PANDUAN PRAKTIKUM FORAMINIFERA.pdf
March 19, 2019 | Author: Diasdo Arga Dayen Siadari | Category: N/A
Short Description
Download PANDUAN PRAKTIKUM FORAMINIFERA.pdf...
Description
(gambar mofifikasi dari http://www.ucmp.berkeley.edu/fosrec/)
Oleh
KHOIRIL ANWAR MARYUNANI
1
DAFTAR ISI
1. Sampling 2. Sampel 3. Metoda Preparasi 4. Peralatan Praktikum 5. Glossary 6. Morfologi Foraminifera 7. Kunci Identifikasi Genus dan Species Plangton Umur Plistosen - Resen 8. Kunci Identifikasi Genus dan Species Plangton Umur Kenozoikum 9. Kunci Identifikasi Genus dan Species Plangton Umur Mesozoikum 10. Kisaran Umur Beberapa Marker Plangton Plangton 11. Kunci Identifikasi Genus Bentonik 12. Diskripsi Beberapa Genus Foraminifera Plangton 13. Diskripsi Beberapa Genus Foraminifera Bentonik yang Kosmopolitan di Endapan Neogen 14. Foraminifera Besar 15. Kisaran Umur Beberapa Marker Foraminifera Foraminifera Besar 16. Kunci Identifikasi Genus Kelompok Fusulinid. 17 Penyajian Data 18. Interpretasi Umur 19. Interpretasi Lingkungan Pengendapan 21. Non-Foraminifera 22. Accessory Mineral Accessory Mineral
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
2
PANDUAN PRAKTIKUM MIKROFOSIL FORAMINIFERA
Panduan praktikum ini merupakan penjelasan singkat tentang parameter-parameter yang digunakan untuk mengidentifikasi/mengklasifikasi atau mendeskripsi genus atau species foraminifera serta pedoman dalam menginterpretasi umur dan lingkungan pengendapan berdasarkan foraminifera.
ampling ng 1. S ampli Sistematika pengambilan sampel untuk analisa fosil foraminifera f oraminifera secara umum ada dua cara yaitu : a. spot sampling spot sampling ; b. sistematic sampling sistematic sampling . Sample bisa berasal dari permukaan (surface outcrop) atau dari hasil pemboran.
ample 2. S ample Ada empat macam sample yang dikenal yaitu: - Outcrop (sample lapangan) - Dicth Cutting Sidewall Core (SWC) - Sidewall Core - Core Masalah dalam interpretasi dapat disebabkan adanya fosil yang tidak in situ bisa karena reworked (rombakan) atau displace/contaminant . Beberapa hal yang dapat menyebabkan displace/contaminant . kontaminasi adalah: a. caving: yaitu material yang berasal dari lapisan yang lebih tinggi dalam suatu sumur pemboran, material tersebut dapat dikenali dari ciri litologi yang sama yang telah terlihat diatasnya dalam satu sumur. b. Recirculation: recirculation ini terjadi akibat adanya material/microfossil dari batuan yang telah dibor yang kemudian ikut masuk kembali ke sumur bersama aliran lumpur pemboran dan kemudian berkontaminasi berkontaminasi dengan dengan sampel sampel yang ada. c. Lost circulation material : kontaminasi berasal dari material pengisi rongga sumur pada waktu terjadi lost circulation d. Cement: semen untuk casing juga dapat mengandung foram yang dapat mengakibatkan kontaminasi e. Drilling mud Dari empat macam sjenis sampel dicth cutting merupakan sampel yang mempunyai karakter yang berbeda (banyak mengandung contaminat) sehingga berbeda pula dalam interpretasinya. Sampel dari outcrop, swc atau core akan memberikan gambaran lebih baik mengenai assosiasi assosiasi fosil yang sebenarnya (in situ) dibanding ditch cutting. Jenis litologi juga harus diperhatikan dalam interpretasi, misal batupasir dilihat dari mekanisme sedimentasinya jenis batuan ini merupakan hasil tranportasi, sehingga fosil yang berasosiasi dengan batupasir harus dilihat dengaan hati-hati. 3. Metoda Preparasi
The techniques used to prepare and concentrate samples for examination vary according to rock type (composition and grain size), how hard or resistant the sediment or rock is, how abundant the foraminifera are, and how they are preserved within the sediment matrix. The discussions that follow focus on sediment types that can be disaggregated in order to free the foraminiferal tests. This would include sands, silts and clays, and the t he rock types Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
3
produced when these sediments are hardened (sandstones, siltstones and shales, respectively). For the hard limestone usually can be examination using thin section. Foraminifera can be recovered from bulk sediment samples, although their presence or absence in any given sample often cannot be established until after processing. The sampling strategy is simply to collect bags of sediments/sedimentary sediments/sedimentary rocks that can later be broken down and processed for foraminifera. Another approach is to process sediment contained within larger fossils that one might m ight collect. For example, the fossil shells of marine snails and clams are often filled with the same sediment that surrounds them. Processing these sediment fillings may yield foraminifera. Processing samples in the laboratory will require a source of running water, a sieve, a funnel and some filter paper, and perhaps detergents or chemicals to help disaggregate the sediments. Precautionary Note: Make sure that labeling is carefully and accurately transcribed at every step. A mislabeled sample has little, if any, scientific value.
a. Pencucian (Washing)
The object of all techniques described below is to isolate microfossils, in this case foraminifera, from the sediment grains that surround them.Unconsolidated sediment and some soft rocks will break down after soaking soak ing in water for a few f ew hours, whereas harder rocks may first require crushing and then boiling. The rule of thumb here is to utilize the simplest and easiest technique that will provide the desired results. If simple soaking is all that is required to disaggregate the sediment, then forego more involved techniques. Regardless of which technique you utilize, initially breaking the sediment or rock into fragments several mm in maximum dimension, or slightly larger, will speed the process. Simple Soaking — If your sample is composed of unconsolidated sediment or sedimentary
rock that can be easily disaggregated, simple soaking may be all that is required. Soaking in distilled water is most desirable, but using a dilute Calgon solution often helps to diaggregate fine sediments (muds). Calgon can be purchased in the laundry detergent section of most grocery stores. This can be done in a large beaker or any other clean glass container that is available. Experiment to see how long any given sample needs to be soaked. Once the muds have been dispersed, the sample can be washed through a sieve (a stainless steel U. S. Standard Sieve No. 230 with mesh openings of 63 microns is recommended). Gently agitate your water/sediment mixture, introduce it gradually onto the sieve, and wash under a gentle stream of water. Most professionals recommend distilled water, but tap water may be used at this stage. The muds will pass through the sieve and be discarded. Do not do this at a standard sink that is not equipped with a sediment trap. If you do, you will have a clogged sink line in very short order. If you do not have a sink with a sediment trap, do this outdoors or use a large bucket to t o catch what passes through the sieve. You can then dump contents of the bucket outside. What remains on the sieve is a concentration of sand-sized material, including any foraminifera that are in the sample. Rinse this material into filter paper placed within a funnel, allow the sample to drain, and then air dry in place safe from contamination and breezes. When dry, the grains should not adhere to one another. If they do, some mud still remains and the soaking/sieving procedure should be repeated. When satisfactorily clean, the dried sample should be stored in a properly labeled vial until ready for microscopic examination. Don't get in a hurry during the sample processing phase. A bit of extra time invested in properly cleaning your samples will save time and frustration when you examine them under the microscope.
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
4
Hydrogen Peroxide (H2O2) Method — If your sample is more resistant, additional
treatments may be required to breakit down. Soaking and, if necessary, boiling in a dilute solution of hydrogen peroxide is an effective means of breaking down such samples (kadar peroksida yang digunakan jangan lebih dari 15 persen). The steps in the H2O2 method are: 1) air-dry sample for several days or oven-dry sample for 24 hours at about 45°C; 2) place sample in 500-ml or 1000-ml pyrex beaker; 3) add fifteen percent hydrogen peroxide solution (volume of solution should be 2 to 3 times that of sample being processed); 4) gently agitate and let soak for 24 hours at room temperature or in oven at about 45°C (stir occasionally and keep covered to prevent contamination); 5) heat solution containing sample for 15 to 20 minutes, stirring frequently and taking care that the solution does not boil over; 6) wash sample over No. 230 U. S. Standard Sieve as described earlier; 7) if sample is not disaggregated, transfer it back into beaker and repeat steps 3 through 6; 8) wash sample over No. 18 U.S. Standard Sieve (1-mm openings) and No. 230 U.S. Standard Sieve, trapping coarser material on the No. 18 sieve and the sand fraction containing foraminifera on the No. 230 sieve (a coarse screen of the proper mesh size, available at any hardware store, can substitute for the No. 18 sieve); 9) dry and examine any material retained on the No. 18 sieve (not likely to be forams but may include other fossils of interest); 10) transfer sample retained on No. 230 sieve to filter paper; 11) air-dry or oven-dry sample at 45°C; 12) transfer dried material to labeled vial for storage. Other Techniques — Literature on the foraminifera describes other methods for
disaggregating sediment samples. A product called Quaternary O, a highly active but low sudsing detergent, was widely used for many years (e.g., Snyder et al., 1983). Although it is no longer available, a product called Miramine is a suitable and inexpensive substitute. It is available from the Miranol Chemical Company, 68 Culver Road, Dayton, NJ 08810. The methodology for using surfactants such as Quaternary O or Miramine is exactly like that desribed above for the use of hydrogen peroxide. Simply use the appropriately diluted detergent solution in place of the H2O2 solution. Another technique for additional cleaning involves use of a sodium pyrophosphate or a sodium metaphosphate solution (e.g., Snyder and Waters, 1984). After an int ial soaking (in distilled water or a dilute Calgon solution), the sand-sized residue trapped on the No. 230 sieve is placed in 0.1 M solution (five grams of chemical to one liter of distilled water) and gently agitated for 20 to 30 minutes. This process effectively removes persistent clay-sized particles that may partially obscure important features of the test. Finally, some of the older literature, not cited here because the techniques may be extremely hazardous, advocates the use of much harsher chemicals, including kerosene, gasoline, Varsol (similar to white gas or mineral spirits), and concentrated H2O2. Use of these methods is not recommended because they can be dangerous, both to the preparator and the environment. CONCENTRATING THE TESTS OF FORAMINIFERA
Foraminiferal tests may be rare compared to nonbiogenic sediment particles. If foraminifera are reasonably abundant, the best procedure is simple microscopic examination of the processed sample in order to find them. However, there may be instances where the time required to examine the sample in this manner is prohibitive. Then it may be desirable to Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
5
float the foraminifera in order to separate them from other sediment grains. The only reason this works is because foraminifera, with their hollow chambers, have an effective density much less than solid sediment grains of comparable size. If the foraminifera are filled with sediment or secondary mineral material, they will not float. Soap Float — One of the simplest ways to concentrate foraminiferal tests is to employ a
soap float. Here the detergent is not of the low sudsing variety (such as Quaternary O), but rather a standard detergent or soap that produces a sudsy froth. The processed sample is added in small increments to a solution of soap and distilled water. With frequent agitation, the foraminifera become suspended in the surface froth while solid sediment particles such as quartz grains sink to the bottom of the container. The froth can be periodically decanted onto a No. 230 sieve and washed in a gentle stream of water to eliminate the suds. What remains will be a concentration of foraminiferal tests, perhaps with some very fine sands of nonbiogenic origin. This residue can be dried and examined under the microscope. Other techniques can provide an even cleaner separation, but many involve the use of chemicals that are extremely hazardous. For example, bromoform and carbon tetrachloride have been widely used to concentrate foraminiferal tests by f loating. However, both are carcinogenic and must be used under a fume hood. The fumes are toxic and the chemicals can be absorbed through the skin. Consequently, use of these chemicals to concentrate foram tests is not recommended. The use of another, safer chemical to accomplish the same sort of separation is described below. Flotation Using Sodium Polytungstate — Sodium polytungstate [also known as sodium
metatungstate: Na(H2W12O40)] is a non-toxic, high-density agent that is ecologically safe, easy to use, and recoverable so that it may be re-used several times. It has a density of 3.1 g/ml, which can be reduced to any desired lesser density simply by adding distilled water that is heated above 20°C. Although calcite has a density of 2.7 g/ml, air is usually trapped within the foraminiferal tests making them more bouyant than quartz (density = 2.65 g/ml). For best results, the sodium polytungstate solution should be diluted until a piece of gypsum (density = 2.32 g/ml) floats and a piece of orthoclase (density = 2.57 g/ml) sinks. If the gypsum and orthoclase sink, the liquid can be boiled off to increase the density. Sodium polytungstate is available as a salt (in powder form) from GEOLIQUIDS, Inc., 15 E. Palatine Rd., Suite 109, Prospect Heights, IL 60070 and can be ordered by calling 1- 800827-2411. The cost is about $90.00/lb. EXAMINING AND PICKING FORAMINIFERA
Processed samples, once dried, can be stored indefinitely in l abeled vials until one desires to examine them. The sample is then sprinkled sparsely across a picking tray and examined under a binocular microscope. Brass picking trays with a grid of rectanglar subdivisions, all of equal size, are typically used by professionals. The surface of the tray is a dull black (to minimize reflection) and the grid lines may be white or gold. Sources for these trays are very difficult to find, but less sophisticated trays serve nicely. Any shallow plastic tray measuring a few inches per side will suffice. If it is clear or highly lustrous, simply cut a piece of black construction paper or cardboard to fit in the bottom of the tray. This will provide a background that will not strain your eyes, and it provides a nice contrast to the foraminifera, which are typically white. Any binocular microscope with reasonably good optics and the power to magnify 30 to 40 times will be adequate for the study of foraminifera. Of course, scopes with better optics and magnifications up to 100 times are helpful. Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
6
Individual foraminiferal specimens encountered while examining samples strewn across the picking tray can be picked and mounted for permanent reference. A recessed area in an 18-ply cardboard slide provides a black background that can be coated with a watersoluble glue (e.g., Tragacanth). The cardboard slides will also need glass cover slides and 18 ply aluminum holders. Any foram specimens encountered on the picking tray can be captured using the wetted tip of an artist's brush (buy size 000, sable hair). Simply dip the tip of the brush in water, touch it to the specimen you desire to pick, and transfer the specimen to the glued slide. The glue, being water soluble, will then dry and secure the foram to the slide. At any time, wetting the specimen will release the glue so that the specimen may be turned and viewed from different perspectives. A metal clip holds a glass cover slide over the cardboard micropaleontology slide to protect specimens during prolonged storage. Using these slides, you can build a reference collection of foraminifera to share with students. You need to pick a set number of forams from the tray. In scientific studies 300 specimens (if the number of preserved foram are avaliable) are usually picked. There is nothing magic in this number. It is an arbitrary stopping point above which additional rare species are encountered more and more infrequently. Make sure that you pick a representative suite of specimens. That is, do not pick only large specimens, or only small ones, or only pretty ones. The best way to do this is to mark your picking tray with a numbered grid. Then use a random numbers table to select a square. Pick all the specimens from that square and then select a second square. Continue this process until your target number is reached and the specimens have been transferred to a gum tragacanth-coated cardboard slide. b. Sayatan tipis Sayatan tipis umumnya ditujukan untuk pengamatan foram besar. Sayatan tersebut dapat berasal dari sayatan batuan ataupun individu foram besar. Untuk batuan yang sangat kompak (indurated) biasanya juga diamati dengan membuat sayatan tipis. Ada beberapa cara untuk membuat sayatan pada individu foram besar: b.1 sayatan pada satu sisi Fosil foram besar kita ambil dan kita tempelkan pada slide kaca dengan penggunakan kanada balsam. Atur posisi fosil sesuasi dengan keinginan kita (sayatan horisontal, vertikal atau obliq). Dengan menggunakan slide kaca yang salah satu sisi permukaanya sudah dikasarkan, kita gosok sisi fosil tersebut pelan-pelan. Pada waktu menggosok. amati dibawah mikroskop yang reflected light sambil sekali-seklai kaca penggosoknya diberi air. Penggosokan (mengampelas) dilakukan sampai terlihat/ memotong kamar embrionik. b.2 sayatan pada 2 sisi Lakukan tahapan pada b.1. Kemudian lepaskan fosil tersebut dari slide kaca, dan kemudian posisinya dibalik (permukaan yang sudah digosok, kita letakkan pada slide kaca), gunakan kanada balsam untuk menempelkanya. Kemudian gosok kembali sambil diamati dibawah mikroskop refleted light. Hentikan menggosok bila sudah diperoleh ketebalan yang diinginkan (sekitar 0,3 mm). Pengamatan sampel seperti ini harus menggunakan mikroskop yang transmited light. 4. Peralatan Praktikum:
- Mikroskop (reflected dan/atau transmited lights) + lampunya. Mikroskop jenis reflected light digunakan untuk mengamati sampel hasil pencucian, sedang yang transmited light untuk pengamatan sampel dalam bentuk sayatan tipis. Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
7
- Kuas kecil dan besar - Pewarna - Tray dengan dasar warna hitam dan bergaris (kotak) - Slides (bisa lubang 1, 2, 3, 4 atau yang bernomor) - Kertas dan pinsil - micro-spliter Catatan
Untuk mengambil (picking) dan menempelkan pada slide jangan memakai lem, tetapi dengan cara membasahi kuas dengan ludah (dengan cara ujung kuas dikulum dalam mulut). Kalau menggunakan lem akan susah untuk membolak-balik fosil bila sudah kering (fosil akan pecah dan lubang2 akan tertutup, sedangkan air tidak akan menempelkan fosil dengan kuat (mudah lepas)). Penggunaan jarum akan membuat fosil pecah atau loncat. Selama membolak-balik fosil gunakan kuas yang sudah dibasahi supaya fosil tidak loncat dan tektur dinding kelihatan. Pewarna digunakan untuk melihat tektur dinding atau lubang apertur.
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
8
5. GLOSSARY Aff. (affinis): bentuk species ini dekat/mirip dengan species tertentu Aperture (apertur): lobang bukaan atau bukaan-bukaan dari kamar dalam test sampai
bagian luar - jenis: a. primary(utama): lobang bukaan utama, biasanya terletak dibagian luar dari
kamar akhir dari test. b. seconder(kedua): bukaan tambahan pada kamar utama, posisi bisa areal, sutural atau peripheral c. accesory(tambahan): bukaan yang tidak berhubungan langsung dengan kamar utama, tetapi kemenerusan dari bawah atau melalui struktur accesory misal: tegila, bullae - posisi : a. equatorial : simetri, tepat diatas tepi peripheral dari putaran awal test planispiral
atau hampir planispiral. b. interomarginal: bukaan pada bagian dasar test pada tepi kamar akhir, sepanjang sutura akhir; pada cangkang yang terputar posisinya bisa umbilical, extraumbilical atau equatorial c. marginal: bukaan yang letaknya dibagian ujung atau tepi d. umbilical: pada bagian umbilical e. extraumbilical: bukaan pada kamar akhir suatu test yang tidak berhubungan dengan umbilicus, umumnya disepanjang sutura antara umbilicus dan peripheri. f. sutural: bukan pada sepanjang sutura g. terminal: dibagian akhir suatu test h. areal: tersebar pada kamar akhir i. basal: pada bagian dasar kamar Alar prolongation: winglike extension of umbilico-lateral portions of involute chambers on lateral surfaces of previous whorls in lenticular tests. May be meandering Bladed : struktur yang tercompres/tertekan secara lateral Bilamellar wall: in perforate foraminifera a chamber wall formed primarily of two mineralized layers (outer and inner lamellae) on both sides of a primary organic sheet. See also lamellar wall; outer lamella; inner lamella; median layer; primary organic membrane or sheet Biserial : mempunyai kamar-kamar yang tersusun dalam dua baris Biform : tersusun oleh dua macan susunan kamar = dari uniserial menjadi biserial; triserial kemudian uniserial dll. Bulla : dari bahasa latin untuk buble atau blister; merupakan material tambahan pada kamar-kamar yang terputar normal. bisa berada pada umbilical, sutural atau areal. Carina : keel atau flange : suatu dinding kamar yang perforate dan menebal seperti punggungan, hadir pada peripheri dari test/cangkang Cancellate: mempunyai permukaan seperti sarang lebah cf. (confer): tidak pasti apakah bentuk2 ini termasuk dalam species tertentu tetapi dapat disamakan dengan species tersebut Clavate : bentuk yang memanjang, kadang inflated (menggelembung) di bagian ujung, punya suatu bentuk gada Cortex : sebuah lapisan dari ectosome yang terkeraskkan oleh cangkang yang beda, berasal dari bahan organik atau mineral atau keduanya Evolute : kamar-kamarnya tidak saling memeluk (kamar-kamar pada putaran berikutnya menempel diatas putaran sebelumnya) Enrolled biserial: suatu putaran planispiral yang tersusun oleh kamar-kamar yang biserial. Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
9
Flange : platelike marginal extention along chambers (misal pada Sphaeroidinella) atau
batas apertur yang tinggi karena pembentukan apertural lip (misal pada Hantkenina) Flap : suatu dinding kamar yang tak berpori yang merupakan perpanjangan atau tambahan kamar, terletak diluar dari struktur yang ada dan berada diatas atau sepanjang apertur utama Flush : bercampur, bentuk suatu permukaan yang menerus Globular: bentuk yang membundar Hemispherical: inflated pada satu sisi, sisi yang berlawanan datar Hispid : ditutupi oleh spine (duri) yang halus, pendek seperti rambut Infralaminal : bukaan sepanjang tepi dari struktur accesory (misal: bulla) Involute : overlap yang sangat kuat, putaran kamar berikutnya seluruhnya melingkkupi putaran sebelumnya) Keel : bagian dari peripheri dinding kamar yang menebal seperti punggungan dan tidak berpori Lamellar wall: test-wall built of layers of calcite or aragonite formed at consecutive instars and covering exposed surfaces of previously formed test. Wall generally possessing true pores. Most lamellar genera are bilamellar and some primarily multilamellar Limbate : menunjuk pada batas atau tepi kamar yang menebal, umumnya pada suture, bisa juga suatu tinggian Lip : batas yang tinggi/menebal dari apertur, bisa hanya pada satu sisi apertur ataupun mengelilinginya Lobate : suatu bentuk yang arcuate Ovate : bentuk seperti telur bila dipotong secara vertical Planispiral: terputar pada satu bidang datar Pustule : tonjolan-tonjolan kecil, mempunyai pusat cekungan akibat duri-duri yang menyatu Pseudocarina (pseudo keel): bagian perpheri dari dinding kamar yang berlobang-lobang, menebal seperti punggunagan Reticulate: seperti jaring, menunjuk pada ornamen berupa punggungan ( ridge) pada suatu permukaan cangkang Robus : kokoh, kuat Rugose : ornamentasi kasar yang tak beraturan, bisa berupa punggungan Sensu lato: dalam arti luas, menunjuk pada nama taxon dalam arti luas. Sensu stricto: dalam arti sempit Spinose : permukaan cangkanya mempunyai duri-duri halus yang memanjang Spiral side (dorsal): bagian sisi evolute dari suatu test yang terputar trochospiral Stellate : berbentuk seperti bintang Streptospiral: suatu perubahan dari putaran trochospiral dimana bidang coiling selalu berganti. (terputar seperti putaran benang bola) Sutura : garis yang menghubungkan dua kamar atau antara dua putaran Test : shell (cangkang) atau tulang penutup, bisa berupa sisa-sia buangan, gelatin, chitinous, dinding yang padat, gampingan, aglutinant, silicieoous, atau kombinasi dua atau lebih dari bahan diatas Taxa : bentuk jamak dari taxon Tegillum: suatu penutup bidang umbilcal pada cangkang planktonik foraminifera (seperti pada Globotruncana), teridiri dari suatu pemanjangan kamar (seperti suatu lip yang memanjang/menerussampai umbilicus) yang menutupi seluruh apertur utama, sepanjang tepinya bisa jadi mempunyai lobang bukaan yang kecil-kecil. Triform : tersusun oleh tiga macan susunan kamar = awal triserial kemudian biserial selanjutnya menjadi uniserial, dll. Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
10
Triserial : kamar-kamarnya tersusun dalam tiga baris Tumid : lebarnya lebih dari setengah diameter Umbilical side (ventral): bagian sisi involute dari suatu test yang terputar trochospiral,
punya umbilicus Umbilicus: ruang yang dibentuk oleh tepi bagian dalam dinding umbilical daari kamar-kamar dalam satu putaran yang sama Uniform : satu jenis susunan kamar = biserial atau uniserial atau yang lain Uniserial : kamar-kamarnya tersusun dalam satu baris,
6. Morfologi Foraminifera Test (Shell)/Cangkang Foraminifera
Test atau cangkang foraminifera bisa terdiri dari sebuah kamar atau beberapa kamar yang berukuran umumnya kurang dari 1 mm (kecuali foraminifera dari beberapa kelompok Rotaliina dan Fusuliina) dan masing-masing kamar terhubungkan oleh sebuah bukaan (foramen) atau beberapa bukaan (foramina). Batas antar kamar disebut sutura dan mempunyai satu atau lebih lobang bukaan yang di sebut apertur. Foramina sering kali termodifikasi dan berbeda dengan apertur Berikut ini beberapa hal penting mengenai morfology test foraminifera. istilah-istilah bisa dilihat di glossary. 1. The basic building block of foraminifera tests consists of a cavity with a surrounding wall called a chamber . 2. Although a few species consist of only a single chamber, most species are multichambered. 3. The simplest multi-chambered arrangement is a single linear series forming a uniserial test. Internally the chambers are separated by walls called septa. Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
11
4. Externally a line or junction forms where the septa meet the chamber walls. This external line formed between two chambers is called a suture. 5. In addition to a uniserial arrangement, biserial and triserial chamber arrangements are common. 6. Instead of forming a straight series of chambers, some foraminifera coil. Each volution in a coil (through 360 degrees) is called a whorl. 7. If the test coils in a single plane (that is, the chambers are centered on the plane), the coil is called planispiral. Because of the bilateral symmetry, both sides of the test will appear identical. 8. If the test coils in a spire, like a snail, the coil is called trochospiral. A raised area in the center of a coil is called an umbo and a depression, an umbilicus. A test in which earlier chambers become enveloped by later ones is called involute. One in which chambers from a previous whorl are visible is called evolute. In many trochospiral forms the spiral side is evolute and the umbilical side is involute. Some foraminifera add their chambers in several planes. 9. A common arrangement in which five chambers are visible is called quinqueloculine. 10. Some Major evolutionary trends in coiling include Triserial to biserial to uniserial. However, some lineages have reversable trends (e.g. Unilocular to multichambered to unilocular) 6.1 Struktur dan komposisi:
Penyususun cangkang mempunyai beberapa macam struktur dan komposisi, secara umum sebagai berikut (Gambar 1): A. Organic (dimiliki oleh Suborder Allogromiina): umumnya merupakan dinding yang tidak rigid yang terbuat dari bahan-bahan protein atau pseudochitin yang umumnya disebut tectin. Dinding berkomposisi organic ini umumnya mudah hancur dan jarang menjadi fosil. Foraminifera dengan cangkang berkomposisi organik banyak ditemukan pada lingkungan air tawar (fresh water foraminifera). Contoh: Allogromia, Neogullmia B. Gampingan (Calcareous): Dinding gampingan ini umumnnya terdiri dari kristal-kristal kalsit dan aragonit, mempunyai berbagai susunan/struktur yang berbeda satu sama lain, antara lain: - porcelin ( dimiliki oleh Suboder Miliolina): di mikroskop yang reflected: milky while (seperti porselen Cina) di mikroskop yang transmited: amber colour (light brown) Contoh: Quinqueloculina, Spiroloculina, Pyrgo. - hyaline (dimiliki oleh i.e. Suboder Rotaliina): di mikroskop yang reflected: glassy di mikroskop yang transmited: grey to clear (tergantung jenis hyaline yang mana) ada beberapa jenis dinding hyalin: 1. hyaline radial; -contoh: plangtonik (Globigerinida); Nodosariida 2. hyaline obliqe 3. hyaline intermediate; - contoh: Cibicides refulgens 4. hyaline compound; - contoh: Cibicides lobatulus, Heterolepa floridanus, Lepidocyclina, Miogypsina Dinding yang terdiri dari kristal-kristal aragonit misalnya Hoeglundina
- microgranular(dimiliki oleh i.e.Suboder Fusulinina): di mikroskop yang reflected: opak (brown to grey) di mikroskop yang transmited: dark Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
12
Contoh: Fusulinid, Ammonia, Pseudorotalia, Paleotextularia C. Agglutinan/Arenaceous(dimiliki oleh Suborder Texulariina) : penampakan luarnya (tektur) terlihat seperti batupasir, dinding tersebut merupakan kumpulan bahan-bahan organic dan mineral yang tersemenkan oleh semen organic, kalsit atau ferric oxide. Contoh: Ammobaculites, Textularia, Bathysiphon, Haplophragmoides, Trochammina
Gambar 1 Jenis-jenis dinding foraminifera (Brasier, 1980) 6.2 Perkembangan kamar dan test Test bisa terdiri dari Unilocular (Gambar 2): terdiri dari satu kamar dan Multilocular : terdiri
dari dua atau lebih kamar. Pada susunan kamar yang multilocular, kamar-kamar bisa tersusun secara uniserial, biserial dan triserial atau gabungan dari dari susunan diatas, i.e: uniform (misal. keseluruhan test tersusun dari kamr yang biserial), biform (misal: dari uniserial menjadi biserial), triform (misal: bagian bawah triserial kemudian menjadi biserial dan yang terakhir uniserial). Dinding dari jenis hyaline dapat terdiri dari satu atau beberapa lapis, macamnya (Gambar 3): non-laminar (= non-lamellar, meskipun sebenarnya istilah ini kurang tepat) : bila kamar berikutnya (kamar baru) langsung nempel diatas kamar sebelumnya (tidak ada dinding kamar yang dilingkupi dengan dinding kamar sebelumnya) multilaminar bila dinding masing-masing kamar mempunyai beberapa lapisan, bisa berupa: monolamelar: masing-masing kamar terdiri dari satu lapisan Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
13
bilamelar: masing-masing dinding kamar mempunyai konstruksi dasar yang terdiri dari
dua lapisan Penting untuk diperhatikan adalah jumlah kamar, terutama jumlah kamar pada putaran terakhir, bila kamar-kamarnya terputar. 6.3 Arsitektur dan bentuk kamar
Susunan dan/atau putaran kamar-kamar pada foraminifera sangat bervasiasi dapat berupa: Untuk test yang unilocular: globular, tubular/branching, globular/tubular, planispiral, zigzag, irregular, sac-shape, radiate, glomospirral Untuk test yang multilocular: rectilinear, arcuate, uniserial, biserial, triserial, planispiral (evolute, involute), trochospiral streptospiral, putaran milioline (quinqueloculine: 144 o, biloculine: 180o , triloculine: 120o), polymorphine, anular discoidal, anular complex. (Gambar 4)
(Brasier, 1980)
(Brasier, 1980) Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
14
gross shape (profil):
Profil test foraminifera bisa dideskripsi secara umum, atau dilihat dari salah satu sisi, misal dari periheral (samping), dorsal (sisi spiral) atau ventral (sisi umbilicus). Bentuk profil test (cangkang) tersebut antara lain (Gambar 5, 6): planoconvex (spiroconvex dan umbilicoconvex), biconvex/lenticular, globular, spherical, stellate, discoidal, fusiform, trihedral, palmate (i.e. Frondicularia), sagitate (ie. Bolivina) , flabiliform (i.e. Pavonina), dll. shapes of chamber (bentuk kamar):
globular, ovoid, crescentic, clavate, digitata, apiculate, wedge-shape conical
Gambar 4 perkembangan test yang multilocular (Brasier, 1980)
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
15
Gambar 5 Susunan kamar-kamar pada foraminifera (Loeblich & Tappan, 1964)
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
16
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
17
Gambar 6 Bentuk-bentuk test foraminifera(Loeblich & Tappan, 1964)
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
18
6.4 Apertur:
Apertur merupakan suatu lubang bukaan pada cangkang foraminifera, bukaan ini merupakan tempat dimana tubuh protoplasm berhubungan/mempunyai akses kebagian exterior (Gambar 7,8,9,10 &11). jenis: primer, sekunder, aksesori dan modifikasinya jumlah: single , multiple posisi: interomarginal, marginal, umbilical, extraumbilical, sutural, terminal, areal, basal, peripheral. bentuk: slit atau loop-like, low arch, hig arch, irregular, straight, phialine (bentuk leher botol), radiate, denritik, rounded, dll modifikasi: apertual lip, flap, portici, tegilla, apertural teeth (valvular tooth, simple toth, bifid tooth, flattened tooth) , bulla, umbilical bos
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
19
Gambar 7 Apertur utama (primary aperture) foraminifera (Loeblich & Tappan, 1964)
1a
1b
1c
1d
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
20
Gambar 8 Macam-macam apertur tambahan (1-6) dan apertur aksesori (7-11) (Loeblich & Tappan, 1964)
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
21
Gambar 9 Bentuk dan macam modifikasi apertur pada foraminifera (flap, tooth, flang, lip, bulla, tegilla) (Loeblich & Tappan, 1964)
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
22
(Loeblich & Tappan, 1964) Gambar 10 Modifikasi internal apertur pada test foraminifera
Gambar 11 Bentuk modifikasi aperture (Stainforth, 1972) 6.5 Sutura:
Sutura merupakan pertemuan antar kamar atau antar putaran, dapat dibedakan dari bentuknya, apakah : lurus (straight), arcuate (lengkung), sinusous (bergelombang) dan karakternya: flush, depresed, incised, beaded. Seringkali sutura foraminifera menebal dan biasa disebut sebagai limbate. 6.6 Ornamentasi (sculpture):
Oramen merupakan hiasan yang ada pada test foraminifera. Seringkali ornamen tersebut melibatkan bagian dari test misalnya pada permukaan kamar, sutura, peripheri, sutura spiral dan bisa juga pada aperture. Bentuk dari oramen ini bermacam-macam bisa berbentuk permukaan dinding kamar yang smooth, berduri-duri, hispid, cancellated, keel (carinate), rim, rugose (rugae), costate, sriate, granulate, reticulate, fissure, acicular spine, pitted, chamber flange, ribbed, raised bosses peripheral keel, papillate (Gambar 12). Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
23
Gambar 12. Macam-macam ornamen pada foraminifera (Loeblich & Tappan, 1964)
(Catatan: Hati-hati dalam penggunaan parameter identifikasi terkait variasi pada tahap ontogeni dan juga pengaruh oleh lingkungan) 6.7 Umbilicus
Parameter lain yang sering digunakan untuk deskripsi adalah umbilicus yaitu axial area yang mana dari sisi ini kamar2 tampak memencar (radiate). Umbilicus bisa tertutup (closed : terlihat hanya sebagai titik dimana sutura bertemu) atau narrowly deep ( bentuk seperti pinhole: lubang kecil dan panjang) bentuk2 tersebut umumnya dimiliki oleh yang mempunyai putaran ketat; bentuk lain dari umbilicus adalah terbuka. 6.8 Permukaan cangkang (test surface)
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
24
Ada juga peneliti yang memakai parameter ini untuk identifikasi misal, Saito dkk. 1981. Pada permukaan test dilihat apakah non spinose atau spinose, misal: spines, spine bases, granules, pustules 6. 9 Ukuran:
Termasuk ukuran diameter dan panjang atau tinggi. Jika mungkin ukuran dari proloculus dan kecepatan peningkatan ukuran dan diameter kamar serta putaranya.
Catatan: Berikut ini adalah urutan parameter yang digunakan untuk kriteria klasifikasi dalam urutan hirarkinya: 1. wall composition and microstructure 2. chamber arrangement and septal addition 3. apertural characters and modifications 4. chamber form and ornament 5. life habits and habitats 6. protoplasmic features 7. ontogenetic changes 8. genetics Sejauh ini paramenter 1 s/d 4 adalah yang paling penting didalam taxonomi foraminifera (dalam panduan ini, parameter 6.1 s/d 6.9). Parameter/unsur-unsur tersebut harus diperhatikan dalam mengamati atau mendiskripsi fosil foraminifera, terutama pada foraminifera kecil. Pengamatan pada foraminifera besar lebih komplek meskipun pada dasarnya parameternya hampir sama. Berikut adalah cara determinasi / identifikasi foraminifera: 1. Untuk melakukan identifikasi terhadap suatu fosil, secara praktis adalah sebagai berikut: - pertama diamati dulu semua parameter diatas - tentukan apakah fosil foraminifera tersebut termasuk plangtonik atau bentonik (kalo bentonik, lihat apakah foram besar atau kecil) - lihat kunci untuk mengenali genus maupun species dan ikuti langkah-langkah pada kunci tersebut. - untuk mengechek apakah identifikasi tersebut benar, coba bandingkan dengan ilustrasi atau gambar/foto dan lihat diskripsi dari holotype genus atau species yang dimaksud yang dibuat oleh yang menamakanya (author). Dalam mendiskripsi suatu fosil hendaknya mengikuti aturan tertentu (lihat contoh diskripsi) dan usahakan sejelas mungkin. Contoh diskripsi plangtonik Globoquadrina altispira altispira (CUSHMAN & JARVIS), 1936
Cangkang besar, trochospiral dimana tinggi dan diameternya hampir sama. Putaran terakhir umumnya terdiri dari 4 kamar tetapi kadang bisa 6 kamar. Kamar-kamar tersusun secara kompak (tight), awalnya globular dan membesar dengan cepat, selanjutnya agak tertekan (depressed) dan memanjang kearah umbilicus. Profil spiral subcircular, agak menggantung pada sutura; pada pandangan samping ovate sampai agak subtriangular. Sutura jelas, Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
25
tertekan (depressed). Apertur umbilical, ditutupi oleh triangular f lap (gigi) dari material yang tak berpori. Umbilicus terbuka dan dalam, dengan apertural teeth dari kamar sebelumnya kelihatan didalamnya. Dindingnya cancelate halus. Diameter dan tingginya 0.45 sampai 0.75 mm.
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
26
7. Kunci untuk identifikasi genus dan species umur Pli stosen- Resen (Saito et. all. 1981)
I. Test surface rough under light microscope (spine, spine bases, granules, pustuloses): A. Spine visible on living or well-preserved specimens; spine-bases on most specimens, located interporate area [Hastigerinnidae; Globigerinidae] 1. Spines or spine bases restricted to distal end of chambers [Hastigerinidae] a. globular to subglobular chamberss, planispiral coiling [Hastigerina], species:H. pelagica, parapelagica b. clavate chambers, streptospiral coiling [Hastigerinopsis], species: H. digitiformans 2. Spines or spine baseson all portion of test wall [Globigerinidae] a. primary aperture only a.1 radially elongate chambers low trochospire: [Globigerinella], species: G. adamsi, aequilateralis, calida mediumtrochospire or streptosspire [Bella], species: B. digitata a.2 globular or sperical chambers [Globigerina], species: G. antartica, bernudezi, bulloides, decoraperta, falconensis, quinquiloba, umbilicata b. suplementary aperture present b.1 sperical to subbglobular chambers singgle spherical chambers [Orbulina], species O universa, suturalis subglobular chambers [Sphaeroidinella], sspecies: S. dehiscens, excavata subglobular - spherical chambers [Globigerinoides], species: conglobatus, elongatus, fistulosus, obliquus, pyramidalis, ruber, sacculifer B. Pustules or granules visible under light microscope on test surface, no spines or spine bases [ globorotalidae] 1. Surface granular, coarsely pitted a. pustules present only near aperture Apertural tooth present [Globoquadrina], species: G. conglomerata, pseudofoiliata No apertural tooth [Globorotaloides], species: G.hexagona b. pustules not prominent (generally with apertural tooth) [Neogloboquadrina] low to medium trochospire; species N. asonoi, blowi, eggeri, humerosa, pachyderma, pseudohumerosa, himiensis medium to high trochospire, species: dutertrei 2. Surface pustulate a. peripheral keel absent Singular pustules [Globorotalia], species: hirsuta, inflata, oceanica, scitula, tosaensis, hessi, ronda; Multiple pustules[Neocarinina], species: N. blowi b. peripheral keel present [Globorotalia (keeled)], species: frimbiata, flexuosa, menardii, tumida, pertenuis, theyeri, truncatulinoides, cultrata ungulata, viola II. Test surface smooth to shiny under light microscope (microgranular) A. Surface visible perforate [Globorotalidae] 1. Trochospiral coiling, non keeled [Globorotalia], sppecies: bernudezi, crassaformis, inflata, planispira 2. Streptospiral coiling [Pulleniatina], species: finalis, obliqueloculata, primalis, praecursor 3. Chambers flanges [Sphaeroidinella], species: dehiscens, excavata B. Surface looking imperforate (Candeinidae, Heterohelicidae) Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
27
1. trochospiral coiling a. primary aperture with bulla strongly inflated chambers [Globigerinita], species: glutinata, iota, uvula,minuta weakly inflated subglobular or radial elongated chambers [Turborotalita], species: humilis b. primary aperture extraumbilical [Berggrenia], species: praepumilio, pumilio, riedeli c. sutural aperture [Candeina], species: nitida 2. biserial coiling [Streptochilus], species: tokelauae
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
28
8. Kunci untuk identifikasi genus plangtonik umur Kenozoik (Postuma, 1971)
1. Test seluruhnya planispiral: 1.1 Equatorial aperture: 1.1.1 kamar-kamar globular sampai subglobular = Hastigerina 1.1.2 pada putaran awal kamar globular, pada putaran terakhir memanjang atau clavate = Clavigerinella 1.1.3 pada putaran awal kamar globular, pada putaran terakhir pointed = Bolliella 1.1.4 kamar subglobular atau radial memanjang dengan tubulos-spine = Hantkenina
1.2 Apertur utama equatorial dengan accesory aperture berupa aerial aperture: 1.2.1 kamar sublobular dengan tubulos-spine = Cribrohantkenina 2. Test planispiral pada awalnya, kemudian menjadi enrolled biserial 2.1 apertur extraumbilical 2.1.1 kamar globular sampai subglobular = Cassigerinella 3. Test seluruhnya trochospiral: 3.1 Umbilical aperture: 3.1.1 tanpa bulla 3.1.1.1 apertur dengan atau tanpa lip tipis, tak ada apertur tambahan = Globigerina
3.1.1.2 apertur dengan atau tanpa lip tipis, dengan aperture suture tampahan = Globigerinoides 3.1.1.3 aperture ditutupi oleh suatu struktur gigi umbilical, tak ada aperture tambahan = Globoquadrina 3.1.1.4 apertur pada putaran akhir berupa suture aperture dengan jumlah banyak = Candeina 3.1.2 dengan bulla: 3.1.2.1 bulla berada di umbilicus, kadang sedikit memanjang ke arah satu atau dua sutura; apertur berada disekitar bulla pada suture dengan jumlah bervariasi 1-5 = Catapsydrax (=Globigerinita of Blow, 1979) 3.1.2.2 bulla (bentuk seperti bulla) yang merupakan perpanjangan kamar akhir yang menutupi umbilical aperture dan mempunyai lokasi bukaan terbatas sepanjang suture = Globigerinita 3.1.2.3 bulla menutupi umbilicus dan menerus dengan bentuk sinuous sepanjang suture pada sisi umbilical; punya banyak apertur tambahan sepanjang tepi-tepi bulla = Tinophodella 3.2 Aperture extraumbilical-umbilical tanpa bulla: 3.2.1 tanpa apertur tambahan pada sutura 3.2.1.1 kamar lonjong (subglobular) sampai rhomboid runcing atau conical runcing, dengan atau tanpa hiasan tunggal = Globorotalia NOTE (menurut Blow, 1979): BILA KAMAR SUBGLOBULAR TANPA KEEL = Turborotalia; BILA KAMAR PIPIH DENGAN KEEL = Globorotalia BILA KAMAR SUBGLOBULAR-SUBANGULAR-CONICAL, DINDING PERFORATE DENGAN SPINOSA TANPA KEEL = Acarinina BILA KAMAR SUBANGULAR-CONICAL, DINDING PERFORATE DENGAN SPINOSA DAN MEMPUNYAI KEEL (KEEL YANG BERUPA KUMPULAN DURI-DURI) = Morozovella Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
29
BILA KAMAR ROUNDED TO POINTED, LOW TROCHOSPIRAL = Bella
3.2.1.2 kamar putaran akhir radial memanjang, clavate atau cylindrical tanpa hiasan tepi = Clavatorella 3.2.1.3 mempunyai struktur gigi pada apertur = Neogloboquadrina 3.2.2 dengan apertur tambahan pada sutura di bagian dorsal = Truncorotaloides 4. Test pada putaran awal trochospiral, putaran akhir atau kamar akhir melingkupi sebagian atau seluruh kamar putaran sebelumnya 4.1 tanpa bulla 4.1.1 seperti globigerina, putaran akhir atau kamar akhir melingkupi sebagian umbilical dengan aperture tambahan pada sutura melingkupi umbilical ruang = Globigerapsis
4.1.2 seperti globigerinoides dengan kamar akhir mempunyai aperture tambahan pada sutura yang melingkupi umbilical ruang = Orbulinoides atau Praeorbulina
4.1.3 seperti globigerina dengan kamar akhir seluruh atau hampir seluruhnya melingkupi kamar pada putaran sebelumnya; aperture sepanjang sutura dan aerial aperture pada kamar akhir = Orbulina 4.2 dengan bulla 4.2.1 seperti globigerina, putaran akhir atau kamar akhir membulat menutupi umbilicus, mempunyai aperture tambahan pada sutura yang ditutupi oleh bulla sempit ( tiap bulla punya lubang infralaminal) = Globigerinatheka 4.2.2 seperti globigerinatheka, sutura lebih tak teratur; aperture multiple tersebar pada kamar akhir yang ditutupi oleh bulla; bulla appressed, bervariasi menutupi sebagian besar test , tiap bulla mempunyai lubang infralaminal (infralaminal aperture) sepanjang tepi-tepinya = Globigerinatella 4.3 dengan atau tanpa bulla putaran awal seperti globigerina, putaran akhir terdiri 2 atau 3 kamar yang berpukan erat, stuktur dinding komplek terdiri dari lebih satu lapisan kulit meterial. aperture slit-like atau iregular 4.3.1 hanya punya satu apertuer = Sphaeroidinellopsis 4.3.2 punya dua atau lebih apertur = Sphaeroidinella 5. Test pada putaran awal trochospiral menjadi streptospiral pada putaran akhir; pada putaran awal umbilicus terbuka, pada putaran akhir tanpa ada umbilicus = Pulleniatina
6. Test streptospiral, kamar clavate, radial elongated, pada pertumbuhan selanjutnya menjadi bifurcating atau trifurcating = Hastigerinella
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
30
9. Kunci untuk identifikasi genus plangtonik umur MesozoiK (Bollii et. all. , 1985)
1. Test trochospiral 1.1 primary aperture umbilical-extraumbilical 1.1.1-with sutural suplementary apertures at umbilical: (Rotaliporinae): -chamber sperical, without keel : Ticinella -with keel : Rotalipora 1.1.2-without suplementary aperture at umbilical -without keel: (Hedbergellinae) -with lip -without relict aperture at spiral side: Hedbergella -with relict aperture at spiral side: Loeblichella -with tegilla and infralaminal ap. acc.: Globotruncanella -with 1 or 2 keel (composed of : pustules and/or imbrication): (Marginotruncaninae) -radial sutura, depressed at umbilical side - with lip or portici - 1 keel : Praeglobotruncana - 2 keel : Dicarinella - with tegila and infra and intralaminal aperture accesory:Abathomphalus -sutura sigmoid at umbilical side, 2 keel : Marginotruncana 1.2 primary aperture umbilical 1.2.1-no distinctly keel or present fairly 2 keel, sutura radial at umbilical side (Rugoglobigerinae) -primary aperture nearly extraumbilical with portici : Whiteinella -Primary aperture umbilical with tegilla: -without costellae: Archeoglobigerina -with costellae : Rugoglobigerina 1.2.2-with 1 or 2 keel -sutura sigmoid at umbilical side, tegilla with infra and intralaminal aperture accessories : Globotruncana 2. Test early portion trochospiral, later planispiral, aperture extraumbilical, tending to become equatorial: - chaamber elongated, with a hollow bulb-shape or spine-like extention in equatorial plane: Schackoina - chambers elongated, some or all chambers of the last whorl with two or ccasionally more, hollow bulb-shape extention on each side of the equatorial plane: Leupoldina
3. Test planispiral -Primary aperture equatorial bordered by a lip, with relict aperture: - with keel: Planomalina - without keel: -chambers globular to ovate: Globigerinelloides -chambers radial-ellongate : Hastigerinoides
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
31
RANGE OF SELECTED PLANKTONIC FORAMINIFERA MARKERS (Blow, 1979)
OLIGOCENE
MIOCENE
PLIOCENE
PLEISTO CENE
MIDDLE EARLY LATE M L P19 P20 P21 P22 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 N17 N18 N19 N20 N21 N22 N23 Globigerina calida calida Globorotalia truncatulinoides Globorotalia tosaensis Globigerinoides obliquus obliquus Globigerinoides obliquus extremus Globigerinoides fistulosus Sphaeroidinellopsis seminulina Globoquadrina altispira altispira Globoquadrina altispira altispira Globigerina apertura Globigerina nepenthes Globoquadrina dehiscens dehiscens Sphaeroidinellopsis subdehiscens Globorotalia margaritae Globigerina venezuelana Globorotalia merotumida Globorotalia pleisotumida Globigerina praebulloides praebulloides Globorotalia lenguaensis Globorotalia paralenguaensis Globoquadrina baroemoenensis Globorotalia continuosa Globoquadrina dehiscens adveda Globorotalia siakensis Globorotalia druyii Globigerinoides subquadratus Cassigerinella chipolensis Globorotalia mayeri Globorotalia fohsi fohsi Globorotalia fohsi lobata Globorotalia fohsi robusta Globorotalia praefohsi Globorotalia praemenardi praemenardi Globorotalia peripheroacuta Globorotalia peripheroronda Globorotalia archeomenardii Globorotalia birnageae Praeobrulina glomerosa circularis Praeobrulina glomerosa glomerosa Praeobrulina transitoria Globigerinoides sicanus Globigerinoide diminitus Globigerinatella insueta Praeobrulina glomerosa curva Globigerinoita stainforthi stainforthi Globigerinoides altiaperturus Globigerinita unicava Globigerinita dissimilis Gloquadrina dehiscens praed ehiscens Globigerina binaiensis
P19 P20 P21 P22 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 N17 N18 N19 N20 N21 N22 N23 Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
32
RANGE OF SELECTED PLANKTONIC FORAMINIFERA MA RKERS Blow, 1979) OLIGOCENE
MIOCENE
PLIO CENE
PLEISTO CENE
MIDDLE EARLY LATE M L P19 P20 P21 P22 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 N17 N18 N19 N20 N21 N22 N23 Globigerinoides primordius erina ouachitaensis ciperoensis Globorotalia kugleri Globigerina angulisuturalis Globigerina tripartita Globigerina sellii lobigerina gortanii Globorotalia opima nana talia opima opima lobigerina galavisi bigerina prasaepis
Pulleniatina finalis
bigerina officinalis
Globigerina dutertrei
pliapertura
Globorotalia frimbiata
ensis
Globigerina rubescens
micra
Sphaeroidinella dehiscens dehiscens
cens
Globorotalia ungulata
rtura
Pulleniatina obliqueloculata Globigerinoides fistulosus Globigerinoides conglobatus Globorotalia tumida tumida Globorotalia humerosa Globorotalia crassaformis s.l.
Globorotalia acostaensis Globigerinoides elongatus Globigerinoides ruber
P19 P20 P21 P22 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 N17 N18 N19 N20 N21 N22 N23
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
33
1. KEY TO SOME IMPORTANT BENTHIC FORAMINIFERAL GENERA
( Chusman ?.) 1. a. Wall agglutinated ................................................................................................... 2) b. Wall calcareous, imperforate; adult externally agglutinated ................................ 21) c. Wall calcareous, perforate .................................................................................... 33) 2. a. Test low trochospiral ..........................................................................Trochammina b. If not, please going to ............................................................................................ 3) 3. a. Test planispiral ....................................................................................................... 4) b. Test not planispiral ................................................................................................. 5) 4. a. Chambers completely involute ..............................................................Cyclammina b. Chambers evolute, test discoidal .......................................................... Ammodiscus 5. a. Chambers arrangement milioline ......................................................................... 22) b. If not , please going to ........................................................................................... 6) 6. a. Biserial to Uniserial ............................................................................................... 7) b. Biserial ................................................................................................................... 9) c. Triserial or multiserial ........................................................................................... 16) 7. a. Early stage biserial, later uniserial, aperture terminal and rounded ......... Bigenerina b. Early stage trochospiral, via triserial and biserial reduced to uniserial; test cylindrical, aperture terminal (arcuate) slit bordered by a lip ...................................................... Martinotiella
8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.
20.
c. Early stage triserial, at least early stage triangular in section ................................. 8) a. Rounded terminal aperture with tooth .......................................................Clavulina b. Terminal aperture without tooth ...................................................................Tritaxia a. The test is biserial througt .................................................................................... 10) b. If not, please going to .......................................................................................... 11) a. Aperture basal, low arch .................................... Textularia or juvenille Bigenerina b. Aperture terminal, rounded, on a short neck .................................... Siphotextularia a. Early stage triserial, often triangular ........................................................Gaudryina b. If not, please going to .......................................................................................... 12) a. Early stage planispiral, later portion biserial ........................................................ 13) b. Early stage trochospiral, four or more chambers in each whorls, later reduced to biserial. 14) a. Test begining with a well developed planispiral coil ...................... Spiroplectamina b. Test begining with a very small planispiral coil of a few chambers ........ . Textularia (microspheric) a. Aperture a basal slit ....................................................................................Dorothia b. Aperture terminal, bordered by a lip or on short neck ......................................... 15) a. Terminal aperture rounded (bordered by lip, or on a short neck) ........... Karreriella b. Aperture elongate slit, often arch-like .................................................. Martinotiella a. At least the earliest part is trochospiral (4-5 chambers in each worl) .................. 17) b. Initial part is triserial, test often triangular in section .......................................... 18) a. Aperture a basal slit ...................................................................................Eggerella b. Test cylindrical, aperture terminal elongate slit, with a bordering ....... Martinotiella (juvenile) a. Aperture with tooth .............................................................................................. 19) b. Aperture without tooth ......................................................................................... 20) a. Aperture basal, test triserial throught, later portion may have more than 3 chambers to whorl ...... ........................................................................................................................Valvulina b. Aperture terminal ......................................................................Clavulina (juvenile) a. Test triangular, sharp angles, nearly carinate, aperture a low basal arch .Verneulina b. Aperture not a low arch, periphery less sharp .......................................... Gaudryina Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
34
21. a. Test (externally) agglutinated .............................................................................. 22) b. If not, please going to .......................................................................................... 23) 22. a. Chambers arrangement quinqueloculine ........................................ Quinqueloculina b. Chambers arrangement triloculine .......................................................... Triloculina c. Chambers arrangement sigmoiline ........................................................ Sigmoilopsis d. Chambers arrangement quinqueloculine in the initial stage, later becoming biloculine (evolute) ..........................................................................................Massilina 23. a. Aperture with a broad, flat tooth or flap, partially closing it ................................ 24) b. If not, please going to .......................................................................................... 25) 24. a. Chambers arrangement quinqueloculine ................................................... Scutuloris b. Chambers arrangement triloculine .......................................................... Miliolinella c. Chambers arrangement biloculine ........................................................ Biloculinella d. Chambers arrangement biloculine in the initial stage, later becoming planispiral with 3 chambers per whorl, increasing to 5 or 6 ............... ................... Nummoloculina 25. a. Test discoidal ....................................................................................................... 26) b. If not, please going to .......................................................................................... 29) 26. a. Test composed of a globular proloculus followed by an undivided, planispiral coiled tubular second chamber, at least partially evolute ................................................................. Cyclogyra b. Test composed of numerous small chambers, arranged in annular series ............ 27) c. Test planispiral coiled, with very broad chambers ................................................ 28) 27. a. Test in a later stage composed of a single layer of annular chamber, a single row of aperture at the periphery ........................................................................................................... Sorites b. Test in a later stage composed of double layer of annular chambers, a double row of aperture at the periphery .................................................................................................. Amphisorus
28. a. Test planispirally coiled, later portion may be uncoiling. Chambers very broad, mostly longitudinally striate. Aperture a single row of slits along the apertural face ...................... Peneroplis b. Test planispiral, involute, later becoming evolute, aperture a double row of pores on the apertural face ............................................................................................................... Archaias 29. a. Chambers arrangement quinqueloculine ......................................... Quinqueloculina b. Chambers arrangement triloculine ........................................................................ 30) c. Chambers arrangement biloculine, all chambers visible from outside .....Spiroloculina d. Chambers arrangement biloculine,only the last two chambers visible from outside 31) e. Chambers arrangement sigmoiline ............................................................ Sigmoilina f. Other chambers arrangement ................................................................................ 32) 30. a. Aperture with normal (simple of bifid) tooth ............................................... Triloculina b. Aperture with a cruciform or dentritic tooth ........................................... Cruciloculina 31. a. Aperture with normal (simple of bifid) tooth .....................................................Pyrgo b. Aperture with an Y or X shape tooth ........................................................... Pyrgoella 32. a. Chambers arrangement quinqueloculine in early stage, later becoming evolute biloculine ....................................................................................................................... Massilina
b. Chambers arrangement in early stage milioline, later uniserial ................... Articulina c. Test consisting of a globular proloculus followed by evolute planispiral chamber arrangement; chambers gradually decreasing to half a whorl in length ...........................Opthalmidium 33. a. Test consist of one chamber ................................................................................. 34) Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
35
34. 35.
36. 37.
38.
b. Test consist of more chambers ............................................................................. 36) a. Aperture on elongate neck with a lip .............................................................Lagena b. Aperture not on a neck ......................................................................................... 35) a. Aperture rounded, may have radiate grooves, entosolenian tube projecting into the test ......................................................................................................................Oolina b. Aperture slit-like, or rounded in the centre of a slit-like cavity; entosolenian tube projecting into the test .................................................................................................................. Fissurina c. Aperture slit-like or arched with overhanging hoodlike extention of chamber wall; entosolenian tube projecting into the test ............................................................................... Parafissurina a. Aperture radiate .................................................................................................... 37) b. Aperture not radiate ............................................................................................. 47) a. Chambers arrangement uniserial throughout ....................................................... 38) b. Chambers arrangement uniserial only in the last stage ........................................ 42) c. Chambers arrangement along a curved axis, or planispiral .................................. 45) d. Chambers arrangement otherwise ........................................................................ 46) a. Test straight, rectilinear ........................................................................................ 39) b. Test elongate, arcuate .......................................................................................... 41) c. Test elongate or palmate, strongly flattened, chambers are formed low and broad ... Frondicularia
39. a. Test rounded in section ........................................................................................ 40) b. Test compressed or ovate in section ........................................................ Vaginulina 40. a. Sutures oblique ..................................................................................................... 41) b. Sutures perpendicular to axis of test ........................ Nodosaria or Pseudonodosaria 41. a. Asymetrical terminal aperture ....................................................................Dentalina b. Asymetrical terminal aperture, early stage slightly coiled ..................... ... Marginulina 42. a. Initial stage biserial, changing to uniserial, sutures limbate .......... Plectofrondicularia b. Initial stage biserial often becoming uniserial; chambers strongly overlapping, aperture with entosolenian tube ........................................................................................ Glandulina c. Initial stage planispiral (coiled along curved axis); sharp break between this and uniserial part ................................................................................................................ Amphicoryna
d. Initial stage planispiral, gradually uncoilling ....................................................... 43) 43. a. Test strongly compressed, carinate margins ............................................. Planularia b. Test triangular in section .......................................................................Saracenaria c. Test ovate or rounded in section .......................................................................... 44) 44. a. Test roud in section, early chambers planispiral whorl ...................... Marginulinopsis b. Test ovate and compressed in section, early chambers planispiral whorl ... .......... Vaginulinopsis
45. a. Test strongly compressed, the low and broad chambers are added along a curved axis. Astocolus b. Test a true planispiral, rarely slightly trochoid, periphery angled or keeled ...................Lenticulina 46. a. Chambers biserially arrenged, twisted; sigmoiline in early stage .......... Polymorphina b. Chambers arrengement quinqueloculine, 3 chambers visible on one side, and two on the other ...................................................................................................................... Globulina
c. Chambers arrengement quinqueloculine, 4 chambers visible on one side, and 3 on the other ........................................................................................................................ Guttulina Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
36
d. Chambers arrengement biserial (often becoming uniserial in later stage) chambers strongly overlapping, aperture with entosolenian tube .............................................. Glandulina
47. a. Test planispiral, or very weakly trochoid ............................................................. 48) b. Chamber biserially arrenged, the alternating chambers are planispiral coiled ..... 54) c. Test biserial, triserial or multiserial ...................................................................... 55) d. Test trochospiral .................................................................................................. 66) e. Chambers arrangement otherwise ........................................................................ 96) 48. a. Test planispiral, two chambers to whorl, chambers strongly embracing previous previous ones (only a basal segmen of penultime chambers visible), aperture a basal slit ........................hilostomella b. Test planoconvex, chambers composed of a larger ventral portion and a smaller dorsal portion separated by a thin plate representing a prolongation of the very wide kell...... Laticarinina c. If not please going to ............................................................................................ 49) 49. a. Test totally planispiral (two side equal) ............................................................... 50) b. Test slightly trochoid, at one side the final chamber is overhanging the umbilical region, sometimes forming a distinct flap ................................................................................ Nonionella c. Test slightly trochoid, final chamber not overhanging the umbilicus .................. 68) 50. a. The test show a retral processes processes across the chamber chamber sutures .................... Elphidium (see also Cribrononion, Cribroelphidium) b. If not please going to ........................................................................................... 51) 51. a. Chambers evolute on both sides, primary aperture ovate or slit-like, basal (at the periphery); secondary apertures elongate, slit-like, in the upper part of the chambers (paralleling the kell) at one side of the test ................................................................................................ Almaena b. If not, please going to .......................................................................................... 52) 52. a. Aperture a basal slit extending from the umbilicus from one side to the opposite one, 3 to 6 chambers in the final whorl ............................................................................................... Pullenia b. If not, please going to .......................................................................................... 53) 53. a. Umbilical region covered by backward projecting non porous umbilical umbilical flap, which partially cover the chamber sutures, and together from a stelliform pattern . Astrononion
54.
55.
56. 57.
b. No stelliform structure in the umbilicus ........................................................ Nonion (see also Floricus, Melonis, Protelphidium) a. Test laterally compressed, completely completely coiled ... Cassidulina (see also Islandiella, ..Globocassidulina) b. Test somewhat uncoiling, compressed perpendicular to the plane of coiling .........Ehrenbergina a. Test multiserial (more than 3 chambers chambers per whorl) ............................................. ........................................... .. 56) b. Test uniserial throughout ..................................................................................... 57) c. Test basically triserial, eventually reducing to biserial or uniserial .............. ....... 58) d. Test basically biserial, eventually reducing to uniserial ...................................... 63) a. Between 3 and 4 chambers to whorls, aperture a small basal arch in the final chamber.... Turrilina b. Many to 4 chambers to whorl, few whorls, aperture loop-shaped .......... Buliminella a. Aperture terminal, often often at the end of a neck ....................................... Stilostomella b. Aperture terminal, with a projecting hood, two small teeth on the opposite side....... Pleurostomella
58. a. Aperture terminal, rounded, rounded, at the end of a neck ................................................. ........................................... ...... 59) Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
37
b. Aperture without a neck, often loop-shaped ........................................................ 60) 59. a. Test rouded in section, triserial troughout, sometimes in a later stage becoming biserial (see Hopkinsina) or uniserial (see Rectuvigerina) .................................................. Uvigerina b. Test triangular in section, triserial troughout ..................................... Trifarina (seealso angulogerina) 60. a. Test triserial throughout ....................................................................................... 61) b. Test triseral in early stage (at least in microspheric mi crospheric generation), later with a twisted biserial development, aperture loop-shaped ............................................................ Stainforthia
61. a. Test triangular in section, aperture basal .................................................... Reussella b. If not, please going to .......................................................................................... 62) 62. a. Aperture terminal, loop-shaped, often with with extending tooth plate ............... Bulimina b. Aperture loop-shaped, chambers strongly overlapping the t he previous ones...........Globobulimina 63. a. Test regularly biserial throughout ........................................................................ 64) b. Test at least in early stage (strongly) twisted biserial .......................................... 65) c. Early stage biserial, later uniserial, aperture terminal, rounded, with a short neck ....Siphogenerina 64. a. Aperture a narrow elongate loop on chamber face ...................................... Bolivina b. Test quadrate in section (4 carinae), tendency to uniseriality; sutures arched, limbate; aperture terminal, slit-like to ovate ................................. ............. Loxostomum 65. a. Test twisted biserial, later more typically biserial; aperture elongate, narrow, extending upface of final chamber .................................. ..................... Fursenkoina b. Test twisted biserial throughout, aperture loop-shaped l oop-shaped in chamber face .Stainforthia 66. a. Primary aperture peripheral, eventually extending onto the spiral and or umbilical side... 67) b. If not, please going to .......................................................................................... 73) 67. a. Test a low trochospiral, nearly planispiral ........................................................... 68) b. Test trochospiral .................................................................................................. 69) 68. a. Test with a very wide keel .................................................... Laticarinina (see 48-b) b. Aperture a peripheral arch extending somewhat to the ventral side, test discoidal, compresssed ................................................................................................... Planulina
69. 70.
71. 72.
c. Aperture a peripheral arch, slightly asymetrical (overhanging to the ventral side), no apertural extensions ................................................................................ Anomalina Anomalina d. Aperture a peripheral arch, with low slits extending beneath small chambers flaps on both sides of the test discoidal compressed ............................................... Hyalinea a. Test planoconvex ................................................................................................. 70) b. Test not planoconvex ........................................................................................... 71) a. Dorsal side with elevated flaps on lower margin of chambers, partially or completely overlapping chambers of previous whorl; aperture peripheral arch extending under flaps on dorsal side . .................................................. ....................... ...................................................... .............................Hanzawaia b. No chamber flaps on dorsal side ................................................................ Cibicides a. Aperture not extending onto the dorsal side ........................... Anomalina (see 68-c) b. Aperture extending onto the dorsal side .............................................................. 72) a. Aperture a low with a narrow bordering lip, extending along spiral suture .. Anomalinoides Anomalinoides b. Aperture a peripheral arch extending along spiral suture ........................... Cibicides (see also Cibidoides, Heterolepa) Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
38
73. a. Periphery with a fimbriate keel, aperture at the periphery, oval, on a short neck andwith a distinct lip ...................................................................................................................... Siphonina b. If not, please going to .......................................................................................... 74) 74. a. Imperforate field above umbilicus ....................................................................... 75) b. No imperforate field above umbilicus ................................................................. 77) 75. a. Chamber extentions into the umbilical area ......................................................... 76) b. No chamber extentions into the umbilical area ........................................... Baggina 76. a. Extention of last chamber (apertural lip) almost completely covering umbilical region,large imperforate field above umbilicus .................................................................... Cancris b. Broad chambers flaps projecting over the umbilicus (if not broken off); flaps of previous chambers often remain partially visible, imperforate field above umbilicus not always distinct . Valvulineria 77. a. Umbilical surface with irregular granules along the (often excavated) sutures and over the umbilical region; often with an umbilical plug which is broken up in adult specimens ..........78) b. Less irregular ventral surface ............................................................................... 79) 78. a. Three prominent spines spines radiating from the test test .................................... ......................... ........... Asterorotalia Asterorotalia b. Well developed secondary openings along the chamber sutures at the ventral side, outside the umbilical region .............................................................................................. Buccella
c. No prominent spines or distinct secondary openings ..................... Amonia or Rotalia 79. a. Test with secondary chambers, chambers, or chambers split up into segments segments .................... 80) b. If not, please going to .......................................................................................... 83) 80. a. Test a high trochospiral with several chambers in each whorl, each chamber divided by an infolding of the wall; one triangular secondary aperture at the dorsal side (between the last two chambers, where internal partition meets chamber suture) ................................................................... 81) b. Large biconvex multi chambered from (more then ten chambers to whorl) basal slitlike aperture surrounded by a granulate area, chambers on ventral side split up into chamberlets.. Amphistegina c. Test with secondary chambers at the ventral side forming a stelliform pattern, less than ten chambers to whorl ..................................................................................................... 82) 81. a. Primary aperture one elongate loop-shaped opening extending up up face of final chamber Robertina b. Primary aperture consisting of two t wo divergent slits,one up face of final chamber, and one aperture of previous whorl .................................................................................... Robertinoides
82. a. Convex ventral side, dorsal dorsal side almost flat, no umbilical plug ............ Asterigerina b. Convex dorsal side, ventral side almost flat, no umbilical plug ......... Asterigerinata 83. a. Test with flaplike structures (imperforate) in in the umbilical region ...................... 84) b. If not, please going to .......................................................................................... 88) 84. a. Concavo-convex form, chambers lunate, last chamber chamber at the ventral side occupies a large part of the test, distinct flap with aprtural openings at both of it, aperture of earlier chambers remain open .................................................................................................................. Neoconorbia b. If not please going to ........................................................................................... 85) 85. a. The umbilicus is open .......................................................................................... 86) b. The umbilicus is closed by flap-like structures (if not broken off) ....... ................. 87) Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
39
86. a. Distinct flaps in umbilicus, primary aperture a basal arch near the periphery .Rosalina b. Very small flaps in umbilicus, primary aperture a low slit restricted to mid -portion of the apertural face (Gyroidina) or extending from periphery to umbilicus ....(Gyroidinoides) 87. a. Extensions of basal portions of the chambers into the umbilicus, flusing and totally closing the umbilicus .....................................................................................Discorbis b. Broad chambers flaps projecting over the umbilicus ............................ Valvulineria 88. a. Secondary apertures developed outside the umbilicus umbilicus region .............................. 89) b. No secondary apertures outside the umbilicus region ......................................... 91) 89. a. Secondary aperture at the periphery, over the complete breath of the chambers ....... Hoeglundina
90.
91. 92. 93.
94.
b. Secondary aperture only at the ventral side, along the chamber sutures, outside the umbilical region ......................................................................................................................... Bucella c. Primary aperture bipartitioned, or two separate openings, one part of basal split, the other part a split extending up the apertural face ................................................................. Osangularia d. Secondary apertures dorsal or dorsal as well as ventral ....................................... 90) a. Secondary apertures at the dorsal side at the junction of spiral and chamber sutures, at the ventral side at the mid-point of the sinuate sutures .................................................. Oridorsalis b. Only one secondary aperture at the dorsal of the test, triangular, at the basis of the last chamber ................................................................................................................................. 91) a. Test with a prominent plug in the umbilicus ........................................ ...................................... .. Gavelinopsis b. No umbilical plug ................................................................................................... 92) a. Test distincly planoconvex, last chamber ventrally occuping occuping most of the test......Lamarckiana b. If not, please going to .......................................................................................... 93) a. Primary aperture a vertical elongate slit up chamber face ................................... ............................. ...... 94) b. Primary aperture arch-like ................................................................................... 95) c. Primary aperture bipartitioned, or two separate openings, one part a basal split, theother part a split extending up the apertural face ................................................................. Osangularia d. Primary aperture a basal split extending from periphery to umbilicus .. Gyroidinoides a. Aperture near and and parallel to periphery periphery ............................................... .............................. ................. Epistominella b. Aperture umbilical, elongate slit, in a groove, extending up face of final chamber on umbilical side ..................................................................................Ceratobulimina c. Aperture a low slit restricted to the mid-portion mid -portion of the apertural face, very flaps in umbilicus ....................................................................................................... Gyroidina
95. a. Aperture a basal split, laying in an unfolded unfolded area .................................... ................................ .... Alabamina Alabamina b. Aperture not in an unfolded area ................................................................ Eponides c. If not, please going to ........................................................................................... 96) 96. a. Test subglobular, chambers hemisphaerical, hemisphaerical, strongly embracing, aperture an archlikeslit, near suture ................................................................................................................. Sphaeroidina b. Test in early stage trochospiral, alter with numerous chambers forming a discoidal di scoidal test . Planorbulina. Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
34
12. Diskripsi beberapa genus foraminifera plangtonik: Cassigerinella : Small involute biserial (cassiduline) coil of inflated chambers; aperture a
simple arch directed alternately to right and left on successive chambers. Cribrohantkenina: Test as in Hantkenina with strongly inflated chambers and larger apertural face on which arched aperture is suplemented or replaced by one or more rows of larger apertural pore. Globigerina: Trochospire of globose to ovate chambers, variying greatly in coiling parameters but characterized by its aperture, which is a simple opening into the umbilicus. Globigerinoides: An umbilicate trochospire as in Globigerina but at least one (and generally several) supplementary aperture on spiral side, these apertures range from small gap where sutures intersect to conspicious lunate opening along spiral suture. Globorotalia: Test vary variable but basicaly a reguler trochospire of closely packed, gradually enlargering chambers, aperture a slit or arch between umbilicus and peripheri, directed forward rather than inward, commonly with some form of rim, lip or flange. Globigerinita: Test a Globigeria-like trochospire but umbilical pit is covered by a bulla: shell delicate, smooth, matte surface, few to many infralaminal opening may surround bulla. Globoquadrina: Test as in Globigerina except that each aperture carries a flap with ranges from a narrow flange to an elaborate trianglar tooth. Hanktenina: Regular planispiral coil, commonly involute, suture straight, radial, and deeply incised, chambers apiculate to triangular and bearing distinctive spine at tips; aperture a highly arched slit that may be bordered by alips or flanges. Hastigerina: Planispiral coil of bulbous to elongated chambers; aperture an arch or slit embracing inner coil. Immature and primitive may have trochospiral tendency. Orbulina: Test sperical with only final chamber or final chamber with small part of initial spire ( flush with or protuding slightly throught sperical surface) visible. Neogloboquadrina: Test trochospiral, chamber shape ovate to subglobular, wall calcareous, perforate, primary aperture umbilical, aperture modifications typically present, such as teeth; no secondary aperture Pulleniatina: Test streptospiral, chamber subglobular, wall calcareous, adult have thick cortex, primary apertureinteriomarginal umbilical-extraumblical, no secondary aperture. Praeorbulina: Initially low trochospiral but become globular to sperical beecouse of rapidly increasing size and enveloping nature of adult chambers; final chamber cover 40 - 70% of earlier test. No primary aperture in adult stage, but numeros slit or larger pore along suture of last chamber. Sphaeroidinella: Test trochospiral; chamber globular; wall calcareous, perforate covered with heavy cortex; primary aperture umbilical. largerly obscure by overhanging cortex turing outwards forming chamber flanges; secondary (s) aperture located on spiral side. Sphaeroidinellopsis: Trochospiral, ranging from loose and umbilicate to appessed, ovoid, with umbilical slit, characterized by thick, impervorate to vitreous cortex that overlies primary perforate wall test. no secondary aperture
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
35
13. Diskripsi Genus-genus foraminifera bentos yang kosmopolitan pada endapan Neogen di Indonesia: Ammonia : test calcareous, low trochospiral 3-4 putaran, suture slightly curved, thicknes,
depressed on umbilical side, umbilical surface with irregular granulanes along suture and over umbilical region, umbilicus with open umbilical fissure and plug. Anomalinella: test planispiral involute; lenticular; wall coarse perfotare with peripheral keel; aperture low, rounded interomarginal arch, bordered by lip. Anomallina: test low trochospiral or nearly planispiral; spiral side with umbonal bos, oppsite site with depressed umbilicus; aperture interomarginal equatorial opening extending to umbilical side. Asterorotalia: test trochospiral, biconvex, with 3 prominent slender spine radiating from test, margin carinate. Bigenerina: early test biserial become uniserial, wall aglutinanted; aperture terminal rounded. Bolivina: biserial, retral processes, aperture narrow elongate loop up chamber face with toothplate Bulimina: triserial, aperture bentuk koma Cancris: test trochospiral; biconvex; elongated and auriculte in shape; chamber rapidly enlarging; may have peripheral keel and apertural lip. ( differs from Baggina in being more elongated, evolute in spiral side, keeled and in having an open umbilicus and an apertural lip) Cassidulina: biserial terputar; lenticular; aperture elongated slit curve pararel to anterior margin of chamber with narrow lip Cellanthus: seperti elphidium tetapi mempunyai biumbilical bos Cibicides: low trochospiral; dorsal flat; umbilical convex; peripheri angular with keel Cyclamina: test palnispiral involute; wall aglutinant; wall and septa strongly labyrinthic; aperture equatorial slit and numerous pore scatered over face. Dentalina: test elongate; arcuate; uniserial; suture oblique; aperture radiate, terminal Discorbis: test trochospiral biconvex; plano-convex; flatened on umbilical side; periphery angled; umbilical with flap; primary aperture extraumbilical, secondary sutural opening at opposide of chamber flap Elpidium: test planispiral involute; chamber numerous with retral processes; wall calcareous; surface commonly with groves or ridges pararelling periphery. Fissurina: test rounded or ovate in outline; compressed trigonal or tetragonal in section, and may keeled, surface smooth, costate, beaded; aperture slitlike to oval or rounded Florilus: test planispiral bbut may be asymetrical, involute; chambers increasing rapidly in breadth and thickness resulting in flaring test; aperture narrow equatorial opening. Frondicularia: test elongated or palmae; flatened; chamber low broad and equitant; suture strongly arched or angled at center of test; aperture terminal radiate may have short neck. Gyroidina: test trochospiral, planoconvex; periphery rounded to subtruncate; primary aperture a low interomarginal slit restricted to mid-portion of apertural face bordered by narrow lip. Haplophragmoides: test planispiral involute; wall aglutinanted; aperture equatorial slit. Heterolepa: test trochospiral, planoconve; periphery bluntly angled, may have keel; slowly enlargering chamber; aperture interomarginal slitlike at extraumblical to peripheri on spiral side. Hoeglundina: test trochospiral, lenticular, perpheri angular to carinete; umbilical area closed; suture thickened may be elevated; aperture lateromarginal opening pararelling pheriphery on umbilical side. Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
36
Lagena: test unilocular (monothalamus), rarely 2 or more chambers; aperture on elongated
neck which may have phyaline lip, not radiate. Lenticulina: test planispiral; lenticular; biumbonate; aperture radial at peripheral angle Marginulina: early portion coiled but not completly enroled as in Marginulinopsis later rectilinear; suture oblique; aperture dorsal angled Melonis: test early stage slitghly trochospiral, adult planispiral simetri and involute; biumbilicate with umbilicus bordered by rim; perihery broadly rounded; apertural face, septa and umbilical thickened rim imperforate; aperture equatorial slit extending to umbilical in both side. Nodosaria: test multilocular; rectilinear; rounded in section; aperture terminal,central basically radiate may be produce on neck Oolina: test single globular to ovate chamber; aperture rounded and may have radiating groves surrounding aperture on exterior. Oridorsalis: test trochospiral, lenticular; periphery carinate; suture radial in spiral side and strongly sinusoid in umbilical side. Planulina: test low trochospiral, discoidal; peripheri truncate with thick marginal imperforate keel; suture strongly arched, thickened, nonperforate; aperture an equatorial arch with narrow bordering lip. Pseudorotalia: test trochospiral, periphery acute with imperforate keel; chambers with imperforate umbilical lips confined to radial sector and with imperforate plate-like extentions formed by each succeding chamber lamella covering umbilical area; cameral aperture interiomarginal on umbilical side, apertual lip forming interomarginal labial aperture at inner umbilical side of chambers ( it differ from Ammonia in having sutural canals on both spiral and umbilical side and lacking umbilical labial apertures) Pullenia: test planispiral involute, spheroidal to compresed; suture radial; wall calcarous finelly perforate; aperture a narrow crescentric intromarginal slit extending nearly from umbilicus on one side to that opposite. Pyrgo: test inflated, discoidal to ovate; chambers in final stage biloculine arranged; wall calcarous porcelenous; aperture terminal, rounded to elongated with distinc bif id tooth. Quinqueloculina: test coiled in quinqueloculine manner, wall calcarous, porceleneous; aperture terminal,rounded with simple or bifid tooth. Sphaeroidina: test subglobular; wall finely perforate; Spiroloculina: test with flattened side and lanceolate or fusiform in outline; chamber in late stage biloculine; wall calcarous, porceleneous; aperture at open end of final chamber with simple or bifid tooth. Siphonina: test trochospiral, biconvex, lenticular, peripheri commonly with fimbriate keel; aperture oval bordered by distinc lip and projecting on neck. Textularia: test biserial; wall aglutinanted; aperture single low arch at the base of chamber Triloculina: test early coiled in quinqueloculine, later become triloculine; wall calcarous, porceleneous; aperture terminal with bifid tooth Trochammina: test trochospiral; wall aglutinated; aperture interomarginal Uvigerina: triserial; aperture rounded with nonperforate neck may have phialine lip Vaginulina: test straight to arcuate as in Dentalina but compressed or ovate in section; aperture dorsal angled, radiate. Vulvulina: biformed test, early biserial later uniserial, flaring or elongates in outline, lateral margin acutely angled; chambers rapidly increasing in size; wall aglutinated; aperture in uniserial stage elongate, narrow terminal slit.
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
37
6. Foram Besar
Disebut Foram besar karena ukuranya berkisar antara 600 mikron - 20 cm. Hidupnya biasa bersimbion dengan diatom atau algae serta mempunyai struktur kamar internal yang komplek sehingga identifikasi foram besar umumnnya hanya bisa dilakukan dengan mengamati sayatan tipis (thin section) menggunakan mikroskop transmited light. Kadang beberapa genus hanya bisa dibedakan hanya dengan jenis sayatan tertentu. Parameter yang penting diperhatikan untuk pembeda adalah: bentuk dan ukuran test, putaran test/cangkang, posisi dan susunan kamar embrionik, kamar neanik, kamar lateral, kamar median, tebal atu tipis dinding cangkang, bentuk dinding, septa, cord, alar prolongation, pilar, Sebagian besar foram besar masuk dalam kelompok Rotaliina dan Fusulinina serta beberapa dari Miliolid. Berikut ini pembahasan secara garis besar identifikasi genus-genus penting dalam stratigrafi foram besar Tersier di Indonesia. (disarikan dari Paul Baumann, 1971, gambar2 dari berbagai sumber), dan sistematika identifikasi kelompok Fusulinid (diambil dari Sundharovat & Nogami, 1972). 6.1 Genus Operculina d'Orbimy. 1826 Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
38
Test flattened smooth or ornamented. Three to four whorls present, height or whorls increasing rapidly as added.V involute or evolute. Subgenera Operculina S. str : evolute Operculinella : involute Operculinoides : intermediate form between Operculinella and Nummulites These terms as no more in use. Evolution Operculina evolves into different other groups and is therefore an important form regarding the phylogeny of larger Foraminifera. Operculina - Nummulites Operculina - Heterostegina - Cycloclypeus Operculina - Heterostegina - Spiroclypeus A relationship was found between factor E and time. E is increasing from Eocene to Recent. Same E = same age. See v.d. Vlerk & Bannink, 1969. Species determination
There is no use for the time being to distinguish different species as the stratigraphic value of these forms is still very doubtful. The method based on the measuring of E is difficult and very time consuming. Remarks Often it is difficult to make the difference between Numulites and Operculina. However Operculina has only 3 - 4 whorls 'which increase very rapidly in height. Nummulites has mostly more than 4 whorls, increasing very slowly. 6.2 Genus Nummulites Lamarck, 1801 (dulu namanya Camerina)
Test involute; only last whorl visible from the exterior. Generally more than,four whorls present, with well developed, dorsal cord. Evolution, Ontogeny: 3 stages observable in arrangement of the spire of the B- form - inner primitive part: spire and septa regular, spire narrow - middle part: spire broad, often irregular - terminal part : narrow spire The spire of the A-form-is less differentiated than that of the B-form. Phylogeny: - same stages as in ontogeny : Primitive forms with regular spire (lower Ta). - change in ornamentation : smooth forms may evolve into pillared ones. Radiate septal structure evolves into sinuate - meandrine - semireticulate reticulate. Species determination: (Important parameter for the determination of a species; exterior :
size, septal structure, presence and location of pillars.interior : form a spire and chambers., shape of pillars). N. fichteli : B-fornO/N.intermedius (A-fom): middle to large form, flat with sharp edges, very densely reticulated, most forms with about 7 whorls. Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
39
N. pengaronensis: adiate ridges, about 40, extending from the center to the periphery,
forming a small umbo in the center; about 12 whorls. N.gizehensis : Septal structure neandrine, ver-y flat form, one side flatter than the other, pillars mostly on septal filaments. Pillar heads only on the border of the test clearly visible. most.forms between 2 - 3 cm. N.javanus : is considered as younger synonym. It might be a little thicker than the typical N. gizehensis. N variolarius one of the smallest Nummulites,, centrally arranged pillars, radiate ridges, 3 5 whorls. N.semiglobulus small to middle in size., distinct central pillar, straight to slightly curved ornamentation thick walls sharp edges. 6.3 Genus Assilina d'Orbignv, 1826
Test flattened, evolute or involute with or without pillars. No alar prolongations even in the externally involute forms. Well developed dorsal cord. Evolution Ontogeny: same as in Nummulites, Phylogeny : similar to that of Nummulites. General trends: increase in size of A end B forms. Increase in size of macrosperic embryonic apparatus Species determination: Two main groups : 1. A. exponens group: large,.thin form with very small septal pillars. Spire not well visible
from the outside. A. mamillate is megalospheric form (A-form of A. exponens). A. granuloma is a microspheric form very similar to But its megalospheric form ( A.leymeriel ) differs from the A. exponens. megalospheric form of A.exponens (A.mamilleta). Its megalosphere is but 1/4 mm in diameter., while that of A.mamillata reaches 1 mm.
2. A.spira - group: pillarheads forming distinct, spirelly arranged ridge on the surface, large form. Spiral well visible from the outside. 6.4 Genus. Heterostegina d’ Orbigny, 1826
Operculina with secondary septa, forming chamberlets. No lateral chambers are present in the calcareous masses on both sides of the equatorial layer difference to Spiroclypeus , evolute or involute. Evolution Ontogeny: 3 stages, -Embryonic stage (Protoconch + Deuteroconch) -Operculina stage (chambers not subdivided) -Heterostegina stage (chambers subdivided) Phylogeny : Polyphyletic, several times during the Tertiary, species of Operculina evolve into Heterostegina by developing secondary septa. Two groups are important in Indonesia. Species determination
Heterostegina praecursor - bantamensis group: Ancestral group of cycloclypeus. Test thin, with pillars like early Cycloclypeus spp. Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
40
H. praecursor : with umbonal pillar H. bantamensis .. without umbonal pillar
Heterostegina borneensis group: Ancestral group of Spiroclypeus spp. H. ruida : ancestral form of H. borneensis, innermost chambcrs evolute. H borneensis : innermost chambers involute, often dark sinuous pillars. Ancestral form of Spiroclypeus pleurocentralis. Less important forms for the stratigraphy in Indonesia H. depressa -. umbo surrounded by flat brim on which the primary and secondary septa are distinctly visible. H. reticulate : most probably a younger synonym of H depressa. Remarks - Besides these forms a lot of other Heterostegina species are known in different regions of the world.
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
41
6.5 Genus Cycloclypeus Carpenter, 1856
Test very flattened, with or without pillars, with or without radial ridges (radia), with or without concentric ridges (annuli). Early chambers arranged spirally, later cyclically, subdivided into rectangular chamberlets. No lateral chambers. Subgenera Cycloclypeus s. str.: smooth Radiocycloclypeus with radii Katacycloclypeus with one., two or more annuli Evolution Ontogeny: 3 stages - Embryonic stage : (Proto + Deuteroconch) - Nepionic stage (spirally arranged chambers) a) Operculina substage : (chambers not yet divided) b) Heterostegina substage : (chambers divided) - Neanic stage : cyclically arranged chambers. Phylogeny : Good example for the biogenetic law of Haeckel: Operculina - Heterostegina - Cycloclypeus immediate ancestral forms. H. bantamensis (without umbonal pillar) to C. oppenoorthi H. praecursor (with umbonal pillar) to C. koolhoveni . general trends : - reduction of Heterostegina like arranged chambers - size of proloculus increasing - development of forms without pillars - chamber walls become thicker, multilayered (axial section). Species determination
Three main criteria:
- surface features - number nepionic whorls - number of nepionic septa
Species see "determination table for Cycloclypeuis”
Determination of Microspheric forms :(note that B-forms very rare) exterior: In primitive forms like C. koolhoveni C. oppenoorthi and C. eidae A and B forms are of equal size. in advanced forms like C. posteidae and more advanced species. B-forms are 3 to 5 tim--slarger than A-forms. Interior:: B-forms shows more Operculina-substage chambers than A-form B-form : 6 - 13; A-form :1, rarely 2 Difference between C. eidae and C. posteidae is based on the difference of the Micro. spheric (B-form) C. eidae : A and B-form the same size C. posteidae B form much larger than A-forn6.6 Genus Spiroclypeus Douville,1905
like Heterostegins but with lateral chambers. Surface reticulate or pustulate. Evolution Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
42
Most probably polyphyletic out of Heterostegina. Eocene Spiroclypeus spp. evolve from another Heterostegina group than Oligo-Miocene forms. Latter ones seem to have evolved from Heterostegina borneensis. Lateral chambers : two kinds - subdivided alat prolongations - chambers formed by cavities in the side walls (Spiroclypeus lateral chamber) general phylpgenetic trends pustulate forms evolve into reticulate lateral ones, chambers becoming numerous, regulary arranged and shorter. Species determination S. vermicularis : characterized by lateral chambers of vermicular outline in tangential section,
pustulate. S. pleurocentralis : very small and thin oval form. Umbo lies very strongly exentrically. Thick lateral walls., few and long, irregular lateral chambers, pustulate Synonym S. yabei S. tidoenganensis-: larger than S pleurocentralis, more lateral chambers, less flattened,
pustulate. S. margaritatus: round form, lateral, chambers becoming shorter. Intermediate form to
reticulate forms. S. leupodi : reticulate, smaller than 2 cm, round. Lateral chambers are uniform in shape and size. Synonym : S. wolfgangi, S,. higginsi ? S. orbitoideus: reticulate, largest Spiroclypeus, up to 4 cm. These forms bear considerable resemblance to Lepidocyclina. 6.7 Genus Discocyclina Guembel,1870
Circular test sometimes very flattened. With or without pillars. One layer of equatorial chambers, concentrically arranged, very delicate and rectangular in shape. Lateral chambers delicate, Evolution - thickness of equatorial layer Still doubtful, microspheric forms with - presence of pillars, arrangement initial coil, (pl. 13) general phylogenitic trend - very small forms to larger ones. Remarks Genera Asterocyclina and Aktinocyclina belong to the same family and are closely related to the genus Discocyclina. Aktinocyclina : radial ribs formed by lateral chambers, only one layer of equatorial chambers,pl-13. Asterocyclina : radial ribs are formed by multilayered equatorial chambers, pl-13. Species determination
Complicated as a number of different description of the same species exist. The following features are important to identify a species - macrosperic embryonic apparatus - equatorial chambers (size arrangement) Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
40
6.8. Genus Lepidocyclina Guembel,1870
Circular to polygonal, often even stellate, with or without pillars. Macrospheric embryonic apparatus mostly bicellular; equatorial chambers hexagonal, arcuate, ogival etc. but never rectangular. Distinct lateral chambers, pl.8. Subgenera (Based on the arrangementof proto and deuteroconch): - Lepidocyclina s.str.: Microspheric forms. - Isolepidina : both embryonic chambers equal or subequal. - Nephrolepidina : Deuteroconch kidney shaped around protoconch. - Eulepidina : Protoconch completely surrounded by deuteroconch. - Pliolepidina : (=Multilepidina) Embryonic chambers bilocular., with variable number of relatively large, distinct periembryonic chambers. - Trybliolepidina : Protoconch surrounded by a cupulae shaped deuteroconch. Some authors consider this classification as unsuitable and showed that the arrangement of protoconch and deuteroconch was not strictly constant within one species. It is however, still customary to speak of Lepidocyclina with nephrolepidine, trybliolepidine etc. embryonic apparatus. Evolution Ontogeny: very similar to Miogypsina, 3 stages: - embryonic apparatus - nepionic stage - neanic stage (equatorial chambers) Nepionic stage is not as easy to investigate as in Miogypsina. Auxiliary and adauxiliary chambers are often lying outside the equatorial plane. A systematic based on them is therefore rather difficult to establish, pl-14. Neanic stage equatorial chambers are of different shapes: lozenge, arcuate ogival spatulate,, hexagonal, depending on stolon system Pl-14. It is even possible that one species has two different stolonsystems and therefore different kinds of equatorial chambers. Species determination
One method to get the relative age of Lepidocyclina method by van der Vlerk (1968) using the degree of curvature, pl-14 (only for nephro lepidine forms suitable; proved in E.Java, Madura and elsewhere. After Adams (1970) not suitable in N. Kalimantan. Some easily recognizable species:
Nephrolepidine-forms : L.(N.) isolepidinoides: small forms, often with small pillars. Equal to subequal embryonic
chambers. Wall between Protoconch and Deuteroconch straight to almost straight. Polygonal arrangement of equatorial chambers. L.(N.) parva : like L. isolepiainoides but distinctly nephro-, lepidine and larger. L. (N) borneensis resembles L. perva but is almost twice as large. Equatorial chambers cyclically arranged. Some larger nepionic chambers around the embryonic apparatus are present, showing a tendency towards pliolepidine forms, pl..14. L. (N.) tournoueri : is exactly the same f om, but does not show the larger embryonic chambers. Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
41
L. (N.) inflata (A-form)/L.acuta (B-fom) One large pillar in the center. Earliest forms small
and thin more evolved ones thicker and larger. L. (N. ) angulosa : Several pillars arranged around the center. L. (N.) verrucosa is here considered as younger synonym. The latter may shows more curved roofs of the lateral chambers in axial sections. L. ( N.) verbeeki belongs to this group, too. However, it is much flatter. L. (N.) ferreroi : 3-6 eccentrically arranged pillars in the corners of the polygonal test. No pillars in the center. L. (N. ) crucifera : four rays with pillars, ranging from the border to the center of the test. L.(N.) sumatrensis (A-fom)/L. dekroesi (B-form) form with subglobose central boss and small peripheral flanges, pl. 14. There are 3 types L.(N.) sumstrensis inornata L.(N.) sumetrensis minor L. (N) , sumtrensis umbilicata L.(N.) minor is smaller than L. (N) inornata These forms show often a slight tendency to get pillars at the surface. L.(N.) morgani : exactly the same as the sumatrensis group but with very strong pillars all over the surface,pl.14. L.(N.) flexuosa :border often with flexuosa peripheral flange. Numerous thick pustules regulary distributed over the whole surface. Large form, microspheric. Eulepidine forms L. (E.) dilatata : large form (3-4 cm) , with polygonal pillars and polygonal net-work on the
surface and in tangential section. Equatorial chambers cyclically arranged and hexagonal or spatulate. A - and B L.(E.) formosa : Synonyms: (E.) ephippioides; (E.) weberi; (E.) undosa; (E.) richthofeni; (E.) planata : no pillars, swollen to saddle shaped central boss., often even flat, equatorial section shows often hyperbolical shape. Wall masses dense, lateral chambers round in a tangential section, pl-1,4. L.(E.) papuaensis : with pillars like (E.) diletata but less thick chamber wells Wall thickness of Deuteroconch: papuaensis dilatata 70 u 190 u Thickness of roofs of lateral chambers papuaensis dilatata 1 15 u 50 - 70 u Trybliolepidine forms L.(T. ) rutteni : largest T., often with small pillars. very loose network of lateral chambers at
the surface, L.(T.) radiata : like (T.) rutteni but stellate. L. (T.) rutteni stellata is here considered as a younger synonym. L. (N.) martini seems to be the nephrolepidine ancestral form of L. (T.) radiate. The nomenclature of eulepidine and pliolepidine stellate forms is still doubtful. L. (T.) orientalis : small form., occasionally pillars.Relatively large embryonic apparatus, pl. 14. L. (T.) talahabensis is here considered as younger synonym. Pliolepidine forms :
These forms show a large embryont surrounded by a thick wall enclosing one large chamber and from four to ten smaller peripheral chambers, the wall between which are relatively thin. This group derives most probably from a form like L.(N.) borneensis. Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
42
L.(P) irregularis: very irregular axial outline. L.(P.) fijiensis is a younger synonym. L. (P. ) luxurians no pillars L. (P.) stigteri with pillars
6.9 Genus Miogypsina Sacco.1893
Test trigonal to oval. Composed of an equatorial layer with or without lateral chambers on each side-Embryonic apparatus bilocular, apically to subcentrally situated. Subgenera: Miogypsina s.str : with lateral chambers embryonic apparatus completely eccentrically situated Miogypsinoides Yabe.& Hanzawa : as Miogyptina but without lateral chambers Miolepidocyclina Silvestri : embryonic apparatus not completely eccentrically situated Evolution: Ontogeny 3 different stages:
1. Embryonic stage (Protoconch + Deuteroconch) 2. Nepionic stage (peri-embryonic chambers) 3. Neanic stage (equatorial chambers)
Phylogeny: General trends are as follow - Size of embryonic chambers is growing during evolution. - Increase of the total number of equatorial chambers from the early species to the later ones. Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
43
- Shifting of the embryonic chambers to a more central position (MiogypsinaMiolepidocyclina) - Reduction of number of spirally arranged chambers. Trends of the arrangement of nepionic chambers: 1.Miogypsina arises from a simple spiralled ancestor like Rotalia rexicana Nuttall, where the chambers following the embryonic apparatus are spirally arranged throughout the t est. 2.The chambers arranged in the "Rotalia-Spire" develop distal stolons and the formation of equatorial chambers becomes possible. As a consequence the Rotalia-Spire comes to an early end. (Complanata - type). 3. Acquisition of a distal stolon shifts to earlier chambers (Borneensis - type). 4. Acquisition of a distal stolon reaches third chamber : two spirals are possible (Ecuadorensis - type). 5. Acquisition of a distal stolon reaches deuteroconch, 4 spirals are possible 2 types unequal - bifidatype equal - indonesiensis type 6.Development of more than two stolons from the deuteroconch (Miolepidocyclina). Remarks: Microspheric forms are very rare, they seem to follow the same evolutionary trends, which are hardly visible, however. Species determination In 3 steps:
1. Genera determination (Ms, M, ML) 2.Type (in equatorial section only): in Miogypsinoides : only complanata - and borneesis-type. in Miogypsina : borneensis - ecuadorensis bifida - and indonesiensis - type in Miolepidocyclina : only bifida and indonesiensis - type. Species: complanata and borneensis-type after number of spirally arranged chambers. For Ms. and for M. valid 25 - 17 Ms. complanatus 17 - 13 Ms. formosensis 13 - 10 Ms. bantamensis less than 10 Ms. dehaarti 7-9 M. borneensis M. thecideaeformis Rutten about 5 ecuadorensis-type: M. bispiralis (former M. kotoi var. bispiralis) bifida - type : 2-3 spirals : M. kotoi (including M. kotoi var. digitata) indonesiensis-type M. indonesiensis With very advanced s-)iral-s and large pillars :M.tuberosa
Another method for the determination of Miogypsina s.str was, worked out by Drooger and consists in measuring the degree of symeetry of both protoconchal nepionic spirals. Remarks :- In the borneensis-type group intermediate forms between Miogypsiza and Mioypsinoides can be found. e.g. Miogypsina primitive; Miogypsinoides primitive , both names can be
found in publications - Size and pillars of the forms depend mainly on environment. Forms in turbulent water develop stronger pillars.
In Miolepidocyclina two types : bifida corresponding-type: ML. burdigalensis
indonesiensis correponding-type:ML excentrica Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
35
6.10 Genus Pellatispira Boussac, 1906
Lenticular, rarely spherical, evolute, with or without pillars, very thick walls with radially arranged coarse pores. Well developed dorsal cord. Radial and vertical canals present in the wall. Chamber arrangement without alar prolongations (axial section). Evolution Deriving from Assilina by thickening of the walls Species determination
7 easily recognizable species in axial section: ,Pellatispira madaraszi Spirally arranged pillars forming a distinct ridge. P.orbitoidea fFat, lenticular, sharp edges in axial outline R. rutteni Cone shaped pillars, strongly developed on surface. Embryonic apparatus often very large. P. inflata Very thick form, ratio 3 2 to 1 no edges, rounded axia 1 outline. P . glabra like P. inflata but with pillars. P.irregularis Very irregular form concerning internal features, and external features, canals irregular, too. This
form might represent the end form of the Pellatispira evolution. P.crassicolumnata Very thick pillars, thin radial canals. Often intemediate forms to P. rutteni and P. provalei. 6.11 Genus Biplanispira Umbgrove, 1937
Like Pellatispira, secondary chambers are formed in the adult stage. They are arranged. in.two layers, Evolution Ontogeny: 2 stages, -Pellatispira stage Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
44
-Biplanispira stage Phylogeny out of Pellatispira Species determination
Only by using shape of axial outline, see bellow. There are many intermediate forms.
6.12 Genus Fasciolites Parkinson, 181I (Alveolina d'Orbigny 1826 is a younger synonym)
Round to cigar shaped. Septa are perforated by main apertures alternating with secondary apertures. The secondary septa are arranged alternately. Two canals are present (pre- and post- septal canal) 'which run behind ar)d in front of each main septum from pole to pole Evolution Ontogeny: 5 different stages I. Proloculus 2. Nepionic chambers following proloculus. In B-forms miliolid,. In A-forms miliolid coiling less visible 3. Following nepionic chambers : tight whorls, without thickening of wall. 4. Thickening of basal layers in equatorial or axial direction (= flosculinization). 5. Adult stage : again tight coiling, whorls becoming often very irregular. Phylogeny polyphyletic, very complicated. still doubtful. Relationship to Miliolidae, still visible in early ontogenic stage of B-forms General trends: small to large round to long regular to'irregular Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
44
Species determination
Only in two sections possible: equatorial section and axial section (more specific characters) Almost 100 different species are known with different stratigraphical distribution These forms are not yet very important for the stratigraphy in Indonesia. Two main groups - ovale and spherical forms without supplementary chambers at the poles. - large, long forms with supplementary chambers at the poles Criterions for species determination: (1) size (very important) ; (2) shape ; (3) number of septa in one whorl; (4) shape of sutures; 5) character of flosculinization; (6) number of whorls; (7) number of chambers in one whorl 6.13 Genus Borelis MONTFORT, 1808 synonym)
(Neoalveolina Silvestri, 1928 is a younger
round to cigar shaped, only one canal is present (= preseptal canal) , external apertures are arranged in one row, septula arranged continuously. Evolution Ontogeny : similar to Fasciolites Phylogeny: not well known Species determination Borelis pygmaeus cigar shaped B. melo : small spherical form B. pulchrus : cigar shaped (Pleistocene -
Recent) 6.14 Genus Flosculinella Schubert, 1910
round to cigar shaped. Only one canal is present (pre-septal canal) , external apertures arranged in two rows. Septula are arranged alternately. Secondary chamberlets (attics) above first chamberlets. Evolution Ontogeny : Nepionic stage with quinqueloculina coiling. Phylogeny : Most probably out of Borelis. During upper Tf evolution into Alveolinella. General trends : small round to large cigar shaped.
(F. borneensis = A. fennenzi = probably A. quoyi )
Species determination (based on the
ratio between length and diameter): Flosculinella reicheli : small practically round, less whorls than F. globulosa F. globulosa - large round with tendency to cigar-shape F. bontanpensis : large, cigar shaped. F. bontangensis evolves into Alveolinella borneensis 6.15 Genus Alveolinella Douvill6, l906 Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
45
Cigar shaped, long. Only one canal is present (preseptal canal). External apertures are arranged in three rows, but may increase to five near the poles. Secondary chamberlets (attics) above the primary chambers. Septula are arranged continuously. Evolution Out of Flosculinella. Intermediate formwas formerly called. Alveolinella borneensis orFlosculinella borneensis. It might be a younger synonym of A. fennemai . Species determination
The genus may be represented by only one valid species A. quoyi, A. borneensis, A. fennemai as mentioned early representatives of Alveolinella have never been described or figured sufficiently.
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
34
6.16 Genus Austrotrillina Parr,1942
Porcellaneous externalwall consisting of a thick alveolar inner part and a thin, finely pitted outer skin; chambers one half coil in length, early chambers added mostly in quinqueloculi.ne fashion, later chambers usually arranged in triloculine manner, so that often only three are visible externally, Evolution Ontogeny : first quinqueloculine later triloculine. Microspheric forms have more chambers. Wall consists of two parts : - relatively thick inner layer with alveoli (blind ending cavities) - a very thin, non alveolate outer skin which is pitted externally This skin is very delicate and therefore often lost. Phylogeny : Monophyletic, out of another group of Miliolidae. General trends : simple alveoli to complex, alveoli. Remarks : Member of the Miliolidae are amongst the first foraminifera to be affected by recrystallization.
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
54
Species determination
Based on the arrangement and shape of the alveoli. In Indonesia., three different species were found. A. striata and A. howchini which are frequent, and A. asmariensis which is rather rare. A. striata : simple alveolip widely spaced, 6-10 in the last chamber (equatorial section) A.asmariensis : simple alveoli, closely spaced, 15-20 in the last chamber (equatorial section) A. howchini : complex alveoli Remarks : a lot of intermediate forms of these species can be found.
6.17 Genus Halkyardia Heron - Allen & Earland.1918
Calcareous, conical, perforate. Lepidocyclina like embryonic stage followed by imbricate chambers which are radially arranged enclosing an umbilical filling with canal system. Stolons from chamber to chamber and from each chamber to the umbilical filling. Small size, less than I mm, Evolution Ontogeny: similar to Lepidocyclina, 3 stages 1. Embryonic apparatus (Protoconch and Deuteroconch) 2. Nepionic chambers 3. Neanic chambers: imbricate and radially arranged Phylogeny: doubtful. Species determination
two different forms are known in the Indo-Pacific region without pillars H. minima H. bikinensis : with pillars and thick walls
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
55
RANGE OF SELECTED LARGER FORAMINIFERA MARKERS SPECIES (berbagai sumber) PAL PLIOCE EOCENE OLIGOCENE MIOCENE EOC NE ENE Lower Middle Upper Lower Middle Upper Lower Middle Upper turoni seno Lower Upper Lower Upper Ta1 Ta2 Ta3 Tb Tc Td Tg Th an nian Te Te Tf Tf CRETA CEOUS
QUATE RNARY
Baculogypsina spaerulata Asterorotalia pulchella gr. Calcarina spengleri Cycloclypeous spp. Lepidocyclina (N) spp. Lepidocyclina (T) radiata Lepidocyclina (N) ferreroi Lepidocyclina (N) inflata Lepidocyclina (N) sumatraensis Katacycloclypeous anulatus Austrorillina spp. Austrorillina howchini Borelis melo melo Miogypsna spp. Flosculinella spp. Flosculinella bontangesis Cycloclypeous eidae Miogypsinoides spp. Flosculinella globulosa Spiroclypeous spp. Lepidocyclina (E) spp. Borelis pygmeous Austrotrillina sriata Austrotrillina asmariensis Pararotalia mecatepecennsis Heterostegina borneensiss Numulites spp. (reticular ornamen) Numulites spp. (sriate ornamen) Heterostegina bantamensis Pellatispira spp. Biplanispira spp. Discocyclina spp. Asterocyclina spp. Alveolina spp. Assilina spp. Praealveolina spp. Subalveolina spp. Ovalvulina spp.
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
56
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
57
10. Kunci untuk identifikasi beberpa genus fusulinid
(Sundharovat, S.& Nogami, Y., 1972) 1. Parachomata present ................................................................................... see 2 Chomata or pseudochomata present ............................................................ see 19 2. Primary transverse septula absent ............................................................... see 3 present ............................................................... see 8 3. Keriotheca absent or indistincht ................................................................... see 4 present ........................................................................................ see 5 4. Mature shell elongaed ellipsoidal to cylindrical, composed of 12 - 20 volutions, 5-8 mm long and 2-4 mm wide. Proloculus small to medium. Spirotheca composed usually of a dense layer, but rarely of tectum and indistinct keriotheca in outer volutions. Parchomata hight ........... Pseudodoliolina 5. Shell medium to larger, spherical ......................................... .................. ..... see 6 small, oval to ellipsoidal ............................................... .................. ..... see 7 6. Mature shell composed of 10-20 volutions, 5-14 mm long and wide, provided with slightl umbilical axial region. Proloculus minute, inner 2-4 volutions coiled tightly, following expanded rapidly. Parachomata small, half-ciecular ..............Verbeeekina 7. Mature shell composed of lest than 9 volutions, 2-4 mm long. Proloculus minute to small, inner 2 or 3 volutions umbilical in axial region. Parachomata narrow, hight ... Misellina 8. Axial septula absent or rudimentarily present ......................... ...................... see 9 disticntly present ............................................... ...................... see 10 9. Mature shell minute to small, inflated fusiform, composed of 8 - 12 volutions, 2-4 mm long and 1-3 mm wide, Proloculus small. Primary transverse septula present only in outer volutions. Axial septula usually absent, but rudimentarry one seen rarely in aouter volutions. Spirotheca very thin. Parachomata narrow, hight . Cancellina 10. Secondary transverse septula absent .................................. ...................... see 11 present .................................. ...................... see 12 11. Mature shell medium, ssperical to fusiform, composed of 10-17 volutions, 4-10 mm long and 2-6 mm wide, Proloculus minute to large. Septa and septula pointed triangular to barshaped. Axial and primary transverse septula present, secondaryy traverse ones usually absent,, but spmetime rudimentarry one seen in outer volutions. Parachomatasmall, half circular....... Neoschwagerina 12. Septula pendant-shape ....................................................... ...................... see 13 bar-shape ................................................................ ...................... see 16 13. Shell inflated fusiform ........................................................ ...................... see 14 elongated fusiform to subcylindrical ............................. ...................... see 15 14 Mature shell small to medium, composed of 9-13 volutions, 3-5 mm long and 2-4 mm wide, Proloculus small. Septula pendant-shaped, 1 or 2 axial septula volutions present in inner volutions. 1 secondary traverse septulum presnt in inner volution, 1 or 2 septula in outer volutions. Spirotheca very thin. Parachomata small,halfcircular ........ Afghanella 15. Mature shell medium, composed of 8-10 volutions, 6-10 mm long and 1.5-3 mm wide, Proloculus medium to large. Septula pendant-shaped, 2 or 3 axial septula volutions present in inner volutions, 3 or 4 in outer volutions, 1 or 2 sometime 3 secondary traverse septula presnt. Spirotheca very thin. Parachomata very small .................... Sumatrina 16. Proloculus minute to small ................................................... ...................... see 17 medium to large ................................................. ...................... see 18 17. Mature shell medium to larger, subsperical to inflated fusiform, composed 15-20 volutions, 7-12 mm long and 4-9 mm wide. Spirotheca rather thin. Septula triangular to bar-shaped, 1 or 2 axial septula present between 2 adjacent primary ones in middle ton outer volutions. Parachomata small ...................................... ...................... Yabeina Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
58
18. Mature shell larger, inflated fusiform to subcylindrical, composed 14-22 volutions, 9-15 mm long and 3-8 mm wide. Spirotheca very thin. Septula bar-shaped to somewhat pendant-shape, 2 or 3 axial septula present in inner volutions, 3-5 in outer volutions, 1 or 2 secondary traverse septula present. Parachomata very small ......................... Lepidolina
19. Keriotheca present .............................................................. ...................... see 20 absent ................................................................ ...................... see 29 20. Septa fluting limited to axia 1 region .................................... ...................... see 21 more or lest intense throught volution ............. ...................... see 24 21. Shell smal to medium, fussiform ......................................... ...................... see 22 medium to large, subsphaerical ................................ ...................... see 23 22. Mature shell, composed 5-10 volutions, 3-10 mm long and 2-5 mm wide. Proloculus small, shell expanded slowly. Septa fluted weakly in axial region. Chomata developed strongly, but replaced by Pseudochomata sometimes in outer volution ........ Triticites
23. Mature shell highly inflated fusiform to sphaerical, composed 6-8 volutions, 8-15 mm long and 6-14 mm wide. Proloculus small, inner 2 or 3 volutions coiled tightly, following expanded rapidly. Septa fluted weakly in axial region. Chomata distict only in inner volution.. .................................................................................. Pseudoschwagerina 24. Septa fluted widely and irregulary ........................................ ...................... see 25 narrowly and highly ......................................... ...................... see 26 25. Mature shell medium to large, inflated to elongated fusiform, composed 5-8 volutions, 615 mm long and 3-6 mm wide. Proloculus moderate to larger, shell colied rather slowly. Chomata indistinct, replaced by pseudochomata in outer volution ................ ....... Pseudofusulina
26. Shell small to medium, fusiform ............................................ ...................... see 27 medium to large, subcylindrical .................................. ...................... see 28 27. Mature shell more or lest inflated fusiform, composed 6-9 volutions, 5-11 mm long and 3-5 mm wide. Proloculus small, shell expanded rather slowly. Spirotheca relatively thin. Septa fluted regulary and highly. Chomata usualy indistinct replaced by pseudochomata in outer volution.......... ............................................................. ......... Schwagerina 28. Mature shell elongated fusiform to cylindrycal, large in size. Proloculus medium to larger, shell expanded rather rapidly. Spirotheca thin. Septa fluted highly and regulary. Chomata indisstinct in almost all volution ............................................. .............Parafusulina 29. Diaphanotheca absent ......................................................... ...................... see 30 present ........................................................ ...................... see 33 30. Shell rhomboidal to sperical ................................................ ...................... see 31 ellipsoidal to fusiform .................................................. ...................... see 32 31. Mature shell minute, provided with umbilicated axial region and short of coiling, composed 4-7 volutions, 0.5-2 mm long and wide. Spirotheca composed of tectum and tectoria. Septa unfluted. Chomata heavy, hallf-circular to ribbon-likke . ........ .......... Pseudostaffela
32. Mature shell small, composed of 4-7 volutions. 1-3 mm long and 0.5-2 mm wide. Proloculus minute to small, inner 1 or 2 volutions usually umbilicated. Spirotheca thin. composed of tectum and tectoria, but diaphanotheca sometimes seen in outer volutions. Chomata formed strongly .......................................................Profusulinella 33. Septa fluted only in axial regions ............................................................ . .... see 34 throughout volution ........................................................ . .... see 35 34 Mature shell small to medium, elipsoidal to fusiform, composed of 6-9 volutions, 1.5-4.5 mm long and 0.5-3.5 mm wide. Proloculus small to moderate. Diaphanotheca observed clearly in outer volutions.. Septa fluted usually only in axial regions.. Chomata heavy, gradually decreasing in development from middle to outer volutions .......Fusulinella Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
59
35. Inner 1 or 2 volutions inflated fusiform .................................................... . .... see 36 throughout volutions ....................................................... . .... see 37 36 Mature shell small to medium, inflated fusiform to subcyilindrical, composed of 6-10 volutions, 2-6 mm long and 1-3 mm wide. Proloculus small. Diaphanotheca rather thick. Septa fluted widely and hihgly. Chomata indistinct, replacet by speudochomata in outer volutions .................................................................................................. Beedeina 37 Mature shell small to medium,ellipsoidal to cyilindrical, composed of 5-7 volutions, Proloculus small to moderate, inner 1 or 2 volutions subsphaerical to ellipsoidal, provided with less haeavy chomata,. Diaphanotheca rather thin. Septa fl uted hihgly and narrowly. Pseudochomata present in middle to outer volutions ...................................................................................................................... Fusulina
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
60
14. Penyajian Data
Dalam suatu analisa foram untuk menginterpretasi umur dan lingkungan pengendapan suatu sampel, memerlukan data genus maupun species yang sudah diidentifikasi/dianalisa. Ada beberapa macam metoda analisa: a. analisa kualitatif : hanya mencatat suatu taxon ada atau tidak b. analisa semi kualitatif: mencatat hasil pengamatan dalam interval tertentu dan direpresentasikan dengan simbol tertentu (misal: 1-3= jarang (o), 4-10 = sedikit (+), 1125=banyak (I), > 25 = melimpah (IIII)). c. analisa kuantitatif: disini semua kehadiran fosil diidentifikasi dan masing-masing taxon dihitung jumlahnya. Ada beberapa cara/teknik dalam analisa kuantitatif yang bisa digunakan dalam menghitung jumlah fosil, misal dengan membagi sampel dengan microspliter atau dengan menggunakan menggunakan tray yang ada grit-nya. Perhitungan bisa dilakukan secara absolut (dihitung jumlah riilnya) atau menggunakan teknik hitungan 300 (sampel di bagi-bagi sampai kira-kira jumlahnya 300, dan jumlah tersebutlah yang dihitung secara riil. Penentuan macam analisa mana yang dipakai tergantung dari tujuan kita menganalisa sampel tersebut. Bila hanya untuk menentukan umur maka analisa bisa secara kualitatif, tetapi bila kita ingin juga menentukan lingkungan pengendapan maka setidaknya analisa harus semi-kuantitatif. Untuk keperluan tertentu misalnya dalam studi event stratigraphy, sikuen stratigrafi maka cara terbaik adalah dengan analisa kuantitatif. Setelah selesai diidentifikasi biasanya taxa dikelompokan paling tidak dalam dua kelompok yaitu plangton dan bentos, tetapi yang lebih umum terutama di dunia industri adalah mengelompokan dalam 5 kelompok foram yaitu plangton, calcareous bentonik, miliolid, foram besar, arenaceous dan dan 1 kelompok non foram. Secara umum ada 2 kelompok sampel yang berbeda dalam penyajianya: a. sampel yang berdiri sendiri / independen satu sama lain (misal: spot sampel, sampel lapangan dll.) b. sampel yang susunan stratigrafinya kita ketahui (misal: sampel hasil pengukuran penampang stratigrafi, sampel dari pemboran dll.) Meskipun tidak ada cara penyajian data yang baku tetapi beberapa contoh berikut ini yang sering dipakai.
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
61 FORAMINIFERA DISTRIBUTION CHART Well Name :Bajulbuntung Company : ITB Analysed by : Khoiril Anwar M. Date: 7 - 9 - 1999 ) lei n e ju(
n o n
a
ti 9
7
o 9 of
la
a B
y b
e
i
tot
L
A
n
di
L
s
r e
e
p
m
r M
u O
U
Notes
Biostratigraphic comments
Indetermi nate
Cassigerinella chipolensis
e io N
e g
.T
t
di
d
le N
a
b S
L A
P
k
gi
gi
gi
gi
la
ol
ol
ol
ol
o
b
C
I
o
o
C
+
o
o o
DI c IO
e
R
ai
s
C a A
G
s
L
n A
C
A C
o
I
+ o
+
t
500
sdst ctng
R
o
540
sdst ctng
R
+
820
sdst ctng
R
870
sdst ctng
R
980
sdst ctng
B
1070 sdst ctng
B
o
o
o
s
id a
lp
n s
is B
o
ui
?
o
C
o
E
o
I
+ o
+
L
p
IL
O
s S
C
iar E
N tu A
e
p
h R
G
E
LI
n
q L
A
g
E
L
U
u
is
Q
O F R
o
id
x
H
ar
in
T O
O
c t T
o
h s
o
o
o
E e
R
d
la
A m
A
S p
a R
M
c E
o
o
+
S ni
u
n e
S le et
ti h
o
+
F e
u
id A
F
ol
O
s
c
o
o
+
+
o
o
o
o
o
+
o
ctng = Cutting
Legend: o = Rare (1-3 specimens); + = Few (4-10 specimens); I = Common (11-25 specimens); IIII = Abundant ( > 25 specimens) = Occurrence; = First downhole occurrence
o
a H
+
IIII +
M
+
z n m
g s
u
u
vli
r
u
a ni
m
lo
a
lin
a
a
u
o A
n p
g ni
w o
o
o
a
s R
n
nli
g p
e
s
i M
e
s ni
s
ia
NI
IF a
n p
p p
s
ig b
G
s
E
e
b
ctng
m
nli
O ri
e
ctng
ta
inr
e
260
a
s
n
n
230
r
o inr
G
p
p
p
p p
e
o inr
G
.
id
inr
P
p
A
.Y
y
toli
id
b
a
e
a
n
.
.
.
p
S
F
N
o
u
A
.
E s
p s
p .
ctng
o
. M
u
U
s
sdst ctng
Z
n
m
all
E
440
1 c
r
N
B
ip
. p p
340
n
3
n
p
h
.
c
e
e
N
T
s
p
to K
o
le s
s
a
H
o
d
n
T d
lo S
a
p im
p ic
n
g a
s
O
le
p
et
d
R O
n p
ar
ni
c
i
p
d nI
ty l
n
r
N
b
p
N
p
m e
e
e
u
e el
e
.
s
tu b
et CI
m
a
n e
u
ht itr
n p
e
e
ht
N
r
ci r
ra
a
e a
o
d
rg lo
P
m
ar
e w
e
ttli -l
r
n
r
tii o
(1
(1
c ar
7
9
c tii
l
ar
k
n
0
6
E
Indetermi nate
1 ,
9 to
a
A
si
u rm
a
m
n
oll ni
l 9
,1 ic
A
8 z
z
G
n
4
9 o
ur
a ) a
)
e id
Environments
t
N
s s
et
n oi
IC
v
o
sdst = sandstone
B = Barren of foraminifera R = Rare
C = Common
F = Few
A = Abundance
Penyajian data dari hasil analisa semi-kuantitatif dari sumur pemboran. FORAMINIFERA DISTRIBUTION CHART Well Name : FIELD SAMPLES Company : Analysed by : Khoiril Anwar M. Date: 23 July
a h lp a a rm
n iot
n
z
,1 n
9
o
,
ar
m 0
9 6 (1 r
(1 rg a
m L
A
n
w lo B
a
d
e
L
r n te
In M
id u O
U
p
Notes
m S
B
H2
N4-N17
inr b
?igneous rock
Upp. Te-Lwr. Tf
B3
lo
to
lo
la
b
G
G G IIII o
e
I
+
lo
a
lo
H
G IIII
C
a C
e
b lo
lo
G o
G +
G I
o
?
o
at s c
ni ar
s
L
ig
lim U
B
ids a
cy
ti ci
o id
uc di
a
m
lp
e
n ib
o
h A
E o
L
C +
liv B o
A
p
e nli
nli
te
m
m
H
A o
I
o
o
+
o
+
or lo
e
a
o b m
la a
le ac
h
or
p s
in
s oc
p
o
s e
u
C
nli
m
v
inr
ui
in
A
m n
s
a p
t igl
u
p s
a
ai a
inl
e
sc
p
ar ar
e
.
s
at
c u a
p
p s
A
b
p
p
inr
ig
b a
.
p
p
R
e ig
b
s
. p
. p
E
e
g la
. p
e
inr
o s
p
o
O
inr
s b
s
G o
a
ig
lo
P
or
ta
e tig
b n
gi
e
re
id a
ri
U
.
g
e c
n inr
o k
lo
G
G o
a o n
o n A
Barren o IIII
I
o
+
o
+
J3
I
B3
o
S-10 contaminant?
o b
lo
inr or
B
inr S
ip lia
lo
a E
s
p e
b isr
N
e e
a
ta
q ig
b P
n
r la
a
ic
e ig
L
u
lia
a
e ig
A a
d
in
inr
e N
r a
Upp. Te
Miocene
inr
p
s
ipc p
s
p
imr
pi
p
ar
d
a
e
or
e h
h .
ia
r
o
s
o
k
ni p
o K
er
ar id
T
a
e
a
e
e te
e
id
n
F3
N4-N5
O
l
o
e
le ip
n
T
e
H
s
or
h n
mr
b
C2 Indeterminate
N4-N5
a
p ist
s
iss
o O
si
d
ro n
o
in
u mi
N
p
p
d n
p le
e r
Upp. Te
Early Miocene
lol
e
s
N4-N5
Early Miocene
m
n
a
a N
iu n
iss
m/
s
s d
fei a
rai
a s
IC
n
b
el e
it
ot
m
Upp. Te
Early Miocene
Indeterminate
n r
u
a
e n
le m
ir
r
b
N4-N5
Indeterminate Early Miocene
e
r
ra
e
k
c -Sl
e
th ict
u 9
of
to
c tii
7
r
y
tii
p
ar
ic
Early Miocene
1
9
loi
id
rt
a
li
z
u
ar
te
e ut
s
l
9
7
P
tot
n
n
AGE
8
ar
o
a
la
) 4
9 t
s
b l
a )
oi
ru
CI
a
ey
s
Environments
of ri
I IIII
IIII +
I o
+ IIII
I
I
o
+
o
o
o
o o
o
o
o
+
I
o
o
o
o
IIII +
S-12
o
Legend: o = Rare (1-3 specimens); + = Few (4-10 specimens); I = Common (11-25 specimens); IIII = Abundant ( > 25 s ecimens A
s u s lo
la u
m p
lo
n
sor m
tic u
o
b g
tu
d id u
o la
ip
u
r
ni
n
ID
m
OI
th
al n
lla h S
e C
m
C
A M
u
vul
Q A
V
R
c
L
A
o
o
o
o
o
o
lc py
R
io y
loc
lyc
s io T
o
o
+
o
id m
p
g L
M
e A
+
O
py
py
e
o
R
u
I
S
e
o
s
p
IL
o
di
e
ni
h G
E
in
is
S
s
u
s
cy
E
N
p
g
lin te
inl
q
o
in R
A
a
u
p s
p
a
a
u IL
p
F
E
a
s
s
s
s
O
e
e
o
n
R
O
L
n
n P
u c
s
s
n U
u
a
ic
ia
ol
c
ai e
m
inl
s p
el A
s
p
.
s
a S
b ar
e o
a
p p p
p
p
M
. p
.
os
tu
. .
n NI
la s
a
s
u
ii IF
p
ta
a a
C
E p
ut
ta tos
ib
R .
s
S O
ni F
C
+
I
o
o
o
+
+
o
+
I
+
o
+
+
o
o
S
E
C
o
ra
l h
in
o s
c
g p
di rat
o
d E
roi
H
M O
O
c
o
o +
+ o
o
o
o
+
+
+
+
Penyajian data dari hasil analisa semi-kuantitatif dari data field sample atau outcrop
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
62
PENENTUAN UMUR RELATIF (note: konsep2 biozonasi atau biostratigrafi tidak akan dijelaskan lagi disini). Pada prinsipnya penentuan umur relatif menggunakan pemunculan awal (FAD = First Appearence Datum) atau pemunculan akhir (LAD = Last Appearence Datum) suatu taxon. Kadang-kadang dalam penentuan umur relatif orang sering menggunakan konsep negatif evidence (ketidak hadiran suatu marker), konsep ini bisa diterapkan tetapi harus hati-hati sekali. Negative evidence bisa digunakan bila kita yakin akan biofaciesnya. Sebagai pendukung biasanya even-even seperti perubahan pola putaran species tertentu dapat juga dijadikan kontrol untuk penentuan umur relatif. Umur relatif yang digunakan di dunia industri biasanya mengacu pada zonasi Blow (1979) hal ini karena zona-zona tersebut tersusun atas kombinasi huruf dan angka (i.e. N22, N20 ....& P1, P2 .. dst) sehingga urutan tua&muda lebih mudah dibaca. Sebenarnya untuk penentuan umur relatif di daerah lintang rendah ada beberapa zonasi yang dapat dipakai (misal: Bolii (1985); Srinivasan (1984), Stainforth dkk. (1975) dll.) Secara garis besar ada tiga metoda dalam penentuan umur, dimana m etoda yang digunakan tergantung dari jenis contoh yang dianalisa. 1. single sample (bisa Cutting atau outcrop Sampel.) penentuan umur diperoleh dengan cara mencari overlap antara FAD dan LAD taxon2 tertentu (marker). pada outcrop: Problem yang mungkin ditemui adalah adanya fosil rombakan. Fosil rombakan akan dikenali dari LAD-nya yang relatif lebih tua dari FAD marker. (lihat gambar). sedangakan pada dicth cutting: penentuan umur lebih sulit, biasanya batas atasnya ditentukan dari LAD marker yang paling tua. Tetapi hal ini akan sulit bila kita juga menemui adanya fosil rombakan. Analisa biofacies akan sangat membantu dalam menginterpretasi umurnya.
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
63 ) et a ni rm
s
a z ic 6
u
inr
o
a
a
d
k
E n
w P
B
al
ol
Biostratigraphic comments
m
N
S
u
o
gi
ot
P
O
G
ol
br
o
o
A
a A
L
ol
u i
e
ar
s
h
m
m
e
s
h
e
s id
p
m
p
or
at
ial e
inr
o
id
e
s
ar
y
o
a
o
inr
b
k
gi
G P
al
ol
o
e
o ol G
o
e
r ig s
gi
e
inr ol
b ol
G
o
+
C
o
o
e
ial
ial or
or
o
at
h cr n
ial
ial a
or
or
at Z
o
b
b
w
G B
b ol
ol G
o
o
o
b G
n
at o
ol
iot
a
at o
o
o
a
ipr
p
G
e
e e
ol G
n h
b ol
dr
ir ipr
b G
o
e
o
b a
G
e
gi
s
b ol
ni gi
a e
e
e
b
o
all
or gi
b
o
s
c inr
e G
p
at
gi ol
p
a p
rt
a
inr
b
loi
b ip
ial
e G
fo
p
id inr
n
.
e
e
.
h
s
s p
n
u o
b
id ic
I
n
or
s
q
s s
+
a
or
or
le
e
ju(
q b
b
v
e
lin K
p
c
d u
rd
n
s e
id
s T
1( ot
A
u
inr
e
O
el 9
n
ii n
s
oll a
s
N 9
d u
n
a tu
,1
u
a
CI
o
c
im
ar
9 n
G
l
a
ii si
e
/
m
isl 9 7
a
c
di
eil
u
li
a ist
) t
ar
ut p
oi
s
in
ef
r d
i n
e
ur ar
ta
ut te
s
ol G
o
ol
o
N 12
N 17 N16 N15 N14 N13 N12 N11 N10 N9 N8 N7 N6 N5 N4
Bila sampel A merupakan sampel lapangan atau core atau SWC, maka umur sampel tersebut adalah N12, dengan demikian kehadiran Globorotalia. archeomenardii dan Gr. peripheroronda adalah sebagai fosil rombakan. Sedangkan bila sampel A adalah sampel jenis ditch cutting maka umurnya adalah tidak lebih muda dari N 10 (LAD dari Gr. archeomenardii). 2. Kelompok sampel yang tersusun dalam suatu array 2.a. bila semua sample dari hasil pemboran yang berupa coreatau swc; atau dari Measuring Section /MS Biasanya sample disusun (dari atas ke bawah) mulai dari yang muda ke tua atau dari paling dangkal ke paling dalam (sumur bor). Penentuan umur relatif didasarkan pada urutan FAD atau LAD atau gabungan dari FAD & LAD.
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
64 BIOSTRATIGRAFI Lintasan : Kali Ngliron Dianalisa oleh : Khoiril Anwar M. s s O
e K
ll u
A
M 9 , F
7
0 O
P 8
I
S
S N
a Z
A(
1 A
,i
A
M O
B(
O
o Z
1
E
loi
o
c
IF
b IN
a A
2
KETERANGAN
LITOLOGI
Globorotalia tosaensis tosaenis
o O F
1 2 3 4 5 6
Pulleniatina (S) dominan Pulleniatina (D) dominan
e
b
d
p
s
n
rb b
a
a n
e
e
e
e id
id n
n
e
ri
n
e
ri
n
e
ri e
e
e
e
u
u
ta
b
b G
G
ri e
e
e
gi
gi
gi
gi
gi
gi
gi
gi
gi
gi
gi
gi
gi
gi
gi
q
io
lo
lo
lo
lo
lo
lo
lo
lo
lo
lo
lo
lo
lo
lo
lo
lo
lo
B
b G
b G
b G
b
G
1 1
b G
b G
b G
b G
b G
b G
b G
b G
b G
G
G
2
136 816 12
24 352 8
80 6
24
8
288
1 176
9
36
8
1 32
40 1(R) 1( 1( 368 16(R)
8 1 6 1
32 16 12
24 176 4
32
104 640 12
32
16
320 480 21 64
1 16
8
1
56 392 128 1104 16 24 56 1
32
6 56
11 3 2 1136
b
b
b
b
b
b
b
b
b
b
o
igt
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
lo
b H
a
lo
m
m
m
o
p
tu
li
li
li
li
li
li
li
li
li
a
s li
li
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
208 1(R)
7 04
92
36 1(R)
64
1
1
2
3
1
3
2
3
7
2
11
5
2
2
9
1
n
m
li
a
h
c
a
c
u
m
a
ta lo
8 1 6
4
1
1
208 8(R) 752 16(R) 28
168 624 4
32
24 1
lo
a n ta
o lo
ip s a
ta
o
lo
h tu
ta
o
lo
116 4(R)
ta
o
lo
1 704 16(R)
1
ta
o
lo
a
ta
o
lo
s a
ta
o
i
b a
ta
o
u e
a
ta
o
1
n
a
ta lo
640
124
d
a
a
lo
16 1
a la
a
a
m
s
o
8 1
36
o
a
e
b
a
ar
o
32
172
if m
b
o
48 1 1 1 272 1040
8
ra a id
b
216 1344 4
48
x lef
e
b
32 160
80
n e
o
id
s
p o
ro
112 624 16
560
u
ut
tu
gr
ta
48 392 400 1216 4 40
44
e
s
s
.
q lo
336
a m
.l
im ii
ri
a di
a
i
ri
a
a
a o
8
a
gr
l
at
a
q
128
e
e or
1
160 96 1(R) 12
dr
at
li
o
b
a
dr
s
a
.l
e
c
a
gi
c
m
f.
a
u
s
u
rat
e
D(
.
(D
o
o
r
ri
ta
v
ta
r
ri
s
)
)
lu
u fo
l
h a
o n
ri
e
r d
id o n
ri
d
e
id
rm
(D
at
u
a e
o n
ri
c
n c
is
e
id n
ri
e
e o
n
ri
a
u
e id
a ni
n
s
o
m
d
s
id
s
id
s
o
d
e ni
s
id
b
a ni
s o
lt a
s o
is
e
rt
ro
e
s
p
ilot
id o
p
rt
s
e
b
m
r
h
a ict
b b
a
rg
a
)
tai m
c
s e
oil
ur e
is
e e
ro
s
a s
rai
u
i e
m
n o
s u
b e
is
s e
(D
s
a
n s
s oil
o
ra
s
u
p
o
c
ar
fo
o
e
t
e b
a
)
rm /
r
.
n .
s
m
s
o
r
is e
.l
s .l
ilor
ar
b
e
ri
u q
e
u
im
li
s
n
ri
p
u
c
n
ri
.
s
q
s a
id
l
li lo
b a
a u
g
it
o s u
a
c c m
s
n
v
n ri
e
g
p
a
n ri
e
lu n
ra a
nli
e
int
p
e a
R N
c u
M S
d
ll
n o
u
a z
.
a
m
a
g
ta e
ra
b
p m
ll N
lid
o a
l 1,
R U
A R e 9
9
s
at
n
ta
is
u
si
e
b lo
al
e id
ta
1 R
5 I
U
P 8
) L
e
p
a
s
4 A
N
rt
n
b L
B T A
a
N A
b
s ut
s
a
x
a a
lif tu
q li
s o
S
u e
ut
e ru
u tr
id
R N
p
u
r
s m
T
O
et n e
s
s
u N
)
si si
(D
IK
E
)
ri e
o lo
s
lo
2 1 1
16 8
208 1056 40
544
32
16 1 1 496
80
4
56
8 32 1
48 208 8
8 96
16
160
80
4
24
1
is s n
RI e
10
a
H s ot is
1
Z
12
3
5
2
D
13
3
4
1
A
14
1
7
1
T
15
1
n
I ot a
ta
ial
N
A
P
L
OI
S
a
e
I b
o G
O r
K lo
a
DI no Z
16 17 18 19 20 21
Globorotalia tosaensis tosaenis S A
L E OI
A
P
G A
1
2
2
1
7
1
11
Globorotalia tosaensis toenuitheca
6
4
19
16
3
28
384 288 576 448 224 416 1152 1600 48
1
6
2 1
1 64 64
1 352 256 1024 192 896 192 1472 16 1 11 40 128 9 6 448
2
4
3
2
1
2
3
1
1
1
5
2
8
11
352 416 160 7000 960 1152 1024 14976 192 288 224 192 4064 128 768 320 256 9152 256 1 32 32 6 1 6 1 216 136 48 1352 256 544 576 6 4 1920 128
12 7
1
1
3
15
1
2
3
2
10
1
3
13
7
1088 672 800 384 4032 2496 3392 8 96 2080 1152 1984 352 4096 1664 3456 5 12 160 16 240 16 6 1 600 280 760 248 2080 1440 1632 1344
1
8
4 64 128 160 128
1
32 192 96 64 1 1 32 32
2096 6272 3168 6080 96 6 464 1888
1
2
1
136 672
152 736
25
8
320
304
840
8
80
16
48
440
360
24
1280
112
952
464
712
768
48
24
680
24
168
800
1(R)
1(R)
608
26
1
92
32
324
36
24
64
1
332
576
1
8
10
372
296
496
508
8
36
494
32
1
288
8
80
336
1
6 32 128
1
2 32 192 224
23 24
1
7
7 1248 3520 2112 4480 144 6 416 1376
320 16 1 16 256
96
3 7
1
24
1280 2368 1664 3200 80 6 424 1408
1
1
22
1 60 64 32 1
32 288
1
1664 3 136 2112 3904 272
1 1
8 128
8 00 1 216
1 32
24
8
3 76
43
4
108
1
160 640 704 1088 144
1 192 64 182 6
7 52 352
1
1 96
8
1 44
1
88
36
168
12
12
N W
L
3
S s
3
2
11
s
E
H
5
1
2
N
-
1
5
A
N
5
M
K
E T
Keterangan:
4
Globorotalia margaritae evoluta
1: Plios en Akhir dan/atau lebih muda
3: ZonaGloborotalia miocenica
1
4: Subzona Globorotalia margaritae evoluta
pemunculan
2: Zona Globorotalia tosaensis tosaensis dan/atau lebih muda ) S(
)
. (D
s i e
at et
u
trr
s
(S
e
tu
at
)
u
lt .l
ii
u
h n
m
b
is e te
n li s
n
in n
a
e
li b
r
mi
tu
e
liq
s
u
n a
ti
a u
ell
ell
a
a
a
a
P
P
S
p
p
p
p
d lis inr ra u u q o b rb
rb u
o
u N
O
li
ll
to e
e m
m
mi
ta
o
ri
a
e
o
e lo
s s
ni
ni
ni
in
li
ia
ro
ro
ro
ro
ro
d
e
e
e
h
112
48
32
4
1
id
d h S
h S
G S
1
2
1
4
7
48
112
80
4
20
8
7
n
o
m
e
al
o
a
h
p
q
e s
ro n
ia
ro u
lo
u
lo
to g
e
ro b G
b
b
ell b
b
b
d
G
lo
ell
G
lo
b G
G
P
G
G
P
G
G
G
C
o
o
o lo
48
56
32
128
48
656
2
1
1
1
1
2
112
96
32
20
8
4
1
1
8
48
288
1(R)
96(R) 1(R)
80 1 1(R)
o lo
b
P
H
a
s
ti la
n
k
G
n lo a
lo
1 16
1
lo
1(R) 1(R)
16
256
1
8
4
lin
m a a u
inl o
rc
is
rb
A
1(R)
1
g
a et
ig o
o la
m
a IN
inr
n e
o
n ta
n a
s
p
ri
a ro
o
M
in
n
a
k
ta ro
e
at
b lo
ro
in
n
ial
E
i
ta
IF
e
ial
ta
a
a
m
b lo
n
ia
ti
R
rv
te
ig
o
ro
ta
ta el
o
o A
idt
ial
s
h
s
id
n B
ro e
b
o
n
ial
ta
a
i E
n
i
e
S
te
u
ro
ti
ial
s m tu
ri a
u
s A
id te
e
u
c b
R
a s
k o
u
ta
1
1(R)
liq
d
e
u
1 1
ra
li
d
n
t
fii
e
e to ial
s a
ta
p
mi ro
s e
a
p
i a
n
c lo s
a
(S
)
u a
s laf
ial ta
8
1
in
h
e
q
1 28(R) 8(R)
r
m
d a
64(R) 32
a
ro a si
ial
b
h
s
n ta
n
n inr
e
s
n
id
is
u
s o
al
?
rd
s
a
e
d u
e
e
rd p
s
o o ll
e
1
1
a
a
p
16
1
s
(S
a
a
8
1
p
s
ot
p
lo
c
s
e )
rit
ll
8
4
p a
c
n
a
1
1
e
at
(S
a .
ii
ll
n
16
is
s
s
.
d
n O
is e
s u
d n
ia
g
e
ar
a ta
(S
s s
s
e )
n
b
e s h
ti
nli
u
is
c h
n
a
si
c
o
nli
ol
si a
iv
a
e
s
sr
d
e
(S
n is
fi
d
u
a
lo u
c lo
i c
(D
u
32
e
u
ic
)
s
a im
s )
al
e
a ht
m
s
s n a
.l
)
is ra ut
u
h R F
A
O
p n
e la
m
p P
120
O
1
16 40 24
1(R)
1
40
16
6
2
6
1
1(R)
1(R)
96
48
1(R)
1(R)
20
1
1 28
1
1 3
2
1
2 1
96
1
384
1
2
1
3
1
1
1
288
288
32
1 32(R)
64 1280
960
64
64(R)
32
1
128
128
704
288
896
128 1216
1(R)
576
1
128
128(R)
48
1
1
48
32
1
128(R)
1024
384
514
640
640
240
88
128
16
216
96
64
448
448
160
16
16
256
320
40
160
64
128
1 16(R)
64
16 256(R) 8
88
8
1
16
384
32
32
32
192
64
1
64
64
32
128(R) 128 16
32
128
16
256
256
32
8
64
32
1
16
64 48
1
256
8
64
1
160
2832 128
32
1
1
24 1
16
2.b. bila sampel berasal dari ditch cutting. Penentuan umur relatifnya ditentukan hanya dari LAD nya saja, hal ini disebabkan sampel jenis ini mengandung campuran dari lapisan yang diatasnya, sehingga FAD tidak dapat digunakan. (lihat gambar berikut)
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
65 FORAMINIFERA DISTRIBUTION CHART Well Name : well-1 Company : Geologi ITB Analysed by : Khoiril Anwar M. Date: January,11, 1990
a n s
n
iot )
n 9
r
fo 1(
w gr
a
B
L
A
p m d
a
Environments
N4-N6 8910
LT. OLIGOCENE
E NR EE CD OL O G I R L O /O ED TN A A L
P22 P22(lwr part)-P21
9180
P20 and/or Older
D E N
O Z T O N
outer neritic, open marine
9250 inner-middle neritic
Comments S
S
pi
h pi
lt
id
e s
e all
p
a
ni r
inr ig
k ia
K
r
r
r
ig
ig
ig o
ig
lo
lo
lo
lo
lo
e
e
e
b P
L
or
b G
G
b G
b G
a
b
/p n a
d z q
n b .
e
u
u
s
o lo
b
o lo
b
o
or
lo
C
p
q G
u it o
e r
r
r
ni at
v
e igt
ig
ig
n a
lo
lo
G
H
a
l or
or
a
r
r
r
r
r
r
r
ni r
ni at
o
ig
ig
ig
ig
ig
ig
ig
ig o
lo
lo
lo
lo
lo
lo
lo
lo
lo
e
e
G
b
e b
e
G
b
e
G
G
b
e
G
b
e
e
b G
G
b
b G
lo G
ra
g
e
s
gli
o
a a
le ni
lin
o
te ig
o
H
U
A
S
a
b L
lim
in
a
lis
A
R
p
e
r
E
u
u
m
a
O
p
o
C
B
U
g
a
a
r
r
r
ni
o
ig
ig
ig
ig
lo
lo
lo
lo
lo
e
e b
C
b
G
a
e
a ni
G
n
b
ni b
ra
e
ni b
u
o
in
di
B
p
e
o
p
G
lol
v
at b
G
a a
.
n
ra m
l
ni
v
tu s
la
G
G
p
c s
n . p
a
in p
ni o
s S
p
h O
r
di
F
o
e
r
rs
a ni
iml
or u
m n
e
lo G
ld
n
I + I a + + + I + + o a + o I o
o + o o o o o o o o o
Gn.binaiensis & tripartita
8 910
c utt ing
Globigerina sellii
8 930
c utt ing
I o I I o + o I o + o a o + o o I o o o + + I
I o o + + + o + o o + o o o
o o o o o o o
Globigerina gortanii &
9 020
c utt ing
Globorotalia opima nana
9 090
c utt ing
Globigerina ampliapertura
9 180
c utt ing
+ o o + o + o + o + o a + o o o o + + a + o + a
+ + o o o o o + o o o o o o + o o
o o o o o o o o + +
9 250
c utt ing
o
9 380
c utt ing
9 430
c utt ing
o o o
9 490
c utt ing
o o o o + + o o o o o o o
most planktonic and benthonic at 9250 and bellow are possible caved
o o
I + + +
o o o
G
N
B
C
c utt ing
ic
o
c
in
a
u
o C
lo ip
ib B
u s
p
a
inl
u
l
r
ai o
s
in
la o
a
w m
nli
u lv a
lle
V
O
P
n d
rg
G
S
E
P
N
M
lp
s
p
e
s p
m
o
a
s
ic
m
b
id e
u u
r la
b
s
u n
g n
n
a
s u
e
h
o
ai
u
h
.
p
lla
c llo
ra
b
s
p
o a
a a
di
.
o
li
id ai
n
n
a n ri
e p s
ia
ni
ta s
p s
s
a
. p p
p p
e p
ui
id
m o
lle
ilo P
u
ot
in id
ai C
h
a ib b ?
C
la A
o o o + o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o + o
o
liv
s
s s
in
s
. .
.
p
el p
u s
a io
y
8 850
a
lli
L
ib
e
n
n e
a
ro
ic
n
s
n
t
m
a
c
sr
b
. .f
p
e
id
id
p
id
u ci
p
u ni
in
. p
c
a s
to d
nli
.
lal
e
Globigerinita unicava
o o o
s
e
s
li a
v
o
p p
d a
a
a u
ra
r y
a
s la
.
m
a e
A
et
i u
at
n
ta
r ro
b is
s
p
b
p n
p
lin
e
ii
le
co
p
u
a
.
if
b
s
i
e p
id
s
di
g a c
to b
u A
lo
a
id
ta a
e
E
s
c ai
is a
ry
ai
N
e li
o
ni
b G
s
a
p
i
a ot
p e
ni
b G
tai
a
p
o at
s T
p
b
s
O
e
r
ni
e b
o
id
i
ni
or
e s
tai
l
ni e
o
id ni
a a ni
b
o
c
m
p
n a
s
p in
u
ai
d
ip
e
id
s
e
lli
g
rit
is
e n
s
s
rt e
ic s
c e
a
im
a
p
r
im
i
at
ie
a N
si
p ii
mi
n
at
ro a
a
s CI
r
ut
ar h
a n
isil o
n e
p
s
p
a v s
s p
n
.
la
s
al a
dr is
s
p
a .
ui
is ra
p
u
a
G
c c
e
d
G
h ra
n
at a
e
e
ri
l
n ip la
s s
e ifl
a
n
s G
a
a ri
b
s
is ai
e
u
s
e o
l
e
o
e
e
id ai
r
c
ife o d
or
r c
s
u it
ra e
p
h
at
A
a
s
u
ni
m a
n e
ni
N
m
mi
ni
p
e
b
o
u
la n
a ir
O T
o
q
o
m
z e
or
s
id a
n
a
or el
e
v
u
n s
u
s
p
le e
e lo
s
N
l 9
(1
e ra
y
d is
rit
CI
u 7
9 k
e
, ra
n
EARLY MIOCE NE
T
0
9
P
N
m
to
A
p
,1 6 la
m
z
n
G
1
7 ic
m
e o
e
n d
si
a b
b b
9
o
E
8 n
e
o
z
u
ol
s
r 4
9 a
u llo
) a
iot
id
ut
e e
n a
ra ur
e n
tu s
s
la is s
o o o + o o o o +
o
o o o o o o o o o o o o o o o o o o
o o
o
o
Legend: o = Rare (1-3 specimens); + = Few (4-10 specimens); I = Common (11-25 specimens); IIII = Abundant ( > 25 specimens) = Occurrence; = First downhole occurrence p
e a a
ni
q p
c
h
n
N
c IN
ar U
s
a s
G
m A
G
m
p
h y p
ro
r
e
ut
ol
th
g C
y
c
al T
e
a
o
g E
x H
.
O
in
p R
u o ID
o
p
s p
OI
?
B
a
ht M
lo
x
q o
Q
y P
R
p
te
L
A
o d p o s
tr G
O
F N
rot N
h m A
o o
O
c a a
s
o
o o o o o o
d O
/P
E
si
F
rg
u
te R
g
A
G
in LI
ro M
a
s
u L
ir
p
s
p e
y
o
s R
c pi
S
le
d
o A
M
n
le D
n NI
a lin
s
a
la m
p
ta
m re
m
p
s .
b ra
o lo
ra m
i IF
p
a d
ai
la
L
g
o p
in
p T
in
n
p
p i
G
.
ro
A
a y
e id
a
p s
s c
. p
a
e u
or
E
p s
la
di
. p
ta s
o
o
o
o o
o o o
o
o o
o o
o
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
66
INTERPRETASI LINGKUNGAN PENGENDAPAN Lingkungan pengendapan dapat diinterpretasikan dari: 1. Geometri dan distribusi depositional unit 2. Struktur sedimen dan asosiasi litologi 3. Asosiasi fosilnya Foraminifera sebagai indikator paleoenvironment Microfossils in general, and forams in particular, can be used to discriminate broad marine environments in a number of ways: a. Quantitative: Species diversity (i.e. alpha index), M-R-T Ternary diagram, similarity, dominance: - Diversity, ( Fisher plot:)
Species richness (diversity) of foram assemblages is known to vary considerably depending on salinity, temperature, substrate etc. By plotting the number of species against the number of individual forams on a logarithmic scale, you get a measure of diversity called the (a= alpha) value for the assemblage (see Murray 1973): In general, values of a < 5
The porcelaneous component exceeds 20% only in normal marine and hypersaline lagoon and marshes and is normally < 20 % in shelf areas. Agglutinated forms dominate in brackish and abyssal zones (below CCD).
indicate brackish or hypersaline marginal marine environments (though
it may also indicate normal marine conditions with a high dominance of a single species). Where a > 7 (up to 25 or more), normal marine shelf to slope or hypersaline shelf are indicated.
- Wall structure ( Miliolid-RotaliaTextulariina/ Agglutinated Ternary diagram) Although there is some overlap of environments, this type of analysis is particularly useful for discriminating shallow-water environments.
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
1
-.Test form and the environment Test form in benthic foraminifera is a compromise between a complex array of selective pressures, but it is true that there is often a good correlation between form of the test and the environment in which the foram lives.
Hypersaline and brackish environments exhibit a smaller range of morphological variety (dominated by planispiral, trochospiral, miliolid and annular tests). Uniserial, biserial and fusiform tests are generally absent in these environments. Uniserial tests generally only occur in low energy zones associated with shelf, slope and bathyal environments. Milioline tests are mainly found on the shelf, and rarely found in slope and deep sea environments
Agglutinated foraminifera can be classified into four morphogroups and these have a distinctive distribution in modern environments:
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
54
Morphogroup A (unilocular, tubular or branching) are characteristic of the deep sea. Morphogroups B1 (globular) & B2 (coiled - flattened) represent only a small % in most assemblages but they are more common in deeper water environments Morphogroup B3 (multilocular, planispiral/trochospiral, lenticular) are particularly common in shelf and marginal marine environments. Morphogroup C1 (elongate) is absent in marsh and lagoon environments, but can dominate shelf and upper bathyal (to 1000 m) environments Morphogroups C2 (elongate quinqueloculine) and D (trochospiral conical) are characteristic of marshes and lagoons.
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
55
b. Characteristic foraminiferal assemblages Modern and ancient environments (from marginal marine to abyssal) can also be identified based on charateristic foraminiferal assemblages (i.e. the biotope concept). Identification of these characteristic assemblages is obviously dependent of specialist taxonomic knowledge (at least to genus level). Interpretasi berdasarkan asosiasi mikrofosil foraminifera, harus didasarkan atas keseluruhan dari asosiasi foraminieranya. Interpretasi tersebut harus didasarkan ciriciri keseluruhan seperti bagaimana kehadiran (persentasi) plangtonik, milolid, arenaceous form, foram besar dan tentunya juga asosiasi calcareous bentoniknya. selain itu harus diperhatikan pula kelimpahan dan keragamanya, apakah ada dominasi fauna tertentu (misal. genus tertentu, kelompok tertentu (misal kelompok miliolid, arenaceous atau foram besar), preservasi, ukuran dan bentuk test dll.
Berikut ini adalah penjelasan singkat, sebagai dasar dalam menginterpretasi lingkungan pengendapan beradasarkan asosiasi formainiferanya (diambil dari Rawenda dkk, 1983. Robertson Research Indonesia) ECOLOGY OF RECENT FORAMINIFERA The distribution of foraminiferal taxa is influenced by many different factors. Although many authors consider water depth the most significant one, water depth specifically is not the main variable, the controlling factors being the various physical and chemical conditions associated with depth. Typical factors are temperature and temperature variability, light availability, sedimentation rate, bottom characters, energy conditions and pressure. Studies of recent foraminiferal ecology have provided numerous distinct criteria by which many depositional environments can be characterised and which can be applied to fossil assemblages from sedimentary rocks. Some of the main variables can be summarised as follows: 1. The total number of species and of individuals increases away from the shoreline, and with increasing depth of water, to maximum values on the outer shelf and in the upper bathyal zone. 2. Porcelaneous forms show their present diversity in shallow, nearshore environments. 3. Arenaceous foraminifers with simple interior wall structure become dominant in shallow waters or in intertidal areas. The percentage occurrence of these arenaceous forms reaches a maximum near the effluence of rivers. 4. Calcareous foraminiferal tests become smaller and thinner near sources of fresh water. In carbonate rich environments, tests may reach a large size and be very robust. 5. The percentage occurrence of the most common species in a foraminiferal population relates to the variability of the environment. As marginal marine conditions are approached, environmental parameters become more pronounced resulting in a tendency towards single species dominance in the most unfavourable environments. 6. Planktonic forms occur most abundantly within the outer shelf and deeper water. Under ideal sedimentation contitions, especially in clastic deposit, planktonic foraminifers can show a more or less regular increase in abundance with depth. 7. Arenaceous taxa with labyrinthic wall structures occurs most abundantly in bathyal or deeper waters. In sediments deposited below the calcium carbonate Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
56
compensation depth (CCD) these forms may become dominant since the calcareous shells of other foraminifers are dissolved. INTERPRETATION OF SEDiMENTARY ENTVIROMENTS ON THE BASIS OF MODERN FORAMINIFERAL DISTRIBUTIONS The following is a brief summary of how specific depositional environments may be recognised by means of their foraminiferal content. 1. Non-marine (supralittoral) environments e.g. delta top, alluvial plain.These environments are barren of foraminifers. Palynological analysis is essential to obtain a detailed interpretation. 2. Transitional environments (marginal marine, littoral, intertidal)brackish water. Again palynological studies are of major importance in assessing these environments. The following subdivision of these environments and their faunal characteristics can be made. 2a. Sandy beaches The microfauna inhabiting this environment is little diagnostic. The species diversity is low, and planktonic, larger foraminiferal and attached calcareous benthonic forms are absent. As most high energy sandy beaches face open sea, salinities are generally normal. : Characteristic species are Quinquetoculina sp. Miliolinella sp, Ammonia beccarii Elphidium spp.
Fossil sandy beaches can be recognised by poorly preserved abraded specimens. However, due to continuous transport of the tests after death many small or thin-shelled specimens may be destroyed, and foraminifers are sometimes completely absent from an exposed beach sand. A further complication in determining an ancient sandy beach is, that many alochnous forms may have been washed in. 2b. Marshes and, mangrove swamps Tidal marshes and mangrove swamps represent transitional regions between marine/brackish water and terrestrial environments. Tidal marshes occur in temperate areas, whereas the mangrove swamp is characteristic for the tropics. Tidal marshes can be subdivided in three groups according to salinity: 1)Hyposaline marshes 2)Normal marine marshes ) difficult to distinguish 3)Hypersaline marshes Species diversity is highest in hyposaline marshes, although the general diversity is low. The hyposaline marshes are characterised by the predominance of arenaceous species (Miliammina sp., Ammotiurn sp., Trochammina inflata) and rotalids (Elphidium spp.) and the absence of miliolids. Normal marine marshes are inhabited by dominantly arenaceous species with minor miliolids (Quinqueloculina) and rotalids (Elphidium spp., Ammonia beccarii). Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
57
In hypersaline marshes the percentage of arenaceous species, miliolids and rotalids is about equal. Typical cosmopolitan marsh species are: Ammotium salsum Areno parrella mexicana Miliammina fusca Trochammina macrescens T. polystoma
Interpreting an ancient marsh environment may be difficult. Due to reducing conditions calcareous tests are easily destroyed after death. After complete solution of calcareous species, it is impossible to distinguish between the various marsh environments. Only the low.diversity and an assemblage consisting of small arenaceous species such as Trochammina sp. , Haplophragmoides sp., Amobaculites sp. points to a marsh origin. If Miliammina sp. is present in this assemblage, a hyposaline lagoon could also be indicated The lithology of a marsh deposit consists of dark grey highly organic clay and silt, containing abundant roots and other in determining an ancient plant debris. This can often help marsh deposit. Pyrite is common, due to the reducing conditions. Faunal distribution in a mangrove swamp is similar to that of marshes. Typical taxa in a Southeast Asian mangrove are as follows: Haplophragmoides salsun Haplophragmoides wilberti Miliammina pariaensis Arenoparella mexicana Trochammina laevigata
2c. Tidal flats Tidal flats develop along gently dipping sea coasts, with marked tidal rhythms, where enough sediment is available and strong wave action is not present. This may be the case in estuaries, lagoons, bays, or behind barrier islands or other sand bars. Characteristic foraminifers inhabiting this environment are: Ammonia beccarii Elphidiun spp. (Quinqueloculina sp.)
Rotalids predominate in tidal flat assemblages, miliolids are rare to absent, and arenaceous species not common. 2d. Estuaries An estuary is the wide mouth of a river or arm of.the sea where the tide meets the river currents, or flows and ebbs. Estuaries are hyposaline in character, and can be subdivided into an upper part, subject to the greatest freshwater influence and a lower part connected with the sea. This differences in salinity is reflectedinthe faunas of both parts: upper estuary
Miliammina sp.
lower estuary Miliammina sp. Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
58
Amobaculitessp.
Ammobaculites sp. Ammonia beccarii Elphidiun spp.
2e. Lagoons A lagoon is a shallow lake or sheet of water, connected with the sea or a river. Coastal lagoons are shallow water bodies, running parallel to the coast, and connected to the sea with an outlet. They are separated from the sea by sand bars or barrier islands. Based on the amount of seawater entering through the inlet, and the amount of freshwater contributed by river, the following subdivision of lagoons can be made: a) hyposaline : freshwater seawater b) normal marine lagoons c) hypersaline : no freshwater comes into the lagoons A characteristic feature of modern lagoons is their low foraminiferal species-diversity. The relatively highest diversity is found in normal marine lagoons. Despite the fact that literature on lagoonal assemblages is scarce, the following genera to some extent may characterise the three types:
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
59
Genus Ammotium Millammina fusca Quinqueloculina Triloculina Miliolinella Peneroptids Glabratella Ammonia beccarii Elphidium Protelphidium
Hyposaline
Normal marine Hypersaline
xxx xxx
xxx xxx xxx xxx xxx xxx xxx xxx
xxx xxx xxx
xxx xxx xxx xxx xxx xxx xxx
2f. Deltas With respect to foraminiferal assemblages deltas require special comments since in these environments certain species behave abnormally,especially within the prodelta region. Three major environmental systems can be distinguished within a delta as follows: A) The delta plain The delta plain consists of an intertidal or supratidal covered with Nipah and mangrove vegetation. Palynological studies are most useful in assessing delta top environments. B)The delta front The delta front consists of an intertidal to shallow subtidal platform fringing the delta plain. The inner zone of the delta front consists of extensive tidal flats. Foraminiferal assemblages relate to local sub-envirorments which have already been discussed under 2a-e. C) Prodelta The prodelta consists -of the smooth, steep slope seaward of the edge of the delta front platform, marked by an abrupt slope break at the 5 meter isobath. The outer limit of the prodelta appears to coincide with the 60-70m,isobath. It is important to mention the "delta effect" (e.g. Pflum & Frerichs, 1976), that is,a variable upper depth limit of certain species. They call these species heterobathyal species, as opposed to isobathyal species (which have a more or less consistant upper depth limit). It is possible to distinguish delta elevated and delta depressed species. Delta elevated species are species with a shallower upper depth limit in the delta area. (For instance Sigmoilopsis schlwnbergeri and Martinotiella occidentalis). Delta depressed species have a lower upper depth limit in a delta area. Examples are Pullenia quinqueloba, Melonls barleeanus, Hoglundina elegans and Bulimina aculeata. However care must be taken in applying these data to ancient environments. 3. Marine Environments A widely used tool for distinguishin- marine environments is the planktonic/benthonic ratio. In general it is believed that increasindepth will imply an increase in the percentage of planktonic species. The system was developed initially by Grimsdale and van Morkhoven (1955) who found that it lacked the precision that they had hoped for. They suggested the following relationship: Environment
Depth in Ifeters
% Pelagic/Benthonic Ratio Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
60
Inner Shelf Middle Shelf Outer Shelf Upper Slope Lower Slope
0- 20m 20- 100m 100- 200M 200-1000m 1000-4000m
0-20% 20-50% 20-50% 30-80'/7. 70-100%
However, it is extremely dangerous to rely on the planktonic percentage alone. In a case of 90% planktonics for instance, it is important to determine how many planktonic species are present, if there are only a few, the environment may be quite shallow. It is also important to note size sorting. Bearing these points in mind, and also noting the distribution of calcareous benthonic, arenaceous and larger foraminifers the following marine environments may be characterised: 3a.Inner Shelf (low tide -20m) inner neritic, shallow inner sublittoral. This environment has its lower boundary at the base of the turbulent zone. Within this depth range many sub-environments can be recognised, depending on wave energy, substratum etc., and hence many different populations can be found. Characteristic for inner shelf environments is the low species diversity, with one or two species dominating the faunas. Planktonic foraminifers may occur in frequencies of 0-20%. Larger foraminifera such as Operculina and Amphistegina may be locally abundant, other forms may be abundant only in carbonate sediments. The following taxa are typical of inner shelf environments. It must be stressed that this is not a complete list and that the taxa indicated are not restricted to this environment. Southeast Asia Planorbulinella sp. Massilina sp. Cibicides tobatulus Pseudorotatia spp. Cellan thus craticulatus Loxostom limbatum Elphidium spp.
Chrysalidinella limbatum Asterorotatia spp. Cymbaloporetta squamosa Bacutogypsina sphaerulata Amphistegina lessonii Ammonia spp.
3b. Middle Shelf (20-100m), middle neritic, inner sublittoral The middle shelf can be subdivided in two parts: 1) Shallow middle shelf (20-50m). The lower boundary of this zone is the base of the photic zone and the storm wave base. 2) Deep middle shelf (50-100m). The lower boundary of this zone is the base of the seasonal temperature changes. Shallow Middle Shelf The diversity of species increases here. Larger foraminiferal species (opercuzina spp. and Amphistegina spp. particularly A. quoyi are common to abundant locally, and the same calcareous benthic assemblage of the inner shelf is present, but their tests are generally more robust. Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
61
Planktonic foraminifers can make up 20-30% of the total assemblages, but their diversity is low, and restricted to forms such as Globigerinoides spp. and Globigerina bulloides. Deep Middle Shelf Rich assemblages are generally present in this environment. 'The typical inhabitants of the inner and shallow middle shelf are still present, but they are rare (Operculina spp., Amphistegina spp., Elphidum spp ., Pseudorotatia spp .) -Planktonic foraminifers can make up to :40-50% of the total assemblages. Typical middle shelf taxa in Southeast Asia are as follows: Operculina spp. Baggina inflata Amphistegina spp.(A. bicirculata and A. papillosa) Bigenerina nodosaria Bolivina spp. Praeglobobulimina pupoides Florilus spp. Siphonina pulchra Anomalinella Cancris auriculus Cassidulina laevigata Nodosaria spp. Cassidulina oblonga Uvigerina spp Heterolepa praecinctus Loxostomum spp. Dentalina spp. Lenticulina spp.
20-40% Planktonic foraminifers +10 species. 3c. Outer Shelf (100-200m) outer neritic, outer sublittoral The lower boundary of this zone is the shelf edge. The species diversity in this environment is high. Planktonic foraminifera make up to 40-80% of the total assemblages and their diversity is high (moreless 20 species in recent samples). Larger foraiainifera are absent. Most of the calcareous benthic species of the deep middle shelf are present. Typical taxa of the outer shelf are as follows: Gyroidina acuta Gyroidina soldanii Hoglundina elegans Cassidulina spp. Fursenkoina spp.
Pulllnia quinquezoba Uvigerina soendaensis Bulimina striate Bulimina marginata Sphaeroidina bulloides
Bathyal and Abyssal Environments On most shelves the inclination of the seafloor increases at about 180-200m depth, and this corresponds with the continental slope. In the deeper waters below 200m conditions are very stable as compared to shallower environments. No major changes in temperature and salinity occur. Because of these stable conditions many of the species living in these environments will be cosmopolitan. However, with increasing depth, the solubility of calcium carbonate will increase. The critical depth is called the calcium carbonate compensation depth, which lies in modern oceans between 4000-5500m. Below this depth calcareous tests will be dissolved. In general, we will find with increasing depth a decrease of calcareous benthic species, and an increase in arenaceous species. An interesting factor is that the size of many deep water benthic forms shows increase with depth. Many taxa here have very specific depth limits and are termed isobathyal species. These are particularly helpful in determining environments. 3d. Upper slope (upper bathyal) 200m-1000m water depths Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
62
Species diversity and abundance is usually very high in this environment. The planktonic percentage increases to 50-95%. Robust arenaceous species such as Martinotiella comminis, Karreriella sp., Tritaxilina sp., Dorothia and Haplophragmoides sp. occur frequently. Typical upper slope taxa are as follow: Martinotiella communis KarrerietLa sp. Pullenia bulloides Chilostomella oolina Globocassidulina subglobosa
Sphaeroidina bulloides Tritaxitina sp. Uvigerina peregrina Gavelinopsis translucens
50-95% Planktonics Isobathyal (-cosmopolitan) species with their highest depth limit within zone are as follows: Bolivina albatrossi Bulimina striate mexicana Chilostomell,a oozina Eponides reguza Gyroidina altiformis cushmani Discorbis transluucens Uvigerina peregrina Bulimina acuzeala Bulimina rostrata alazanensis Osangularia rugosa Uvigerina peregrina dirupta Uvigerina peregrina mediterranea cibicides bantconensis Gyroidina orbicularis Reticulophragmium venezuelanum Cyclammina cancellata Cibicides kullenbergi Cibicides rugosus Eponides polilus Oriidorsalis tener umbonatus Osangularia culter Pleurostomella bolivinoides
) highest ) occurrence ) at 200m )
) highest ) occurrence ) at 300m ) ) )
highest occurrence at 400-500m ) ) ) highest ) occurrence ) at 700 - 800 m )
3e. Lower Slope, lower bathyal (1000-4000m) Planktonic foraminifers are generally very abundant in this environment (90%). However, as the lower limit of this environment is close to the calcium carbonate compensation level, solution prone species such as Orbutina sp. and Globigerinoides spp. may be absent. A conspicuous decrease of calcareous benthic forms is noted. Robust arenaceous species such as Cyclammina cancelata and Tritaxia sp. may predominate the faunas. Typical lower slope taxa are as follows: Mellonis pompiliolides
Cyclanmina cancelata Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
63
Laticarinina pauperata Oridorsalis umbonatus
Cibicides wuellerstorfi Globocassidulina subglobosa
90% Planktonics Isobathyal (cosmopolitan) species with their highest'depth limit within zone are as follows: Anomalina globulosa )
highest ) occurrence ) at 1000-1300 m
Siphotextularia rozshauseni UVigerina ampulacea ) Uvigerina senticosa u ) Melonis pompilioides )
upper depth limi t 1600m pper depth limit 2000m upper depth limit 2200m
3f. Abyssal environments (4000 m and deeper) Assemblages from this depth are generally rare and little-diverse. The calcium carbonate compensation level (40OOm-5500m) causes the solution of calcareous tests below this depth. Consequently, the faunas below 4000-5500m, will consist of large, simple arenaceous species such as Ammodiscus sp., Rhabdamina sp. and Rathysiphon sp. Above the calcium carbonate compensation level the calcarous benthic fauna from the bathyal environments, and thick walled, solution resistant planktonics ( Sphaeroidinellopsis sp., Globorotalia spp.) are still present.
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
64
15. NON-FORAM A. MIKROFOSIL NON FORAM
(some part taken from: Pamela J. W. Gore Department of Geology, Georgia Perimeter College Clarkston, GA 30021) 15.1 . PROTISTS (unicellular organisms) A. Animal-like protists RADIOLARIA Geologic range: Cambrian to Recent Shell composition: Silica (amorphous, opaline silica) Size: 0.1 - 2.0 mm Significance: Useful in biostratigraphy; they accumulate to form radiolarian ooze on the abyssal plain. Morphology: Microscopic spiny globes with large, lace-like pores, or helmet-shaped (or space-ship shaped) with large, lace-like pores. Very transparent and glassy. Environment: Marine only; planktonic.
Radiolaria
B. Plant-like protists 1. DIATOMS Geologic range: Cretaceous to Recent Shell composition: Silica Size: Most are 0.05 - 0.02 mm (some up to 1 mm) Significance: Useful in biostratigraphy and paleoenvironmental interpretation; major constituent of diatomite or diatomaceous earth; an integral part of the food chain (phytoplankton). Most abundant phytoplankton in the modern ocean. Morphology: "Pillbox" shape, consisting of two valves (shells) which may be circular, triangular, or elongate. Circular forms have radial ornamentation. Elongate forms have transverse markings. They are covered with pores. Environment: Both marine and non-marine. Planktonic or attached.
Diatoms
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
65
"Twenty five forms circle" prepared by K. D. Kemp, Services, Somerset, England. Photos by Bill Turner and Thom Hopen, MVA, Inc., Norcross, GA. This image contains twenty five diatoms of various shapes which have been assembled into the shape of a star.
15.2. MULTICELLULAR ORGANISMS A. Animals 1. OSTRACODES (Phylum Arthropoda) Geologic range: Cambrian to Recent. Shell composition: Calcareous (some organic) Size: 0.5 - 3.0 mm (some larger) Significance: Useful in biostratigraphy and paleoenvironmental interpretation. Morphology: Microscopic shrimp-like animal inside a clam-like shell consisting of two valves (shell halves), with a dorsal hinge. Environment: Marine and non-marine (fresh, brackish and hypersaline); most benthic.
Ostracodes 2. CONODONTS (Phylum unknown)
Geologic range: Cambrian to Late Triassic. Conodonts are extinct, and the organism from which they came is not known with certainty. Composition: Phosphate (calcium fluorapatite) Size: Most are 0.5 - 1.5 mm (some up to 10 mm, and some as small as 0.1 mm) Significance: Useful in biostratigraphy and marine paleoenvironmental interpretation; their color is a good indicator of the temperature to which the enclosing rock has been subjected (this is important in determining whether oil or gas may be present in the rock). Morphology: Parts of a larger organism which resemble coneshaped teeth, or consisting of bars with rows of tooth-like denticles, or irregular knobby plates called platforms. Environment: Marine, free-swimming. Conodonts Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
66
Images courtesy of Anita Harris, U. S. Geological Survey. 3. SPONGE SPICULES (Phylum Porifera)
Geologic range: Cambrian to Recent Composition: Calcareous or siliceous Size: Significance: Siliceous skeletons can accumulate to form chert Morphology: Shapes vary. but may be needle-like (monaxon or one axis), three-pointed (triaxon), four-pointed (tetraxon), or shaped like a jack (from the game of ball and jacks) with six radiating needle-like points or rays (hexactine). May also be curved. Environment: Attached to the sea floor. Most are marine.
Sponge spicules B. OTHER FOSSILS
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
67
15.3 Algae (green algae: a,b&c Halimeda)
15.4 Bryozoa
Coralline algae
15.5 Barnacles (dari Class Cirripedia)
Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
68
15.6 Echinoid
15.7 Coral
15.8 Sepulid
15.9 Pteropod/Gastropod
15.10 Otolith 15.11 Fish teeth Dirangkum oleh: Khoiril Anwar M Lab. Mikropaleontologi, Jurusan Teknik Geologi ITB 1999
View more...
Comments