P4 - Vratila i Osovine

December 1, 2017 | Author: Дејан Бунановић | Category: N/A
Share Embed Donate


Short Description

Mašinstvo...

Description

Машински факултет Универзитета у Београду/ Машински елементи 1/ Предавање 4 1.2 ОСОВИНЕ И ВРАТИЛА 1.2.1. Увод

НАПОМЕНА Све што је уоквирено црвеним је информативног карактера и не улази у материју Колоквијума К-2

Вратила и осовине, као основни елементи обртног кретања, морају увек бити преко клизних и котрљајних лежаја ослоњени на носећу конструкцију. Два вратила међусобно се спајају спојницом. 1.2.2. Основни појмови и дефиниције Вратила и осовине су носачи обртних машинских делова, који у оквиру једног машинског система врше: -

преношење кретања и оптерећења и спајање делова у функционалну целину

Осовине Дефиниција: Осовине представљају носаче обртних машинских делова као што су точкови, добоши, зупчаници, каишници итд. Напрезање: Осовине си напрегнуте превасходно на савијање, а у мањој мери и на смицање и аксијална напрезања-притисак односно затезање. Осовине не преносе обртни момент. Подела: Током рада осовине могу да се обрћу заједно са обртним деловима (обртне осовине), а могу делови да се обрћу или осцилују око њих (непокретне осовине). На сл. 1.1. приказан је пример непокретне и обртне осовине.

Слика1.1 Примери непокретне и обртне осовине Вратила Дефиниција:Вратила представљају носаче обртних машинских делова и служе за преношење обртних момената дуж осе обртања. Напрезање: Вратила су због тога поред савијања, затезања или притискивања напрегнута и на увијање и то, или на целој дужини или на делу вратила. Обртни делови на вратилу морају бити тако учвршћени да омогуће преношење обртног момента са вратила или на вратило. Подела: Према облику подужне осе, вратила могу бити права (са правом подужном осом (сл. 1.2. а, б, г, д, ђ) и коленаста (са испрекиданом – изломљеном подужном осом (сл. 1.2 в)).

а)

б)

в)

г)

д)

ђ) Слика 1.2. Конструкциони облици вратила 1

Машински факултет Универзитета у Београду/ Машински елементи 1/ Предавање 4 1.2.3. Конструкциони облици вратила и осовина Вратила и осовине најчешће имају цилиндричан облик са: - променљивим (сл.1.2 б) или ређе - константним (сл.1.2 а) попречним пресеком. У случају да се израђују изједна са обртним деловима могу имати и посебни облик (сл.1.2 ђ). Ако је потребно смањити масу вратила попречни пресек уместо пуног може бити прстенастог пресека. За однос спољашњег према унутрашњем пречнику 2, код шупљег вратила, смањење масе у односу на пуно вратило износи 23%. При томе, израда шупљих вратила је компликованија и скупља. Шупља вратила се израђују и у случајевима када кроз њих треба провући друго вратило или осовину. 1.2.4. Разлика између вратила и осовина На основу облика тешко је утврдити да ли је реч о вратилу или осовини. Разлику је најлакше установити на основу тога да ли носач обртних делова преноси обртни момент или не. На слици 1.3.а и 1.3.б, дат је пример конструкционог решења где релативно мала конструкциона разлика утиче да је: - у првом случају носач добоша за намотавање ужета осовина (слика 1.3а), а - у другом вратило (слика 1.3б).

а)

б)

Слика 1.3. Конструкционо решење добоша за намотавање ужета са осовином (а) и вратилом (б) као носачем добоша

У првом случају обртни момент се са погонског зупчаника преноси на гоњени, а одатле директно на добош. У овом случају, дакле, у преношењу обртног момента не учествује носач добоша – па је реч о осовини. У другом случају обртни момент се са погонског зупчаника предаје на гоњени, а одатле преко носача добоша – вратила на добош. У овом случају део носача добоша од зупчаника до добоша је напрегнут и на увијање па је у овом случају реч о вратилу. 1.2.5. Делови вратила и осовина Делови вратила и осовина су: а) рукавци – места на којима се остварује покретна веза са другим елементима машина, а најчешће са лежајима, а б) подглавци – места на којима се остварује чврста веза са обртним деловима, тј. њиховим главчинама, који се на њима налазе (слика 1.4.).

Слика 1.4. Рукавци (Р) и подглавци (П)

Спој главчине и подглавка остварује се тако да се обезбеди преношење кретања, обртног момента, попречних и уздужних сила. Због тога је подглавак снабдевен жлебовима, наслонима, навојима и другим карактеристичним облицима. Облик и димензије рукаваца су такви да омогућују преношење оптерећења на ослонце као и услове за адекватну уградњу лежаја и нормалне радне услове за рад лежаја. Осовине и вратила најчешће се изводе са два ослонца. Дугачка и јаче оптерећена вратила могу бити и са већим бројем ослонаца. 2

Машински факултет Универзитета у Београду/ Машински елементи 1/ Предавање 4 1.2.6. Конструкциони облици рукаваца Према облику рукавци могу бити: - цилиндрични (сл. 1.5а, б, в), - конусни (сл 1.5г) и - сферни (сл 1.5д). Према положају на вратилу: - спољашњи рукавци (сл 1.5а, б.) и - унутрашњи рукавци (сл. 1.5в). Према правцу деловања силе рукавци могу бити: - радијални – када сила делује попречно на подужну осу (сл. 1.5а, б, в, г, д) - аксијални – када сила делује у правцу подужне осе (сл. 1.5ђ). Слика 1.5. Конструкциони облици рукаваца Вратила и осовине које се обрћу учестаношћу -1 већом од 1500 min морају бити довољно крута и динамички уравнотежена. Према примени, вратила се деле у три групе: 1. Вратила преносника снаге су најчешће носачи зупчаника, ланчаника, ременица, фрикционих точкова, спојница итд. Израђују се засебно или изједна са обртним делом, на пример са зупчаником. 2. Погонска вратила ротора енергетских машина се користе за преношење обртног момента, на пример електромотори, турбине, вентилатори, центрифугалне пумпе и др. 3. Специјална вратила се користе за остваривање специјалних функција у машинским системима. У ову групу спадају коленаста вратила мотора са унутрашњим сагоревањем, затима телескопска вратила чија дужина се може мењати, као и савитљива – гипка вратила чија оса се може деформисати по потреби. 1.2.7. Оптерећење вратила и осовина Вратила су оптерећена: - просторним системима сила и спрегова од обртних делова који се налазе на њима, - сопственом тежином вратила и делова, као и - инерцијалним силама услед неуравнотежености маса. Доминантна оптерећења вратила су силе и спрегови, односно моменти савијања и увијања. Оптерећења вратила од сопствене тежине по правилу изазивају врло мале напоне у односу на напоне од спољашњих оптерећења, па се најчешће могу занемарити. При мањим учестаностима обртања попречне инерцијалне силе услед неуравнотежености маса обртних делова који се налазе на њима, сударања обртних делова и др., могу се такође занемарити. При већим учестаностима обртања ове силе се јако повећавају. Оне могу бити и много веће од спољашњих оптерећења односно сила на зупчаницима, каишницима, ланчаницима итд. Обртни машински делови се, према карактеру оптерећења које преносе на вратило, могу поделити у две групе: а) делови код којих је оптерећење по целом обиму распоређено равномерно, односно код којих се попречне силе међусобно уравнотежавају (слика1.6а) и б) делови код којих се оптерећење преноси само једним делом обима (слика 1.6.б). Слика 1.6. Силе на обртним деловима а) уравнотежене на турбинском колу и б) неуравнотежене на зупчанику и ременици Код прве групе делова, резултујуће оптерећење које се са дела преноси на вратило је обртни момент и евентуално аксијална сила. Попречне силе које доводе до савијања и смицања вратила овде су једнаке нули. 3

Машински факултет Универзитета у Београду/ Машински елементи 1/ Предавање 4 У ову групу делова спадају радна кола свих турбомашина : турбина, пумпи, вентилатора, затим ротори електромотора, спојнице, резни алати одређених алатних машина: бургије, глодала и сл. Код друге групе делова резултујућа попречна сила на овим деловима није уравнотежена, него се преноси на вратило где се уравнотежује. То доводи до оптерећења вратила не само обртним моментом него и додатним попречним силама. Често постоје и аксијалне компоненте сила које вратило оптерећују аксијалним силама и спреговима у аксијалним равнима. У ову групу делова спадају зупчасти, ланчани, ремени и фрикциони парови, добоши за намотавање ужета дизалица и сл. На слици 1.6. приказани су примери обртних делова са уравнотеженим и неуравнотеженим попречним силама. 1.2.8. Статичка анализа оптерећења и отпори ослонаца На вратилу истовремено могу да се нађу и обртни делови прве и друге групе. Сходно томе, вратила могу бити оптерећена: - попречним (радијалним), - подужним (аксијалним) силама, - обртним моментима и - спреговима у аксијалним равнима. Ова оптерећења представљају активна оптерећења и она се преносе на вратило преко одговарајућих додирних површина. Према томе ова оптерећења представљају континуална оптерећења. Наведена оптерећења вратила преносе се преко ослонаца на постоље машина, чиме се остварује статичка равнотежа вратила. При прорачуну вратила неопходно је најпре одредити: 1. интензитет, 2. правац и смер активних сила, 3. отпоре ослонаца. У циљу поједностављења прорачуна, узима се да ова оптерећења делују концентрисано, чиме се практично добијају нешто већа нападна оптерећења у појединим пресецима у односу на стварна оптерећења. Вратило обично на једном месту прима снагу у виду спрега (обртни момент) или силе и спрега (обимна сила и обртни момент), а на једном или више места их предаје. Ова оптерећења потичу од отпора које машина треба да савлада вршећи користан рад. Резултујућа сила којом погонски део делује на гоњени или реакција гоњеног дела на погонски, може заузимати произвољан положај у простору, зависно од међусобног положаја и типа ових елемената, и делује ексцентрично у односу на осу вратила. Уместо резултујуће силе погодније је рачунати са њеним компонентама, и то: - обимна (тангентна) сила – у равни управној на осу вратила, са нападном линијом изван осе вратила, у правцу тангенте на путању додирне тачке; - радијална сила – у равни која пролази кроз осу вратила, са нападном линијом која сече осу вратила; - аксијална сила – у равни која пролази кроз осу вратила, са нападном линијом која је паралелна оси вратила. При одређивању ових оптерећења треба увек посматрати оба дела, и погонски и гоњени. Оптерећења вратила представљају просторне системе сила и спрегова. У циљу налажења отпора ослонаца треба их свести на раванске системе. У том смислу бира се погодан координатни систем, при чему се узима да се оса z поклапа са подужном осом вратила, а оса x односно у са правцем највећег броја активних сила. Затим се све силе и спрегови разлажу у правцима координатних оса односно координатних равни.

4

Машински факултет Универзитета у Београду/ Машински елементи 1/ Предавање 4 1.2.9. Отпори ослонаца вратила и осовина Отпоре ослонаца вратила или осовине могуће је одредити свођењем просторног система сила које оптерећују вратило или осовину на равански оптерећене носаче. Равански модели греда - вратила могу бити: - статички одређени уколико су ослоњени на два зглобна ослонца или - статички неодређени уколико су ослоњени на три или више ослонаца. Најчешће су вратила и осовине ослоњена на два зглобна ослонца од којих је један аксијално непокретан и прима аксијалне силе, а други аксијално покретан. Вратила ослоњена на три и више ослонаца представљају статички неодређене системе, те се за одређивање отпора ослонца користе методе из отпор-ности материјала. 1.2.10. Нападно оптерећење вратила и осовина Оптерећење која напада било који пресек вратила назива се нападно оптерећење. Нападно оптерећење вратила потиче од: -

сила које оптерећују вратило-спољашње силе; отпора ослонаца, који у односу на вратило представљају спољашње оптерећење.

За одређивања нападног оптерећења у било ком пресеку вратила, треба утврдити коју врсту напрезања изазива оптерећење вратила, па тако: -

Попречне силе и спрегови изазивају савијање и смицање вратила; Aксијалне силе доводе до истезања односно сабијања вратила, а Обртни моменти доводе до увијања вратила.

Пожељно је нацртати дијаграме момената увијања, момената савијања, аксијалних сила и трансверзалних (попречних) сила. Ови дијаграми могу се одредити графичким или рачунским путем. Момент савијања На основу момената савијања

M y за х-z раван и M x , за у-z раван добија се резултујући нападни

момент савијања према:

M s = M x2 + M y2 Трансверзалне силе На основу трансверзалних сила Fx у правцу х-осе, односно

Fy у правцу у-осе добија се резултујућа

трансверзална сила према:

Fr = Fx2 + Fy2 С обзиром на претпоставку да оптерећења делују концентрисано, на дијаграму се уочавају скокови момената савијања и аксијалних сила. По правилу, најважнија оптерећење вратила су нападни моменти услед увијања и савијања, док је утицај аксијалних и радијалних сила секундаран. Момент увијања Дијаграма обртних момената – момената увијања, показује како се обртни моменти преносе дуж вратила односно коликим моментом увијања је напрегнут сваки пресек вратила. Ако се на вратилу налази више делова који предају (преносе) доведени обртни момент, онда се дуж вратила врши преношење (развођење) до одговарајућих гоњених делова на спрегнутим вратилима – зупчаника, ланчаника, спојница итд. На слици 1.7. приказана су два могућа принципа преношења – 5

Машински факултет Универзитета у Београду/ Машински елементи 1/ Предавање 4 развођења обртног момента дуж вратила. У првом се обртни момент ТI доводи на једном крају вратила, а затим преко више делова предаје (TII ,TIII, TIV ). Збир предатих момената мора бити једнак примљеном ( T = T + T + T ). У другом случају, обртни момент се на вратило доводи преко неког од средњих обртних делова TI. Одавде се обртни момент дели на леву и десну страну сходно преносном односу (,,потрошњи” гоњеног дела). I

II

III

IV

TII TI

TIII TIV

I

T

а) обртни момент се доводи на крају вратила

TII TIII

б) обртни момент се доводи унутар вратила

TIV Слика 1.7. Дијаграми обртних момената – момената увијања Аксијална сила Дијаграм аксијалних сила показује коликом аксијалном силом је оптерећен сваки попречни пресек вратила. 1.2.11. Критеријуми за прорачун вратила и осовина Вратила и осовине морају бити димензионисана тако да спољашње оптерећење током рада пренесу без критичних појава, као што су велике (недозвољене) еластичне деформације, пластичне дефорнације, статичко разарање-кидање, динамичко разарање- лом услед замора и сл. Анализа оптерећења вратила показује да су вратила изложена сложеним напразањима, и то: - савијању – услед сила и спрегова који делују у равнима кроз осу вратила; - увијању – услед спрегова у равнима управним на осу вратила; - затезању или притискивању – услед аксијалних сила; - површинском притиску – на површинама по којима се вратило додирује са деловима који су учвршћени на њему или са елементима на које је вратило ослоњено и - смицању – услед попречних сила које се због врло малог утицаја занемарује. Осовине су напрегнуте истим врстама напрезања, осим увијањем. Променљивост оптерећења У погледу променљивости оптерећења током времена код вратила, треба имати у виду да попречне силе које оптерећују вратило и када имају константан правац у односу на непокретни координатни систем, у односу на координатни систем везан за вратило, имају правац који се у сваком тренутку мења, са обртањем вратила. Дакле, и у случају константног интензитета попречних сила, што често није случај, ове силе у односу на попречни пресек вратила представљају наизменично променљиво оптерећење. Попречне силе једног тренутка ће у неким влакнима вратила изазвати затежуће напоне, а у другим притискајуће. Према томе, у погледу савијања, код вратила и покретних осовина, увек се ради о наизменично променљивом оптерећењу. Када је реч о увијању, моменти увијања мењају се у зависности од начина рада погонске и радне машине. Када вратило током времена не мења смер обртања, тј. када машина ради или као погонска или као гоњена у погледу увијања вратило је напрегнуто једносмерно променљивим оптерећењем. То је у пракси најчешћи случај. У супротном реч је о наизменично променљивом оптерећењу, Константно оптерећење које савија вратило било би оно оптерећење које би се кретало заједно са вратилом, што је случај са центрифугалном силом услед неуравнотежености масе неког од делова на вратилу. Напони услед затезања или притиска услед аксијалне силе у већини случајева су мали у односу на нормални напон услед савијања те се у већини случајева могу занемарити. Што се тиче површинског притиска на додирним површинама вратила и делова на њима, он је нарочито велики у случају када је веза између главчине и вратила остварена преклопом (пресовани склоп). 6

Машински факултет Универзитета у Београду/ Машински елементи 1/ Предавање 4 По правилу ови напони се у прорачуну не узимају у обзир па се сматра да се заменом континуалног оптерећења концентрисаном силом овај утицај довољно компензира. Деформације вратила и осовина Последица ових напона су одговарајуће деформације вратила. Услед напона од савијања оса вратила добија облик који одговара просторној еластичној линији, а услед напона од увијања долази до увијања вратила. Ово за последицу има промену геометријских односа обртних делова на вратилу. Они заузимају положај који одговара угибу, нагибу и углу увијања вратила на местима налегања, што може имати пресудан утицај на њихов рад. Према томе, поред задовољавајуће чврстоће вратила треба да имају и одговарајућу крутост. Вратила и обртне осовине са деловима који се на њима налазе чине дакле, једну обртну целину, односно један еластични систем нападнут радијалним и аксијалним силама и обртним моментима. Периодичне промене интензитета обртног момента изазивају периодично променљиве деформације, односно доводи до осциловања целог система. Уколико се учестаност промене обртног момента поклопи са учестаношћу слободних осцилација вратила у односу на увијање долази до критичног стања односно резонанце. До критичног стања међутим може доћи и без промене интензитета спољашњег оптерећења. Неуравнотеженост маса на вратилу доводи до појаве инерцијалних сила чија учестаност одговара учестаности обртања вратила. Уколико се учестаност обртања поклопи са сопственом учестаношћу вратила у односу на савијање настаје такође критично стање односно резонанца. Због тога радно подручје бројева обртаја треба да буде изван критичног, што треба проверити при прорачуну вратила и осовина. На основу тога могу се дефинисати следећи критеријуми за прорачун вратила и осовина: - прорачун чврстоће вратила и осовина; - прорачун крутости вратила и осовина; - прорачун динамичке стабилности вратила и осовина. 1.3. Прорачун чврстоће вратила и осовина 1.3.1. Радни напони Радни напони у вратилу су последица деловања спољашњег оптерећења. Радни напони услед савијања Максимални нормални номинални напон σS услед савијања одређује се познатим изразом из отпорности материјала:

σS =

Ms , W

F

σS

τ

где је: неутрална оса Мs – нападни момент савијања у посматраном (раван) пресеку; W– аксијални отпорни момент површине посматраног пресека вратила. Ова вредност напона појављује се у влакнима која Слика 1.8. Напони у попречном су највише удаљена од неутралне осе. У тачкама на оси пресеку вратила нормални напон је једнак нули (слика 1.8.). Тангентни напон при савијањуτ τ једнак је нули у тачкама у којима је нормални напон највећи, а највећи је у тачкама на оси вратила где је нормални напон једнак нули. Стога се при прорачуну чврстоће, овај напон занемарује (не узима у обзир). Узимају се и убзир само код вратила и осовина код којих су рукавци и подглавци непосредно једни уз друге. Радни напони услед смицања Напон услед смицања одређен је изразом

τs =

FT , A

где је: FТ –трансверзална (попречна) сила. 7

Машински факултет Универзитета у Београду/ Машински елементи 1/ Предавање 4 Радни напони услед увијања Максимални тангентни номинални напон услед увијања τ одређен је изразом: T , τ = u

Wo

где је:

Т – момент увијања у посматраном пресеку; Wo – поларни отпорни момент површине посматраног пресека вратила. Највеће вредности овог напона појављују се у тачкама које су највише удаљене од осе вратила. Радни напони услед затезања/притиска

Нормални напон услед затезања односно притиска одређен је изразом: F σ= a , A где је: Fa – аксијална сила; А – површина попречног пресека вратила. Равномерно су распоређени по попречном пресеку вратила. Повољније је ако је вратило напрегнуто на притискивање него на затезање, јер се тада смањују затежући нормални напони и повећавају притискајући. То је повољно у погледу динамичке чврстоће, под претпоставком довољне крутости вратила. Ови напони су, као што је речено, мали у односу на нормални напон услед савијања, тако да се у већини случајева могу занемарити. Расподела по попречном пресеку вратила и ток промена напред наведених напона приказани су у таблици 1.1. Таблица. 1.1 Расподела напона у попречном пресеку вратила Напрезање

Напони

Расподела напона

Промена у току времена Наизменична Једносмерна промена обртног промена обртног момента момента

Савијање

Увијање

Затезање притисак

Смицање

Према томе, напони меродавни за прорачун чврстоће вратила су: - нормални напони услед савијања и евентуално услед затезања односно притискивања и - тангентни напон услед увијања. Ови напони се јављају истовремено и у истим тачкама. Стога, да би се добила представа о чврстоћи вратила, треба израчунати упоредни (еквивалентни, редуковани, идеални) нормални напон – нормални напон који у себи садржи и утицај тангентног. 8

Машински факултет Универзитета у Београду/ Машински елементи 1/ Предавање 4 Таблица 1.2. Слика

Аксијални и поларни отпорни моменти Отпорни моменти пресека W Wо π ⋅d

3

π ⋅d

3

16

0,1 ⋅ D (D − 1,7 d )

0,2 ⋅ D (D − 1,7 d )

π ⋅d 32

π ⋅d3



b ⋅ t (d − t ) 2⋅d

π ⋅d



b ⋅ t (d − t ) d

π ⋅d3

π ⋅d

3

32

ψ=

(

⋅ 1 −ψ 4

16

ψ=

0,15 ⋅ d 23



b ⋅ t (d − t ) d

2

(

⋅ 1 −ψ 4

,

)

di d

σ D ( −1) τ D(o)

- помоћна величина;

σD(-1) – динамичка чврстоћа вратила при наизменично променљивом савијању; динамичка чврстоћа вратила при τD(0) – једносмерном променљивом увијању; Код осовина су тангентни напони услед увијања једнаки нули. За одређивање аксијалних и поларних отпорних момената за основне пресеке вратила могу се користити изрази дати у таблици 1.2.

0,024 ⋅ (D + d )

3

(

b ⋅ t (d − t ) 2⋅d

16

di d

d12 ⋅ d12 − 24 ⋅ e12 d2



2

π ⋅d3

)

0,012 ⋅ (D + d )

0,1 ⋅

3

16

2

32

αo =

2

2

3

σ i = σ S2 + (α oτ u )2 где је:

32 2

Упоредни напон одређује се из израза:

3

)

0,162 ⋅ d13

0,2 ⋅ d 23

1.3.2. Анализа утицаја концентрације напона на чврстоћу вратила и осовина Ако не постоји промена пресека вратила и осовина Напони одређени према наведеним изразима представљају номиналне напоне. Ако постоји промена пресека вратила и осовина Вратила и осовине су сложеног облика и код њих се врло често из конструкционих разлога изводе разни наслони, жлебови, навоји итд. Према томе код вратила је присутан велики број извора концентрације напона. Најчешћи извор концентрације напона је промена пречника вратила. Расподела напона у површинским слојевима вратила изложеног савијању на месту промене пречника дата је на слици 1.9. Врло чести извори концентрације напона су и попречни кружни жлебови, уздужни жлебови за клинове, попречни отвори, делови вратила са навојем, ожлебљена вратила, спојеви вратила са обртним деловима итд. Услед концентрације напона стварни радни напони су већи од номиналних, што се при прорачуну σs max узима у обзир преко теоријског фактора концентрације напона αК. Вредности овог фактора за σs различите облике вратила и за σs σs max различите врсте напрезања могу се одредити на основу дијаграма на слици Слика 1.9. Концентрација напона на месту промене 1.10. пречника вратила Утицај концентрације напона на чврстоћу вратила узима се у обзир преко ефективног фактора концентрације напона β K = .(α K − 1 )η K + 1 где је:

αк – теоријски (геометријски) фактор концентрације напона; ηк – фактор осетљивости материјала на концентрацију напона. 9

Машински факултет Универзитета у Београду/ Машински елементи 1/ Предавање 4 Сви материјали нису подједнако осетљиви на концентрацију напона. Пластични материјали су мање осетљиви на концентрацију напона од еластичних и кртих материјала. Потпуно пластични материјали нису уопште осетљиви на концентрацију напона (ηК=1), па је и ефектни фактор концентрације напона βК=1. Крти и врло еластични материјали су јако осетљиви на концентрацију напона (ηК=1) и код њих је αК= βК. Овај случај се јавља код стакла. Код реалних материјала који се користе за израду вратила и осовина, фактор осетљивости материјала на концентрацију напона се креће у границама ηК = 0,4…0,95. Вредности фактора осетљивости материјала на концентрацију напона дате су у таблици 1.3. Таблица 1.3.Вредности фактора осетљивости материјала на концентрацију напона ηК Редни Материјал ηК Дијаграми за одређивање геометријског број (теоријског) фактора концентрације напона за 1. Угљенични челици Č0345…Č0745 0,4…0,8 различите изворе концентрације напона дати су 2. Челици за побољшање 0,6…0,9 на слици 1.10 и таблици 1.4. 3. Челици за цементацију 0,9…1,0 4. Лаки метали 0,3…0,6

Слика 1.10. Дијаграми за одређивање геометријског (теоријског) фактора концентрације напона за различите облике дисконтинуета вратила Места промене пречника представљају основни извор концентра-ције напона, с обзиром да вратила по правилу имају променљиве пречнике. Полазећи од чињенице да је концентрација напона мања ако је разлика пречника мања и ако је промена блажа, најпогоднији је прелаз са једног пречника на други у облику конуса, са дужином равном мањем пречнику и са што већим полупречником заобљења на прелазу са конуса на мањи пречник (сл 1.11.б). Такође малу концентрацију напона има прелаз са благим заобљењем, првенствено у облику лука елипсе или са два полупречника кривине и са блажом кривином уз мањи пречник вратила (сл. 1.11.в). Ако се заобљење на прелазу остварује са једним полупречником кривине, треба га усвајати са максималним вредностима.

10

Машински факултет Универзитета у Београду/ Машински елементи 1/ Предавање 4 Таблица 1.4. Вредности геометријског (теоријског) фактора концентрације напона вратила напрегнутих на савијање (αкs) и увијање (αкu) за различите изворе концентрације напона – пресован склоп, прелаз, попречни жлеб и ожлебљено вратило Таблица 1.4 αks

αku

ρ (mm)

1

3,3

2,11

0,25

2

2,8

1,9

0,25

Вратило

2,6

3

1,7

4

1,7

1,6

Таблица 1.5.

Слика 1.11. Различити облици промене пречника вратила: а) расподела напона по површинском слоју вратила; б) и в) промене пречника вратила без наслона

0,25

Вредности ефективног фактора концентрације напона βК за неколико облика промене пресека, дате су у таблицама 1.5 и 1.6.

ρ

Ефективни фактор концентрације напона βk на местима промене пречника однос h / ρ

1

Rm (σM) N/mm2

0,01

0,02

0,03

0,05

0,10

0,01

400 500 600 700 800 900 1000 1200

1,34 1,36 1,38 1,40 1,41 1,43 1,45 1,49

1,41 1,44 1,47 1,49 1,52 1,54 1,57 1,62

1,59 1,63 1,67 1,71 1,76 1,80 1,84 1,92

1,54 1,59 1,64 1,69 1,73 1,78 1,83 1,93

1,38 1,44 1,50 1,55 1,61 1,66 1,72 1,83

1,51 1,54 1,57 1,59 1,62 1,64 1,67 1,72

400 500 600 700 800 900 1000 1200

1,26 1,28 1,29 1,29 1,30 1,30 1,31 1,32

1,33 1,35 1,36 1,37 1,37 1,38 1,39 1,42

1,39 1,40 1,42 1,44 1,45 1,45 1,48 1,52

1,42 1,43 1,44 1,46 1,47 1,50 1,51 1,54

1,37 1,38 1,39 1,42 1,43 1,45 1,46 1,50

1,37 1,39 1,40 1,42 1,43 1,44 1,46 1,47

2 однос ρ / d 0,02 0,03 при савијању 1,75 1,76 1,81 1,82 1,86 1,88 1,91 1,94 1,96 1,99 2,01 2,05 2,06 2,11 2,16 2,23 при увијању 1,53 1,52 1,55 1,54 1,58 1,57 1,59 1,59 1,61 1,61 1,62 1,64 1,65 1,66 1,68 1,71

3

4

0,05

0,01

0,02

0,03

0,01

0,02

1,70 1,76 1,82 1,88 1,95 2,01 2,07 2,19

1,86 1,90 1,94 1,99 2,03 2,08 2,12 2,21

1,90 1,96 2,02 2,08 2,13 2,19 2,25 2,37

1,89 1,96 2,03 2,10 2,16 2,23 2,39 2,44

2,07 2,12 2,17 2,23 2,28 2,34 2,39 2,50

2,09 2,16 2,23 2,30 2,38 2,45 2,52 2,66

1,50 1,53 1,57 1,59 1,62 1,65 1,68 1,74

1,54 1,57 1,59 1,61 1,64 1,66 1,68 1,73

1,59 1,62 1,66 1,69 1,72 1,75 1,79 1,86

1,61 1,65 1,68 1,72 1,74 1,77 1,81 1,88

2,12 2,18 2,24 2,30 2,37 2,42 2,48 2,60

2,03 2,08 2,12 2,17 2,22 2,26 2,31 2,40

11

Машински факултет Универзитета у Београду/ Машински елементи 1/ Предавање 4 Таблица 1.6. Ефективни фактор концентрације напона βk на местима промене попречног пресека вратила

1.3.3. Критични напони вратила и осовина Критични напони вратила и осовина у опасним пресецима одређују се по правилу на основу одговарајућих карактеристика чврстоће (издржљивости) стандардне епрувете, узимајући при томе у обзир утицај концентрације напона и све друге утицаје који узрокују разлику између ове две чврстоће (издржљивости). Сходно томе следи да је критични напон при савијању код вратила и обртних осовина - динамичка чврстоћа (издржљивост) при чисто наизменичној промени напона σ DS (−1) . Код непокретних осовина критични напон једнак је динамичкој чврстоћи (издржљивости) при једносмерној промени напона σ DS ( 0 ) . Динамичка чврстоћа (издржљивост) при увијању, једнака је динамичкој чврстоћи (издржљивост) при једносмерној промени напона (τD(o)). Код статички оптерећених осовина које се не обрћу, чији је број промена циклуса напона у радном веку мањи од Ns (Ns ≈ 103 ÷ 104), критични напони једнаки су статичким карактеристикама чврстоће. Mеродавни критични напони одређују се према следећим изразима: савијање σ DMs = σ D( −1)Ms =

σ Ds ( −1) K Ds

τ Dn( o )

увијање

τ DMu = τ D( o )Mu =

где је:

σ DMs = σ D( −1)Ms - динамичка чврстоћа (издржљивост) вратила услед наизменично

K Du

променљивог савијања; τ DMu = τ D( o )Mu - динамичка чврстоћа (издржљивост) вратила услед једносмерно променљивог увијања σDs(-1) -динамичка чврстоћа (издржљивост) стандарадне епрувете при наизменично променљивом савијању τDu(o) – динамичка чврстоћа (издржљивост) стандарадне епрувете при једносмерно променљивом увијању KDs – фактор динамичке чврстоће услед савијања KDu – фактор динамичке чврстоће услед увијања За аксијална напрезања – затезање и притисак, критични напон се одређује из истих израза, с тим што су меродавне механичке карактеристике за затезање σD(-1) и σD(o). Утицај овог напрезања на чврстоћу вратила, као што је речено, најчешће је занемарљив.

12

Машински факултет Универзитета у Београду/ Машински елементи 1/ Предавање 4 Фактор динамичке чврстоће KD израчунава се из израза:

KD =

βk ξ1ξ 2ξ 3

где је: βк ξ1 ξ2 ξ3

– – – –

, ефективни фактор концентрације напона; фактор апсолутних димензија (величине пресека); фактор стања површина (храпавости) и фактор ојачања површинског слоја (термохемијских обрада).

Фактор апсолутних димензија (попречног пресека) ξ1 - представља однос динамичке чврстоће вратила и стандардне епрувете. Таблица 1.7 Најмањи пречник на месту концентрације напона у mm

Вредности фактора апсолутних димензија (величине пресека) ξ1 За савијање угљенични челик

легирани челик

1 0,91 0,88 0,84 0,81 0,78 0,75 0,73 0,70 0,68 0,60

1 0,83 0,77 0,73 0,70 0,68 0,66 0,64 0,62 0,60 0,54

10 20 30 40 50 60 70 80 100 120 150

За увијање угљенични и легирани челик 1 0,89 0,81 0,78 0,76 0,74 0,73 0,72 0,70 0,68 0,60

Фактор стања површина (храпавости) ξ2 представља однос динамичке чврстоће вратила и стандардне епрувете за различите квалитете обраде вратила и епрувете. За исти квалитет обраде ξ2=1. Фактор ојачања површинског слоја ξ3 представља однос динамичке чврстоће вратила и стандардне епрувете за различите врсте термохемијског третмана површинског слоја вратила. Ове методе се користе у циљу повећања чврстоће (издржљивости). У ове методе спадају обогаћивање површинског слоја у зони концентрације напона угљеником (цементација) или азотом (нитрирање). Поред овога користе се и методе хладног механичког ојачавања (гњечењем ваљцима површинског слоја). Вредности фактора ξ1, ξ2 и ξ3 дати су у таблицама 1.7, 1.8 и 1.9.

Вредности фактора стања површина (храпавости) ξ2 Затезна чврстоћа Rm, N/mm2 Обрада површина 400 800 1200 Брушена 1 1 1 Фино стругана 0,95 – 0,98 0,90 – 0,95 0,80 – 0,90 Грубо стругана 0,84 – 0,90 0,80 – 0,90 0,70 – 0,80 Необрађена 0,75 – 0,85 0,55 – 0,75 0,40 – 0,60 Доње вредности треба узимати за пресеке без концентрације напона, а горње за пресеке са мефективним фактором концентрације напонаоко 2; међувредности треба усвајати сразмерно овом фактору. Таблица 1.8

Вредности фактора ојачања површинског слоја (термохемијске обраде) ξ3 вратила са концентрацијом напона за Врста обраде Rm, N/mm2 Глатка вратила βk > 1,8 βk ≤ 1,5 – 1,2 ÷ 1,3 1,5 ÷ 1,6 1,8 ÷ 2,0 Обрада ваљцима 1) 600 ÷ 1400 1,1 ÷ 1,25 1,5 ÷ 1,6 1,7 ÷ 2,1 Обрада сачмом 2) 600 ÷ 800 1,5 ÷ 1,7 1,6 ÷ 1,7 2,4 ÷ 2,8 3), 4) Индукционо каљење 800 ÷ 1000 1,3 ÷ 1,5 1,6 ÷ 1,7 2,4 ÷ 2,8 Нитрирање 3), 5) 900 ÷ 1200 1,1 ÷ 1,25 1,5 ÷ 1,7 1,7 ÷ 2,1 Таблица 1.9

13

Машински факултет Универзитета у Београду/ Машински елементи 1/ Предавање 4 1)

Подаци добијени испитивањем епрувета пречника 17 – 130 mm. Вредности добијене испитивањем епрувета пречника од 8 до 40 mm. Мање вредности узимати за мале брзине млаза челичних куглица. 3) Подаци су дати у односу на издржљивост термички необрађеног челика. 4) За пречнике изнад 10 до 20 mm усвојити мање вредности. Дубина закаљеног слоја била је од 0,05 до 0,2 d, за d = 10 ÷20 mm. 5) Мање вредности за дубину нитрираног слоја од 0,01 d, а веће за дубину од 0,03 d до 0,04 d. За цементирана вратила на местима концентрације напона фактор ξ3 може бити: ξ3 = 1 ÷ 1,6 (веће вредности за већу концентрацију напона) 2)

1.3.5. Степен сигурности Степени сигурности против лома вратила услед замора представљају однос одговарајућих критичних и радних напона. Степени сигурности против лома вратила услед замора одређују се према следећим изразима: -

савијање

-

увијање

σ DMs σs τ S u = DMu τu Ss =

- затезање-притисак - смицање За одређивање укупног степена сигурности за сложено напрезање, најпре се одређују парцијални степени сигурности против лома услед нормалних и тангентних напона, а затим и укупни степен сигурности вратила. Степен сигурности против лома услед аксијалних напрезања притиска-затезања и услед смицања су у највећем броју случајева врло велики па се могу занемарити. Степен сигурности против лома вратила услед замора треба да је већи од 1,5…2,5. Уколико се располаже тачним подацима о величини радних и критичних напона могу се узети и мање вредности (1,3…1,5). 1.3.6. Димензионисање вратила и осовина Tок прорачуна како је дато у претходним поглављима изведен је под претпоставком да су облик и димензије вратила и осовина познате те да треба проверити њихову чврстоћу. Врло често облик и димензије вратила и осовина нису познате, па је потребно најпре израчунати димензије и конструисати вратило (тзв.претходни прорачун), па тек онда извршити коначну проверу чврстоћу(тзв. завршни прорачун). 1.3.6.1. Претходни прорачун вратила Претходни прорачун потребних пречника вратила базира на приближној шеми оптерећења пошто још не постоји склопни цртеж машине. Ако је познато растојање између ослонаца као и распоред и положај делова на вратилу онда је могуће приближно одредити нападно оптерећење, односно нацртати дијаграме момената савијања и увијања. У претходном прорачуну нејпре се одређују пречници вратила у карактеристичним пресецима. Према хипотези о еквивалентном напону при сложеном напрезању, еквивалентни нападни момент у неком пресеку М износи:

⎛α ⎞ Mi = M + ⎜ 0 T ⎟ ⎝ 2 ⎠

2

2

где је: М – нападни момент услед савијања у датом пресеку Т – меродавни обртни момент

α0 =

σ Ds ( −1) τ Du ( 0 )

14

Машински факултет Универзитета у Београду/ Машински елементи 1/ Предавање 4 σDs(-1) – трајна динамичка чврстоћа (издржљивост) при наизменичном променљивом савијању τDu(0) - трајна динамичка чврстоћа (издржљивост) при једносмерно променљивом увијању Пошто упоредни нормални напон σi мора бити мањи од дозвољеног напона

σi =

Mi ≤ σ doz W

на основу израза за аксијални отпорни момент попречног пресека W (таблица 3.2), добијају се изрази за одређивање пречника вратила

d ≥3

32M i 10M i ≈3 πσ doz σ doz

Ако је попречни пресек вратила прстенасти (шупље вратило) пречник вратила се може одредити из израза:

d = ds ≥ 3

32M i 10M i ≅3 4 πσ doz 1 − ψ σ doz 1 − ψ 4

(

)

(

)

где је ψ = d u d s ,однос унутрашњег и спољашњег пречника вратила. Дозвољени напон је дефинисан као количник критичног напона и потребног степена сигурности:

σ doz =

[σ ] = σ DMs

=

σ DS (−1)

S S KDS где је: σ DMs - динамичка чврстоћа вратила σ DS (−1) - трајна динамичка чврстоћа (издржљивост) материјала епрувете при наизменично променљивом оптерећењу KD - фактор динамичке чврстоће (таблица 1.10) S = 2 ÷ 2,5 - yсвојени степен сигурности за димензионисање. Таблица 1.10 Вредности фактора динамичке чврстоће (издржљивости) KD

Фактор динамичке чврстоће KD обухвата процењену концентрацију напона, утицај величине пресека вратила (димензија) и утицај квалитета храпавости површине а његове вредности за димензионисање дате су таблици 1.10. Ако је вратило напрегнуто само на увијање, онда се на сличан начин добијају изрази за пречнике вратила при димензионисању: пуно вратило d ≥

шупље вратило

3

16T 5T ≅3 πτ doz τ doz

de ≥ 3

16T 5T ≅3 4 πτ doz 1 − ψ τ doz 1 − ψ 4

(

)

(

) 15

Машински факултет Универзитета у Београду/ Машински елементи 1/ Предавање 4 Дозвољени напон τdz одређен је изразом τ doz =

τ Du (0 ) K DS

где је: τDu(0) - трајна динамичка чврстоћа (издржљивост) материјала епрувете при једносмерно променљивом оптерећењу на увијање. KD - фактор динамичке чврстоће (таблица 1.10); S = 2 ÷ 2,5 усвојени степен сигурности. На овај начин израчунавају се пречници вратила у свим карактеристичним пресецима. Срачунати пречници се односе на језгро вратила, односно не узима се у обзир промена облика вратила у посматраном пресеку. С обзиром да пресек вратила врло често није кружни, већ постоји промена облика због жлеба за клин, навоја на вратилу, израде ожљебленог вратила итд., то је неопходно да се овако срачунати пречник повећа за 5..10%. Тачније је међутим, ако се отпорни момент одреди према изразима датим у таблици 1.2. 1.3.6.2. Претходни прорачун осовина За димензионисање осовина меродавно напрезање је савијање. Нормални напон услед савијања мора бити мањи од дозвољеног:

σS =

M ≤ σ doz W

Из овог услова, пошто је аксијални отпорни момент попречног пресека осовине познат може се одредити пречник осовине за пуни пресек

d ≥3

32M 10M ≅3 πσ doz σ doz

за прстенасте пресек (шупљу осовину)

de ≥ 3

32M 10M ≅3 4 πσ doz 1 − ψ σ doz 1 − ψ 4

(

)

(

)

где је: ψ = d i d e - однос унутрашњег и спољашњег пречника осовине

σ doz =

σ DS - дозвољени напон K DS

KD - фактор динамичке чврстоће (таблица 1.10) S =2…2,5 усвојени степен сигурности 1.4. Прорачун крутости вратила и осовина 1.4.1. Деформације вратила и осовина Крутост односно деформације вратила представаљају, као што је речено, важан критеријум при прорачуну и конструисању вратила. У извесним случајевима поред прорачуна чврстоће вратила, обавезно треба спровести и прорачун крутости односно деформација вратила. Вратило се услед доминантних напрезања – савијања и увијања, деформишу на два начина: услед савијања на оптерећеном вратилу се појављују различити угиби и нагиби у појединим тачкама вратила вратило добија облик који одговара просторној еластичној линији, а услед увијања делови на једном крају вратила заокренути су у односу на делове на другом крају за величине угла увијања (слика 1.12.) Услед ових деформација долази до одступања стварног положаја делова који се налазе на вратилу у односу на геометријски тачан положај. Ово има за последицу промену геометријских односа делова који се налазе на вратилу што може имати пресудан утицај на њихов исправан рад. То се нарочито односи на зупчанике, лежаје, роторе неких турбо машина, итд. Прорачун крутости вратила и осовина своди се на одређивање еластичне линије односно нагиба и угиба вратила у појединим пресецима односно одређивање угла увијања. Прорачуни се изводе по методама које су детаљно изложене у књигама из Отпорности материјала. 16

Машински факултет Универзитета у Београду/ Машински елементи 1/ Предавање 4

Слика 1.12. Деформације вратила услед увијања и савијања 1.4.2.Критичне и дозвољене деформације Сувише велике деформације вратила доводе до критичног стања делова на вратилу у погледу њихове функције, односно њихове кинематике, динамике и чврстоће. Због тога се намеће потреба да се за сваки део изврши одговарајућа анализа и одреде граничне вредности деформација у оквиру којих он може успешно да остварује своју функцију. Максимална дозвољена вредност угла увијања вратила креће се у зависности од врсте дела на вратилу у границама φ=(0,004…0,009) rad/m. Дозвољене деформације одређују се на основу детаљног прорачуна или на основу искуства за сваки део посебно. Код делова компликованијег облика ово може понекад да представља врло велики проблем. За случај да се не располаже тачнијим вредностима дозвољених деформација вратила и осовина, могу се користити следеће граничне вредности нагиба вратила: - крути котрљајни и подесиви клизни лежаји tan α ≈ 0,001 - неподесиви клизни лежаји tan α ≈ 0,0003 - несиметрично улежештени зупчаници tan α ≈ 0,00015 - зупчаници на препусту tan α ≈ 0,0001 1.5. Прорачун динамичке стабилности вратила и осовина 1.5.1. Побудно оптерећење и резонанца Критично стање вратила услед динамичке нестабилности праћено изразитим повећањем амплитуде осцилација, настаје у случају када је вратило изложено периодично променљивим радијалним и аксијалним силама и обртним моментима. Они изазивају периодично променљиве деформације, односно осцилације целог система, које доводе до стања у коме се учестаност промене побудних оптерећења поклопи са учестаношћу слободних (сопствених) осцилација вратила. У овом случају амплитуде постају бесконачно велике. Када се поклопе учестаности (фреквенције) слободних и принудних осцилација, сила тада потискује масу у право време и у правом смеру, па амплитуде неограничено расту. Такав случај се јавља код клатна које се код сваког трептаја лагано потискује у правцу његовог кретања. Тада релативно мала сила може прозвести велике амплитуде. Ова важна појава назива се резонанца, а одговарајућа учестаност резонантна учестаност. Стога се код вратила врши провера односа критичне угаоне брзине или учестаности обртања при којима настаје резонанца са радном угаоном брзином односно учестаношћу обртања. При томе највећи утицај имају радијалне и торзионе осцилације. Утицај аксијалних осцилација по правилу је занемарљив. 1.5.2.Степен сигурности са аспекта динамичке стабилности вратила и осовина Степен сигурности са аспекта динамичке стабилности вратила и осовина представља однос одговарајућих учестаности обртања и то: за вратила која раде са учестаношћу обртања мањим од критичних

S=

n kr n

за вратила која раде са учестаностима обртања већим од критичних 17

Машински факултет Универзитета у Београду/ Машински елементи 1/ Предавање 4

S=

n n kr

Степен сигурности у оба случаја треба да је већи од 1,25. То значи да је радно подручје учестаности обртања за више од 25% удаљено од критичног. Провера динамичке стабилности вратила врши се углавном код вратила која раде са великим учестаностима обртања. У ову групу спадају вратила турбокомпресора, турбопреносника, парних и гасних турбина, неких алатних машина, као и коленаста вратила клипних машина. Највећи број машина има доста крута вратила која раде са малим угаоним брзинама тако да ова провера није потребна. 1.6. Материјали за вратила и осовине Материјал за вратило или осовину мора задовољити економске и техничке услове. Најважнији технички услов је услов радне способности. Вратила и осовине, дакле, морају бити конструисане тако да прописану функцију обављају исправно и поуздано, што значи да имају довољну чврстоћу и крутост, да би у току рада издржали сва оптерећења без штетних деформација, разарања и опасних осцилација. Као материјали за вратила и осовине најчешће се користе: - обични конструкциони челици, - челици за побољшање и - челици за цементацију. Нормално оптерећена вратила и осовина најчешће се израђују од Č 0445 и Č 0545, а за јача оптерећења користи се и Č 0645. Издржљивост, чврстоћа и тврдоћа ових челика је мања у односу на друге челике, али им је зато обрадљивост резањем добра, а цена нижа. При томе се добијају нешто веће димензије вратила што повећава њихову крутост, односно смањују еластичне деформације при истом спољашњем оптерећењу. Високо оптерећена вратила и осовине, која се примењује код возила. мотора, тешких алатних машина, преносника, снаге турбина итд., израђују се од челика за побољшање. Ови челици су веће чврстоће и издржљивости, а уз одговарајућу термичку обраду и велике тврдоће. Овде се најчешће користе угљенични челици Č 1430 и Č 1530 који су предвиђени за израду осовина шинских возила. Од легитаниих челика примењују се Č 3230, Č 4131, Č 4730, Č 4731, Č 4732 и Č 4734. Брзохода вратила улежиштена у клизне лежаје захтевају велику тврдоћу рукаваца, да би коефицијент трења клизања био мањи, па се ова вратила израђују од челика за цементацију. Исто важи и за вратила која су израђена изједна са другим деловима (цементирани зупчаници). Овде се користе цементирани и каљени угљенични челици Č 1121, Č 1221, као и легирани челици Č 4320, Č 4321, Č 5421 и Č 4721.

18

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF