# PF Simulation Using Matlab

January 4, 2019 | Author: Fakhruddin Arrazi | Category: Physics & Mathematics, Physics, Physical Quantities, Quantity, Technology

#### Description

One line diagram of a five bus system :

INPUT : %clear basemva = 100; 100; accuracy = 0.0001; 0.0001; accel = 1.6; maxiter = 100; % Ybus ELEMENTS CALCULATION, 5 BUSES 7 LINES USING % GAUSS-SEIDEL METHOD % Bus Bus Voltage Angle ---Load----------Generator----Static Mvar % No code Mag. Degree MW Mvar MW Mvar Qmin Qmax +Qc/-Ql busdata=[1 1 1.02 0.0 0.0 0.0 0.0 0.0 0 0 0 2 0 1.00 0.0 60.0 30.0 0.0 0.0 0 0 0 3 2 1.04 0.0 0.0 0.0 100.0 0.0 0 0 0 4 0 1.0 0.0 40.0 10.0 0.0 0.0 0 0 0 5 0 1.0 0.0 60.0 20.0 0.0 0.0 0 0 0]; % % Bus % nl linedata=[1 1 1 2 2 3

bus nr 2 4 5 3 4 5

R p.u. 0.100 0.150 0.050 0.050 0.100 0.050

X p.u. 0.400 0.600 0.200 0.200 0.400 0.200

1/2 B p.u. 0.0 0.0 0.0 0.0 0.0 0.0

Line code = 1 for lines > 1 or < 1 tr. tap at bus nl 1 1 1 1 1 1 ];

lfybus %lfgauss %lfnewton %decouple %busout %lineflow

% form the bus admittance matrix % Load flow solution by Gauss-Seidel method % Load flow solution by Newton-Raphson method % Load flow solution by Fast Decoupled method % Prints the power flow solution on the screen % Computes and displays the line flow and losses

OUTPUT : Ybus = Columns 1 through 4 2.1569 - 8.6275i

-0.5882 + 2.3529i

0

-0.3922 + 1.5686i

-0.5882 + 2.3529i

2.3529 - 9.4118i

-1.1765 + 4.7059i

-0.5882 + 2.3529i

0

-1.1765 + 4.7059i

2.3529 - 9.4118i

0

-0.3922 + 1.5686i

-0.5882 + 2.3529i

0

0.9804 - 3.9216i

-1.1765 + 4.7059i

0

-1.1765 + 4.7059i

0

Column 5 -1.1765 + 4.7059i 0 -1.1765 + 4.7059i 0 2.3529 - 9.4118i

INPUT : %clear basemva = 100; accuracy = 0.0001; accel = 1.6; maxiter = 100; % POWER FLOW CALCULATION, 5 BUSES 7 LINES USING % GAUSS-SEIDEL METHOD % Bus Bus Voltage Angle ---Load----------Generator----Static Mvar % No code Mag. Degree MW Mvar MW Mvar Qmin Qmax +Qc/-Ql busdata=[1 1 1.02 0.0 0.0 0.0 0.0 0.0 0 0 0 2 0 1.00 0.0 60.0 30.0 0.0 0.0 0 0 0 3 2 1.04 0.0 0.0 0.0 100.0 0.0 0 0 0 4 0 1.0 0.0 40.0 10.0 0.0 0.0 0 0 0 5 0 1.0 0.0 60.0 20.0 0.0 0.0 0 0 0]; % % Bus % nl linedata=[1 1 1 2 2 3

bus nr 2 4 5 3 4 5

lfybus lfgauss %lfnewton %decouple busout lineflow

R p.u. 0.100 0.150 0.050 0.050 0.100 0.050

X p.u. 0.400 0.600 0.200 0.200 0.400 0.200

1/2 B p.u. 0.0 0.0 0.0 0.0 0.0 0.0

Line code = 1 for lines > 1 or < 1 tr. tap at bus nl 1 1 1 1 1 1 ];

% form the bus admittance matrix % Load flow solution by Gauss-Seidel method % Load flow solution by Newton-Raphson method % Load flow solution by Fast Decoupled method % Prints the power flow solution on the screen % Computes and displays the line flow and losses

OUTPUT : Power Flow Solution by Gauss-Seidel Method Maximum Power Mismatch = 9.32572e-005 No. of Iterations = 25 Bus Voltage

Angle

---Generation--- Injected

No.

Mag.

Degree

MW

Mvar

MW

Mvar

Mvar

1

1.020

0.000

0.000

0.000

65.141

32.921

0.000

2

0.955

-3.942

60.000

30.000

0.000

0.000

0.000

3

1.040

2.001

0.000

0.000 100.000

47.685

0.000

4

0.923

-8.009

40.000

10.000

0.000

0.000

0.000

5

0.993

-2.073

60.000

20.000

0.000

0.000

0.000

160.000

60.000 165.141

80.607

0.000

Total

Line Flow and Losses --Line--

Power at bus & line flow

from to

MW

Mvar

MVA

1

65.141 32.921 72.987

--Line loss-MW

Mvar

2

19.802 12.263 23.292

0.521

2.086

4

24.807 11.741 27.446

1.086

4.344

5

20.546

0.241

0.964

2

8.908 22.394

-60.000 -30.000 67.082 1

-19.280 -10.178 21.802

0.521

2.086

3

-57.325 -23.696 62.029

2.110

8.442

4

16.602

3.874 17.048

0.319

1.275

100.000

47.685 110.788

3 2

59.435

32.138 67.568

2.110

8.442

5

40.572

15.543 43.448

0.873

3.491

4

-40.000 -10.000

41.231

1

-23.721

-7.397

24.848

1.086

4.344

2

-16.283

-2.599

16.489

0.319

1.275

-60.000

-20.000

63.246

1

-20.305

-7.944

21.804

0.241

0.964

3

-39.700 -12.053

41.489

0.873

3.491

5

Total loss

5.150 20.602

Transformer tap

INPUT : %clear basemva = 100; accuracy = 0.0001; accel = 1.6; maxiter = 100; % POWER FLOW CALCULATION, 5 BUSES 7 LINES USING % NEWTON-RAPHSON METHOD % Bus Bus Voltage Angle ---Load----------Generator----Static Mvar % No code Mag. Degree MW Mvar MW Mvar Qmin Qmax +Qc/-Ql busdata=[1 1 1.02 0.0 0.0 0.0 0.0 0.0 0 0 0 2 0 1.00 0.0 60.0 30.0 0.0 0.0 0 0 0 3 2 1.04 0.0 0.0 0.0 100.0 0.0 0 0 0 4 0 1.0 0.0 40.0 10.0 0.0 0.0 0 0 0 5 0 1.0 0.0 60.0 20.0 0.0 0.0 0 0 0]; % % Bus % nl linedata=[1 1 1 2 2 3

bus nr 2 4 5 3 4 5

lfybus %lfgauss lfnewton %decouple busout lineflow

R p.u. 0.100 0.150 0.050 0.050 0.100 0.050

X p.u. 0.400 0.600 0.200 0.200 0.400 0.200

1/2 B p.u. 0.0 0.0 0.0 0.0 0.0 0.0

Line code = 1 for lines > 1 or < 1 tr. tap at bus nl 1 1 1 1 1 1 ];

% form the bus admittance matrix % Load flow solution by Gauss-Seidel method % Load flow solution by Newton-Raphson method % Load flow solution by Fast Decoupled method % Prints the power flow solution on the screen % Computes and displays the line flow and losses

OUTPUT : Power Flow Solution by Newton-Raphson Method Maximum Power Mismatch = 3.56144e-007 No. of Iterations = 4 Bus Voltage

Angle

---Generation--- Injected

No.

Mag.

Degree

MW

Mvar

MW

Mvar

Mvar

1

1.020

0.000

0.000

0.000

65.150

32.916

0.000

2

0.955

-3.941

60.000

30.000

0.000

0.000

0.000

3

1.040

2.001

0.000

0.000

100.000

47.684

0.000

4

0.923

-8.008

40.000

10.000

0.000

0.000

0.000

5

0.993

-2.073

60.000

20.000

0.000

0.000

0.000

160.000

60.000

165.150

80.599

0.000

Total

Line Flow and Losses --Line--

Power at bus & line flow

from to

MW

MW

Mvar

1

65.150 32.916

72.993

2

19.800 12.264

23.291

0.521

2.086

4

24.805 11.743

27.444

1.086

4.344

5

20.544

8.909

22.393

0.241

0.964

-60.000 -30.000

67.082

1

-19.279 -10.178

21.801

0.521

2.086

3

-57.321 -23.698

62.026

2.110

8.441

4

16.600

3.876 17.046

0.319

1.275

100.000

47.684 110.787

2

3

Mvar

MVA

--Line loss--

2

59.431

32.139

67.564

2.110

8.441

5

40.569

15.545

43.445

0.873

3.490

-40.000 -10.000

41.231

1

-23.719

-7.399

24.846

1.086

4.344

2

-16.281

-2.601

16.487

0.319

1.275

-60.000 -20.000

63.246

1

-20.303 -7.945

21.803

0.241

0.964

3

-39.697 -12.055

41.487

0.873

3.490

5.150

20.599

4

5

Total loss

Transformer tap

INPUT : %clear basemva = 100; accuracy = 0.0001; accel = 1.6; maxiter = 100; % POWER FLOW CALCULATION, 5 BUSES 7 LINES USING % FAST-DECOUPLED METHOD % Bus Bus Voltage Angle ---Load----------Generator----Static Mvar % No code Mag. Degree MW Mvar MW Mvar Qmin Qmax +Qc/-Ql busdata=[1 1 1.02 0.0 0.0 0.0 0.0 0.0 0 0 0 2 0 1.00 0.0 60.0 30.0 0.0 0.0 0 0 0 3 2 1.04 0.0 0.0 0.0 100.0 0.0 0 0 0 4 0 1.0 0.0 40.0 10.0 0.0 0.0 0 0 0 5 0 1.0 0.0 60.0 20.0 0.0 0.0 0 0 0]; % % Bus % nl linedata=[1 1 1 2 2 3

bus nr 2 4 5 3 4 5

R p.u. 0.100 0.150 0.050 0.050 0.100 0.050

lfybus %lfgauss %lfnewton decouple busout lineflow

X p.u. 0.400 0.600 0.200 0.200 0.400 0.200

1/2 B p.u. 0.0 0.0 0.0 0.0 0.0 0.0

Line code = 1 for lines > 1 or < 1 tr. tap at bus nl 1 1 1 1 1 1 ];

% form the bus admittance matrix % Load flow solution by Gauss-Seidel method % Load flow solution by Newton-Raphson method % Load flow solution by Fast Decoupled method % Prints the power flow solution on the screen % Computes and displays the line flow and losses

OUTPUT : Power Flow Solution by Fast Decoupled Method Maximum Power Mismatch = 9.98889e-005 No. of Iterations = 7 Bus Voltage

Angle

---Generation--- Injected

No.

Mag.

Degree

MW

Mvar

MW

Mvar

Mvar

1

1.020

0.000

0.000

0.000

65.156

32.914

0.000

2

0.955

-3.941

60.000

30.000

0.000

0.000

0.000

3

1.040

2.001

0.000

0.000

100.000

47.680

0.000

4

0.923

-8.008

40.000

10.000

0.000

0.000

0.000

5

0.993

-2.073

60.000

20.000

0.000

0.000

0.000

160.000

60.000

165.156

80.594

0.000

Total

Line Flow and Losses --Line-from to

Power at bus & line flow

--Line loss--

MW

Mvar

MVA

65.156

32.914

72.998

2

19.801

12.265

23.291

0.521

2.086

4

24.805

11.742

27.444

1.086

4.343

5

20.545

8.911

22.394

0.241

0.964

-60.000 -30.000

67.082

1

-19.279 -10.179

21.801

0.521

2.086

3

-57.321 -23.699

62.027

2.110

8.441

4

16.599

3.875

17.045

0.319

1.275

100.000 47.680

110.786

2

59.432 32.140

67.565

2.110

8.441

5

40.569 15.547

43.446

0.873

3.490

-40.000 -10.000

41.231

1

-23.719

-7.399

24.846

1.086

4.343

2

-16.280

-2.600

16.486

0.319

1.275

-60.000 -20.000

63.246

1

-20.304

-7.947

21.803

0.241

0.964

3

-39.697 -12.056

41.487

0.873

3.490

1

2

3

4

5

Total loss

MW

Mvar

5.150 20.600

Transformer tap