Perancangan Penstock Pada Pltm Ciherang Beres Res

July 26, 2018 | Author: Deniss Walgat | Category: N/A
Share Embed Donate


Short Description

Download Perancangan Penstock Pada Pltm Ciherang Beres Res...

Description

PERANCANGAN PENSTOCK   PADA PLTM CIHERANG  PADA DI DESA CIAWI KECAMATAN WANAYASA KABUPATEN PURWAKARTA

SKRIPSI

untuk memenuhi sebagian persyaratan mencapai derajat Sarjana Terapan D4 pada Program Studi Teknologi Pembangkit Tenaga Listrik Jurusan Teknik Konversi Energi

PERANCANGAN PENSTOCK   PADA PLTM CIHERANG  PADA DI DESA CIAWI KECAMATAN WANAYASA KABUPATEN PURWAKARTA

SKRIPSI

untuk memenuhi sebagian persyaratan mencapai derajat Sarjana Terapan D4 pada Program Studi Teknologi Pembangkit Tenaga Listrik Jurusan Teknik Konversi Energi

PERANCANGAN PENSTOCK   PADA PLTM CIHERANG  PADA DI DESA CIAWI KECAMATAN WANAYASA KABUPATEN PURWAKARTA

SKRIPSI

untuk memenuhi sebagian persyaratan mencapai derajat Sarjana Terapan D4 pada Program Studi Teknologi Pembangkit Tenaga Listrik Jurusan Teknik Konversi Energi

LEMBAR PENGESAHAN

 pada PLTM Ciherang di Desa Ciawi Kecamatan  pada Judul : “Perancangan Penstock  Wanayasa Kabupaten Purwakarta ”

 Nama : Rifki Nurul Shadikin  NIM

: 091724024

Telah dipertahankan di hadapan dewan penguji pada tanggal 4 Juli 2013 dan dinyatakan LULUS, sebagai syarat untuk mendapatkan gelar Sarjana Sains Terapan di Program Studi Teknologi Pembangkit Tenaga Listrik Jurusan Teknik Konversi Energi Politeknik Negeri Bandung. Penguji I

: Ir. Teguh Sasono, M.T.

Penguji II

: Drs. Djafar Sodiq, M.Eng.

195802051984031003 DAFTAR RIWAYAT HIDUP

 Nama

: Rifki Nurul Shadikin

Tempat Tanggal Lahir

: Bandung 16 September 1991

Jenis Kelamin

: Laki –  Laki –  Laki  Laki

Agama

: Islam

Alamat

: Jalan Terusan Derwati No. 187 04/03 Bandung

 No Telepon

: 0856 5907 6907 6907

E-mail

: [email protected]

Pendidikan :

2009 –  2009 – 2013 2013

Teknik Konversi Energi, Politeknik Negeri Bandung

ABSTRAK

 Penstock   adalah pipa bertekanan dan mengarahkan aliran air langsung menuju turbin. Pemilihan dan perancangan  penstock  yang optimal akan mendapatkan hasil yang optimum untuk memutarkan turbin sehingga dapat menekan biaya yang dipakai untuk modal pembuatan PLTM. Tujuan khusus skripsi ini adalah melakukan perancangan  penstock pada PLTM Ciherang. Pada perancangan ini tahapannya adalah sebagai berikut:  persiapan perancangan menentukan debit desain menentukan bahan  penstock menentukan layout  penstock menentukan jumlah belokan menentukan panjang  penstock menentukan diameter  penstock menentukan tebal  penstock menghitung rugi  –   rugi  penstock  menggambar desain. Selanjutnya akan menghasilkan data dari perhitungan tersebut. Data yang diperoleh dianalisa agar mendapatkan hasil perancangan yang layak direalisasikan. Setelah melakukan tahapan tersebut maka menghasilkan data dimensi  penstock . Data tersebut diantaranya bahan yang digunakan terbuat dari baja  galvanize, diameternya sebesar 1,34 m dengan tebal 0,024 m, panjang lintasannya sebesar 580 m, memiliki dua

ABSTRACK

The steady depletion of non-renewable energy reserves it is required to take advantage of renewable energy / non fossil one potential micro power / MHP has the  potential of 458.75 MW, with an abundance of potential then the design of micro power reduction of non-renewable energy reserves. Discuss more about the design of penstock.  Penstock pipe is pressurized and direct the flow of water directly to the turbine serves to withstand the pressure caused by water hammer. The selection and design of optimal  penstock will get optimum results for turbines rotate so as to reduce the cost of capital used for the manufacture of micro power plants. The specific objective of this thesis is to design the micro power penstock Ciherang. This thesis preparation methodology used is as  follows: determine the design discharge preparation materials penstock design to determine determine determine the amount of the bend penstock layout determines the

KATA PENGANTAR

Puji dan syukur penyusun panjatkan kehadirat ALLAH SWT yang telah memberikan rahmat dan hidayah-Nya sehingga penulis dapat menyelesaikan sripsi ini,  penyusunan skripsi yang berjudul “PERANCANGAN  PENSTOCK PADA PLTM CIHERANG

DI

DESA

CIAWI

KECAMATAN

WANAYASA

KABUPATEN

PURWAKARTA” dapat  terselesaikan. Penyusunan skripsi ini adalah salah satu syarat untuk mendapatkan gelar Sarjana Sains Terapan di Program Studi Teknologi Pembangkit Tenaga Listrik, Jurusan Teknik Konversi Ener gi, Politeknik Negeri Bandung. Semoga hasil penulisan skripsi ini dapat bermanfaat bagi penyusun khususnya dan  pembaca pada umumnya. Penyusun sampaikan terima kasih kepada semua pihak yang telah membantu pelaksanaan dan penyusunan skripsi.

UCAPAN TERIMA KASIH

Penyusun menyampaikan ucapan terima kasih terhadap pihak - pihak yang membantu dalam pelaksanaan dan penyusunan Skripsi: 1. Kepada Alloh SWT yang selalu memberikan kesehatan, kemudahan dan kelancaran. 2. Orang tua Bapak Ajab Kosmara dan Ibu Euis Kartini yang selalu mendoakan dan memberi dukungan moral maupun materi. 3. Kakak dan adik tiada hentinya memberi motivasi dan saran dalam penyusunan skripsi ini. 4. Bapak Ir. Sri Paryanto Mursid, M.T. sebagai dosen pembimbing I yang selalu membimbing memberi masukan dan materi dalam skripsi ini. 5. Bapak Ir. Wahyu Budi Mursanto, M.Eng sebagai dosen pembimbing II telah memberikan bimbingan dan memberikan ilmu untuk kelancaran skripsi 6. Bapak Ir. Teguh Sasono, M.T. sebagai koordinator Sidang Skripsi Jurusan Teknik

PERNYATAAN KEASLIAN

Saya yang bertanda tangan dibawah ini menyatakan bahwa, skripsi ini merupakan karya saya sendiri (ASLI), dan isi dalam skripsi ini tidak terdapat karya yang pernah diajukan oleh orang lain untuk memperoleh gelar akademis di suatu Institusi Pendidikan, dan sepanjang sepengetahuan saya juga tidak terdapat karya atau pendapat yang pernah ditulis dan/atau diterbitkan oleh orang lain, kecuali yang secara tertulis diacu dalam naskah dan disebutkan dalam daftar pustaka

Bandung, Juli 2013

DAFTAR ISI COVER LEMBAR JUDUL .................................................................................................i LEMBAR PENGESAHAN................................................................................................. ii DAFTAR RIWAYAT HIDUP ........................................................................................... iii ABSTRAK ........................................................................................................................... iv KATA PENGANTAR ........................................................................................................ vi UCAPAN TERIMA KASIH ............................................................................................. vii PERNYATAAN KEASLIAN .......................................................................................... viii DAFTAR ISI ....................................................................................................................... ix DAFTAR GAMBAR .......................................................................................................... xi DAFTAR TABEL ..............................................................................................................xii DAFTAR LAMPIRAN .................................................................................................... xiii DAFTAR NOMENKLATUR .......................................................................................... xiv

BAB III ............................................................................................................................... 25

3.1 Penentuan Lintasan Penstock .................................................................................. 25 3.2 Penentuan Bahan Penstock ...................................................................................... 25 3.3 Penentuan Katup ...................................................................................................... 25 3.4 Diameter Penstock ................................................................................................... 26 3.5 Penentuan Tebal Penstock ....................................................................................... 26 3.6 Menghitung Kecepatan Aliran ................................................................................. 27 3.7 Rugi –  Rugi Pada Penstock . ..................................................................................... 27 3.8 Menghitung Head net  ............................................................................................... 29 3.9 Menentukan Surge Pressure.................................................................................... 29 3.10 Sambungan pada Penstock  ..................................................................................... 31 3.11 Perhitungan Anchor Block dan Slide Block  ............................................................ 31 3.12 Perhitungan Gaya yang Terjadi Anchor Block dan Slide Block  pada Penstock  ..... 32 3.12.1 Gaya pada Anchor Block 1 ................................................................................ 33 3.12.2 Gaya yang Terjadi pada Slide Block 1 .............................................................. 37

DAFTAR GAMBAR

Gambar 1.1 Diagram Alir Perancangan ................................................................................ 5 Gambar 2.1 Prinsip Kerja PLTM .......................................................................................... 7 Gambar 2.2 Komponen Penstock .......................................................................................... 8 Gambar 2.3 Sambungan Flanged ........................................................................................ 12 Gambar 2.4 Sambungan Spigot  dan Socket ......................................................................... 12 Gambar 2.5 Sambungan Mekanik ....................................................................................... 13 Gambar 2.6 Sambungan Las ................................................................................................ 13 Gambar 2.7 Katup ............................................................................................................... 15 Gambar 2.8 Diagram Moody untuk Faktor Friksi pada Pipa .............................................. 17 Gambar 2.9 Hubungan Viskositas Air dengan Suhu ........................................................... 17 Gambar 2.10 Rugi – rugi Turbulensi pada penstock ............................................................ 18 Gambar 2.11 Self-Berat Pada Bagian Penstock  Antara Dua Anchor Block  ........................ 20 Gambar 2.12 Gaya pada Slide Block ................................................................................... 21

DAFTAR TABEL

Tabel 1.1 Potensi Energi Terbarukan di Indonesia................................................................ 1 Tabel 2.1 Jenis Bahan ............................................................................................................ 9 Tabel 2.2 Karakteristik fisik bahan .................................................................................... 11 Tabel 2.3 Nilai Koefisien Roughness .................................................................................. 16 Tabel 3.1 Jarak Ekspansion Joint ........................................................................................ 31 Tabel 3.2 Data Gaya Proyeksi Sumbu x dan z Negatif ....................................................... 41 Tabel 3.3 Data Gaya Proyeksi Sumbu x dan z Positif ......................................................... 42 Tabel 4.1 Data Perancangan  penstock ................................................................................ 45

DAFTAR LAMPIRAN

Lampiran A Kondisi Daerah PLTM CIHERANG ........................................................ L-1 Lampiran B LAYOUT PENSTOCK  ............................................................................. L-16

DAFTAR NOMENKLATUR

A base

= Luas area base

a

= Kecepatan rambat gelombang

d

= Diameter

E

= Modulus young elastisitas

e

= Esentrisitis

F

= Gaya

f

= Bilangan friksi

FDC

= Flow diagram curve

g

= grafitasi

GGL

= Gaya gerak listrik

h

= ketinggian

L

= Panjang pipa

m

= Meter

m2

= Meter persegi

m3

= Meter kubik

m/s

= Meter per detik

m3/s

= Meter kubik per detik

m/s2

= Meter per detik kuadrat

MW

= Mega watt

 N

= Newton

 Nm

= Newton meter

 N/m2 = Newton per meter persegi P

= Daya

BAB I PENDAHULUAN 1.1

Latar Belakang

Era globalisasi banyak manusia yang membutuhkan energi listrik, karena semakin  berkembangnya teknologi khususnya peralatan elektronik yang membutuhkan energi listrik. Listrik dapat dihasilkan dari Gaya Gerak Listrik (GGL) yang ditimbulkan putaran generator. Generator diputarkan oleh penggerak berupa turbin, yang mengubah energi  potensial menjadi energi kinetik. Salah satu pembangkit listrik yang ramah lingkungan adalah PLTA, karena tidak menghasilkan limbah berbahaya bagi lingkungan di sekitar  pembangkit. PLTA adalah pembangkit listrik yang memanfaatkan energi air dan head (ketinggian). Skala kecil dari PLTA adalah PLTM kependekan dari Pembangkit Listrik Tenaga Mini Hidro. Upaya menghambat penurunan jumlah energi tak-terbarukan dengan memanfaatkan energi terbarukan salahsatunya adalah energi air untuk PLTM, berdasarkan Departemen

2

 pembawa) yang menuju ke  head pound

(bak penenang) kemudian masuk ke dalam

 penstock   (pipa pesat), setelah itu menggerakkan turbin yang dikopel dengan generator sehingga menghasilkan listrik, sedangkan air dari turbin dikeluarkan melalui tail race (saluran pembuangan) untuk dikembalikan ke sungai. Semakin menurunnya energi cadangan tak terbarukan maka dituntut untuk memanfaatkan energi terbarukan/ non fosil salah satunya potensi PLTM/PLTMH, dengan  potensi yang berlimpah maka dilakukan perancangan PLTM untuk menghambat  penurunan energi cadangan tak terbarukan. Pembahasan ditekankan pada perancangan  penstock.  Penstock   adalah pipa bertekanan dan mengarahkan aliran air langsung menuju turbin Pemilihan dan perancangan  penstock  yang optimal akan mendapatkan hasil yang optimun untuk memutarkan turbin sehingga dapat menekan biaya yang dipakai untuk modal pembuatan PLTM. 1.2 Tujuan

Tujuan penyusunan skripsi ini adalah melakukan perancangan  penstock pada PLTM

3

Parameter yang diperlukan dalam perancangan adalah penentuan panjang lintasan,  jumlah lintasan, diameter, tebal, antisipasi terjadi water hammer , jumlah bend   (belokan),  penentuan jumlah anchor  dan  support serta jaraknya. Hal yang harus diperhatikan pada sambungan dalam desain ini jenis sambungannya diantaranya  flange,  socket, sleeve type expansion joint, dan drain valve.  Joint   (sambungan) dipilih berdasarkan bahan  penstock yang digunakan. Pemilihan material perlu diperhatikan. 1.4 Batasan Masalah

Pada skripsi ini ada pembatasan masalah yaitu: 

Pada bidang sipil hanya dilakukan pemilihan komponennya.



Gaya tekanan yang terjadi pada penstock dibahas secara umum.



Sambungan dilakukan pemilihan yang paling optimal.



Metoda pengelasan sambungan tidak dilakukan.

1.5 Metodologi

Penyusunan Skripsi ini metodologi yang digunakan adalah sebagaimana dijelaskan

4

5.

Menentukan Jumlah Belokan Menentukan jumlah belokan dapat dilakukan dengan cara melihat bagaimana layout penstock  tersebut akan dirancang.

6.

Menentukan Panjang Penstock  Perhitungan panjang  penstock   yang diperoleh dari selisih elevasi intake dan outlet  penstock  maka diperoleh panjangnya dan jumlah belokan.

7.

Menentukan Diameter Penstock  Menentukan diameter membutuhkan data kecepatan aliran (V) dan debit desain (Qd) maka diperoleh diameter penstock - nya.

8.

Menentukan Tebal Penstock  Tebal  penstock   diperlukan daya hidro, effisiensi sambungan, diameter penstock, dan tegangan bahan penstock  dapat diperoleh tebal penstock  tersebut.

9.

Menghitung Rugi – Rugi Penstock  Menghitung rugi –   rugi yang terjadi pada penstock diantaranya rugi –   rugi gesekan akibat belokan dan sambungan, rugi –  rugi .

5

Pengambilan Data Potensi / Data Kriteria Desain

Penentuan Diameter

Menghitung V, Re No,

Cari friksi pada tabel moody

BAB II TINJAUAN PUSTAKA 2.1

Pembangkit Listrik Tenaga Minihidro (PLTM)

2.1.1 Definisi PLTM

Pembangkit Listrik Tenaga Minihidro (PLTM), adalah suatu pembangkit listrik skala kecil yang menggunakan tenaga air sebagai tenaga penggeraknya seperti, saluran irigasi, sungai atau air terjun alam dengan cara memanfaatkan tinggi terjunan (head ) dan  jumlah debit air.  Minihidro merupakan sebuah istilah yang terdiri dari kata mini yang  berarti kecil dan hidro yang berarti air. Secara teknis, PLTM memiliki tiga komponen utama yaitu air (sebagai sumber energi), turbin, dan generator. Minihidro mendapatkan energi dari aliran air yang memiliki perbedaan ketinggian tertentu. Pada dasarnya, minihidro memanfaatkan energi potensial jatuhan air (head ). Semakin tinggi jatuhan air maka semakin besar   energi potensial air yang dapat diubah menjadi energi listrik.  Disamping faktor  geografis (tata letak  sungai), tinggi jatuhan air

7

Pembangkit Listrik Tenaga Mini Hidro (PLTM) pada prinsipnya memanfaatkan beda ketinggian dan jumlah debit air per detik yang ada pada aliran air saluran irigasi, sungai atau air terjun. Aliran air ini akan memutar poros turbin sehingga menghasilkan energi mekanik. Energi ini selanjutnya menggerakkan generator dan menghasilkan listrik. Gambar 2.1 memperlihatkan prinsip kerja PLTM.

8

2.2

[2]

Penstock 

2.2.1 Pengertian Penstock 

[2]

Gambar 2.2 Komponen Penstock 

9

Tabel 2.1 Jenis Bahan

10

 pemakaiannya bisa mencapai 20 tahun. Sanbungan yang digunakan adalah  flanges,  pengelasan di lokasi, dan sambungan mekanik. mekanik. 

Unplasticized polyvinyl chloride (uPVC) Bahan uPVC jarang digunakan untuk pembangkit listrik tenaga air di dunia.

Harganya relatif mahal, memiliki diameter antara 25 mm sampai 500 mm, dan cocok untuk tekanan tinggi. Secara umum diameter luarnya konstan untuk range  pressure rating  menggunakan  menggunakan diameter yang ada di pasaran. Memiliki gaya gesek yang rendah tahan terhadap korosi, transportasi menuju lokasi mudah, namun umurnya pendek antara 5 sampai 10 tahun.  Penstock jenis  Penstock jenis rentan terhadap suhu tinggi ti nggi maka lebih le bih baik ditempatkan di dalam permukaan tanah karena agar terhindar dari panas matahari secara langsung. 

 High density pyethylene (HDPE) pyethylene (HDPE) HDPE adalah alternatif dari uPVC tetapi lebih mahal. Diameter yang tersedia

di pasaran mulai dari 25 mm sampai lebih dari 1 m. HDPE memiliki rugi gesekan

11

Tabel 2.2 Karakteristik fisik bahan

2.2.3

Sambungan Penstock

[2]

[2]

Sambungan pada  penstock  perlu dilakukan pipa yang digunakan merupakan gabungan dari beberapa pipa yang memiliki panjang disesuaikan kondisi di lokasi  perancangan. Hal yang perlu diperhatikan dalam pemilihan sambungan adalah

12

Gambar 2.3 Sambungan Flanged

2.

[2]

Sambungan s pigot dan socket Sambungan Spigot dan  socket secara umumnya terbuat dari kerah, biasanya digunkaan untuk meningkatkan diameter selama pembuatan. Sambungan s pigot dan socket   ini biasanya digunakan untuk material pipa jenis uPVC. Ada dua jenis

13

 bahannya berbeda. Contohnya sambungan antara baja dengan uPVC. Contoh gambar sambungan mekanik ada pada gambar 2.5 seperti di bawah ini.

Gambar 2.5 Sambungan Mekanik

4. Sambungan Las

[2]

14

5.  Expansion joint Pada penstock  umumnya akan terdapat perbedaan suhu. Perbedaan suhu yang dimana pada suatu saat terjadi perbuahan suhu pada  penstock .  Expansion joint  merupakan sambungan yang didesain karena akibat dari pemuaian karena  perubahan suhu yang ekstrim pada pipa. Sehingga terjadi perubahan panjang pada ujung-ujung pipa.  Expansion joint   biasanya diperhitungan di awal atau akhir sambungan dari  penstock . Tetapi expansion joint   juga bisa didesain di setiap atau sebelum anchor block . Berikut perhitungan dalam menentukan expansion joint seperti yang tertera pada persamaan (1). X = a (Thot –  Tcold) L [m]

(1)

Dimana: x = panjang expansion pipa (m) A = coefficient of expansion dapat dilihat pada tabel 2.1 (m/m ) L = panjang penstock  (m) Thot = Temperatur tertinggi pada pipa ( T

Te

ndah

da pi

(

15

Gambar 2.7 Katup 2.2.5

Perancangan Penstock 

[2]

16

[2]

3. Kecepatan Aliran Penstock 

Menentukan kecepatan aliran menggunakan persamaan (4) yang ada pada persamaan di  bawah ini. v= Dimana

(4)

: v = kecepatan aliran (m/s) d = diameter penstock (m)

Menghitung faktor friksi ini dibutuhkan data dengan melihat faktor friksi dari diagram moody pada gambar 2.9 dengan menentukan terlebih dulu nilai nilai roughness  dapat dilihat pada gambar 2.8 di bawah ini. Setelah mendapat nilai k maka dilanjutkan pada  perhitungan mencari nilai k/d dan Q/d agar dapat menemukan nilai friksi. Tabel 2.3 Nilai Koefisien Roughness

[2]

17

18

[2]

4. Menghitung hfriction

Menghitung h friktion dapat menggunakan persamaan (5) hfriction loss = hwall loss + hturb loss  Dimana

: hfriction loss

= rugi gesekan (m)

hwall loss

= rugi pada dinding penstock (m)

hturb loss

= rugi pada aliran turbulensi (m)

(5)

19

Rugi - rugi yang terjadi pada penstock  dapat dilihat pada gambar 2.10, meliputi rugi  pada jenis entrance  profile  yang dipilih, belokan, penyempitan pipa, dan katup yang dipilih. Persamaan (6) dan (7) memperlihatkan persamaan untuk menghitung losses di  beberapa tempat. hwall loss = Dimana

(6)

: Q = debit (m3/s) L = panjang penstock  (m) d = diameter (m) f = konstanta friksi (dari diagram moody) hturb loss =

Dimana

:v g

(K entrance + K  bend + K contraction 1 + ... + K valve )

= kecepatan aliran (m/s) = gaya gravitasi (m/s2)

(7)

20

Dimana

: SF = safety factor  t = ketebalan dinding penstock (m) S = kekuatan bahan (N/m 2) d = diameter (m) htotal = Rugi –  rugi total (m)

2.2.6

Suppots dan Anchors [4] 1. Pencangan slide dan anchor bl ock 

 Penstock harus tetap aman ketika diletakan di atas permukaan tanah.  penstock  berada pada posisi di bak penenang, air masuk ke dalam penstock . anchor blok   ditempatkan pada tikungan  penstock ,  slide block  berada pada antara sambungan penstock  untuk menahan kekuatan penstock  tersebut. Pada gambar 2.11 dapat dilihat gaya yang terjadi pada dua anchor block .

21

semakin besar gaya aksial dan semakin besar massa beton yang dibutuhkan. Gambar 2.12 memperlihatkan gaya yang menekan  penstock  pada slide block .

[4]

Gambar 2.12 Gaya pada Sli de Bl ock 

22



Kekuatan gaya horizontal pada penstock

Kekuatan gaya horizontal dapat dihitung menurut persamaan (14), (15) dan (16). Fpen

x= Fpen . sin

(14)

Ffriction X = Ffriction cos

(15)

F X = Fpen

(16)



x +Ffriction X

Kekuatan gaya vertikal pada penstock

Kekuatan gaya vertikal dapat dihitung menurut persamaan (17), (18) dan (19). Fpen

z= Fpen .. cos

(17)

Ffriction z = Ffriction cos

(18)

Fz = - Fpen

(19)



z + Ffriction z - W b 

Resultan dari gaya horizontal dan vertikal pada penstock 

23

[4]

Gambar 2.13 Gaya Anchor Bl ock   pada Penstock  

Gaya akibat berat beban air dan penstock 

24

A

B

Gambar 2.14 Gaya yang Bekerja A. Pada Lengkungan Hidrostatis. B. Oleh Momentum Linier 

[4]

Lengkungan yang diakibatkan oleh tekanan hidrostatis dihitung menurut

BAB III PERANCANGAN PENSTOCK  3.1 Penentuan Lintasan Penstock 

Gambar 3.1 Potongan Memanjang Lintasan Penstock 

Lintasan  Penstock ditentukan menggunakan satu lintasan kemudian di ujung lintasan yang akan masuk turbin bercabang menjadi dua. Hal tersebut dipilih karena untuk megoptimalkan lintasannya. Panjang lintasan mengikuti kontur pada peta topografi yang cenderung rata agar pada memudahkan saat pemasangan. Panjang

26

 berfungsi untuk mengatur jumlah air yang mengalir di  penstock dan berfungsi untuk menutup aliran air ketika akan dilakukan overhaul . [3]

3.4 Diameter Penstock 

Menentukan diameter  penstock dengan mengetahui terlebih dahulu Q d  yang telah ditentukan. Qd  tersebut sebesar 3,5 m 3/s. Diameter  penstock ditentukan menurut persamaan (2): Qd

= 3,5 m3/s

D

= 0,72 x Q d0,5 = 0,72 x 3,5 m 3/s = 1,34 m Diameter penstock dihitung menggunakan persamaan (2). Diameter

 penstock yang digunakan adalah 1,346 m. [2]

3.5 Penentuan Tebal Penstock 

Menentukan ketebalan batang penstock   menggunakan persamaan (3). Tebal

27

= 0,00462 m = 0,46 cm Bahan penstock   yang dipakai adalah baja (steel). Dari hasil perhitungan di atas maka diperoleh tebal  penstock

0,024 m. Tebal minimum yang dijinkan

adalah 0,00463 m. 3.6

Menghitung Kecepatan Aliran

[2]

Menghitung kecepatan aliran pada  penstock   menggunakan persamaan  berikut (4). Kecepatan aliran ini membutuhkan data debit dan diameter untuk mendapatkan nilai kecepatan aliran yang mengalir pada penstock. D

= 1,34 m

V

= = 2,45 m/s Setelah dilakukan perhitungan didapatkan ,maka kecepatan aliran yang

28

h wall loss

= = 4,87 m

Koefisien nilai Roughness untuk bahan  Mild Steel dari tabel adalah 0,15 dipilih pada keadaan normal umur bahan sekitar 5  –  15 tahun. Faktor friksi didapat dari grafik Moody pada gambar 2.9, mencari nilai k/D dan Q/D maka diperoleh nilai faktor friksi sebesar 0,038. Setelah dilakukan perhitungan maka nilai gesekan  pada dinding penstock  adalah 4,87 m. 

Menghitung rugi –  rugi gesekan pada belokan, katup, konstruksi dan saluran masuk

K enterance K bend 1 K bend 2 K bend 3 K bend 4 K contraction K valve

= = = = = =

0,2 0,01 0,02 0,185 0,36 0,35 0,1

 jumlah 1 1 1 1 1 1 1

total 0,2 0,01 0,02 0,185 0,36 0,35 0,1

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF