1 (perte inst.) fcj = 25 MPa

-

1.1 P1 (50% Δ diff ) fcj = 30 MPa

P1 (toutes les pertes) fcj = 35 MPa P2 (toutes les pertes) fcj = 35 MPa

Opérations

Précontrainte

P0 =1.1Pi Pi = 1.2 P2 (pertes inst.) fcj = 25 MPa

Avec :  P0 = précontrainte à l’ancrage avant les pertes= Ap* p0 ;  Pi =précontrainte initiale, après pertes instantanées et avant pertes différées ;  P1 ( P2) = précontrainte finale de la 1ère famille ( 2ème famille). Les pertes instantanées et différées ont été estimées en fraction de P1, P2. Tableau 61: Calendrier des mises en tension

Figure 38: Familles de câbles de précontrainte

108

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 II.2-Précontrainte dans la première famille : Pour les câbles de la première famille, les deux phases les plus défavorables sont :  A la mise en tension.  Juste avant la mise en tension de la 2ème famille et après bétonnage du hourdis et des entretoises complémentaires.  A la mise en tension de la première famille (phase b) : Les contraintes devront satisfaire les conditions des contraintes admissibles. Ainsi, nous écrivons :

𝑣 𝑣

𝑣 𝑣

Avec : -

Mp : le moment correspondant au poids propre.

-

B,I,v,v’ : caractéristiques de la section préfabriquée.

On trouve alors :

 Avant la mise en tension de la deuxième famille et après bétonnage (phase d) : Les contraintes devront satisfaire les conditions des contraintes admissibles. Ainsi, nous écrivons :

𝑣 𝑣

𝑣 𝑣

Avec : -

Mp : le moment correspondant au poids propre de la poutre.

-

Mh : le moment correspondant au poids propre de l’hourdis.

109

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 -

B,I,v,v’ : caractéristiques de la section préfabriquée.

On trouve alors :

 Conclusion : Comme la précontrainte à l’ancrage est : Alors : D’où : On trouve que le nombre de Torons T15S de 150 mm² est : On prend donc n1= 28 ce qui correspond à 4 câbles de 7T15S, la précontrainte est :

II.3-Précontrainte dans la deuxième famille : La précontrainte finale de la deuxième famille de câbles doit satisfaire les conditions de contraintes admissibles, à ce stade on suppose que la totalité des pertes sera effectuée. Ainsi, nous écrivons : 𝑣 𝑣

𝑣 𝑣

𝑣 𝑣

𝑣 𝑣

-

Mp

: le moment correspondant au poids propre de la poutre.

-

Mh

: le moment correspondant au poids propre de l’hourdis.

-

Msuper : le moment correspondant au poids propre de la superstructure

-

B,I,v,v’ : caractéristiques de la section préfabriquée(p) ou complète(c).

On trouve alors :

110

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 D’où :  Conclusion : Comme la précontrainte à l’ancrage est : Alors : D’où : On trouve que le nombre de Torons T15S de 150 mm² est : On prend donc n1= 14 ce qui correspond à 2 câbles de 7T15S, la précontrainte est :

Donc les diagramme des contraintes pour les deux familles se présentent comme suit :

Figure 39: Contraintes de la première famille

Figure 40: Contraintes de la deuxième famille

L’état final de contraintes, montre que : -

Pour la première famille, les contraintes admissibles ne sont pas atteintes.

-

Pour la deuxième famille, on a une faible traction de l’ordre de 2,72 MPa sur une hauteur de 41.8 cm qui dépasse la contrainte de traction admissible égale à 2.7 MPa.



il faut ajouter des armatures de traction.

111

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 II.4-Disposition des câbles dans le talon à mi- portée : Les câbles 1, 2, 3 et 4 représentent la première famille tandis que les 2 câbles 5 et 6 représentent la deuxième.

Figure 41: Disposition des câbles

III-Calcul d’armatures III.1-Armatures de traction : Comme la contrainte limite à la fibre inférieure n’est pas respectée et la hauteur de de traction est supérieure à 5 cm, on ajoute une section d’acier longitudinalement As dans la zone tendue en appliquant la relation suivante :

e

 

e

e e



e

 D’où :

² des armatures de 7HA16 s’avèrent convenables.

III.2-Armatures de peau : Dans le but de répartir les effets de retraits différentiels et de la perturbation de température, elles sont disposées dans les zones périphériques des pièces, la section des armatures

112

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 disposées parallèlement à la fibre moyenne d’une poutre est de 3 cm² par mètre de longueur de parement mesuré sur la section droite de l’ouvrage. Dans notre cas la longueur du parement est de 8m donc: A peau= 24 cm  ferraillage : 31HA10

III.3-Vérification de la flexion L’ELU : La vérification des contraintes à l’ELU consiste à s’assurer que la force de précontrainte résiduelle

est supérieure à la résultante de compression dans le béton, et ce pour

que l’effet de la précontrainte ne soit pas neutralisé. Pour cette vérification on suit le cheminement suivant :  Sous l’action de la précontrainte seule, la contrainte de traction des aciers de précontrainte vaut

et son allongement est noté

.

 Le béton continu à se décompresser jusqu’à ce que sa contrainte au niveau des aciers de précontrainte s’annule, cela entraine une augmentation de contrainte de l’acier qui vaut, selon le PBEL,



est la contrainte du béton au droit des aciers de

précontrainte sous l’action de la précontrainte est des charges permanentes ; on note .

l’allongement correspondant à

 Si le moment extérieur continue à augmenter, l’acier de la précontrainte continuera à s’allonger comme le fera un acier du béton armé. Son allongement

ne doit pas

dépasser 10‰. III.3.1- Moment ultime : D’après le tableau de répartition de Guyon Massonnet Mu=19 MN.m III.3.2- Moment résistant de la table :

La contrainte admissible du béton : ̅ La résistance à la compression de la table vaut : ̅ Le moment résultant de la table est : Où

113

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 On a

Donc la table, plus précisément l’hourdis, reprend seule le moment ultime, et

par conséquent, la fibre neutre est dans la table. III.3.3- Position de l’axe neutre :

Le moment réduit vaut : L’équilibre des moments s’écrit : Dont la racine est :

(

Donc l’axe neutre est situé à



)

de la fibre supérieure. Ainsi, la résultante de

compression du béton devient :

III.3.4-Allongement Δε3 :

On a la formule suivante :

III.3.5- Allongement ε1 dû à la précontrainte :

La contrainte

est donnée par l’expression suivante :

Donc : III.3.6- Allongement ε2 dû à la décompression du béton : Sous l’effet de la précontrainte et les charges permanentes, le diagramme des contraintes est

comme suit :

114

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 La contrainte au niveau du câble La contrainte dans l’acier de précontrainte est D’où :

par la loi :

On déduit ainsi la contrainte

(

)

La résolution par valeur cible de cette équation donne : D’où Finalement, la section d’acier de précontrainte est suffisante, il n’est donc pas nécessaire de prévoir des armatures passives.

IV-Relevage des cables En section médiane, section la plus sollicitée, les câbles sont regroupés dans le talon à un excentrement maximum. La précontrainte se révèle surabondante, voire nuisible, au fur et à mesure qu'on se rapproche de l'appui, Le relevage progressif des câbles de la première famille de câbles sert donc à ne pas créer de contraintes excessives en fibre inférieure tout en apportant une bonne réduction d'effort tranchant. Le tracé vertical d'un câble est généralement constitué d'une partie rectiligne dans la zone médiane, suivie d'une déviation verticale, souvent parabolique, dans l'âme de la poutre. Un alignement droit d'un mètre environ précède l'ancrage.

IV.1- Effort tranchant admissible : L’effort tranchant admissible est donné par la formule : ̅

̅

 I : moment d’inertie de la section (I=0.653 m4)  S : moment statique de la section au-dessus de G (S= B. v = 0.447 m3)  bn : épaisseur nette (gaines déduites) donc bn = 0.40 – 0.071/2 = 0.36 m

115

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400  ̅ : Cisaillement admissible donné par ̅

̅ ̅

̅

̅

 ̅  ̅  

: Contrainte de compression, perpendiculaire à

On trouve :

̅

, égale à 0 MPa

̅

et

IV.2- Pour la première famille : Le tracé des câbles est tel la condition suivante soit vérifiée dans toute section: |



|

̅

T représente l’effort tranchant dû aux charges permanentes et les surcharges routières ∑

est l’effort tranchant produit par les câbles de précontrainte

̅ : Effort tranchant admissible à ne pas dépasser déjà calculé en haut D’après les résultats obtenus à partir de la répartition des efforts sur les poutres, on a T qui varie entre Tmax = 1.51 MN et Tmin = 0.79 MN Fi et

désignent respectivement la précontrainte du câble i et son angle de sortie

Si on remplace les câbles par un câble moyen équivalent, la condition précédente devient : ̅

̅.

Avec α est l’angle de sortie du câble moyen, Soit : On choisit α = 6.5° pour le câble moyen, cette valeur est proche de la valeur minimale en vue de diminuer l’effort tranchant sur appui

.

Les câbles sont relevés sur une distance donnée par :

116

|𝑣 |

| |

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 Telle que e0 est l’excentricité à l’about du câble moyen calculé par la formule suivante :

𝑣 ̅

𝑣

𝑣

𝑣 ̅

On trouve alors : D’où :

. On prend alors d= 8 m.

 Disposition des ancrages en about : Les câbles de première famille sont généralement tous ancrés à l'about des poutres et de préférence à espacement constant de façon à bien répartir l'effort de précontrainte et ainsi limiter au mieux les effets de la diffusion.il faudrait pourtant respecter les grandeurs suivantes : -

Distance entre axe minimum : 36cm

-

Distance minimum de l’axe à la paroi béton : 21cm

Figure 42: Disposition des ancrages aux abouts

117

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

Figure 43: Tracé du câble moyen de la première famille

Câble 1 2 3 4

taniki/d Position de l'ancrage Ki 0,3435 0,086 0,8435 0,211 1,3435 0,336 1,8435 0,461 Tableau 62: Inclinaisons des câbles de la première famille

i ° 4,908 11,908 18,566 24,744

L’équation de la partie parabolique par rapport au centre de gravité de la section préfabriquée s’écrit sous la forme : y(x) = ax²+bx+c dont les paramètres sont indiqués comme suit : Câble 1 2 3 4

a 0,0153 0,0231 0,0309 0,0387

b -0,2445 -0,3695 -0,4945 -0,6195

c -0,727 -0,227 0,273 0,773

Tableau 63: Equations des câbles de la première famille

IV.3- Pour la deuxième famille : L'angle de sortie des câbles relevés est voisin de 20 degrés, ce qui permet d'une part de limiter la longueur des encoches et d'autre part d'apporter une bonne réduction d'effort tranchant. Habituellement, le câble le plus court sort au voisinage du quart de portée et le câble le plus long est ancré assez près de l'about de sorte que l'ensemble du hourdis soit précontraint. 10 m

Figure 44: Tracés des câbles de la deuxième famille

118

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 L’équation de la partie parabolique par rapport au centre de gravité de la section complète s’écrit sous la forme : y(x) = ax²+bx+c dont les paramètres sont indiqués comme suit : Câble 5 6

a 0,0074 0,0242

b -0,2973 -0,9691

c 1,4840 8,2024

Tableau 64: Equations des câbles de la deuxième famille

V-re sistance a la rupture par effort tranchant V.1-Vérification de la rupture vis-à-vis du cisaillement : La section la plus sollicitée vis-à-vis de l’effort tranchant est la section sur appuis. L’effort tranchant maximal à l’ELU et à l’ELS est donné ci-après : ELU Section Tmax(MN)

A vide 0,70

ELS

En charge A vide 2,03 0,60 Tableau 65: Efforts tranchants

 Vérification à l’ELU : 

A vide :



En charge :





Le taux de cisaillement admissible à l’ELU est : ̅ Le taux de cisaillement est donné par : Avec I = 0.653 m4; S = 0.447 m3; bn = 0.3645 m Donc les taux de cisaillement sont : -

A vide :

-

En charge :

̅ ̅

 Vérification à l’ELS : 

A vide :



En charge :





119

En charge 1,50

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 Le taux de cisaillement à l’ELS vaut : - A vide : - En charge : Le cisaillement admissible à l’ELS, est généralement donné par : ̅

(

)

On a: Donc : ̅ En conclusion, le taux de cisaillement dû à l’effort tranchant est admissible.

V.2- Calcul des armatures transversales : On utilise des armatures passives perpendiculaires à la fibre moyenne espacées de s pour reprendre l’effort tranchant. La fissuration éventuelle se produit suivant une inclinaison u avec l’horizontal des bielles comprimées et touche n cours de cadres traversant la fissure. Il est à signaler que la valeur minimale de u est égale à 30°

Figure 45: Inclinaison des bielles

L’inclinaison des bielles comprimées est telle que :

120

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

Donc : On prend u =

(

)

d’où :

La section d’acier passif pour équilibrer l’effort tranchant (armatures passives perpendiculaires) est telle que : (

)

Avec une section minimale, pour éviter une rupture fragile due à l’effort tranchant, telle par :

On utilise des aciers de nuance fe= 500MPa D’où : En utilisant des cadres HA12 (1.13 cm²), on trouve un espacement maximal de 15 cm sur une longueur de 1,2m de l’appui. Ce qui correspond à une section de 9.04 cm². L’espacement à mi- travée est égal à : L’écartement maximum des cadres évalué par

est vérifié.

VI-Pertes de pre contrainte Les pertes de précontrainte sont un phénomène spécifique aux structures en béton précontraint. Elles constituent un inconvénient de ce procédé de construction car, d’une part, le rendement de l’acier de précontrainte est moindre, elles peuvent être à l’origine de l’aggravation de l’état de sollicitation du béton, d’autre part, les pertes sont les chutes de tension observées par rapport à la tension initiale. Ces pertes sont instantanées dont l’intensité ne dépend pas du temps et différées dans le cas contraire. Reste à noter que les pertes de précontrainte dépendent du mode de précontrainte utilisé.

121

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 Dans notre cas, mode en post tension, on rencontre trois types de pertes :  Par frottement  Par recul d’ancrage  Par déformation élastique du béton Pour les torons utilisés, on précise les données suivantes : 

: Module d’Young des aciers de précontrainte



: Tension à l’origine



: Coefficient de frottement angulaire



: Coefficient de frottement linéaire



: Glissement par recul à l’ancrage



: Paramètre de relaxation

VI.1- Pertes instantanées : VI.1.1- Pertes par frottement :

La mise en tension d’une armature implique un allongement de celle-ci, c’est-à-dire un mouvement relatif de l’armature par rapport à sa gaine. Dans ce processus, le câble se plaque contre la génératrice concave de la gaine dans les parties courbes de son tracé. Il en résulte un frottement mutuel qui réduit progressivement la tension du câble à partir de son extrémité active. Dans la section d’abscisse x, la perte de tension par frottement vaut : ) VI.1.2- Pertes par recul d’ancrage : La perte par recul d’ancrage est celle qui apparait lorsque la force de traction de l’armature exercée par le vérin est reportée directement au béton par l’ancrage. Elle intervient au moment où la tension du vérin est relâchée. L’ancrage de l’armature n’est effectif qu’après un mouvement relatif de celui-ci, de valeur g, en sens inverse de celui de la mise en tension. En général, la perte par rentrée d’ancrage n’affecte qu’une faible partie de l’armature de précontrainte car le mouvement de rentrée vers l’intérieur du béton est contrarié par le frottement du câble sur sa gaine. Son influence diminue donc à partir de l’ancrage jusqu’à s’annuler à une distance d de celui-ci en un point D à partir duquel la tension demeure inchangée.

La

distance

122

d

est

calculée

comme

suit :

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400



Et on a,

telle que la fonction K(x) = fx

Pour xd VI.1.3- Pertes par déformation instantanée du béton : Considérons une armature de précontrainte d’un élément dont l’ancrage est réalisé. Si l’on applique une charge permanente g à cet élément, celle-ci provoque dans le béton situé au voisinage de cette armature une variation de contrainte. Si cette variation est une compression, l’armature subit une perte de tension, si c’est une traction elle subit plutôt une surtension. Ce type de perte est obtenu lorsque les armatures de post tension

sont mises en tension

séparément. Cette perte est déterminée par la formule suivante

 

n : le nombre d’armatures : contrainte de compression du béton au niveau du câble au jour « j » de la mise en tension exprimée par la formule suivante :





Finalement les pertes de précontrainte instantanées sont données par :

VI.2- Pertes différées : VI.2.1- Pertes par retrait : Les armatures de précontrainte, liées au béton à leurs extrémités par les ancrages et tout le long de leur tracé par le coulis d’injection, sont astreintes à subir les mêmes variations de déformation que le béton adjacent. Or, le béton subit un raccourcissement très lent qui débute dès l’achèvement de la prise et se prolonge pendant plusieurs années. Ce raccourcissement engendre donc une diminution de la contrainte de traction des armatures.

123

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 La perte finale par retrait est donc pour l’armature considérée :

On très souvent, on néglige rt0 devant 1 et on écrit :

VI.2.2- Pertes par fluage : Le béton subit un raccourcissement progressif de fluage lorsqu’il est soumis à une compression permanente. La contrainte du béton au niveau des armatures n’est pas constante dans le temps, même si l’on fait abstraction des charges variables appliquées à la structure pendant des durées trop brèves pour avoir une influence significative sur le fluage.

 

: La contrainte de compression du béton, au niveau du câble, en phase finale : La contrainte de compression maximale du béton, au niveau du câble, en phase finale. Elle est calculée par la formule :

⁄ 



: Module d’Young instantané du béton à âge infini (

)

(

) (

)

VI.2.3- Pertes par relaxation d’acier : La relaxation est fonction de la contrainte initiale de l’acier, du temps et de la température. Elle est donnée par la formule suivante : (

124

)

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 Avec :  

: Relaxation des aciers à 1000 heures en % = 0.43 pour les aciers TBR

Finalement les pertes de précontraintes différées sont données par :

VII-Calcul des zones d’abouts L’effort de précontrainte à l’ancrage introduit une forte contrainte de compression sur une faible surface de béton. Ensuite, il y a diffusion de cet effort dans toutes les directions et au bout d’une certaine distance lr appelée distance de régularisation les lois de la RDM sont applicables ; tandis que sur cette longueur le principe de Saint venant et celui de de Navier ne sont pas vérifiés. Les abouts des poutres subissent des efforts concentrés, du coup ils sont sujet de justification vis-à-vis :  L’action des ancrages  L’équilibre de la bielle d’about  L’équilibre du coin inférieur

VII.1-Effet d’un effort concentré au centre de la poutre : Sous l’effet d’une force concentrique appliquée au centre, le béton est tendu dans deux zones :  Zone d’effet de surface au voisinage de la paroi  Zone intérieure où la répartition des contraintes est concave qui correspond à une traction de poussée au vide appelée zone d’éclatement

Figure 46: Diffusion des contraintes en about

125

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 Dans le cas des câbles multiples, on distingue aussi deux zones : 

Une zone de première régularisation pour chaque ancrage à l’intérieur du prisme : avec

l’intervalle d’ancrage ou le double de la distance aux parois les

plus proches 

Une zone d’équilibre général à la longueur , qui reste voisine de h et de b dans le sens horizontal

VII.1.1- Frettage de surface :

Pour remédier à l’effet de surface dû à la traction du béton au voisinage immédiat de la paroi verticale, le règlement prévoit un frettage de surface donné par : ⁄ -

Pi0 : La force à l’origine du câble ancré au niveau i (avant les pertes) : La limite d’élasticité des frettes.

VII.1.2- Frettage d’éclatement : La justification concerne :  D’une part, la vérification des contraintes du béton : Les contraintes, du béton, au niveau de chaque câble sont donnés par : (

)

-

Pi0 : La force à l’origine du câble ancré au niveau i (avant les pertes)

-

ai= 0.22 m : la dimension moyenne des plaques d’ancrages dans le plan d’éclatement

-

𝑗

𝑗

 D’autre part, le ferraillage d’éclatement : Le frettage d’éclatement est donné par la formule : (



)

pour les câbles extrêmes et 1.5 pour les câbles intermédiaires (pour tenir compte

de l’interaction des prismes).

126

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 Ainsi, nous récapitulons les résultats dans le tableau suivant :

bi(m) di(m) t(Mpa) c(Mpa)

Aei(cm²)

Câble 1 0,40 0,90 1,56 4,13 5,62

Câble 2 0,40 0,50 2,08 7,43 6,24

Câble 3 0,40 0,50 2,08 7,43 6,24

Câble 4 0,40 0,90 1,56 4,13 5,62

Tableau 66: Sections des armatures d'éclatement pour chaque câble

La section définitive d’acier transversale à prendre est :

[

(

)

]

VII.2-Vérification de l’équilibre général de diffusion pure : L’équilibre général peut être considéré comme la superposition de deux états d’équilibre :  Un état d’équilibre selon la résistance des matériaux en remplaçant les efforts concentrés de la précontrainte par une distribution de contraintes réparties

et

sur SR calculée selon la résistance des matériaux.  Un équilibre général de diffusion pure qui résulte de l’application des forces concentrées Pi la résultante de

et

. Cet équilibre traduit l’écart entre

la résistance des matériaux et la distribution réelle des contraintes dans le béton.

Figure 47: Distribution des contraintes

127

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 Les contraintes dans les fibres extrêmes de la poutre sont calculées les lois de la résistance des matériaux : ∑

∑ ⁄

Pour des simplifications de calcul, on néglige le terme du à l’excentrement du câble au niveau de l’about :

On obtient :



𝑗

𝑗

(

)

On déduit la distribution des contraintes :

Par intégration on calcule les sollicitations : ∫



On déduit ainsi l’effort tranchant et l’effort normal :

R2 : L’effort vertical apporté par l’aile au niveau de l’encastrement sur l’âme ∫ R2’ : L’effort horizontal apporté par l’aile au niveau de l’encastrement sur l’âme ∫

128

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 Avec : e’2= 0.1 m ; e2= 1.44m ; e’1=0.40m.On déduit le cisaillement total : Avec

appelé cisaillement conventionnel dû à l’effort tranchant

calculé par :

On rassemble les résultats des calculs dans le tableau qui suit : t 0 0,34 0,56 0,84 1,06 1,34 1,56 1,84 2,06 2,4

Fx

Ft

R2

R'2

X

T

Vx

Nt

0,000 0,000 1,350 1,350 2,760 2,760 4,215 4,215 5,697 5,697

0,000 0,000 0,622 0,622 1,096 1,096 1,403 1,403 1,530 1,530

0,000 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672

0,000 0,000 0,020 0,020 0,020 0,020 0,020 0,020 0,020 0,020

0,000 0,879 1,448 2,172 2,741 3,465 4,034 4,758 5,327 6,207

0,000 0,082 0,207 0,422 0,619 0,880 1,077 1,292 1,418 1,499

0,000 -1,552 -0,770 -1,494 -0,654 -1,378 -0,492 -1,216 -0,303 -1,182

0,000 -0,082 0,396 0,180 0,457 0,196 0,306 0,090 0,093 0,011

Tableau 67: Calcul des cisaillement en about

On vérifie bien que :

Les armatures transversales sont calculées par :

⁄ Avec

calculé à partir de l’effort tranchant [

Et

est l’effort normal concomitant à

On obtient les résultats suivants : Soit :

129

par la relation : (

) ]

d 0,000 -3,233 -1,604 -3,113 -1,362 -2,870 -1,024 -2,533 -0,631 -2,463

 0,000 1,139 1,676 2,132 2,311 2,311 2,132 1,676 1,139 0,000

g 0,000 -2,093 0,072 -0,981 0,949 -0,559 1,108 -0,856 0,508 -2,463

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 VII.3-Justification de la bielle d’about Par soucis de simplification et à défaut de méthode de calcul plus précis, on admet que la transmission des charges appliquées à la poutre se fait sur l’appui par l’intermédiaire d’une bielle unique inclinée d’un angle βu sur l’axe longitudinal, calculé au centre de gravité de la section. La valeur de βu est la plus grande entre 30 et celle donnée par la formule :

Figure 48:Schéma de la bielle d'about

Dans le cas où l’on dispose de plusieurs câbles susceptibles d’équilibrer la bielle unique, on recherche le rang r du câble qui donne une résultante de la réaction d’appui et des efforts des câbles

sur l’horizontale. Les câbles situés en dessous de ce rang

inclinés de moins de

suffisent donc à équilibrer la bielle unique.  Valeur de

: 𝐻

Donc le cisaillement vaut : ∑

𝑗

𝑗

Les contraintes au centre de gravité de la section valent On trouve ainsi

et on prend

(valeur minimale limite)

 Armatures transversales d’effort tranchant La section

et l’espacement

de ces armatures vérifie la relation suivante : ⁄ )

(

130

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 Un minimum d'armature transversale est exigé et il est donné par : (

)

 Recherche du rang Le rang r existe si : ∑

(

Ce qui est bien vérifié (5.69 MN



)

0.87 MN).

r est le rang recherché si : Avec :

∑ ∑

On obtient les résultats suivants : Rang 1 2

tan 1,28 0,54

tanu 0,58

Tableau 68: Calcul du rang

Ainsi le rang est 2, on a : Avec

est la distance de l’extrados du câble de rang r et

résultante de compression du béton prise égale à

est la distance à l’extrados de la

.

Donc : Donc la section d’acier déterminée dans le cadre de la vérification de l’effort tranchant est à majorer par le rapport

, soit

répartie sur une longueur de

Zr Cotg βu= 2.10 m

VII.4-Equilibre du coin inférieur :

Le cas le plus défavorable, correspond à valeur nulle de k (k=0) : cm2

131

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

Chapitre V – Etude des entretoises I-Introduction Les entretoises d’about, situées au droit des appuis, ont pour rôle d’encastrer les poutres à la torsion, de rigidifier les extrémités du hourdis et de permettre le vérinage du tablier pour des dispositions d’entretien. On a b0 = 40 cm ce qui correspond à une distance entre nu des poutres de a= 2.30 m

Figure 49: caractéristiques des entretoises

Le fonctionnement d’une entretoise d’about se rapproche de celui d’une poutre continue. Elles sont calculées sous l’effet :  Du poids propre compté depuis les nus des poutres  Une partie du poids du hourdis et de la chaussée correspondant à la zone limitée par les goussets, l’extrémité du tablier et les droites à 45°  Surcharges réglementaires B et Mc120  Action des vérins lors du soulèvement du tablier pour remplacer les appareils d’appui.

132

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

II-Sollicitations sous charges permanentes II.1 – Poids propre de l’entretoise : On

Figure 50: Poids propre de l'entretoise

Les sollicitations induites sont comme suit : -

II.2 – Poids de l’hourdis et de la chaussée: Le poids surfacique de ces éléments est donné par la formule suivante :

D’après le principe de superposition, on calcule les sollicitations de la partie triangulaire P1 et celles de la partie rectangulaire P2 présentées dans la figure suivante :

Figure 51: Effet de l'hourdis et la chaussée sur l'entretoise

133

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 II.2.1- Partie triangulaire P1 :

Figure 52: Partie triangulaire sur l'entretoise

Les sollicitations induites sont comme suit : .m

II.2.2- Partie rectangulaire P2:

Figure 53: Partie rectangulaire sur l'entretoise

Les sollicitations induites sont comme suit : -

En conclusion : -

Moment sur appuis :

avec p poids linéique de

tous les éléments. L’effort tranchant et les moments en travée dus aux charges permanentes sont : Mt = 2.015 t.m ; Tmax = 3.347 t ; Ma = - 1.91 t.m

134

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

III-Sollicitations sous surcharges routie res III.1 – le système Bc : Le système Bc a l’effet le plus défavorable quand on choisit les essieux des figures suivantes de telle sorte à les placer symétriquement sur l’entretoise pour un effet défavorable de moment et à une distance d =1,10 m pour l’effort tranchant :

d=1,10

Figure 54: Effet du système Bc sur l'entretoise

Les sollicitations induites sont comme suit : (

-

135

)

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 III.2 – le système Bt : Le système Bt a l’effet le plus défavorable quand on choisit les essieux des figures suivantes de telle sorte à les placer symétriquement sur l’entretoise pour un effet défavorable de moment et à une distance d =0.85 m pour l’effort tranchant :

Figure 55: Effet du système Bt sur l'entretoise

Les sollicitations induites sont comme suit : (

-

136

)

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 III.3 – le système Mc120 : Le système Mc a l’effet le plus défavorable quand il est placé symétriquement sur l’entretoise telle que la surcharge 55t est uniformément répartie sur un rectangle de 1 m et de longueur l=(c + b + a/2 - 0.25)=1.60 m, on montre l’emplacement par les figures suivantes :

Figure 56: Effet du système Mc120 sur l'entretoise

Les sollicitations induites sont comme suit : ;

-

(

( ) )

Tableau 69: Sollicitations des entretoises sous les surcharges

Charge Système Bc Système Bt Système Mc120

137

Mt(t.m) 12,43 12,69 6,73

Tmax(t) 15,17 16,96 7,65

Ma(t.m) -9,42 -10,20 -4,92

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

IV-Combinaisons de charges : IV.1- Sollicitations à l’ELU : Les combinaisons de charges adoptées sont les suivantes : 1.35 MG + 1.605 Max (MBc, MBt) Mu =Max 1.35 MG +1.35 Mc Ainsi, on trouve que :  Le moment en travée : Mtu = 23.08 t.m  Le moment sur appuis : Mau = -18.96 t.m 1.35 TG + 1.605 Max (TBc, TBt) Tu =Max 1.35 TG +1.35 Tc  L’effort tranchant : Tu = 31.74 t.m

IV.2- Sollicitations à l’ELS : Les combinaisons de charges adoptées sont les suivantes : MG + 1.2 Max (MBc, MBt) Ms =Max MG + Mc Ainsi, on trouve que :  Le moment en travée : Mts = 17.24 t.m  Le moment sur appuis : Mas = -14.15 t.m TG + 1.2 Max (TBc, TBt) Ts =Max TG + Tc  L’effort tranchant : Ts = 23.70 t.m

138

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

V-Ve rinage Le soulèvement du tablier pour le remplacement des appareils d’appui se fait par quatre vérins  Hypothèses de calcul : -

On suppose que les vérins sont des appuis simples.

-

On suppose qu’il n’y a pas de surcharges lors du changement des appareils

d’appui.

Figure 57: Disposition des vérins

Le poids par mètre linéaire de l’entretoise y compris l’hourdis et les superstructures qui lui sont associés vaut : (

)

Le poids supporté par une poutre y compris l’hourdis et les superstructures qui lui sont associés vaut : Composantes du poids poids de la poutre poids d'hourdis associé poids de chaussée poids trottoir q2 (t)

Poutre de rive 2,58 1,15 0,43 1,66 116,27

Poutre intermédiaire 2,58 1,35 0,70 0,00 92,69

Tableau 70: Calcul des efforts de vérinage

139

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 Ainsi, notre structure se présente comme suit :

Figure 58: Modélisation de l'entretoise pendant le vérinage

Calcul des sollicitations:

Figure 59: Calcul du moment Fléchissant de l'entretoise avec RDM6

Figure 60: Calcul de l'effort tranchant de l'entretoise avec RDM6

140

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400  D’après le digramme des moments : 

= - 76.19 .



= 29.08 .

(Moment négatif aux entretoises de rive) (Moment positif à l’entretoise intermédiaire).

 D’après le digramme de l’effort tranchant : 

= 118.2 (Effort tranchant maximal aux entretoises de rive)



= 98.51

(Effort tranchant maximal à l’entretoise intermédiaire)

VI- Calcul du ferraillage : VI.1-Section adoptée: Les entretoises sont calculées comme des poutres dont les dimensions sont regroupées dans le tableau suivant : caractéristiques de la section (en m)

b 1

hd 0,2

b0 0,4

d 2,09

Figure 61: Section considérée pour ferrailler l'entretoise

Pour le calcul BAEL, on considère le mode de fissurations peu préjudiciables et fc28 =30 MPa. Comme il y a une différence des efforts supportés par les poutres de rive et les poutres intermédiaire, cette différence influencera systématiquement le calcul de l’entretoise.  Entretoise de Type A : délimitée par deux poutres intermédiaires  Entretoise de Type B : délimitée par une poutre intermédiaire et une poutre de rive.

VI.2-Armatures longitudinales: VI.2.1- entretoise de Type A:

 Armatures inférieures : le moment dimensionnant correspond à celui dû au vérinage -ELU : Mu= 29.08 x 1.35/100=0.3926 MN.m => As= 4.33 cm² -ELS : Ms= 29.08 T.m => As= 3.25 cm² La condition de non fragilité se traduit par l’inégalité suivante : A > (0,23ft28 /fe ) xb0d = 23 cm² . Donc, on prend 10HA18

141

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400  Armatures supérieures : le moment dimensionnant correspond à celui du service -ELU : Mu= 18.96 x 1.35/100=0.2560 MN.m => As= 2.82 cm² -ELS : Ms= 18.96 T.m => As= 2.15 cm² Donc, on prend 5HA14 VI.2.2- entretoise de Type B:

 Armatures inférieures : le moment dimensionnant correspond à celui du service -ELU : Mu= 23.08 x 1.35/100=0.3116 MN.m => As= 3.44 cm² -ELS : Ms= 23.08 T.m => As= 2.67 cm² Donc, on prend le même ferraillage que celui de type A.  Armatures supérieures : le moment dimensionnant correspond à celui dû au vérinage -ELU : Mu= 76.19 x 1.35/100=1.0286 MN.m => As= 11.40 cm² -ELS : Ms= 76.19 T.m => As= 8.58 cm² Donc, on prend 6HA16  Armatures de peau : on prend 3 cm²/ml de hauteur d’entretoise Donc :

2.14 x 3 =6.42 cm² ce qui correspond à 6 HA12

VI.3-Armatures verticales: Le calcul des efforts tranchants en service et lors du vérinage donne des efforts maximaux au niveau des appuis et au droit des vérins. Le tableau suivant résume les contraintes de cisaillement calculées à partir des efforts tranchants maximums par la relation :

u = Entretoise Type A Type B

En service Vérinage En service Vérinage

Effort tranchant(MN)

Epaisseur b0(m)

0,3174 0,9851 0,3174 1,182

0,4 0,4 0,4 0,4

Tableau 71: Contraintes de cisaillement dans l'entretoise

142

Contrainte u(MPa) 0,380 1,178 0,380 1,414

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 On remarque donc que les contraintes sont inférieures à la contrainte ultime donnée par la formule :

u = Min (0,2×fc28/b ; 5MPa) = 5 MPa.

En appliquant les règles suivantes du BAEL : (

Entretoise Type A Type B

En service Vérinage En service Vérinage

)

Contrainte tu

At/St (cm²/ml)

St (ml)

At (cm²)

0,380 1,178 0,380 1,414

3,20 4,71 3,20 7,09

0,2 0,2 0,2 0,2

0,64 0,94 0,64 1,42

Tableau 72: Sections d'armatures transversales dans l'entretoise

Ainsi, nous optons pour deux cadres de HA10.

143

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

Chapitre VI – Etude des appareils d’appui I-Introduction Pour chaque pile on mettra deux lignes de quatre appareils d’appui en élastomère fretté CIPEC. Chaque appareil se trouvant sous le talon d’une poutre. Pour les culées, on dispose une ligne de quatre appareils d’appui. La distance, donc, entre les appareils d’appui est : d =2,70 m.

Figure 62: Disposition des appareils d'appui

Les frettes sont systématiquement en acier S 2357 ou d’un acier présentant un allongement minimal à la rupture équivalent. On représente la constitution générale d’un appareil d’appui dans la figure suivante :

Figure 63: Constitution d'un appareil d'appui

 Tb= n (ti+ ts) +ts+2 e : épaisseur nominale totale de l’appareil  Te = n ti + 2 e : épaisseur nominale totale d’élastomère

144

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400  Tq=n ti + 2 e si e >2.5mm ; n ti si e ≤ 2.5 mm : épaisseur initiale totale d’élastomère en cisaillement y compris les enrobages supérieur et inférieur.

II-De termination des de formations II.1- Rotations d’appuis : II.1.1- Rotation due au poids propre :

La rotation est calculée par la formule suivante : 𝑟  g : le poids linéique de la poutre y compris les superstructures (g = 6.3 t/ml)  l

: la portée de la travée (l= 40 m)

 Ed : le module différé de déformation du béton pour les charges de durée d’application supérieur à 24h (Ed = 0.335*11000 fc281/3) o On a fc28 poutre = 35 MPa et fc28 hourdis = 25 MPa, on prend alors la moyenne o fc28= 30 MPa => Ed = 11450 MPa  I : le moment d’inertie de la poutre (I = 0.93 m4) II.1.2- Rotation due aux surcharges :

La rotation est calculée par la formule suivante : 𝑟  q : les surcharges de chaussée (q =6.45/4=1.6 t/ml )  l

: la portée de la travée ( l= 40 m)

 Ei : le module instantané de déformation du béton pour les charges de durée d’application inférieure à 24h (Ei = 11000 fc281/3 = 34180 MPa)  I : le moment d’inertie de la poutre (I = 0.93 m4) II.1.3- Rotation totale :

 A vide : g =

rad

 En service : g + q = 1.7

145

rad

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 II.2- Déplacements d’appuis : II.2.1- Déplacement dû à la rotation:

 la rotation en service ; h : la hauteur de la poutre II.2.2- Déplacement dû au retrait:

Il est dû à l’évaporation de l’eau qui chimiquement n’était pas nécessaire à la prise du ciment, mais qui était indispensable pour obtenir une consistance plastique du béton pour faciliter sa mise en œuvre. La déformation de retrait : ε = - 4.10-4 est la même que celle produite par une variation de température égale à − 40°.

II.2.2- Déplacement dû à la température:

A partir de la température ambiante, nous envisageons une variation saisonnière de la température de

20°C et une variation journalière de

10 °C de variation instantanée.

 Courte durée :

 Longue durée :

III-Re actions d’appuis Les efforts normaux sollicitant les appareils d’appui sont déduits des réactions d’appuis dues aux différents cas de charges en divisant par le nombre de plaques par appuis (4 plaques pour les culées et 2 x 4 plaques pour les piles).  ELU :  R min = R(1.35 G) R (1.35 G + 1.605 Tr + 1.605 Max (Al; Bc) 

R max = Max R (1.35 G + 1.605 Tr + 1.35 Mc120

 ELS :  R min = R(G) R (G + 1.2 Tr + 1.2 Max (Al ; Bc) 

R max = Max R (G + 1.2 Tr + Mc120

146

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 III.1-Les charges permanentes : Charges du tablier (T) Poutres 412,8 Hourdi 200 Entretoises 31,428 Superstructures 149,84 total 794,068 Tableau 73: Poids du tablier au niveau des appareils d'appui

 Sur pile

: R(G) = 794.07 t

 Sur culée

: R(G) = 397.03 t

III.2-Les surcharges routières : III.2.1- Les surcharges des trottoirs :  1 travée chargée :  2 travées chargées: III.2.2- Le système A(l) :

 Cas d’une travée chargée :

Figure 64:Réaction d'appui pour une travée chargée sous le système Al

(

)

On trouve alors :

147

Avec a1=1 et a2 = 0.875

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400  Cas de deux travées chargées :

Figure 65: Réaction d'appui pour deux travées chargées sous le système Al

(

)

Avec a1=1 et a2 = 0.875

On trouve alors : III.2.3 - Le système Bc :

 Cas d’une travée chargée :

Figure 66:Réaction d'appui pour une travée chargée sous le système Bc

 Cas de deux travées chargées :

Figure 67:Réaction d'appui pour deux travées chargées sous le système Bc

148

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

On a donc : III.2.4 - Le système Mc 120:

 Cas d’une travée chargée :

Figure 68: Réaction d'appui pour une travée chargée sous le système Mc120

 Cas de deux travées chargées :

Figure 69:Réaction d'appui pour deux travées chargées sous le système Mc120

Pile (T) Culée(T)

Charges permanentes 794,068 397,034

A(l) Bc Mc120 173,97 115,92 107,09 129,12 109,83 102,79

Tableau 74:Réactions d'appui dues aux différents chargements

149

Tr 12 6

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

III.2.5- Combinaisons aux états limites:

ELU Pile (T) Culée(T)

Rmax 1370,47 752,87

ELS Rmin 1071,99 536,00

Rmax 1017,23 559,18

Rmin 794,07 397,03

Tableau 75:Réactions d'appui en ELU et en ELS

IV-Dimensionnement ELU Dans la norme NF EN 1337-3, le calcul des appareils d'appui se fait uniquement à l'Etat Limite Ultime. Les combinaisons à utiliser sont donc des combinaisons fondamentales dans lesquelles interviennent, outre les actions permanentes, les actions dues aux charges routières, aux effets de la température (uniforme et gradient thermique) ainsi qu'au vent. Conformément à la NF EN 1337-3, quatre types de vérification aux Etats Limites Ultimes doivent être faits pour les appareils d'appui en élastomère fretté quel que soit leur type :  la distorsion totale maximale en tout point de l'appareil d'appui est limitée  l'épaisseur des frettes doit être suffisante pour résister à la traction qu'elles subissent  la stabilité de l'appareil d'appui doit être assurée à la rotation, au flambement et au glissement  les actions exercées par l'appareil d'appui sur le reste de la structure doivent être vérifiées (effet direct de l'appareil d'appui sur la structure et effet indirect dû aux déformations de l'appui).

IV.1-Aire de l’appareil d’appui : D’après les recommandations Du Guide Technique des appareils d’appui en élastomère fretté, la contrainte moyenne de compression est comprise entre 20 et 25 MPa .On obtient, donc, pour l’appareil d’appui, avec la réaction d’appui maximale à L’ELU :  Pour les appareils d’appuis des piles, leurs surfaces doivent vérifier la relation suivante :

ab > (1/8)  Rmax/2200 = 778.67 cm²

 Pour les appareils d’appuis des culées, leurs surfaces doivent vérifier la relation suivante :

ab > (1/4)Rmax/1500 = 855.53 cm²

150

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 IV.2-Hauteur nette d’élastomère: La condition habituellement prépondérante est celle de εq liée au déplacement horizontal maximal. Celui-ci est dû, essentiellement, au déplacement imposé par la température uniforme sur la structure plus éventuellement le déplacement dû à la force de freinage.

𝑣

𝑣

 v1 : déplacement horizontal maximal dû à la température, au retrait et à la rotation.  v2 : déplacement horizontal maximal dû au freinage estimé à 4 t On écrit donc :

𝑣

𝐻

𝑣

 Pour la pile : 𝑣 D’où

=> on adopte 5 feuillets de 12 mm

 Pour la culée : 𝑣 D’où

=> on adopte 5 feuillets de 12 mm

IV.3-Dimensions en plan:  Pour la pile : on prend 350 x 350 => en prenant en compte un enrobage total de 2 x 5 = 10 mm on trouve A’= 1156 cm² Avec la nouvelle surface on trouve vx = 0.050m (

D’où

)

Alors l’appareil d’appui convient  Pour la culée : on prend 350 x 400 => en prenant en compte un enrobage total de 2 x 5 = 10 mm on trouve A’= 1326 cm² Avec la nouvelle surface on trouve vx = 0.048 m (

D’où

Alors l’appareil d’appui convient

151

)

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 IV.4-Stabilité au flambement: Ayant déterminé les dimensions en plan et la hauteur d'élastomère, il est important de vérifier la stabilité de l'appareil d'appui au flambement. Le coefficient de forme pour le feuillet vaut :

 Pour la pile :

Avec Rmax= 13,704 MN et Ar = 0.0987 m², on calcule

 Pour la culée :

Avec Rmax= 7 ,528 MN et Ar =0.1141m², on calcule

La condition est alors vérifiée pour les piles et les culées.

IV.5-Limite de déformation : On contrôle alors que l'on respecte la limite de déformation totale d'élastomère par la relation :

On a : 𝑣

 Pour la pile :

152

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400  Pour la culée :

IV.6-Stabilité en rotation : On s'assure que la stabilité en rotation est vérifiée pour l'appareil d'appui par la formule : (

)

𝑟

Tels que : -

αa et αb rotations d'axes perpendiculaires aux côtés a et b de l'appareil d'appui

-

Kr coefficient égal à 3

-

N: le nombre d’appuis

 Pour la pile :

(

)

 Pour la culée :

(

)

IV.7-Condition de non- glissement : La vérification du non-glissement est assurée, en l'absence de dispositif anti-cheminement

On vérifie que 𝑣

𝐻

-

Kf = 0.6 pour le béton.

-

Rmin et Fxy Réaction verticale et effort horizontal concomitant les plus défavorables

153

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 -

Hx : Effort de freinage

-

μe Coefficient de frottement entre l'appareil d'appui et la structure

 Pour la pile :

𝑣

𝐻

 Pour la culée :

𝑣

𝐻

IV.8-Dimensionnement des frettes: L’épaisseur des frettes est donnée par la formule suivante :

 Pour la pile :

 Pour la culée :

On prend alors pour les frettes une épaisseur de 3 mm

V-Dimensionnement ELS V.1-Aire de l’appareil d’appui : D’après les recommandations de SETRA, la contrainte moyenne de compression ne doit pas dépasser 15 MPa. On obtient, donc, pour l’appareil d’appui, avec la réaction d’appui maximale à L’ELS :  Pour les appareils d’appuis des piles, leurs surfaces doivent vérifier la relation suivante :

ab > (1/8)  Rmax/1500 = 847.69 cm²

154

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400  Pour les appareils d’appuis des culées, leurs surfaces doivent vérifier la relation suivante :

ab > (1/4)Rmax/1500 = 931.97 cm²

V.2-Dimensionnement en plan de l’appareil : a= 35 cm

On prend :

On cherche à respecter les inégalités suivantes qui concernent la condition de non flambement et la condition d’épaisseur minimale pour les irrégularités de la surface de pose. a/10 < T < a/5

avec a 931.97 cm²).

Par suite, nous adopterons pour les piles, les appareils d’appui :  Pour les piles : abn(t+ts) =3503505(12+3)  Pour les culées : abn(t+ts) =3504005(12+3)

VI-Efforts horizontaux en tete d’appuis VI.1-Introduction : Les efforts horizontaux exercés sur le tablier (freinage, vent, ...) dépendent des caractéristiques des appuis eux-mêmes. En particulier, s'il y a dissymétrie, ces efforts ne sont pas répartis de manière identique, ce qui peut amener à dimensionner des appareils d'appui différents. Il en va de même des efforts développés par le tablier en fonction des déplacements imposés par les déformations de la structure (retrait, fluage, température). Les efforts se répartissent en fonction de la rigidité de chaque appui. La rigidité K d'un appui est, par définition :

K=1/Δ. Δ étant le déplacement de la tête d'appui sous l'action d'une force

155

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 horizontale unité. Ce déplacement Δ = Δ1 + Δ2 + Δ3 procède de la distorsion de l'appareil d'appui, de la déformation du corps de l'appui et enfin de la déformation de la fondation. Pour l'élastomère, on utilisera son module instantané pour les efforts dynamiques (Gdyn = 2 x 0,9 = 1,8 MPa) et son module de référence (0,9 MPa) pour les déformations lentes.

VI.2-Détermination des rigidités des appuis et des efforts de freinage : Sous l’effet d’un effort horizontal unitaire H= 1T, les déplacements en tête d’appui sont comme suit : VI.2.1- Pour la culée:

Dans chaque culée, on dispose de quatre appareils d’appui supposés être les seuls à se déformer puisque la culée est considérée comme infiniment rigide. On trouve donc :  Sous un effort statique

:

 Sous un effort dynamique : VI.2.2- Pour la pile:

Les déplacements sous efforts statiques et dynamiques de la semelle de la pile ont été négligés en raison de l’ancrage de cette dernière sous le terrain naturel d’une part, et de l’ancrage des pieux dans le substratum d’autre part. Les déformations à considérer sont celles instantanées et différées du fût de la pile supposé encastrée dans la semelle de liaison. On a donc :

 l : la hauteur du fût de la pile (l1= 9.5 m, l2=6.00m, l3=5.00m)  Ei : le module instantané de déformation du béton (34180 MPa)  Ed : le module différé de déformation du béton (11450 MPa)  I : le moment d’inertie du fût (I=  D4 /64=0.049m4)  N : le nombre de fûts L’effort de freinage du système Bc, F= 30 t, se répartit entre les différents appuis de l’ouvrage selon la relation : Fj = F x kij/kij (j = 0 à 4).

156

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 .On récapitule les résultats dans le tableau suivant : Fût ui(mm) ud(mm) 0,000 0,000 0,427 1,273 0,107 0,321 0,062 0,186 0,000 0,000

Appui C1 P1 P2 P3 C2

Appareil d'appui ui(mm) ud(mm) 0,992 0,496 0,567 0,283 0,567 0,283 0,567 0,283 0,992 0,496

Rigidité d'appui ki(t/m) kd(t/m)t 1008,000 2016,000 1006,549 642,296 1482,871 1654,879 1589,600 2131,694 1008,000 2016,000

Effort de freinage 7,148 2,277 5,868 7,558 7,148

Tableau 76: Rigidités d'appuis et efforts de freinage

VI.3-Effets dues aux variations linéaires : On adopte les notations suivantes :  𝑼 : Le déplacement de l’appui i 

: Le déplacement relatif de l’appui i par rapport à l’appui i

 Δ : La variation de la longueur de la travée i 

: L’effort dû aux déformations appliqué à l’appui i



: Rigidité vis-à-vis des déformations de l’appui i

Les données sont les variations de la longueur

de chaque travée calculées avec les

données suivantes :  Dilatation linéaire relative de 1 .10-4 pour les actions à courte durée  Dilatation linéaire relative de 2 .10-4 pour les actions de longue durée  Déformation relative de 4.10-4 imposé à la tête des appuis suite au retrait et fluage du béton. Donc pour les actions de courtes durées : Δ Et pour les actions de longues durées

-4



×40/2 =2mm -4

×40/2 =12mm

On déduit le déplacement relative de l’appui i par rapport à l’appui 1 situé le plus gauche.

∑ ( ) Des relations

et ∑

on déduit : ∑ ∑

Ainsi connaissant

, on détermine :

157

Et

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 Le tableau suivant récapitule les résultats trouvés : Appui Kld(t/m) di(m) di x Kld

C1 2016,000 0,012 24,192

P1 642,296 0,024 15,415

-0,026 -52,643

-0,014 -9,064

U1d

Ui Hd(t)

P2 1654,879 0,036 59,576 -0,038 -0,002 -3,496

P3 2131,694 0,048 102,321 0,010 21,077

C2  2016,000 8460,869 0,060 0,180 120,960 322,464 -0,038 0,022 -0,011 44,125 0,000

Tableau 77: Distribution des efforts horizontaux sur appuis

VII-Ve rifications du dimensionnement ELS VII.1-Limitation de la distorsion : La distorsion totale en tout point de l'appareil d'appui est limitée à l'Etat Limite Ultime : KLH = KL( H1+0.5H2) < 0.7G  KL est un coefficient égal à 1,00 dans le cas général  H est la contrainte conventionnelle de calcul  H1 est la contrainte correspondant aux efforts horizontaux statiques  H2 est la contrainte correspondant aux efforts horizontaux dynamiques

VII.2-Condition sur la somme des contraintes de cisaillement : Il reste à contrôler que pour les différents cas de charges, la somme des contraintes de cisaillement respecte la condition : N + H + < 5G  N est la contrainte de cisaillement due à l’effort normal : N = 1,5m /  Où :  est un coefficient de forme donné par la relation :  = ab/2t (a+b) m est la contrainte moyenne de compression donnée par la formule : m = Nmax/na ab ; avec na nombre d’appareils d’appui.  H est la contrainte conventionnelle de calcul définie précédemment   est la contrainte de cisaillement due à la rotation d’une face d’un feuillet par rapport à l’autre face ; elle est donnée par la formule suivante :

158

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400  = (G/2)(a/t)²t Où : t est l’angle de rotation, exprimé en radian, d’un feuillet élémentaire : t = T /n

T est l’angle de rotation de l’appareil d’appui : T =0 +  0 = 3. 10-3 rad (tablier en béton coulé sur place) et  est la rotation calculée.

VII.3-Condition de non glissement : On doit vérifier : H < f.N H et N étant concomitant ( f = 0,12 + 0,2/min (min en MPa)) Si cette condition n’est pas vérifiée, il faudrait prévoir un dispositif d’anti-cheminement.  Pour les appareils d’appuis sur les piles on a : H=25.38 t ; N=794.07t min =8.10 MPa ; f=0,14

donc f.N=114.88t > H

 Pour les appareils d’appuis sur les culées on a : H=55.1t ; N=397.03 t min =7.09 MPa ; f=0,15 donc f.N= 58.84 t>H

VII.4-Condition de non soulèvement : Elle est à vérifier lorsque les contraintes de cisaillement dues à la rotation sont susceptibles d’atteindre des valeurs semblables à celles dues à l’effort normal. t < (3/ )(t/a)²(m/G)

VII.5-Condition sur l’épaisseur des frettes : ts > (a/ )( max /e) avec e = 235 MPa.

La condition à vérifier est :

159

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

On rassemble les résultats dans le tableau qui suit : Appui a b na t ts Nmax Nmin H1 H2

Pile 35cm 35cm 8 0,012 3 1017,23 794,07 21,08 7,56

Culée 35 cm 40cm 4 0,012 3 559,18 397,03 52,64 7,15



17

17

0 H1 H2 H  max   min N 

3

3

0,18 0,62 0,49 1,53 10,38 7,29 8,10 2,14 4,16

0,18 0,51 0,44 1,53 9,99 7,78 7,09 1,93 3,89

Non soulèvement (´10-3rad)

41,91

H1 < 0.5G (MPa) H < 0.7G (MPa) min >2 (MPa)  < 5G (MPa) max 70%  Critère n°2 : Biais « L’angle de l’axe du tablier avec l’axe de ses appuis doit être supérieur à 60° et les raideurs longitudinales et transversales totales des appuis ne varient pas de plus de 10% par rapport aux valeurs calculées sans biais. ».  Critère n°3 : Courbure « L’angle balayé en plan par la tangente à l’axe doit être inférieur à 25° et les raideurs longitudinales et transversales totales des appuis ne varient pas de plus de 10% par rapport aux valeurs calculées sans courbure ».  Critère n°4 : Symétrie transversale « La distance entre le centre des masses et le centre élastique des appuis n’excède pas 5% de la distance entre appuis extrêmes pour l’étude du séisme transversal ». Si ces 4 critères sont satisfaits, le séisme longitudinal et transversal s’évaluent de la manière indiquée dans le paragraphe qui suit.

194

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 II.4- Détermination des efforts provenant de la mise en mouvement du tablier II.4.1- Séisme longitudinal :

 K : Raideur longitudinale de l’ensemble des appuis (= Ki = 66735 KN où Ki est la raideur d’un appui)  M: Masse du tablier=3160 T La période longitudinale du tablier sur ses appuis vaut :

T  2.

M  1.36s K

Le déplacement longitudinal du tablier par rapport aux fondations vaut : d

T2 R(T ).a N  0.069m 4. 2

L’effort longitudinal global vaut : F = M x R(T) x aN=4622.43KN Tels que :  F est réparti sur les appuis au prorata de leurs raideurs.

 aN : l’accélération nominale (m/s²)  R(T) : l’ordonnée du spectre élastique normalisé. Appui C1 P1 P2 P3 C2

Effort du séisme(KN) 775,78 739,39 1121,39 1210,10 775,78

Tableau 101: Efforts du séisme longitudinal

Déplacement piles = 0.0315m ; déplacement culée =0 m II.4.2- Séisme transversal : Le tablier est infiniment rigide suivant cette direction et il est bloqué transversalement sur chacun des appuis par des butées parasismiques. On calcule de la force s’appliquant sur chaque appui. Pour cela, on applique à la masse du tablier une accélération égale au plateau du spectre, puis on réparti celle-ci de manière égale sur les appuis.

195

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 L’effort transversal est donc donné par : F = M × R(T) × aN Avec : M=3160 T ; R(0)=2.5 ; aN =2m/s² D’où l’effort global transversal F=15800KN soit sur chaque appui 3160 KN II.4.3- Séisme vertical provenant de la mise en mouvement du tablier : Le mouvement du tablier engendre des réactions d’appuis qui à leur tour viennent solliciter le tablier. Dans le cadre de la méthode monomodale, on peut se disposer de vérifier le tablier vis à vis de ces sollicitations. Néanmoins, pour la vérification des appuis et des appareils d’appuis, il y a lieu d’en tenir compte. Les réactions d’appuis sont données par :  Avec : 

 : Masse linéique du tablier comprenant les équipements



L : Longueur de la travée principale



a = 0.7.aN.RM : RM correspond au plateau du spectre élastique normalisé. Appui C1 P1 P2 P3 C2

Effort du séisme(KN) 1133,65 3539,20 0,00 3539,20 1133,65

Tableau 102: Efforts du séisme vertical

II.4.4- Détermination des efforts provenant de la mise en mouvement de l’appui :  Pour les fûts des piles + chevêtres : La période du premier mode est donnée par : √

 P’ : poids des fûts et du chevêtre (124.61 T)  E : module d’Young du matériau de l’appui (34180 MPa)  I : inertie des fûts par rapport à l’axe longitudinal ou transversal.  l : hauteur de la pile (9.50 m)

196

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 Ainsi, une fois la période est calculée, on en déduit la réponse spectrale et par suite l’effort sismique, celui-ci est, bien entendu, appliqué au centre de gravité de l’ensemble fûts-chevêtre. 

Pour le séisme longitudinal :

I=Iy=0,1963 m4 donc T= 0,4577s par suite R (T)=2.5 L’effort sismique horizontal résultant est : Fx= P × R (T) × aN= 623.06 KN 

Pour le séisme transversal : 4

I=Ix=28.82m donc T= 0,0378 s par suite R (T)=2.5 L’effort sismique horizontal résultant est : Fy= P × R (T) × aN=623.06 KN  Pour le séisme vertical : L’effort sismique vertical résultant est : V=0,70×Fx=436.15 KN  Pour les Culées : Pour calculer l’effet sismique sur la culée, on accélère sa masse horizontalement et verticalement par les accélérations suivantes :



La masse de la culée est de 244.27 T donc H= M H =48.85 t et V=M V = 24.43 t L’effort ainsi obtenu sera supposé agir au niveau du centre de gravité de la culée.  Pour les semelles : La masse de la semelle est M=225 T, alors de la même manière que la culée on trouve : H=45t et V= 22.5 t II.4.5-Efforts provenant de la mise en mouvement des terres reposant sur l’appui :  Pour les terres reposant sur la semelle sous pile : H= 48 t

et V=24 t

 Pour les terres reposant sur la semelle sous culée : H= 66.64 t et V=33.32 t II.4.6- Incrément dynamique de la poussée des terres : En cas de séisme, en plus de la poussée statique du sol, un surplus de poussée se crée, il est donné par :

Fad =

1 . y.H 2 1  v .K ad  K a   10.70T 2

Cette force est appliquée à 0.6H compté à partir de la base de l’écran.  H: la hauteur de l’écran (6 m)   : Masse volumique (2t/m3)  Ka: coefficient de poussée statique des terres (0.33)

197

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400  K ad: coefficient de poussée dynamique des terres Kad =

cos 2 (   )  0.57   sin(    ) sin(      ) cos  cos 2  cos(     ) 1   cos(     ) cos(    )  

Avec :  : Angle de frottement interne des terres derrière la culée (30°)

 : Angle d’inclinaison de l’écran par rapport à la verticale (0°)  : Angle d’inclinaison du talus (0°)  : Angle de frottement sol-écran (il est conseillé de le prendre nul)  : Angle apparent de la gravité = arctan ( Alors

H ) =12.53° 1v

Hx= 10.70KN et Hy= 32.07 KN

III-Ve rification des appareils d’appui : III.1-Résistance à la compression : Le BT4 limite la contrainte moyenne à 15 MPa. Dans les cas courants, on peut retenir cette même limite sous charges sismiques. On doit vérifier :

Pu  15 MPa S' Telles que :

-

Pu : la valeur maximale des charges permanentes avec l’effort sismique vertical

-

S' : la section réduite comprimée (S’est obtenue en retranchant les déplacements sous séisme de chaque dimensions de l’appareil a ou b),  Pour la pile :

 Pour la culée :

III.2-Flambement : Le coefficient de sécurité vis-à-vis du flambement est s=Pc/Pu=3 La charge critique de l’appareil s’obtient par la formule :

198

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

 G : module de cisaillement (1.2)  A : aire nominale de l’appareil d’appui  : facteur de forme  d : épaisseur d’une frette + épaisseur d’un feuillet (t +ts)  h : la hauteur total de l’appareil d’appui (T + n ts)  Pour la pile :

 Pour la culée :

III.3-Distorsion : La distorsion sous séisme est d’autant plus limitée que la sécurité par rapport au flambement est grande. On vérifie donc : 

𝑟



𝑟 Avec

Comme la condition de non flambement impose que 0 >5, on retient 0= 2  pour la pile :  pour la culée : Pu est calculé juste avec 30% du séisme vertical III.4-Glissement :

Si on vérifie l’inégalité H < f ×N, on n’a pas besoin de dispositifs d’anti cheminement sinon il faut les prévoir. H l’effort horizontal du séisme longitudinal par appareil ; N l’effort vertical des charges permanente – 30% du séisme vertical par appareil ; f = 0,10 + 0,6/ coefficient de frottement  pour la pile : 𝐻

𝐻

 pour la culée : 𝐻

𝐻

On déduit donc qu’il faut mettre des goujons que l’on dimensionne comme suit :

199

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

 Goujons : il faut vérifier que

𝐻

𝑣

𝑟

 pour la pile : 𝐻

𝑗 √

 pour la culée : 𝐻



IV-Calcul des sollicitations : IV.1-Inventaire des efforts sismiques :

Appui pile Pile Remblai pile

Hx(t) 121 62,31 48

Hy(t) V(t) Z Mx(t.m) My(t.m) 316 353,9 10,5 3318 1271 62,31 43,61 6,86 427,2 427,2 48 0 1,5 72 72

Tableau 103: Sollicitations sismiques au pied des piles

Hx(t) Appui culée 77,58 Culée 48,85 Remblai culée 66,64 Poussée culée 10,69

Hy(t) V(t) Z Mx(t.m) My(t.m) 316 113,4 3,5 2167 531,9 48,85 24,43 2,95 144,1 144,1 66,64 0 2,5 166,3 166,3 3,208 0 3,6 11,55 38,49

Tableau 104:Sollicitations sismiques au pied des culées

IV.2-Combinaison des directions du séisme : Pour un tablier qui n’est pas fixé sur la pile, les différentes résultantes sismiques sont obtenues en cumulant quadratiquement les composantes de mêmes directions soient donc : 

Longitudinalement : 𝐻

√∑ 𝐻

√∑



Transversalement :

√∑

√∑

200

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 

Verticalement

√∑

:

Les efforts sismiques sont découplés suivant les directions. On peut donc se limiter à 3 combinaisons : E1=L+0,3(T+V) E2=T+0,3(L+V) E3=V+0,3(L+T)

HL(t) HT(t) ML(t.m) MT(t.m) N(t)

L 144,32 0,00 1342,43 0,00 0,00

T 0,00 325,64 0,00 3346,16 0,00

V 0,00 0,00 0,00 0,00 356,60

E1 144,32 97,69 1342,43 1003,85 106,98

E2 43,30 325,64 402,73 3346,16 106,98

E3 43,30 97,69 402,73 1003,85 356,60

E2 34,15 326,64 173,08 2177,84 34,79

E3 34,15 97,99 173,08 653,35 115,97

Tableau 105:Combinaisons pour les piles

HL(t) HT(t) ML(t.m) MT(t.m) N(t)

L 113,84 0,00 576,93 0,00 0,00

T 0,00 326,64 0,00 2177,84 0,00

V 0,00 0,00 0,00 0,00 115,97

E1 113,84 97,99 576,93 653,35 34,79

Tableau 106:Combinaisons pour les culées

IV.3-Combinaison des actions sismiques : Combinaisons d'action Comb1 E1+Rmax+PP Comb2 E2+Rmax+PP Comb3 E3+Rmax+PP Comb4 -E1+Rmin+PP Comb5 -E2+Rmin+PP Comb6 -E3+Rmin+PP

VL(t) 144,32 43,30 43,30 144,32 43,30 43,30

VT(t) 97,69 325,64 97,69 97,69 325,64 97,69

ML(t.m) 1342,43 402,73 402,73 1342,43 402,73 402,73

MT(t.m) 1003,85 3346,16 1003,85 1003,85 3346,16 1003,85

Tableau 107: Combinaisons sismiques pour les piles

Avec :  Rmax+PP= 1023.96 T poids max du tablier + poids propre de la pile.  Rmin+PP= 934.05 T poids min du tablier + poids propre de la pile.

201

N(t) 1130,94 1130,94 1380,56 827,07 827,07 577,46

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400 Combinaisons d'action Comb1 E1+Rmax+PP Comb2 E2+Rmax+PP Comb3 E3+Rmax+PP Comb4 -E1+Rmin+PP Comb5 -E2+Rmin+PP Comb6 -E3+Rmin+PP

VL(t) 113,84 34,15 34,15 113,84 34,15 34,15

VT(t) 97,99 326,64 97,99 97,99 326,64 97,99

ML(t.m) 576,93 173,08 173,08 576,93 173,08 173,08

MT(t.m) 653,35 2177,84 653,35 653,35 2177,84 653,35

N(t) 673,77 673,77 754,95 589,20 589,20 508,02

Tableau 108 : Combinaisons sismiques pour les culées

Avec :  Rmax+PP= 638.98 T poids max du tablier + poids propre de la culée.  Rmin+PP= 623.99 T poids min du tablier + poids propre de la culée.

V-Ferraillage : V.1-Hypothèses de calcul :  Règlement de dimensionnement : BAEL91 avec γs=1,00 et γb=1,30 ; fe=500MPa  Fc28=30MPa ; ft28=2.4 MPa ; bc Elu=0,85×30/1,3 =19,62 MPa ; b Els=0,6×30=18 MPa  u Elu = Min (0,15×30/1,3; 4)=3.46MPa ; s Elu= 500MPa ; s Els= 215.55 MPa (préjud)

V.2-Sollicitations de calcul : Pile culée

V(t) 89,05 86,48

N(t) 345,14 188,73

M(t.m) 842,58 546,18

Tableau 109: Sollicitations dimensionnantes

V.3-Armatures : VI.3.1- Longitudinales :

En utilisant les mêmes paramètres cités dans les chapitres précédents concernant le ferraillage des fûts circulaires et les abaques d’interaction, on trouve :  Pour les fûts des piles : A= 369.74 cm²  Pour les fûts des culées : A= 320.44 cm² Toutefois cette section doit rester comprise entre 0,5%B et 3%B d’après le règlement parasismique. On prend alors la section 235.62 cm² qui correspond à 3%B. VI.3.2- Transversales :

 Pour les piles : A= 31.64 cm²  Pour les culées : A= 30.72 cm²

202

Projet de fin d’études-2012 Ouvrage d’art sur Oued Lben au PK 14+400

Conclusion L’objectif de cette étude est de concevoir et de dimensionner un ouvrage d’art pour assurer le franchissement de Oued Lben au PK 14+400 pour relier entre TISSA et RAS L’OUED. La première partie portait essentiellement sur une analyse des contraintes naturelles et fonctionnelles du projet pour déterminer les variantes les plus compatibles aux données de l’ouvrage. La seconde partie décrit les dimensions recommandées par les guides et normes spécialisées des éléments constitutifs des deux variantes proposées pour en terminer avec une comparaison économique. La troisième partie, qui détient la part du lion de cette étude, rassemble une panoplie de calculs des parties prenantes de l’ouvrage pour en terminer avec une analyse sismique du comportement de l’ouvrage. Ce projet de fin d’étude n’est non seulement une expérience incontournable pour améliorer mes compétences dans un domaine qui me passionne beaucoup, il a été aussi pour moi un défis personnel que j’espère avoir honoré. Certes, travailler seule sur un grand projet qui demande beaucoup de recherche, beaucoup de calculs et de concentration n’était pas une mission facile à accomplir mais ça m’a permise de booster mes performances en termes de connaissances techniques et aussi des aptitudes organisationnelles.

203

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF