Parra Sebastian PensCrit U1

December 30, 2023 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Parra Sebastian PensCrit U1...

Description

Datos del alumno

Fecha

Nombres: Alexander Sebastián Apellidos: Parra Jaramillo

17/11/2021

Desarrollo de la Actividad Resolución de la actividad formato que debe ser subido a la plataforma AVAC en PDF. Ejercicios con cálculo de enunciados a) _1. A → (B ∧ C) _2. B → (D ∧ E) _3. X → Y _4. Y → (Z ∧ W)

˫ (A → E) ∧ (X → W)

5. A 6. (B ∧ C)

MP 1, 5

7. B

Simp1 6

8. (D ∧ E)

MP 2,7

9. E

Simp2 8

10. (A → E)

TD 5,9

11. X 12. Y

MP 3,11

13. (Z ∧ W)

MP 12, 4

14. W

Simp2 13

15. X → W

TD 11, 14

16. (A → E) ∧ (X → W)

Prod 6, 3.

b) _1. A → [B → (C → D)] _2. X → (Y ∧ W) _3. X _4. X → (Z ∧ T)

˫ B → {[C →(A → D)] ∧ (Y ∧ Z)}

5. B 6. C 7. A 8. B → (C → D)

MP 1,7

9. C → D

MP 8,5

10. D

MP 9,6

11. A → D

TD 7, 10

12. C → (A → D)

TD 6,11

13. Y ∧ W

MP 2,3

14. Y

Simp1 13

15. Z ∧ T

MP 4,3

16. Z

Simp1 15

17. Y ∧ Z

Prod 14, 16

18. [C →(A → D)] ∧ (Y ∧ Z) Prod 12, 17 19. ˫ B → {[C →(A → D)] ∧ (Y ∧ Z)} TD 5,18

Universidad Politécnica Salesiana

2

c) _1. (Y ∧ Z) → D _2. Y ∧ Z _3. (Y ∧ Z) → T _4. W → Z

˫ W → [Z ∧ (D ∧ T)]

5. D

MP 2,1

6. T

MP 2,3

7. (D ∧ T)

Prod 5, 6

8. W 9. Z

MP 4,8

10. [Z ∧ (D ∧ T)]

Prod 9, 7

11. W → [Z ∧ (D ∧ T)]

TD 8, 10

d) _1. E → (F ∧ G) _2. (C ∧ A) → B _3. F → [(D ∧ C) ∧ A]

˫ E → (D ∧ B)

4. E 5. (F ∧ G)

MP 4,1

6. F

Simp1 5

7. (D ∧ C) ∧ A

MP 3,6

8. D ∧ A

Simp1 7

9. D

Simp1 8

10. C ∧ A

Simp2 7

11. B

MP 10, 2

12. (D ∧ B)

Prod 9, 11

13. E → (D ∧ B)

TD 4, 12.

Universidad Politécnica Salesiana

3

e) _1. (¬ J v ¬ ¬ J) → (I ∧ H) _2. ¬ (¬ J v ¬ ¬ J) → (I ∧ K) _3. (¬ J v ¬ ¬ J) ∧ ¬ (¬ J v ¬ ¬ J)

˫ I → (H ∧ K)

4. I 5. (¬ J v ¬ ¬ J)

Simp1 3

6. (I ∧ H)

MP 5, 1

7. H

Simp2 6

8. ¬ (¬ J v ¬ ¬ J)

Simp2 3

9. (I ∧ K)

MP 8, 2

10. K

Simp2 9

11. (H ∧ K)

Prod 7, 10

12. I → (H ∧ K) TD 4,11

Universidad Politécnica Salesiana

4

f) _1. U ∧ P _2. W ∧ O _3. X v Y

˫{Z v A → [(M v N) → (U ∧ W)]} ∧ [(X v Y) ∧ (O ∧ P)]

4. Z v A 5. M v N 6. U

Simp1 1

7. W

Simp1 2

8. U ∧ W

Prod 6,7

9. (M v N) → (U ∧ W)

TD 5,8

10. {Z v A → [(M v N) → (U ∧ W)]} TD 4,9 11. O

Simp2 2

12. P

Simp2 1

13. (O ∧ P) Prod 11,12 14. [(X v Y) ∧ (O ∧ P)]

Prod 3,13

15. {Z v A → [(M v N) → (U ∧ W)]} ∧ [(X v Y) ∧ (O ∧ P)] Prod 10,14

Universidad Politécnica Salesiana

5

g) _1. P → Q _2. Q → (R ∧ T) _3. (R ∧ T) → S _4. S → (T v S) _5. Q

˫ [(P ∧ R) → [(T v S)] ∧ Q]

6. P ∧ R 7. R ∧ T MP 5, 2 8. S

MP 7, 3

9. T v S

MP 8, 4

10. [(T v S)] ∧ Q Prod 9,5 11. [(P ∧ R) → [(T v S)] ∧ Q] TD 10, 6

h) ˫ {(T ∧ M) → [¬ S → (P → R)]} ∧ Q

_1. R v S _2. T → [P → (¬ Q v R)] ∧ S

_3. [P → (¬ Q v R) ∧ S] → {(R v S) → [¬ S → (P → R)]} _4. Q 5. T ∧ M 6. T

Simp1 5

7. [P → (¬ Q v R)] ∧ S

MP 6,2

8. (R v S) → [¬ S → (P → R)] MP 3,7 9. [¬ S → (P → R)]

MP 1,8

10. (T ∧ M) → [¬ S → (P → R)]

TD 5,9

11. {(T ∧ M) → [¬ S → (P → R)]} ∧ Q Prod 10,4

Universidad Politécnica Salesiana

6

i) _1. P → (Q ∧ R) _2. Q → [(S v T) → (R ∧ S)] _3. [(S v T) → (R ∧ S)] → W ˫ (P ∧ S) → (W ∧ S)

_ 4. S 5. P ∧ S 6. P

Simp1 5

7. Q ∧ R

MP 1,6

8. Q

Simp 1 7

9. (S v T) → (R ∧ S) 10. W

MP 2,3 MP 3,9

11. (W ∧ S)

Prod 10,4

12. (P ∧ S) → (W ∧ S) TD 5,11

j) _1. (B ∧ C) → (A ∧ C) _2. (C ∧ B) → (R ∧ S)

˫ C → [B → (A ∧ S)]

3. C 4. B 5. B ∧ C

Prod 4,3

6. A ∧ C

MP 1,5

7. A

Simp1 6

8. C ∧ B

Prod 3, 4

9. R ∧ S

MP 2,8

10. S

Simp2 9

11. A ∧ S

Prod 7,10

12. B → (A ∧ S) TD 4,11 13. C → [B → (A ∧ S)] TD 3,12

Universidad Politécnica Salesiana

7

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF