Pavement Design - II.pdf
Short Description
Download Pavement Design - II.pdf...
Description
Pavement Design Guest Lecturer Dr. Sirous Alavi, P.E. SIERRA TRANSPORTATION ENGINEERS, INC. 1005 Terminal Way, Suite 125 Reno, Nevada 89502
Topics
Introduction – Design Factors – Pavement Types
Fundamentals of Pavement Design – AASHTO – Asphalt Institute
FUNDEMENTALS
Types of Design
State-of-Practice State-of-the-Art
Empirical
MechanisticMechanistic Empirical
1
FUNDEMENTALS
Mechanistic-Empirical (M-E) Design
Primary advantage is the consideration of the state of stress
HMA Base Subbase Subgrade Soil
FUNDEMENTALS
Mechanistic-Empirical (M-E) Design
Establishes connection between distress and distress mechanism
FUNDEMENTALS
Mechanistic-Empirical (M-E) Design Accounts for new materials, traffic loads, and construction procedures All design features affecting pavement performance considered Relies more on fundamental engineering mechanics Primary focus on pavement performance
2
FUNDEMENTALS
Mechanistic-Empirical (M-E) Design
1993 AASHTO Guide Design Variables – – – – – –
Time Traffic Reliability Environment Serviceability Structural Number
FUNDEMENTALS
Mechanistic-Empirical (M-E) Design
FUNDEMENTALS
AASHTO Design Time
Constraints
– Performance Period Refers
to the time that an initial pavement structure will last before rehab
– Analysis Period Refers
to the period of time that any design strategy must cover
3
FUNDEMENTALS
AASHTO Design
Traffic – Equivalent Single Axle Load (ESAL) Converts
wheel loads of various magnitudes and repetitions to an equivalent number of "standard" or "equivalent" loads based on the amount of damage they do to the pavement
FUNDEMENTALS
AASHTO Design
Equivalent Axle Load Factor (EALF) – Damage per pass to a pavement by the axle in question relative to the damage per pass of a standard axle load – Depends of type of pavements, thickness or structural capacity and terminal conditions
FUNDEMENTALS
EALF Table for Flexible Pavement, Single Axle & pt of 2.5 Pavement Structural Number (SN) Axle Load (kips) 2 4 6 8 10 12 14 16
1
2
3
4
5
6
0.004 0.003 0.011 0.032 0.078 0.168 0.328 0.591
0.004 0.004 0.017 0.047 0.102 0.198 0.358 0.613
0.003 0.004 0.017 0.051 0.118 0.229 0.399 0.646
0.002 0.003 0.013 0.041 0.102 0.213 0.388 0.645
0.002 0.002 0.010 0.034 0.088 0.189 0.360 0.623
0.002 0.002 0.009 0.031 0.080 0.176 0.342 0.606
4
FUNDEMENTALS
AASHTO Design
m
i =1
ESAL = ∑ Fi ni
m = number of axle load groups Fi = the EALF for the ith axle load group ni = number of passes of the ith axle load group
FUNDEMENTALS
200X AASHTO Design Guide
No more ESALs Traffic input – Vehicle type (number of axles) – Axle weight Quantity and quality of raw traffic data similar to that used to compute ESALS – Consistent with FHWA Traffic Monitoring Guide
FUNDEMENTALS
Traffic Hierarchical Input Levels
Input Level
Input Values
Knowledge of Parameters
1
Site specific WIM & AVC
Good
2 3
Regional Default WIM & AVC, Vehicle Counts National Default WIM & AVC, Vehicle Counts
Modest Poor
5
200X AASHTO Design Guide Load Spectra – Axle weight frequencies for each common axle combination (e.g. single axle, tandem axle, tridem axle, quad axle).
800
700
600
Number of Axles
FUNDEMENTALS
500
400 300
200
100
0 0
5000
10000
15000
20000
25000
30000
35000
40000
45000
50000
55000
60000
65000
70000
75000
80000
Axle Load (lbs)
FUNDEMENTALS
AASHTO Design
Reliability - Incorporating some degree of certainty into the design process to ensure that various design alternatives will last the Analysis Period Recommended Level of Reliability Functional Classificaiton
Urban
Rural
Interstate Arterials Collectors Local
85 - 99.9 80 - 99 80 - 95 50 - 80
80 - 99.9 75 - 95 75 - 95 50 - 80
FUNDEMENTALS
AASHTO Design Environmental
– Temperature Stresses
induced by thermal action Changes in creep properties Effect of freezing and thawing of subgrade
– Rainfall Penetration
of surface water into underlying
materials
6
FUNDEMENTALS
AASHTO Design Serviceability
– Initial serviceability index is function of pavement type and construction quality – Terminal serviceability index is lowest index that will be tolerated before rehab, resurfacing, or reconstruction
SURFACE (AC)
AASHTO Design
BASE
FUNDEMENTALS
SUBBASE (OPTIONAL)
Structural Number
SUBGRADE
– mi = drainage coefficient for layer i – a1, a2, a3 = layer coefficient representative of surface, base, and subbase course, respectively – D1, D2, D3 = thickness representative of surface, base, and subbase course, respectively
SN = a1D1 + a2 D2 m2 + a3 D3 m3
FUNDEMENTALS
AASHTO Design Example Ridgeview
Dr. Rehabilitation
– 20-year flexible pavement analysis period – Low volume road with limited growth potential
7
NAM ED
M PLU
VIEW
COPPER POINT
R IDGE
AS
FUNDEMENTALS
C OPP
ER PO INT
COPPER POINT
GREEN RANCH
V GE IE W
D ME TA
ADO W HEIG
IN VIS
WINDY M
MOU N TA
NS CR EE
HTS
GREEN RA NCH
RID
NA UN
RIDGEVIEW
UM PL
W VIE GE
AS
RID COPPER
Traffic
– 72-hour vehicle counts were conducted directionally at three locations within the project boundaries using machine traffic counters – Manual classification counts were conducted at the machine count locations to “calibrate” the machine count data and categorize into the FHWA 13 vehicle classification scheme
Vehicle Classification
FUNDEMENTALS
AASHTO Design Example
8
Adjusted Traffic Volumes and Vehicle Classification Year 2005 Through 2010 Road Segment:
Ridgeview Drive @ Plumas Street Class 1
EB
Class 2
% Volume
WB
Volume
Class 3
Class 4
Class 5
Class 6 0.15
Class 9
Total
43.64
54.11
0.35
1.60
0.15
100
1132.30
1404.00
9.10
41.60
3.90
3.90
2594.8
43.29
54.11
0.70
1.60
0.15
0.15
100
1123.20
1404.00
18.20
41.60
3.90
3.90
2594.8
%
5189.6 Road Segment:
Class 1
FUNDEMENTALS
Total ADT
Ridgeview Drive @ Mountain Vista Way
EB
Class 2
%
43.44
Volume WB
Class 3
823.65
54.11 1026.00
Class 4
Class 5
0.45
1.60
8.55
30.40
Class 6 0.20
Class 9
Total
0.20
100
3.80
3.80
%
42.94
54.11
0.95
1.60
0.20
0.20
100
Volume
814.15
1026.00
18.05
30.40
3.80
3.80
1896.2
1896.2
3792.4
Total ADT
Adjusted Traffic Volumes and Vehicle Classification Year 2011 Through 2025 Road Segment:
Ridgeview Drive @ Plumas Street Class 1
EB
% Volume
WB
% Volume
Class 2
Class 3
Class 4
Class 5
43.94
54.11
0.35
1.60
1140.10
1404.00
9.10
41.60
43.59
54.11
0.70
1.60
1131.00
1404.00
18.20
41.60
Class 6
Class 9
0.00
0.00
0.00
0.00
Total 100 2594.8 100 2594.8 5189.6
Road Segment:
Total ADT
Ridgeview Drive @ Mountain Vista Way Class 1
EB WB
Class 2
Class 3
Class 4
Class 5
%
43.84
54.11
0.45
1.60
Volume
831.25
1026.00
8.55
30.40
%
43.34
54.11
0.95
1.60
Volume
821.75
1026.00
18.05
30.40
Class 6
Class 9
0.00
0.00
0.00
0.00
Total 100 1896.2 100 1896.2 3792.4
Total ADT
AASHTO Design Example FUNDEMENTALS
Compute ESALs using EALFs from AASHTO Tables in Appendix D Assumptions
– Typical axle weights for each vehicle class – SN of 3.0 – pt of 2.5
WB Daily ESALs
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
WB Yearly ESALs
Cumulative ESALs
Plumas
Mountain Vista
Plumas
Mountain Vista
Plumas
Mountain Vista
90 90 90 90 90 90 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75
81 81 81 81 81 81 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66
33,031 33,031 33,031 33,031 33,031 33,031 27,362 27,362 27,362 27,362 27,362 27,362 27,362 27,362 27,362 27,362 27,362 27,362 27,362 27,362 27,362
29,487 29,487 29,487 29,487 29,487 29,487 23,963 23,963 23,963 23,963 23,963 23,963 23,963 23,963 23,963 23,963 23,963 23,963 23,963 23,963 23,963
33,031 66,062 99,093 132,124 165,155 198,187 225,548 252,910 280,271 307,633 334,994 362,356 389,717 417,079 444,441 471,802 499,164 526,525 553,887 581,248 608,610
29,487 58,973 88,460 117,947 147,433 176,920 200,882 224,845 248,807 272,770 296,732 320,695 344,657 368,620 392,582 416,545 440,507 464,470 488,432 512,395 536,357
9
FUNDEMENTALS
AASHTO Design Example
Materials – R-value data was collected at five sample locations (8, 7, 10, 20, 8) – Resilient Modulus (MR) relationship
R-value ≤ 20 MR = 1000 + 555 x R-value (psi)
Parameter Design Life, years Traffic (ESALs), W18 Reliability, R (%)
Average 20 610,000 80%
Standard Deviation (New Construction), So
0.45
Subgrade R-value
10.60
Subgrade Resilient Modulus, MR (ksi)
6.9
Initial Serviceability, P0
4.2
Terminal Serviceability, Pt
2.5
Modulus of Elasticity for New AC (ksi)
350
Layer Coefficient for New Plant Mix Surface (AC), a1
0.39
Layer Coefficient for Gravel Base, a2
0.14
Layer Coefficient for Subbase (Borrow), a3
0.08
Drainage Coefficient for AC layer, m1
1.0
Drainage Coefficient for Base layer, m2
1.1
Drainage Coefficient for SB layer, m3
1.1
SN ≈ 3.1
10
AASHTO Design
SURFACE (AC) BASE
FUNDEMENTALS
SUBGRADE
Assume D values for surface and base – Asphalt is 4 inches – Base is 10 inches
Calculate SN - Is it acceptable?
SN = a1D1 + a2 D2 m2 SN = 0.39 × 4.0 in + 0.14 × 10 in × 1.1 SN = 3.1
Topics
Introduction – Design Factors – Pavement Types
Fundamentals of Pavement Design – AASHTO – Asphalt Institute
FUNDEMENTALS
Asphalt Institute (AI) Design
Determine minimum thickness of asphalt layer that will adequately withstand the stresses that develop for two strain criteria – Vertical compressive strain at surface of subgrade – Horizontal tensile strain at bottom of asphalt layer
11
Asphalt Institute (AI) Design FUNDEMENTALS
Wheel load
P0 P1
P1 SUBGRADE
Stress distribution within different layers of the pavement structure
General form of stress reduction
Asphalt Institute (AI) Design FUNDEMENTALS
Wheel load
SUBGRADE
Tension Compression
FUNDEMENTALS
Asphalt Institute (AI) Design
20% Fatigue
Design Criteria – Fatigue Nf
= allowable number of load repetitions = dynamic modulus ∈t = horizontal tensile strain at the bottom of the asphalt layer Assumes asphalt volume of 11% and air void volume of 5% |E*|
Nf = 0.0796(∈t)-3.291 |E*|-0.854
12
FUNDEMENTALS
Asphalt Institute (AI) Design
0.5 inch
Design Criteria – Permanent Deformation Nd
= allowable number of load repetitions = vertical compressive strain on the surface of the subgrade
∈c
Nd = 1.365 x 10-9 (∈c)-4.477
FUNDEMENTALS
Asphalt Institute (AI) Design
Five main steps 1. 2. 3. 4.
Select or determine input data Select surface and base materials Determine minimum thickness required Evaluate feasibility of staged construction and prepare plan, if necessary 5. Carry out economic analyses
NAM ED
M PLU
VIEW
COPPER POINT
R IDGE
AS
C OPP
ER PO INT
IE W
TA
ADO W HEIG
IN VIS
WINDY M
MOU N TA
NS CR EE
HTS
GREEN RA NCH
V GE
D ME
RIDGEVIEW
COPPER POINT
GREEN RANCH
RID
NA UN
FUNDEMENTALS
UM PL
W VIE GE
AS
RID COPPER
13
FUNDEMENTALS
Asphalt Institute (AI) Design Example Gross
Select or determine input data – Traffic Characteristics – ESALs similar to AASHTO
WB Daily ESALs
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Axle Load (kips) 1 2 4 6 8 10 12 14 16
WB Yearly ESALs
Single Tandem Tridem Axles Axles Axles 0.00002 0.00018 0.00209 0.0003 0.01043 0.001 0.00030 0.0343 0.003 0.001 0.0877 0.007 0.002 0.189 0.014 0.003 0.360 0.027 0.006 0.623 0.047 0.011
Cumulative ESALs
Plumas 2
Plumas 2
Plumas 2
118 118 118 118 118 118 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72
43,110 43,110 43,110 43,110 43,110 43,110 26,197 26,197 26,197 26,197 26,197 26,197 26,197 26,197 26,197 26,197 26,197 26,197 26,197 26,197 26,197
43,110 86,221 129,331 172,441 215,552 258,662 284,859 311,057 337,254 363,451 389,649 415,846 442,043 468,241 494,438 520,635 546,833 573,030 599,227 625,425 651,622
FUNDEMENTALS
Asphalt Institute (AI) Design Example Select
or determine input data
– R-value data was collected at five sample locations (8, 7, 10, 20, 8) – Resilient Modulus (MR) relationship MR = 1155 + 555 x R-value (psi)
14
FUNDEMENTALS
Asphalt Institute (AI) Design Example Select
surface and base materials
– Asphalt concrete surface or emulsified asphalt surface – Asphalt concrete base, emulsified asphalt base, or untreated aggregate base
FUNDEMENTALS
Asphalt Institute (AI) Design Example
Determine minimum thickness required – Obtained by computer program – Entering the appropriate table or chart Assume
10 inch untreated aggregate base MR of 7 psi Design ESAL of 655,000 Subgrade
6.5 inch
15
FUNDEMENTALS
Asphalt Institute (AI) Design Example Evaluate
feasibility of staged construction and prepare plan, if necessary – Used when adequate funds are not available to construct the pavement to the “required” depth
FUNDEMENTALS
Asphalt Institute (AI) Design Example Carry
out economic analyses
– Evaluate alternative designs based on the type of pavement, type of materials used, whether or not staged construction is used, etc.
FUNDEMENTALS
Questions
16
View more...
Comments