Parra Sebastian PensCrit U1
December 30, 2023 | Author: Anonymous | Category: N/A
Short Description
Download Parra Sebastian PensCrit U1...
Description
Datos del alumno
Fecha
Nombres: Alexander Sebastián Apellidos: Parra Jaramillo
17/11/2021
Desarrollo de la Actividad Resolución de la actividad formato que debe ser subido a la plataforma AVAC en PDF. Ejercicios con cálculo de enunciados a) _1. A → (B ∧ C) _2. B → (D ∧ E) _3. X → Y _4. Y → (Z ∧ W)
˫ (A → E) ∧ (X → W)
5. A 6. (B ∧ C)
MP 1, 5
7. B
Simp1 6
8. (D ∧ E)
MP 2,7
9. E
Simp2 8
10. (A → E)
TD 5,9
11. X 12. Y
MP 3,11
13. (Z ∧ W)
MP 12, 4
14. W
Simp2 13
15. X → W
TD 11, 14
16. (A → E) ∧ (X → W)
Prod 6, 3.
b) _1. A → [B → (C → D)] _2. X → (Y ∧ W) _3. X _4. X → (Z ∧ T)
˫ B → {[C →(A → D)] ∧ (Y ∧ Z)}
5. B 6. C 7. A 8. B → (C → D)
MP 1,7
9. C → D
MP 8,5
10. D
MP 9,6
11. A → D
TD 7, 10
12. C → (A → D)
TD 6,11
13. Y ∧ W
MP 2,3
14. Y
Simp1 13
15. Z ∧ T
MP 4,3
16. Z
Simp1 15
17. Y ∧ Z
Prod 14, 16
18. [C →(A → D)] ∧ (Y ∧ Z) Prod 12, 17 19. ˫ B → {[C →(A → D)] ∧ (Y ∧ Z)} TD 5,18
Universidad Politécnica Salesiana
2
c) _1. (Y ∧ Z) → D _2. Y ∧ Z _3. (Y ∧ Z) → T _4. W → Z
˫ W → [Z ∧ (D ∧ T)]
5. D
MP 2,1
6. T
MP 2,3
7. (D ∧ T)
Prod 5, 6
8. W 9. Z
MP 4,8
10. [Z ∧ (D ∧ T)]
Prod 9, 7
11. W → [Z ∧ (D ∧ T)]
TD 8, 10
d) _1. E → (F ∧ G) _2. (C ∧ A) → B _3. F → [(D ∧ C) ∧ A]
˫ E → (D ∧ B)
4. E 5. (F ∧ G)
MP 4,1
6. F
Simp1 5
7. (D ∧ C) ∧ A
MP 3,6
8. D ∧ A
Simp1 7
9. D
Simp1 8
10. C ∧ A
Simp2 7
11. B
MP 10, 2
12. (D ∧ B)
Prod 9, 11
13. E → (D ∧ B)
TD 4, 12.
Universidad Politécnica Salesiana
3
e) _1. (¬ J v ¬ ¬ J) → (I ∧ H) _2. ¬ (¬ J v ¬ ¬ J) → (I ∧ K) _3. (¬ J v ¬ ¬ J) ∧ ¬ (¬ J v ¬ ¬ J)
˫ I → (H ∧ K)
4. I 5. (¬ J v ¬ ¬ J)
Simp1 3
6. (I ∧ H)
MP 5, 1
7. H
Simp2 6
8. ¬ (¬ J v ¬ ¬ J)
Simp2 3
9. (I ∧ K)
MP 8, 2
10. K
Simp2 9
11. (H ∧ K)
Prod 7, 10
12. I → (H ∧ K) TD 4,11
Universidad Politécnica Salesiana
4
f) _1. U ∧ P _2. W ∧ O _3. X v Y
˫{Z v A → [(M v N) → (U ∧ W)]} ∧ [(X v Y) ∧ (O ∧ P)]
4. Z v A 5. M v N 6. U
Simp1 1
7. W
Simp1 2
8. U ∧ W
Prod 6,7
9. (M v N) → (U ∧ W)
TD 5,8
10. {Z v A → [(M v N) → (U ∧ W)]} TD 4,9 11. O
Simp2 2
12. P
Simp2 1
13. (O ∧ P) Prod 11,12 14. [(X v Y) ∧ (O ∧ P)]
Prod 3,13
15. {Z v A → [(M v N) → (U ∧ W)]} ∧ [(X v Y) ∧ (O ∧ P)] Prod 10,14
Universidad Politécnica Salesiana
5
g) _1. P → Q _2. Q → (R ∧ T) _3. (R ∧ T) → S _4. S → (T v S) _5. Q
˫ [(P ∧ R) → [(T v S)] ∧ Q]
6. P ∧ R 7. R ∧ T MP 5, 2 8. S
MP 7, 3
9. T v S
MP 8, 4
10. [(T v S)] ∧ Q Prod 9,5 11. [(P ∧ R) → [(T v S)] ∧ Q] TD 10, 6
h) ˫ {(T ∧ M) → [¬ S → (P → R)]} ∧ Q
_1. R v S _2. T → [P → (¬ Q v R)] ∧ S
_3. [P → (¬ Q v R) ∧ S] → {(R v S) → [¬ S → (P → R)]} _4. Q 5. T ∧ M 6. T
Simp1 5
7. [P → (¬ Q v R)] ∧ S
MP 6,2
8. (R v S) → [¬ S → (P → R)] MP 3,7 9. [¬ S → (P → R)]
MP 1,8
10. (T ∧ M) → [¬ S → (P → R)]
TD 5,9
11. {(T ∧ M) → [¬ S → (P → R)]} ∧ Q Prod 10,4
Universidad Politécnica Salesiana
6
i) _1. P → (Q ∧ R) _2. Q → [(S v T) → (R ∧ S)] _3. [(S v T) → (R ∧ S)] → W ˫ (P ∧ S) → (W ∧ S)
_ 4. S 5. P ∧ S 6. P
Simp1 5
7. Q ∧ R
MP 1,6
8. Q
Simp 1 7
9. (S v T) → (R ∧ S) 10. W
MP 2,3 MP 3,9
11. (W ∧ S)
Prod 10,4
12. (P ∧ S) → (W ∧ S) TD 5,11
j) _1. (B ∧ C) → (A ∧ C) _2. (C ∧ B) → (R ∧ S)
˫ C → [B → (A ∧ S)]
3. C 4. B 5. B ∧ C
Prod 4,3
6. A ∧ C
MP 1,5
7. A
Simp1 6
8. C ∧ B
Prod 3, 4
9. R ∧ S
MP 2,8
10. S
Simp2 9
11. A ∧ S
Prod 7,10
12. B → (A ∧ S) TD 4,11 13. C → [B → (A ∧ S)] TD 3,12
Universidad Politécnica Salesiana
7
View more...
Comments