2.7.Producto de Binomios con un Término Común: a) (x+a)(x+b) = x2+(a+b)x+ab (Identidad de Stevin)
II. PRODUCTOS NOTABLES
1. DEFINICIÓN:
b)
Son los resultados de la multiplicación que se obtienen de polinomios, que tienen características especiales y necesidad de realizar la multiplicación.
2. PRINCIPALES PRODUCTOS NOTABLES: 2.1.Binomio al Cuadrado: a) (a b)2 = a2 2ab+b2 Nota: (a-b) 2 = (b-a) 2
b)
(a+b)2 + (a-b)2 = 2(a 2+b2)
c)
(a+b)2 - (a-b)2 = 4ab
(x2+xy+y 2)(x2-xy+y2) = x4+x2y2+y4
c) (x2+x+1)(x2-x+1) = x4+x2+1 2.9.Identidad de Lagrange:
2.1.1.Corolario : "Identidades de Legendre" b)
(x+a)(x+b)(x+c) = x3+ (a + b + c)x 2 +(ab + bc + ca)x + abc
a)
(a2+b2)(x2+y2) = (ax+by) 2+(ay-bx) 2
b) (a2+b2+c2)(x2+y2+z2) = (ax+by+cz)2 +(ay-bx)2+(bz-cy)2+(cx-az) 2 2.10.Identidades Adicionales:
2.2.Diferencia de Cuadrados: a)
2
(a+b)(a-b) = a2-b2
2.3.Trinomio al Cuadrado: a)
(a+b+c)2 = a2+b2+c2+2ab+2bc+2ca
2.4.Binomio al Cubo: a)
3
3
2
2
3
3
(a + b) = a +3a b+3ab +b = a +b + 3ab(a + b)
b) c)
(a+b+c) 3 = a3+b3+c3+3a2(b+c)+3b2(c+a)+ 3c2(a+b)+6abc También: (a + b + c) 3 = a3+b3+c3 + 3(a + b)(b + c)(c + a) (a + b + c) 3 = 3(a+b+c) (a 2+b2+c2) - 2(a3+b3+c3) + 6abc
d)
(a + b + c) 3 = a3+b3+c3 + 3(a + b + c) (ab + bc + ca) - 3abc
Thank you for interesting in our services. We are a non-profit group that run this website to share documents. We need your help to maintenance this website.