Lecturer is "Dr. Ir. Dirhamsyah. M.Sc"...
PENGANTAR KONTROL KEBISINGAN oleh Muhammad Dirhamsyah Jurusan Teknik Mesin Universitas Syiah Kuala 2008
Dasar Kontrol Kebisingan
Suara
Kebisingan
Terminologi Suara
Tekanan dan Energi Suara SPL = 20 log10 ( Prms/ Pref ), dB
SPW @ SWL = 10 log10 (W/Wref ), dB
Parameter Dasar Suara
Propagasi Suara
Tekanan Suara
Tekanan Suara
Tekanan Bunyi
Konversi Tekanan Bunyi (dB dan Pascal)
Aplikasi Tekanan Bunyi
dB dan Pascal
Persepsi Perubahan Peringkat Bunyi dalam dB
Persepsi dB dan Pascal secara grafik
Penggunaan tabel
Contoh sederhana
Jenis sumber suara
Anechoic dan Reverberant Enclosures
Ruang bertekanan (Pressure field)
Ruang Suara (Sound Field)
Indek Direktivitas (Directivity Index)
Penambahan Tekanan Suara di dinding
Dua sumber suara
Penambahan peringkat dB
Pengurangan Tingkat Kebisingan
Pengurangan Tingkat Kebisingan
Penambahan nilai dB
Kesimpulan • Tingkat tekanan suara dalam dB senilai 2 * 10‐5 Pascal
• Batasan kemampuan pendengara manusia sebesar 130dB
• Penambahan dan pengurangan nilai dB dapat menggunakan tabel atau rumus.
Analisa Frekuensi dan Panjang gelombang
Batasan Frekuensi dari beberapa sumber bunyi
Batasan Audibel (audible range)
Analisa Statistik
Analisa Statistik (2)
Panjang Gelombang
Panjang Gelombang dan Frekuensi
Difraksi Suara
Difraksi Suara
Refleksi Suara
Analisis Frekuensi
Bentuk gelombang dan frekuensi
Jenis suara dan sinyal kebisingan
Filter
Filter Bandpass dan Bandwidth
Jenis Filter dan skala frekuensi
Filter oktaf
Filter oktaf
1/1 dan 1/3
Spektogram
Persepsi Suara
Frekuensi Suara
Kawasan Audiotori
Persepsi suara
Kontur ~~ 40dB dan Beban‐A
Kontur ~~ untuk tone semula
Kurva Beban Frekuensi
Kalibrasi dan Pembebanan
Penggunaan Beban frekuensi
Analisis Serial
Analisis Paralel
Analyzer
Spektogram dan overall levels
(2)
Contoh analisis Wavelet (a) Time domain signal of two sine waves wave s with varying amplitude
(b) Fast Fourier transform of the signal
(c) Wavelet transform of the same signal
Kebisingan Trafik
Contoh Kebisingan Trafik Peringkat kebisingan trafik tergantung pada tiga faktor : (1)Volume trafik, (2)Kecepatan, (3)Jumlah kenderaan.
Katagori jalan Katagori jalan dan jenis dan jenis kenderaan
Aliran trafik dan peringkat suara
Aliran trafik dan aspek sosial
Akustik Bangunan
Sumber kebisingan Sumber kebisingan yang meningkat dalam bangunan: - Tetangga - Trafik - Industri Aplikasi akustik bangunan semakin meningkat dalam skop untuk mengatasi kontrol kebisingan dan gangguan bising dalam segala jenis bangunan.
Akustik bangunan Akustik bangunan – bangunan – merupakan fenomena akustik dengan ruang tertutup seperti halnya ruangan atau bangunan. Ganggunan akustik yang terjadi berupa
•Refleksi •Penyerapan •Waktu gema •Waktu peredaman dan lain‐lain.
Refleksi suara • Sound can be reflected in a similar way to light
•
angle of incidence of incidence = angle of reflection of reflection
• Reflecting object must be at least the same size as the wavelength
Refleksi Penundaan panjang • In larger halls, ‘ray tracing’ can identify problematic echoes
• Echo = a reflection which arrives more than 50 ms after the direct sound
• Reflections can be prevented by covering the surfaces concerned with absorbent material or by making them into diffusing surfaces by means of a of a convex shape.
Penyerapan suara Main types of absorbers: of absorbers: Porous materials • consist materials such as fiberboard, mineral wools, insulation blankets, etc. • convert sound energy into heat. • more efficient at high than low frequencies • can be used in the form of space of space absorbers • possible with the underside reflecting while the top is absorbent; can prevent long delayed sound at the same time, providing more reflection of sound of sound to certain parts of the of the audience.
Penyerapan Suara Membrane or panel absorbers
• good absorption characteristics in low frequency range (50 – (50 – 500 Hz)
• the approximate resonant frequency, f f = f = 60 / (md)1/2 Where m = mass of the of the panel (kg/m2) d = depth of the of the air space in m
Perilaku suara – suara – Penyerapan suara Helmholtz atau cavity resonators Container dengan leher kecil terbuka dan ikut bergerak oleh resonansi udara dalam cavity udara f =
dmana
cr
2 π
⎡ ⎤ 2 π ⎢ (2 l + π r )V ⎥ ⎣ ⎦
c = kecepatan suara di udara r = radius leher l = panjang leher V = volume cavity
V
l 2r
Waktu gema (Reverberation Time) Sabine’s formula T =
0 . 16 V A
Dimana T = waktu gema, detik V= volume ruang, m3 A= penyerapan ruang, m2 Dan 0.16 merupakan suatau empirik konstan, detik/m Waktu gema, T60 adalah lamanya suara hilang sebesar 60 dB(A).
Reverberation Time Sabine’s formula Jika luas permukaan = S, maka rata‐rata koefisien penyerapan (average absorption coefficient), ά ά = A S
Maka, T =
0 .16V S α
Penyerapan bunyi Pada banyak jenis menggunakan rumus, α
=
1 S
contoh
∑S
yang
digunakan
i α i
i
Jika permukaan ruang digunakan dengan contoh yang berbeda, maka, N
∑ α
=
S
i α i
i =1 N
∑ i =1
S
i
Material Penyerap Bunyi • Dua metoda untuk mengukur koefisien penyerapan : • Metoda ruang gema (Reverberation chamber) • Metoda tabung impedansi (Impedance tube) • Metoda Reverberation chamber (ISO R354‐1985, ASTM C423‐1984 and AS 1045‐1988) Koefisien
ruang, R =
S
α
1 − α
Teknik Pengujian Akustik Impedance Tube Karakteristik akustik dari panel diperoleh dengan menggunakan metoda impedance tube berdasarkan ISO 10534 (II).
Metoda Reverberation Chamber Sα =
55.25V ⎡ 1 c
(S '−S ) ⎤
⎢ − ⎥(m ) ⎣T 60 S '−T '60 ⎦ 2
S’ = Luas permukaan total termasuk luas sampel T’60= Waktu gema Reverberation tanpa sampel T60 = Waktu gema (Reverberation) (Reverberation) dengan sampel S = Luas permukaan sampel V = volume ruang α = Koefisien penyerapan Sabine (absorption
Metoda Reverberation Chamber
Pengukuran Reverberation Time Dalam ruang gema (reverberation room): Lp, dB 60 dB
T60
t
Pada ruang normal (dengan ‐ high background noise): Lp, dB
60 dB
Background noise
t T
Pengukuran Reverberation Time • •
Pengukuran dapat digunakan dengan metoda dibawah.
• •
Perekaman di konversikan ke pengukuran tekanan bunyi dalam dB.
Sebuah mikrofon dihubungkan ke frequency analyser frequency analyser yang terhubung pada perekaman suara (level recorder ). level recorder ). Peralatan berbasiskan microprocessor‐based modern dapat menghasilkan grafik yang dapat langsung mengukur waktu gema (reverberation time). Sound source Frequency analyser Level recorder microphone
Jenis Reverberation Time pada Ruang 3RD OCTAVE BANDWIDTH CENTRE FREQ. (Hz)
REVERBERATION TIME (s)
100
1.55
125
1.60
160
1.45
200
1.30
250
1.20
315
1.05
400
1.05
500
1.00
630
1.10
800
1.00
1000
0.90
1250
1.05
1600
1.05
2000
1.05
2500
1.00
3150
0.95
Bangunan Akustik Apa yang harus diukur? Suara latar
(Background Noise) Waktu gema
(Reverberation Time) Penyerapan Suara
(Sound Absorption) Isolasi suara
“Airborne” “Airborne” dan impak (airborne and Impact sound insulation)
Airborne dan Impact Indek Pengurangan Suara (Sound Reduction Index) atau kehilangan transmisi suara (Sound Transmission Loss) W4
Room 1 W1
W3 W2 Room 2 Dissipated as heat
Prinsip transmisi suara melalui dinding : W3 dan W4 merepresentasikan transmisi flanking sound ke komponen dari struktur; W3 yang selalunya di radiasikan ke ruang 2, W4 yang tidak termasuk.
Airborne dan Impact Sound insulation Indek Reduksi Suara (Sound Reduction Index) atau Kehilangan Transmisi suara (Sound Transmission Loss) Koefisien transmisi suara, τ τ
=
W 2 W 1
Indek reduksi suara, R
R = 10 log
1 τ
dB
Pengukuran Reduksi Suara • Metoda untuk mengukur insulasi dinyatakan secara standar nasional dan internasional. • Metoda yang umumnya digunakan untuk mencari insulasi suara airborne adalah metoda dua‐ruang (the two‐room method).
R = L1 − L 2 + 10 log
S A
dB
L1 = Peringkat tekanan suara (sound pressure level) pada sumber suara dalam ruang (dB) L2 = Peringkat tekanan suara pada ruang penerima (dB) S = Luas spesimen pengujian A = Luas penyerapan suara ekivalen
Methoda dua ruang – ruang – Uji Lab.
Membandingkan hasil dengan keperluan – keperluan – Isolasi suara Single Figure Indices • ISO 717‐1982 menggambarkan suatu metoda yang mempunyai gambaran tunggal dari airborne dan kurva insulasi impak suara yang di ukur berdasarkan ISO 140.
• Indek Reduksi Pembebanan Puncak suara “Weighted Apparent Sound Apparent Sound Reduction Reduction Index, R’ w
Membandingkan hasil dengan keperluan – keperluan – Isolasi suara • Weighted Normalized Weighted Normalized Impact Impact Sound Sound Pressure Pressure Level, L’ n,w
Survey Akustik Bangunan
Insulation – Insulation – Standar Akustik Bangunan Raw insulation, D
French standard NF NF S 31-057
Normalise Normalised d insulatio insulation, n, DnT Normalise Normalised d insulation insulation in dBA, dBA, DnAT Raw insulation D = L1-L2
International Standard ISO 140-4
Norm Normali alised sed acoust acoustic ic insulati insulation on Dn = Normalised Normalised acoustic acoustic insulation Dn,T= Dn,T= Weighted Weighted normalised normalised acoustic acoustic insulation Dn,w
International standard ISO 717-1
Weighted Weighted normalised normalised acoustic acoustic insulation Dn,T,w Sound reduction index R
International standard ISO 140-3 (NF EN 140-3)
Apparent sound reduction index R’
International standard ISO 140-4 (NF EN 140-4)
Weighted sound reduction index RW
International Standard ISO 717-1 (NF EN 717-1)
Apparent weighted sound reduction index R’w
Bunyi Impact Impact Impact normalised normalised sound pressure pressure level level LnT Impact Impact normali normalised sed sound pressure pressure level level in dBA LnAT
Impact Impact normalised normalised sound pressure pressure level level Ln Impact Impact normalised normalised sound pressure pressure level level L’n
French standard NF S 31057
International standard ISO 140-6 et ISO 140-7
Impact Impact standardised standardised sound sound pressure level L’nT
Impact normalised normalised weighted sound sound pressure level Ln,w Impact normalised normalised weighted sound sound pressure level L’n,w Impact standard weighted sound pressure level L’nT,w
International standard ISO 717-2
Kebisingan Peralatan Equipment noise normalised level LeT
French standard NF S 31-057
Absorption Absorption coefficient ∝s
International standard ISO 354 (NF EN 20354)
Weighted absorption index ∝w
International standard ISO 11654 (NF EN 11654)
APPLICATIONS OF BUILDING OF BUILDING ACOUSTICS
• Impact test • Glazing test • Absorption test
IMPACT TEST IMPACT TEST Tapping Machine
Chadwick Roof
Microphone Rotating Boom
Speaker
Overall Set‐up of the of the Impact Test
IMPACT TEST IMPACT TEST – – METHODOLOGY • Main purpose : to find a single‐number quantity used for defining the impact sound insulation of a of a roof structure roof structure as stipulated in ISO 717‐2 Standard Procedures.
• Weighted Normalised Weighted Normalised Impact Sound Impact Sound Pressure Pressure Level denoted by the symbol, L’n,w
CALIBRATION
BACKGROUND NOISE LEVEL MEASUREMENT
CALCULATION OF L’n,w
REVERBERATION TIME OF RECEIVING ROOM MEASUREMENT
SOUND PRESSURE LEVEL INSIDE THE TEST ROOM MEASUREMENT
IMPACT TEST IMPACT TEST ‐ RESULTS of interest • In general within the frequency range of interest (From 100Hz up to 3150Hz) the difference between the received sound pressure levels from the impact test and the background noise levels are above 20dB. Normal alis ised ed Impa Impact ct • The calculated Weighted Norm Sound Pressure Sound Pressure Level , L n′ ,W = 48dB.
GLAZING TEST 4.41m
5.30m 5.48m
RECEIVING ROOM
6.28m
Opening for Acoustic Testing 1m2
Acoustic Door
TRANSMITTING ROOM Microphone 6.5m 6.0m Speaker 5.5m
GLAZING TEST
TRANSMITTING ROOM
Glazing Test Sample
RECEIVING ROOM
Cross section of the of the acoustic test rooms
GLAZING TEST
Sample view from the transmitting room.
ABSORPTION TEST ABSORPTION TEST • Location : Acoustic Laboratory, UKM • Reverberation room capacity volume = 171 m3 : 10 m2 wall panel • Sample test
5.50 m
5.48m
4.41 m
6.28m 6. 32m 5.30 m
Opening for Acoustic Testing 1m2
4.58 m
5.33 m Acoustic Door
ABSORPTION TEST ABSORPTION TEST
microphone
speake r Test sample
Cross section of the of the reverberation room
ABSORPTION TEST ABSORPTION TEST
Reverberation room
ABSORPTION TEST ABSORPTION TEST ‐ RESULTS • For the wall panel sample, Alpha Sabine , α = 0.65
ABSORPTION TEST ABSORPTION TEST ‐ RESULTS
Korelasi dengan Vibrasi
Pengukuran Getaran Many installations in modern building, eg. Lifts and washing machine, produce both noise and vibration. Noise measurements must therefore be complemented by vibration measurements.
• Vibration Isolation Measurements
Pengukuran Getaran • Measuring the Loss Factor of a of a Partition the Loss Factor, η calculated from , f = f = centre frequency of the of the 1/3 octave band T = corresponding reverberation time
Rantai Pengukuran
Analisa Frekuensi
Analisa Frekuensi
Spektrum Frekuensi
Spektrum Frekuensi
Representasi Data
Skala Linear dan Logaritmik
Skala Linear dan Logaritmik
Skala Frekuensi Linear dan Logaritmik
Filter Bandpass dan Bandwidth
Filter Bandpass dan Bandwidth
Jenis Filter
Filter Bandwidth konstan
Filter Persentasi Bandwidth Konstan
Skala Frekuensi
Pemilihan Bandwidth
Analisa Frekuensi
Skala Amplitudo
Skala dB
Transmisi Getaran
Kondisi aktual getaran
Parameter Vibtrasi
Pemilihan parameter
Detektor / purata
Purata Waktu
Analisis sistem vs sinyal
Akselerometer
Verifikasi eksperimen
Pengujian‐pengujian
Pengujian‐pengujian
Pengujian‐pengujian
Pengujian‐pengujian
Pengujian‐pengujian
Pengujian‐pengujian
Pengujian‐pengujian
Pengujian‐pengujian
Pengujian‐pengujian
Pengujian‐pengujian
Pengujian‐pengujian
Pengujian‐pengujian
Pengujian‐pengujian
Bantalan (Bearing – (Bearing – outer)
Lingkungan
Melbourne Airport's Environmental Management System (EMS)
was accredited to world's best practice practice standard, ISO 14001 in in June 2004 - making it the first airport in Australia to receive this internationally-recognis internationally-recognised ed accreditation.
Airport Noise Management There are four main mechanisms that are used to manage and minimise the noise effects effects generated generated by aircraft aircraft approaching approaching or departing departing from Melbourne Airport. • Control of Airspace Airservices Australia is responsible for management and control of the flight paths used by aircraft approaching and departing from Melbourne Airport. • Monitoring of Noise Complaints Noise complaints are received by Airservices on its 24-hour number 1300-302240. • Noise Abatement Committee The Committee's role is to review the impact of aircraft noise exposure on the surrounding community and in a consultative manner, make recommendations to minimise minimise the effect of aircraft aircraft noise. noise. The Committee Committee meets on a quarterly quarterly basis. • Land use Controls The controls are mainly concerned with the development of residential land and are administered by the local council's statutory planning departments.
Trafik Jalan dan Rel
Trafik Udara
Studi
Pemantauan Kondisi Pemesinan
Pemantauan Kondisi Mesin • Sinyal kerusakan di tampilkan pada spektogram adalah implusif
• Prosedur perawatan perlu di
NC MillingMachine
laksanakan agar lebih efisien
CNC Lathe
Lathe Machine G e a r B o x
Small-Drilling Machine
Contoh analisis sinyal dengan gangguan impak (a) Terjadi impuls yang mengganggu sinyal sinus
(b) Hasil dengan Fast Fourier Transform
(c) Menggunakan wavelet transform
Evaluasi Performansi Mesin
Evaluasi
Experiment setup
Raw material Drilling operation
Drilling performance
Sumber bunyi pada kenderaan
Sistem Pemantauan Dini Tsunami
PETA RENCANA SISTEM INA‐BUOY PENGEMBANGAN & KEREKAYASAAN PRODUCTS
2006
2007
2008
2009
SURFACE BUOY
RE ENGINEERED
INDIGINEOUS
IMPROVED VEHICLE
NEW CONCEPT, MULTI PURPOSE
OCEAN BOTTOM UNIT
SIMPLE STRUCTURE
SIMPLE DESIGN, IMPROVE MATERIAL
NEW APPROACH TO HOUSE PAYLOAD AND DEPLOYMENT
NEW CONCEPT, MULTI PURPOSE SCENTIFIC PLATFORM
ACOUSTIC LINK
SINGLE CHANNEL OMNI DIRECTIONAL
DUAL CHANNEL, REPEATER LINK, DIRECTIONAL
DUAL CHANNEL MULTI ACCESS
FULL REDUNDANT, MULTI ACCESS, HI RELIABILITY LINK
SATELLITE LINK , WIRELESS LINK
SINGLE CHANNEL
TWO SYSTEM, HALF FULL REDUNDANT
ONE SYSTEM, FULL REDUNDANT , MOBILE
INTEGRATED SYSTEM, FULL REDUNDANT, HIGH MOBILITY
SENSORY SYSTEM & PROCESSING
PRESURE SENSOR SINGLE PROCESSING
MULTIPLE SENSORS DUAL PROCESSING
TSUNAMI AND OTHER SCIENTIFIC DUAL PROCESSING
INTELLIGENT SENSORY SYSTEM NETWORK, INTELLIGENT PROCESSING
READ DOWN STATION
SIMPLE RECEPTION & DISPLAY & MONITORING
MULTI DISPLAY , MULTI SERVERS, NETWORK READY
MULTI DISPLAY, SOFT SWITCHABLE MONITORING, NETWORK CAPABLE
INTERNATIONALLY CAPABLE MONITORING, FULL NETWORK CAPABLE DATA BUOY CENTER
DATA NETWORKING
NA
BPPT LAN, AUTHORIZE AND PUBLIC ACCESS
NATIONAL & REGIONAL NETWORK DATA POSTING AND ACCESS
INTERNATIONAL INTERNETWORKING, INDONESIA DATA BUOY CENTER
SYSTEM REQUIREMENTS SYSTEM REQUIREMENT
PERFORMANCE PARTICULARS
systems meet a number of data stream requirements that are essential to an operational tsunami forecast system:
Characteristic
Specification
Reliability and and data return ratio: Maximum de deployment de depth: Minimum deployment duration: Operating Condition Conditions: s:
Greater than 80% 6000 m Greater than 1 year Beaufort 9 (survive Beaufort 11) Greater than 2 years Greater than 4 yrs
1. Measurement: 2. Accuracy: 3. Sampling: 4. Processing: 5. Delivery:
tsunami amplitude time series 0.5 cm or less 1 min or less 2 min or less 5 min or less
Maintenance interval, buoy: Maintenance interval, tsunameter Sampling interval, internal record: 15 sec Sampling interval, event reports: 15 and 60 sec Sampling interval, tidal reports: 15 min Measurement sensitivity: Less than 1 mm in 6000 m; 2 10–7 Tsunami data report trigger Automatically by tsunami detection algorithm; on demand by warning center request Reporting delay: Less than 3 min Maximum status report interval: Less than 6 hrs
Surface Buoy, Generasi‐1 Krakatau INMARSAT SATCOM METEO SENSOR FLASH LAMP RADAR REFLECTOR INSTRUMENTATION BAY • ACOUSTIC MODEM • INMARSAT T‐BOX • PROCESSING UNIT • AWS DATA LOGGER • BATTERY ACOUSTIC TRANSDUCER
Ocean Bottom Unit (OBU) Acoustic modem Releaser Battery
CPU Pressure sensor
Nylon Rope 1”, 220 m long, Sachel 1 ”, ” Nylon Rope 1”, 220 m long, Sachel 1 ”, ” Nylon Rope 1”, 220 m long, Sachel 1 ”, ” Nylon Rope 1”, 220 m long, Sachel 1 ”, ” Nylon Rope 1”, 220 m long
MOORING CONFIGURATION INDONESIA TEWS
Surface Buoy
Ring ¾”, Sachel ¾ Ring ¾”, Sachel ¾ Ring ¾”, Sachel ¾ Ring ¾”, Sachel ¾
Sachel Sachel 1 ”, Ring Ring ¾”, Sachel Sachel ¾ ” Floaters Bentos, 4 balls @25kg buoyancy Sachel Sachel ¾ ”, Ring ¾”, ¾”, Sachel Sachel 1” Nylon Rope 1”, 220 220 m long, Sachel 1 ”, Ring ¾”, Sachel ¾ ” Nylon Rope 1”, 220 220 m long, Sachel 1 ”, Ring ¾”, Sachel ¾ ” Nylon Rope 1”, 170 m long
Sachel Sachel 1.5”, 1.5”, Ring ¾” PWB Chain ½”, 10m long Sachel Sachel Crosby Crosby ½” Swivel Eye + Eye 5/8”, 5 t Sachel Sachel Crosby Crosby ½”
Sachel Sachel 1 ”, Ring ¾”, ¾”, Sachel Sachel ¾ ”
Floaters Bentos, 8 balls @25kg buoyancy Steel Wire, ½”, 250 m long
Sachel Sachel ¾ ”, Ring Ring ¾”, ¾”, Sach Sachel el ¾ ” Swivel Eye+ Eye,
Sachel Sachel ½”, Ring Ring ¾”, Sachel Sachel ½”
Sachel Sachel ¾ ”, Ring Ring ¾”, ¾”, Sach Sachel el ¾ ”
Floaters Bentos, 8 balls @25kg buoyancy Sachel Sachel ½”, Ring Ring ¾”, Sachel Sachel ½” Steel Wire, ½”, 250 m long
5t
Acoustic Releaser MORS (40kg) Chain PWB, ¾”, 10 m long
Ring ¾”, Sachel ¾ ” Chain PWB, ¾”, 10 m long
Sachel Sachel ½”, Ring Ring ¾”, ¾”, Sachel Sachel ½” Floaters Bentos, 8 balls @25kg buoyancy
Parachute with 7m lines (opt) Sachel 1” Sinker ( Steel covered Concrete) 3,2 t
Sachel Sachel ½”, Ring Ring ¾”, ¾”, Sachel Sachel ½”
DATA LINK BUOY – BUOY – RDS, SAAT INI
Surface Buoy
INMARSAT LES
VPN or Internet
BPPT GD‐1 LT.20
Geodetic measurement: how it works
Gempabumi
zona zon a pat pata ahan
titi ti tik k kont k ontrol rol
Kerak Bumi Sebelum Regangan
Gaya Elastis Mencapai Limit
[email protected]
Pelepasan ‘stress’
Gelombang Sei Sei smik
Precise Real-Time GPS: Requirements l
Reliable communication channels (dedicated lines, spreadspectrum radio, wireless Internet, satellite, FM sub-carriers, …)
CONTINUOUS (PERMANENT) GPS Continuously recording GPS receivers permanently installed Give positions instantly Provide significantly more precise data: No errors in setting up equipment and reoccupying sites Very stable monuments Many more positions to constrain time series
Can observe transient signals such as due to earthquake
Referensi
BRUEL AND KJAER BA766611, BA766911 , BA767612, BV0052, BV0053, BV0054, BV0055, TP213, TP216
[email protected] INA‐BUOY SYSTEM, ENG. & DEV. – BPPT PROF JAILANI M NOOR HAND‐OUT