Overview of the Aircraft Design Process V40

March 26, 2018 | Author: Brian Xistos | Category: Fuselage, Spar (Aeronautics), Aviation, Aircraft, Aeronautics
Share Embed Donate


Short Description

This Powerpoint presentation provides an overview of the aircraft design phases. The document contains an introductory p...

Description

Overview of the Aircraft Design Process Prof. Bento Silva de Mattos

V40

March 2010

Objective

This lecture is intended to provide an overview of the aircraft design process

2

Content

Introduction The Product Development Process The Conceptual Design Phase The Preliminary Design Phase The Detail Design Phase and Future Trends

3

Introduction

4

Introduction

Recommended Further Reading • •

• • • •

D. Howe - Aircraft Conceptual Design Synthesis Loftin- Subsonic Aircraft: The Evolution and the Matching of Size to Performance. NASA Referendum Publication 1060. D. Raymer - Aircraft Design, A Conceptual Approach. E. Torenbeek - Synthesis of Airplane Design. J. Roskam - Airplane Design Vol. (1-8). Askin Isikveren - Quasi-Analytical Modeling and Optimization Techniques For Transport Aircraft Design, PhD. Thesis, 2002.

5

Introduction

Recommended Further Reading

• • •

L.Jenkinson, P.Simpkin & D.Rhodes – Civil Jet Aircraft Design D.Stinton – The Design of the Aeroplane S.Brandt, J.Stiles & R.Whitford – Introduction to Aeronautics – A Design Perspective

6

Introduction

Specific Industry journals AEROSPACE DAILY AVIATION WEEK & SPACE TECHNOLOGY BUSINESS & COMMERCIAL AVIATION THE WEEKLY OF BUSINESS AVIATION AEROSPACE DAILY & DEFENSE REPORT AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY AEROSPACE AMERICA AVIATION DAILY ENGINEERING FAILURE ANALYSIS ADVANCED ENGINEERING MATERIALS AVIATION SPACE AND ENVIRONMENTAL MEDICINE IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE JOURNAL OF AIRCRAFT PROFESSIONAL ENGINEERING …

Introduction

Designing Aircraft

Design: • Not a clear-cut/scientific or completely rational process – Despite efforts to formalize – Neat flow charts of steps aren’t real life, still needed as goals – But! Some systematic procedures available • Creativity/imagination, but not pure inspiration • Broad understanding of physical world • Beware of cookbook approach: - understand your concept • Never stop asking questions!

8

Introduction

Good Designs

Source: Prof. Mason, Virginia Tech

9

Introduction

The Process

Source: Prof. Mason, Virginia Tech

10

Introduction

Aircraft Design is a Compromise

• It is the task of the aircraft design engineer to balance the customer requirements with the physical constraints, cost and time-scale, in order to produce the most effective aircraft possible. • Aircraft Design Requires Teamwork • No “one” design group is more important than the others. • Note: All Engineering involves Compromises!

11

Introduction

Aircraft • Aeronaves são sistemas multidisciplinares complexos – Requerem tempo considerável para projetar e construir (vários anos). – Investimento considerável (custo unitário também elevado). – Mercado extremamente competitivo. – Requisitos extremamente exigentes de certificação do produto. • Incerteza no projeto e desenvolvimento conduz a: - aeronaves que são entregues fora do prazo e do orçamento.

- aeronaves inadequadas e não-competitivas.

12 Prof. Bento Silva de Mattos

Introduction

Aeronaves São Sistemas Multidisciplinares Complexos • Sistemas multidisciplinares são intrisincamente difíceis de modelar e entender devido a uma única pessoa não ser capaz de possuir conhecimento detalhado nas áreas requeridas. • Sistemas frequentemente tornam-se muitos complexos para que se possa reduzir a incerteza e permitir uma previsibilidade razoável. – Requisitos de certificação cada vez mais exigentes. – Requisitos de desempenho e operação mais exigentes e complexos (ex. aeronaves silenciosas e não-poluentes)

13 Prof. Bento Silva de Mattos

Introduction

Think Light, Think Simple, Think Accessibility, Think Maintainability, and Think Cost 14 Prof. Bento Silva de Mattos

Introduction

Kelly Johnson’s Rules Kelly Johnson established fourteen basic operating rules to govern his projects. Within the Skunk Works staff, these rules were as sacred as the Ten Commandments. Many sites across the internet include these rules. The rules differ slightly from site to site. The following compilation is from the stuff obtained them from these various sites and selected from the wordings. (For example, later wordings seem to substitute "customer" for the military and "vendor" for contractor.). 15 Prof. Bento Silva de Mattos

Introduction

Kelly Johnson’s Rules Rule Number 1 The Skunk Works' program manager must be delegated practically complete control of his program in all aspects. He should report to a division president or higher. Rule Number 2 Strong but small project offices must be provided both by the military and industry. Rule No. 3 The number of people having any connection with the project must be restricted in an almost vicious manner. Use a small number of good people (10 percent to 25 percent compared to the so-called normal systems). Rule No. 4 A very simple drawing and drawing release system with great flexibility for making changes must be provided. Rule No. 5 There must be a minimum number of reports required, but important work must be recorded thoroughly. 16 Prof. Bento Silva de Mattos

Introduction

Kelly Johnson’s Rules Rule No. 6 There must be a monthly cost review covering not only what has been spent and committed but also projected costs to the conclusion of the program. Don't have the books ninety days late and don't surprise the customer with sudden overruns. Rule No. 7 The contractor must be delegated and must assume more than normal responsibility to get good vendor bids for subcontract on the project. Commercial bid procedures are very often better than military ones. Rule No. 8 The inspection system as currently used by the Skunk Works, which has been approved by both the Air Force and the Navy, meets the intent of existing military requirements and should be used on new projects. Push more basic inspection responsibility back to the subcontractors and vendors. Don't duplicate so much inspection. Rule No. 9 The contractor must be delegated the authority to test his final product in flight. He can and must test it in the initial stages. If he doesn't, he rapidly loses his competency to design other vehicles. 17 Prof. Bento Silva de Mattos

Introduction

Kelly Johnson’s Rules Rule No. 11 Funding a program must be timely so that the contractor doesn't have to keep running to the bank to support government projects. Rule No. 12 There must be absolute mutual trust between the military organization and the contractor with very close liaison on a day-to-day basis. This cuts down misunderstanding and correspondence to an absolute minimum. Rule No. 13 Access by outsiders to the project and its personnel must be strictly controlled by appropriate security measures. Rule No. 14 Because only a few people will be used in engineering and most other areas, ways must be provided to reward good performance by pay, not simply related to the number of personnel supervised. 18 Prof. Bento Silva de Mattos

Introduction

Kelly Johnson’s Rules Rule 15 Several sites suggest that there was an additional "unwritten rule" . . . Rule No. 15 Never deal with the Navy.

19 Prof. Bento Silva de Mattos

Kelly Johnson’s Most Important Rule

Introduction

"Be Quick, Be Quiet, And Be on Time"

20 Prof. Bento Silva de Mattos

Weight Definitions • disposable load = payload + useable fuel (+any necessary ballast) Where Payload = the revenue earning load Maximum ramp weight is that approved for ground maneuver Maximum ramp weight = maximum take-off weight + start, taxi, and run-up fuel Maximum landing weight = maximum weight approved for touchdown Maximum zero fuel weight = the maximum weight approved – usable fuel

• APS weight (aircraft prepared for service), which is the same as the basic empty weight, i.e. fully equipped operational, without crew, usable fuel or payload (the load that generates revenue, income). • AUW, Wo The all-up (gross) weight is the maximum weight at which flight requirements must be met. Maximum to take-off weight = gross (all-up) weight = MTOW = operating empty weight + disposable load in which operating empty weight and disposable load are built up as follow Operating empty weight = basic empty weight + crew Basic empty weight = standard empty weight + optional equipment Standard empty weight = weight of the standard aircraft (as manufactured + unusable fuel + full operating fluids + full engine oil

Business Opportunities

Introduction

CIVIL

DEFENSE Trainers Surveillance

Airliners

Executive Transport Agricultural

UAVs

Attack

Helicopters

Introduction

General Aviation

• Aircraft specifically use to teach someone to fly. C-152, Piper Tomahawk, Beech Skipper

• Use of aircraft other than business or commercial use, 24% all hours flown. • Beech - Sundowner, Sierra, Bonanza

• Cessna - largest builder of GA 179,500 - 172 Skyhawk, 182 Skylane, 185 Skywagon, 210 Centurion

Prof. Bento Silva de Mattos

Introduction

Market Structure and Segmentation Transport Category Commercial Aircraft

25 Prof. Bento Silva de Mattos

Introduction

Market Structure and Segmentation Transport Category

Executive or Business Aircraft

26 Prof. Bento Silva de Mattos

Introduction

Prof. Bento Silva de Mattos

Jet Transport Aircraft

Airbus A319

Embraer 190 Boeing 767-300

27

Introduction

Prof. Bento Silva de Mattos

COMMOM PLATFORMS Airliner

Derivative EMB 145 AEW&C

ERJ 145

EMB 145 RS/AGS

EMB 145 MP/ASW

P-3 Orion

Lockheed 188 Electra II 28

Prof. Bento Silva de Mattos

Derivative

Introduction

Military Transport

Embraer EMB-110 variants and Derivatives

Fonte: Revista Manche, 1978

29

Introduction

EMB-110 Bandeirante Version (Designation by FAB)

EIS

Role

EMB-110 (C-95)

1973

Military liaison

EMB-110A (EC-95)

1973

Aerial Laboratory (Calibration of Airport Instrumentation)

EMB-110B

1975

Aerial photography

EMB-110C

1973

Airliner (15 passengers)

EMB-110E/J

1975

Transporte Executivo (7-8 passengers)

EMB-110P

1975

Regional airliner (18 pax)

EMB-110S1

1976

Remote sensing

EMB-110B1

1976

Conversível Passageiros/Aerofotogrametria

EMB-110K1 (C-95A)

1977

Cargo/Paratroops transport

EMB-110P2

1977

Regional Airliner (21 pax)

EMB-111

1977

Patrulha e Esclarecimento Marítimo

EMB-110P1

1978

Transporte de Passageiros e Carga (19 pax)

Introduction

Bandeirante EMB-100/100A

O EMB-100 Bandeirante foi desenvolvido no Centro Técnico de Aeronáutica (Atualmente Comando-Geral de Tecnologia Aeroespacial) a partir de 1965 (Programa IPD-6504) por uma equipe liderada por Osires Silva que também envolveu o francês Max Holste. Inspirado no Nord 262 desenvolvido inicialmente por Holste, o Bandeirante realizou o seu primeiro vôo em 1968. Foi o primeiro bimotor metálico projetado e construído no Brasil e a Embraer foi criada para produzí-lo em série. O EMB-100 serviu de plataforma para o EMB-110C (derivado do EMB-110 da FAB), o primeiro modelo civil que de fato foi comercializado pela Embraer. Vale ressaltar, que o terceiro protótipo foi fabricado após a criação da Embraer, equipado para ser um laboratório voador para pesquisas com sensoriamento remoto.

Informações Técnicas

Unidades fabricadas: 3 Primeiro vôo: 22 de outubro de 1968 Capacidade: 2 tripulantes e 7, 9 ou 10 passageiros dependendo do protótipo Peso máximo de decolagem: 4500 kg Envergadura: 15,38 m Área da asa: 29,22 m2 Velocidade máxima de operação: 389 km/h Motor: Pratt&Whitney PT6-A20 de 550 shp

Prof. Bento Silva de Mattos

Introduction

Bandeirante EMB-110 A/B/C/E/F/K1/J/P/P1/P1A/P2/S1 O EMB-110 (C-95 da Força Aérea Brasileira, FAB) e o EMB-110C Bandeirante foram uma modificação substancial do EMB-100, que havia sido desenvolvido no CTA. Trem de pouso totalmente escamoteável, motores mais potentes, naceles dos motores redesenhadas, maior capacidade de passageiros com a fuselagem aumentada em quase dois metros foram algumas, entre várias outras, modificações levadas adiante pela recém criada Embraer. A Transbrasil foi o primeiro operador civil do Bandeirante, que lhe foram entregues em abril de 1973. Foi a primeira vez que uma cia. aérea nacional foi equipada com um produto de origem brasileira. A Embraer continou aperfeiçoando e desenvolvendo novas versões de seu bimotor. Em 1978, obteve a certificação do P1 e P2 no mercado norte-americano, onde o Bandeirante foi um sucesso de vendas. Por conta de sua versatilidade e facilidade de manutenção, cerca de 500 exemplares foram fabricados até maio de 1990, quando a produção foi encerrada. Na África do Sul, a robustez do modelo foi mais uma vez comprovada com a conversão do Bandeirante para operar como avião agrícola, conversão feita por operadores locais. A FAB em 2008 contava com 105 Bandeirantes, em 9 versões e duas variantes, que desempenham cinco missões distintas operando em 14 esquadrões, além de dotar vários outros como aeronave orgânica. Além das versões mais comuns de transporte C-95, C-95A, C-95B e C-95C, são utilizadas pela FAB duas versões para calibragem de instrumentos, EC-95B e EC-95C, duas variantes para patrulha marítima, P-95A e P95B, uma versão para busca e salvamento, SC-95B, uma versão para pesquisa de chuvas, XC-95, e, finalmente, uma de reconhecimento e levantamento aerofotográfico, designada de R-95.

Informações Técnicas

Unidades fabricadas: 501 Entrada em serviço: 1973 com a FAB Término da fabricação: maio de 1990 Capacidade: 15 pax + 2 tripulantes (EMB-110C) Peso máximo de decolagem: 5600 kg (EMB-110C) Peso máximo de pouso: 5300 kg Velocidade máxima de operação: 426 km/h (EMB-110C) Motor: Turboélice Pratt&Whitney PT6 variando de 680 a 750 shp nas várias versões

Introduction

Bandeirante EMB-110C

Em 1972 o Bandeirante foi homologado pelo Centro Técnico de Aeronáutica (Atualmente Comando-Geral de Tecnologia Aeroespacial). O EMB-110C foi a versão derivado do EMB110 (C-95 da FAB) que a Embraer desenvolveu como transporte básico de linha aérea (15 passageiros podeiam ser transportados). Através de apoio a aviação de terceiro nível, empresas nacionais como a Transbrasil, Rio–Sul , VASP e TAM vieram a adquirir o Bandeirante. Em 26 de janeiro de 1973, a Trannsbrasil formalizou a compra de seis Bandeirante. A Transbrasil foi também a primeira empresa aérea a receber o modelo, o que se deu 11 de abril de 1973. Na segunda metade de setembro de 1973, foi realizado em São José dos Campos o 1o Salão Aeroespacial Internacional, ocasião em que foi anunciada a venda de 10 Bandeirante para a VASP. Posteriormente, os Bandeiantes da Transbrasil foram repassados à Nordeste Linhas Aéreas e os da VASP à TAM. Cinco exemplares foram fronecidos à Força Aérea do Uruguai. O EMB-110C(N) diferia bo EMB110C pela instalação de equipamentos de degelo nas asas, hélices, empenagem, entrada de ar dos motores e pára-brisa.

Informações Técnicas

Unidades fabricadas: 37 Certicação: 20 de dezembro de 1972 (CTA) Entrada em serviço: 16 de abril de 1973 Capacidade: 15 passageiros + 2 tripulantes Envergadura: 15,3 m Comprimento: 14,2 m Peso máximo de decolagem: 5600 kg Peso máximo de pouso: 5300 kg Teto de serviço: 8660 m Velocidade máxima de operação: 426 km/h Motor: Pratt&Whitney PT6-A27 de 680 shp

Bandeirante EMB-110K1 (C-95A)

Concebido para operar com cargueiro militar, é utilizado também no transporte de pára-quedistas. O EMB-110K1 teve a sua fuselagem alongada em 0,85 em relação ao EMB-110 (C-95). Nesta versão, os tripulantes têm acesso direto à cabina de comando, sem passar pela fuselagem central, já que no lado esquerdo ao posto de pilotagem foi instalado uma porta de tripulantes (0,63 x 1,42 m). No lado direito, há uma porta de emrgência para os tripulantes. A fuselagem central dispõe de um volume útil de 14,7 m3. O piso foi reforçado, podendo suportar uma carga de 488 kg/m2. A porta principal da fuselagem foi alargada em relação ao C-95, passando a ter 1,80 m de largura por 1,42 m de altura. Ela é atuada hidraulicamente por meio de bomba manual. Nesta porta, foi incorporada um porta menor, que se abre para o interior da fuselagem e que serve como porta de emrgência,embora a sua finalidade principal é a de permitir o salto de pára-quedistas. O avião pode receber assentos laterais para a comodação de até 20 pára-quedistas.

Informações Técnicas

Entrada em serviço: 1978 Capacidade: 2 tripulantes Peso máximo de decolagem: 5600 kg Peso máximo de pouso: 5300 kg Teto de serviço: 7.620 m Velocidade máxima de operação: 426 km/h Motor: Pratt&Whitney PT6-A34d e 750 shp

Bandeirante EMB-110P1/P1A/P2

Visualmente, o EMB-110P1 se destaca pela larga porta de carga na traseira da aeronave e pelo diedro de 10 graus na empenagem horizontal para livrá-la da esteira da asa e do motor. Operava tanto como versão cargueira como de passageiros, quando admitia até 18 assentos. Foi a versão que junto com a P2 (sem diedro na empenagem horizontal) foi homologada pela norteamericana Agência Federal de Aviação (FAA, “Federal Aviation Administration”) em 1978, o mesmo ano que o Congresso daquele país desregulamentou o mercado de aviação, permitindo um crescimento expressivo da aviação regional. Assim, o Bandeirante se tornou também um sucesso de vendas nos Estados Unidos.

Above . EMB-110P1

Informações Técnicas (P1A)

Entrada em serviço: 1978 (P1) Homologação CTA: 9 de maio de 1978 Capacidade: 19 passageiros + 2 tripulantes Peso máximo de decolagem: 5.670 kg Peso máximo de pouso: 5.450 kg Teto de serviço: 7.620 m Velocidade máxima de operação: 426 km/h Capacidade de combustível: 1.896 litros Motor: Pratt&Whitney PT6-A34 de 750 shp

Above. EMB-110P2

At left . EMB-110P1 passenger cabin

Bandeirante EMB-111 Bandeirulha

O EMB-111 é uma versão de patrulha marítima do Bandeirante. Era dotado de um radar de busca no nariz do aparelho, faróis, tanques de ponta de asa (os mesmos do EMB-326GB Xavante) e de foguetes não-guiados SBAT 70/7. A Força Aérea Brasileira recebeu um primeiro lote de 12 unidades (P-95) entre 1977 e 1979. Um segundo lote de 8 aviões de uma versão aperfeiçoada (P-95B) foram comprados em fins de 1989. As principais diferenças se referiam ao diedro da empenagem horizontal e a aviônicos mais modernos. A Argentina utilizou o EMB-111 durante a Guerra das Malvinas em 1982.

Informações Técnicas

Entrada em serviço: 1977 com a Força Aérea Brasileira Capacidade: 15 passageiros + 2 tripulantes Peso máximo de decolagem: 7.000 kg Peso vazio: 5150 kg Velocidade máxima: 385 km/h Alcance máximo: 3.250 km Envergadura: 15,95 m Grupo motopropulsor: Pratt&Whitney PT6-A34 de 750 shp Operadores: Brasil, Argentina, Chile e Gabão

Introduction

Prof. Bento Silva de Mattos

COMMOM PLATFORMS Military Plane

Boeing’s Heavy Lifter Concept

Airliner

Boeing 747-100

In 1963, the United States Air Force started a series of study projects on a very large "strategic" transport aircraft. Although the C-141 Starlifter was being introduced, they felt that a much larger and more capable aircraft was needed, especially the capability to carry "outsized" cargo that would not fit in any existing aircraft. These studies led to initial requirements for the CXHeavy Logistics System (CX-HLS) in March 1964 for an aircraft with a load capacity of 180,000 pounds (81,600 kg) and a speed of Mach 0.75 (500 mph/805 km/h), and an unrefueled range of 5,000 nautical miles (9,260 km) with a payload of 115,000 pounds (52,200 kg). The payload bay had to be 17 feet (5.18 m) wide by 13.5 feet (4.11 m) high and 100 feet (30.5 m) long with access through doors at the front and rear. Featuring only four engines, the design also required new engine designs with greatly increased power and better fuel economy. On 18 May 1964, airframe proposals arrived from Boeing, Douglas, General Dynamics, Lockheed and Martin Marietta; while engine proposals were submitted by General Electric, Curtiss-Wright, and Pratt & Whitney. After a downselect, Boeing, Douglas and Lockheed were given additional study contracts for the airframe, along with General Electric and Pratt & Whitney for the engines. All three of the airframe proposals shared a number of features, but one in particular would become iconic on the 747. As the CX-HLS needed to be able to be loaded from the front, a door had to be included where the cockpit usually was. All of the companies solved this problem by moving the cockpit to above the cargo area; Douglas had a small "pod" just forward and above the wing, Lockheed used a long "spine" running the length of the aircraft with the wing spar passing through it, while Boeing blended the two, with a longer pod that ran from just behind the nose to just behind the wing. In 1965 Lockheed's aircraft design and General Electric's engine design were selected for the new C-5 Galaxy transport, which was the largest military aircraft in the world at the time.

Introduction

Seaplanes

Prof. Bento Silva de Mattos

Introduction

Seaplanes

The Saunders-Roe Princess was a British flying boat aircraft built by Saunders-Roe, based in Cowes on the Isle of Wight. The Princess was one of the largest aircraft in existence. By the 1950s, large, commercial flying boats were being overshadowed by land-based aircraft. Factors such as runway and airport improvements added to the viability of landbased aircraft, which did not have the weight and drag of the boat hulls on seaplanes nor the issues with seawater corrosion.

Prof. Bento Silva de Mattos

Introduction

World War II Night Fighters

40

Introduction

Early VTOL Aircraft

41

Prof. Bento Silva de Mattos

Introduction

Modern VTOL Aircraft

U.S. Marine Corps MV-22B Osprey

British Royal Navy FRS.Mk 1 Sea Harrier

Lockheed Martin F-35B Lightning II short takeoff/vertical landing (STOVL) stealth fighter

42

Introduction

Airworthiness Regulations & Certification

Prof. Bento Silva de Mattos

Introduction

Structural Parts: Wing The structural concept for the wing is that part of the airplane is essentially a beam which gathers and transmits all the loads to the central fuselage attachment

• • • • • • •

Wing box Fixed leading edge Fixed trailing edge Ailerons Spoilers Flaps Slats

Prof. Bento Silva de Mattos

Introduction

Structural Parts: Wing • Wing structure consists of – Internal structure • Spars • Ribs • Stringers

– External structure • Upper skin • Lower skin

• Wing structure should posses – – – –

Sufficient strength Stiffness Light weight Minimum manufacturing problems

Prof. Bento Silva de Mattos

Prof. Bento Silva de Mattos

• • • • • • •

Structural Parts: Wing

Front spar Rear spar Ribs Stringers Span wise beam Fuel tank Wing skins

Wing Box

Stringers

Introduction

Introduction

Structural Parts: Wing Spars • •

Spars are generally a beam running from root to the tip of the wing There are two spars – Front spar – Rear spar

• • • • • • •

Multi-spar designs are used on larger wings and on military aircraft Spars carry the aerodynamic loads developed on a wing Spars consists of spar cap (flange) and web Spar cap carries bending loads and web carries shear loads Spars are generally I beams, some times C beams are also used All the structural parts of wing are attached to the spars Spars are of two types namely – Shear web – Truss type

TYPES OF SPAR

Introduction

c) Bent up channel f) Integrally machined web

a) Built up spar

d) Frame truss

b) Truss type

g) Integrally machined truss e) Sine wave web

Introduction

SPAN WISE BEAMS • Span wise beams are members in the wing which run from root to the tip • Span wise beams are provided for additional support as well as to support the fuel tank

Structural Parts: Fuselage

FUSELAGE ASSEMBLAGE

TYPES OF FUSELAGE STRUCTURE • Box truss type – The structural elements resemble those of a bridge, with emphasis on using linked triangular elements. The aerodynamic shape is completed by additional elements called formers and stringers and is then covered with fabric and painted

• Monocoque – the exterior surface of the fuselage is also the primary structure

• Semi-monocoque – A series of frames in the shape of the fuselage cross sections are held in position on a rigid fixture, or jig. These frames are then joined with lightweight longitudinal elements called stringers. These are in turn covered with a skin of sheet aluminum, attached by riveting or by bonding with special adhesives

SEMI-MONOCOQUE FUSELAGE Semi-monocoque fuselage structure consists of • Longerons / stringers (Longitudinal members) ü Longerons carries the bending load as axial load ü Stringers also carry axial load ü Stringers stabilize the skin

• Framing (Transverse members) ü Provide the shape to the fuselage ü Reduce the stringer length thus avoiding overall instability

• Skin ü Carries the shear load from the cabin pressure, external transverse and torsional loads

• Bulkheads ü Bulkheads are provided at concentrated loading regions such as wing attachments, tail attachments and landing gear locations

SEMI-MONOCOQUE FUSELAGE

Introduction

Cutaway: British High-Wing Airliner BAe146-200 Why a four-engined configuration was chosen for this plane?

Rear spar

Air brake

Prof. Bento Silva de Mattos

Front spar

55

Introduction

Cutaway of a Supersonic Carrier-based Fighter Boeing F-18

Prof. Bento Silva de Mattos

• Folding Wings • BWB • Multispar wing structure • Leading-edge snag • Full movable horizontal tail

Introduction

Ugly is Most of Time not Good

Introduction

Designed by a Flight Enthusiast

58 Prof. Bento Silva de Mattos

Flight Envelope

Introduction

Supersonic Airplane The left-hand side of the figure marks the speed at any height below which there is insufficient lift to fly straight and level. The dip in the curve around Mach 1 is caused by the increased drag and a decrease in aerodynamic and propulsive efficiency. Some airplanes exhibit this characteristic to a marked extent, others hardly at all. The top of the curve marks the region where the minimum level speed coincides with the maximum speed that can be attained with the particular combination of engine and airframe. The right-hand side of the curve represents the propulsive limit, and the structural limits: where higher speed, kinetic heating and higher dynamic pressure would require an excessively strong and heavy airframe.

Prof. Bento Silva de Mattos

Introduction

Typical Technical Tasks in the Aircraft Development Process Ø

Business opportunities study

Ø

Product specification document

Evaluation of some different concepts to fulfill the requirements Ø Drawings Ø

Ø

Tooling and machinery for manufacturing

Ø

Manufacturing plant

Ø

Flight Tests planning

Ø

Aircraft certification 60

Introduction

In Order to Achieve Lower Risks – Project is divided into phases – Scheduled reviews – Suppliers become partners – Advanced engineering tools like CFD and MDO – Market studies – Launching customer – Manufacturing of some prototypes – Technology certification by technology demonstrators, laboratories, joint ventures, cooperation efforts with he academic community 61

Introduction

Revisões de Passagem de Fase de Projeto -REFAPs

•As Revisões de Fase do Projeto devem ser conduzidas com muito critério, tanto em relação aos participantes quanto em relação à periodicidade. São eficientes quando há pessoas certas contribuição. • Devem ser focadas e baseadas nos “deliverables” definidos na fase de planejamento. • Os principais objetivos dessas avaliações periódicas são: Determinar se os requisitos iniciais do projeto estão sendo atendidos. Ø

Ø

Determinar se os objetivos originais ainda são válidos.

Determinar se há condição totais ou parciais para passar à Fase seguinte. Ø

Ø

Tomar as ações corretivas para reconduzir o projeto ao seu rumo original. 62

Revisões de Passagem de Fase de Projeto -REFAPs (2)

• Entre as REFAPs há três que se destacam:

Conceptual Design Review Ø Preliminar Design Review Ø Critical Design Review Ø

• Elas são marcos do: congelamento da configuração do produto; da definição do produto; e da liberação à fabricação, respectivamente. • Há muitas outras Revisões intermediárias que acontecem segundo às necessidades de cada produto. Também, são repetidas para diversas partes diferentes do avião. 63

Introduction

Aircraft Design Phases • Há algumas divisões clássicas para as Fases de projeto. Por exemplo, a EMBRAER trabalha com 5 etapas (Embraer 170/190). Não aparece nas fases apresentadas pela Embraer, porém ela existe com outra denominação. v

+10 anos Suporte Técnico

Feasibility study

0

Conceptual design

(Initial Definition)

1

Preliminary design (Joint Definition)

2

Projeto Detalhado

3

Production

4

Phase Out

5

•As Fases 1 e 2, são conhecidas como Projeto Conceitual e Preliminar, respectivamente, dentro delas é que os problemas críticos de engenharia são resolvidos. 64

Introduction

Other Approach É comum encontrar, em publicações e nas divisões de outras empresas aeronáuticas, as Fases 1 e 2 reunidas como Preliminar, somente. Ou acrescentar uma de Qualificação/Certificação, ficando assim: Feasibility Study

0

Preliminary design

1

Projeto Detalhado

2

Protótipos/ Qualificação/ Production Certificação

3

4

Phase Out

5

Uma melhor forma de se definir as fases de um Projeto são como segue Feasibility Study

0

Conceptual design

1

Projeto de Definição

2

Projeto Detalhado (Protótipos Certificação)

3

Production

4

Phase Out

5 65

Introduction

Airbus Approach

Product support

Production

Development

Research

Years

Basic

5

3

2

Concept related

30 - 40

20

Project related

Go Ahead Feasibility phase

5

Delivery first A/C in series

DefiDevelopment Concept nition phase phase phase

Delivery last A/C in series

Retirement

Product improvement Basic version Modifications Product improvement (Stretch, MTOW)

Series Production

Spares Production

Product Support

66

Introduction

Main Activities Phase

0

Avaliação do Mercado/Negócios, Caracterização Estratégica do Produto/HLR e Estudo de Viabilidade do Projeto. Focus: Commercial/Financing

1

Definição da Configuração e Integração Geral do Avião. Definição dos Custos Finais. Focus: Integração do Produto/Configuração Final Definição Completa do Sistema, Solução dos Problemas Críticos e Integração dos Subsistemas- Maior envolvimento da Enga; Parceiros; e Fornecedores. Focus: Complete definition of airplane

2 3 4 5

Elaboração dos Desenhos, Fabricação dos Protótipos/CertificaçãoFase mais Dispendiosa na Construção de Protótipos e Ensaios. Focus: Certificação do Produto Produção, Qualidade do Produto e Cronograma de Entrega. Preparação para Entrada em Serviço Focus: Prazos/Qualidade Encerramento. Focus: Customer support/Recycling

Feasibility Study

Feasibility Study

69

Prof. Bento Silva de Mattos

Feasibility Study

Scope • Customer needs • Business opportunities • Market Analysis

Trends and market dynamics Ø Market Share Ø Competitor aircraft database Ø Competitive advantages Ø Customer database Ø Competitors menace Ø

70

Feasibility Study

Phase 0 Characteristics • Althoug this phase is the first one, it is vital for the sucessful outcome of the aircraft program • É dela que emanam a maioria das diretrizes: as estratégicas; as financeiras; e as de caracterização do produto. •Esta Fase deve indicar se o projeto é viável, bem como avaliar todos seus riscos, para determinar o seu prosseguimento ou não. 71

Feasibility Study

Business Plan Sumário Executivo Ø A Indústria e seus Produtos Ø Pesquisa e Análise de Mercado Ø Parâmetros Econômicos do Negócio Ø Marketing strategy Ø Plano de Desenvolvimento do Produto Ø Production scheme (requerido pelo órgão homologador) Ø Plano de Gestão de Projeto Ø “Master Phase Plan” Ø Risk assessment Ø Plano Financeiro Ø Capitalização de Recursos Ø

Feasibility Study

Product Development Process Marketing Requirements & Objectives It all begins with … a potential need in the market • Identified through client comments, competitive and market analysis, market surveys …

Important document : Marketing Requirements & Objectives •It covers different aspects, i.e. technical, operating cost, comfort, etc. •The MR&O does not necessarily need to be comprehensive initially •Written through use of surveys, focus groups

• Getting the MR&O wrong may produce a devastating financial result for the company Embraer CBA-123

Dassault Mercure

SAAB 2000

•The requirements directly influences the function and form of the vehicle See what happens when you do not get the requirements right!

Prof. Bento Silva de Mattos

Feasibility Study

Example of Wrong Specification Dassault Mercure

Instead of designing the aircraft for a maximum range, Dassault chose to design the Mercure for the average range demanded by airlines. This range was only a fourth of a typical maximum range, resulting in a design that was not flexible in range and consequently it was an economic failure. Boeing 737-100

Dassault Mercure

Range with max. fuel (nm)

1,440 nm

918

MTOW (kg)

43,999-49,896

56,600

Max. pax (FAA exit Limit)

124 (typical all-economy, 96)

150

Source:

http://www.boeing.com/commercial/airports/acaps/737.pdf

Feasibility Study

Program Failure: Beechcraft Starship The Beechcraft Starship is a turboprop-powered six- to eight-passenger seat business aircraft. The design was originated by Beechcraft in January 1980 as Preliminary Design 330 (PD 330). Burt Rutan was subsequently retained to refine PD330 and one of the significant changes he instituted was the addition of variable geometry to the canard (he holds a patent for this). Rutan's California-based design and fabrication company Scaled Composites was then contracted to build scale-model prototypes to aid in development. The Starship featured a carbon-composite construction, unique design and rearward-facing turboprop engines, which leased him a futuristic look. But it was slow, difficult to fly and a bear to maintain. A 85% scaled model performed its maiden flight in 1983 and later three full-scale prototypes were built. Beechcraft was able to sold only sold a few of the 53 it built. The company established a buy back program for the exemplars that were sold but some owners decided to keep the airplanes. 75

Feasibility Study

Some Unsuccessful Aircraft Configurations: Budd Conestoga

When the U.S. entered World War II in December 1941, there were concerns whether American industry could produce the huge quantity of materials needed to fight the war. One of the main concerns was whether the vast amounts of aluminum needed for aircraft would be available. The Edward G. Budd Manufacturing Company of Philadelphia, Pennsylvania, the manufacturer of munitions and railroad rolling stock, approached the U.S. Navy (USN) with a proposal to build a twin-engined cargo aircraft comparable to the Douglas R4D, q.v., but made of stainless steel. The USN accepted the proposal and placed an order for 200 RB-1's in August 1942; the U.S. Army Air Forces (USAAF) also became interested and placed an order for 600 aircraft, designated C-93A-BU, The RB-1 was a twin-engined high-wing monoplane with tricycle landing gear and 24-volt electrical system powered by 1,200 hp (894.8 kW) Pratt & Whitney R-1830-92 14-cylinder, twin-row, air-cooled, radial engines driving three-bladed HamiltonStandard Hydromatic constant-speed, full-feathering propellers. The rear of the outer portion of the wing, i.e., from the engine nacelle to the wingtip, and the elevators and rudder were fabric covered. The fuselage featured a bulbous nose enclosing an elevated flight deck. The elevated flight deck permitted the cargo area to be unobstructed for its entire length. The first flight of the RB-1 occurred on 31 October 1943 and this aircraft was delivered to the USN in March 1944. It crashed during testing and the test pilot swore that the plane's stainless steel construction saved his life. The flying characteristics of the RB-1 were poor and problems with the use of stainless steel developed delaying production and causing the price to rise. These difficulties plus the adequate supply of aluminum and the availability of the C-47/R4D resulted in the USAAF canceling 76 their order for this aircraft and the USN reducing their order from 200 to a total of 26.

Case Study: Ultra Long-range Business Jet Bombardier Global Express XRS

Ø Average completion costs US$ 10 million and custom ones even more. Ø It takes eight to 10 months to complete an aircraft and custom completions can take longer. Ø Most operators fly the aircraft 250-450 hours per year. Ø Most operator also say that they typically fly two or three people in transoceanic trips . Ø Bombardier projected a 51,200 lb BOW for the type. Operators say that it is a low-estimate for the airplane. According to them typical BOW lies in the range 52,000-54,000 lb because of optional cabin entertainment system. Ø The XRS is certified to flight to 51,000 ft, but most operators seldom climb above the mid forties. Source: Business & Commercial Aviation, March 2010

Feasibility Study

Case Study: Chance-Vought Corsair

Ø Originally designed as a carrier-capable fighter, it saw combat in Guadalcanal in 1943 as land-based fighter instead. Ø It was fitted with a single 2000-hp powerful engine. This required large propellers in order to obtain higher efficiency from this large amount of power. The 18-cylinder Pratt & Whitney R-2800 Double Wasp radial was the largest engine available at the time. ØAn inverted gull wing, a similar layout to the one used by Germany's Junkers Ju 87 dive bomber, provided to the F4U Corsair fighter a considerably shortened length of the main gear legs. ØIts long nose was the origin for poor visibility from the cockpit. This caused accidents at carrier operations. Ø The large fuselage panels were made of magnesium and were attached to the frames with the newly-developed technique of spot welding, thus mostly eliminating the use of rivets. Ø The combination of an aft cockpit and the Corsair's long nose made landings hazardous for newly-trained pilots. During landing approaches it was found that oil from the hydraulic cowl flaps could spatter onto the windscreen, badly reducing visibility, and the undercarriage oleo struts had bad rebound characteristics on landing, allowing the aircraft to bounce out of control down the carrier deck. Ø The longest production run of any piston-engined fighter in U.S. history (1942–1952). 78

Feasibility Study

Case Study: Mitsubishi A6M Zero

Ø Airframe was divided for manufacturing into two integral blocks (lower weight è longer range and higher maneuverability). ØAlthough the airframe was of complex manufacture, over 10,000 Zeros left their respective assembly lines. Ø The Zero was the first carrier-based fighter to outperform the land-based ones. Ø Lack of adequate armor resulted in loss of experienced pilots. Ø Most of the aircraft was built of T-7178 aluminum, a top-secret aluminum alloy developed by the Japanese just for this aircraft. Ø Initially equipped with a 780-hp engine, in later versions power was increased to 1,130 hp. Ø Outperformed by the Grumman Hellcat fighter, Wildcat’s successor. Ø As Allied fighter design continually improved, the A6M would basically stay as the design first conceived in 1937.

Feasibility Study

Case Study: North American P-51 Mustang

Ø Designed to fulfill a British specification for the Spitfire replacement Ø Prototype flew just 119 days after program start Ø Laminar airfoils were selected to compose the wing geometry Ø After the Allison engine was replaced by the Rolls-Royce Merlin the P-51 fighter became the outstanding fighter that everyone knows Ø Laminar flow can not be attained in practice due to manufacturing imperfections of the aircraft surface and to accumulated dust and bugs on some parts of the airframe exposed to airflow Ø It is believed that the P-51 Mustang fighter shot down half of German aircraft in World War II 80

Viability Study

Establishing Requirements

• Stating the problem properly is one of the systems engineer’s most important tasks, because an elegant solution to the wrong problem is less than worthless. • Problem stating is so important as problem solving. • The problem must be stated in a clear, unambiguous manner. 81

Viability Study

Establishing Requirements The problem statement describes the customer’s needs, states the goals of the project, delineates the scope of the system, reports the concept of operations, describes the stakeholders, lists the deliverables and presents the key decisions that must be made.

82

Feasibility Study

Establishing Requirements “Prevent the Germans from invading France through the Rhineland.” According to this problem statement the, Maginot line was a success. But with this problem statement “Prevent the Germans from conquering France,” The Maginot line was a failure. 83

Feasibility Study

HLR- Customer Needs Negócios: qual mercado servir e como servir este mercado? Lean - Servir valores acima dos concorrentes. Business plan

Configuration

What customers need?

What we can deliver?

How is the way to achieve the goals? 84

Feasibility Study

Market Analysis – Business Opportunities EMB 312 Tucano

The single-engined Embraer EMB 312 Tucano replaced expensive jets being employed in the advanced trainer role. It was developed to address a Brazilian Air Force procurement for the replacement of the Cessna AT-37 side-by-side trainer. After the Cold War was over declining budgets for armed forces around the world forced many countries to decommission costly jets used as trainers.

Prof. Bento Silva de Mattos

Feasibility Study

Market Analysis – Business Opportunities Sikorsky Skycrane, Special Purpose Helicopter

Prof. Bento Silva de Mattos

Feasibility Study

Market Analysis – Business Opportunities Fokker 100 Reloaded

Entrepreneurs behind the long-running effort to develop a Fokker 100 successor intend to modify an existing airframe this year, after securing financing from the Dutch economics ministry. The organization driving the program, NG Aircraft, is a successor to the Rekkof company which has pressed for years to restart Fokker production. NG Aircraft says that the economics ministry is to provide a €20 million ($27 million) loan although this still needs European Union clearance. This funding would come through the Dutch SenterNovem agency, which became part of the ministry's innovations support arm Agentschap NL this year. SenterNovem has a civil aviation department which funds pre-competitive work, such as design, simulation and tooling, for the creation of non-commercial prototype aircraft. Grants of up to €10 million are available for aircraft transporting fewer than 100 passengers, or €20 million for other cases. Under an initial phase NG Aircraft will begin adapting a Fokker 100 with new systems and engines. The twin-jet will serve as a demonstrator for the proposed Fokker 100 NG, the first example of which the company wants to assemble by 2015. Prof. Bento Silva de Mattos

Source: Flight Global, March 2010

Viability Study

Establishment of aircraft mission profile

Supersonic SSBJ

Feasibility Study

Market Analysis – Comparing Competitors Models

MTOW (kg)

Equipped Empty Weight (lb)

Range (nm)

Mach (max)

Pax

Gulfstream V Gulfstream V-SP Gulfstream IV-SP Challenger 604 Challenger SE Continental Global Express Global 5000 Learjet 31A Learjet 45 Learjet 60 Citation X Citation CJ1 Citation CJ2 Falcon 2000 Falcon 2000EX

41051 41277 33838 20500 24040 17010 43207 40032 7711 9412 10659 16375 4808 5670 16238 18461

48000 48300 42500 26630 33900 22350 50300 N/A 11140 13550 14640 19376 6460 7359 20735 22330

6500 6750 4220 3769 3120 3100 6010 4800 1455 2120 2510 3390 1474 1738 3000 3800

0,885 0,885 0,88 0,85 0,8 0,82 0,88 0,88 0,81 0,81 0,81 0,92 0,7 0,72 0,87 0,87

13-19 13-19 12-19 9-19 14-19 8-16 8-19 8-19 6-7 up to 9 up to 10 8-12 5-7 6-7 8-19 8-10

Cruise Crew Altitude (ft) 4 4 3 3 3 2 2-4 2-3 2 2 2 2 2 2 2 2

51000 (max) 51000 (max) 45000 (max) 41000 (max) 41000 (max) 45000 (max) 51000 (max) 51000 (max) 51000 (max) 51000 (max) 51000 (max) 51000 (max) 41000 (max) 45000 (max) 47000 (max) 47000 (max)

Valor de Mercado US$ 1.000,00 USS 41.550,00 USS 41.550,00 USS 32.750,00 US$ 21.800,00 USS 24.900,00 USS 14.700,00 USS 38.000,00 USS 32.950,00 USS 6.525,00 USS 9.420,00 USS 11.970,00 USS 18.600,00 USS 3.800,00 USS 4.300,00 USS 23.500,00 USS 32.000,00

Feasibility Study

Market Analysis – Comparing Competitors

Source: Flight Global

Feasibility Study

Market Analysis – Comparing Competitors

Source: Embraer

Feasibility Study

Market Analysis Market Forecast for 30-60 seaters in the next 10 years

USA, CANADA AND CARIBBEAN 71% (923 jets)

EUROPE 9% (117 jets)

CHINA 8% (104 jets)

AFRICA AND MIDDLE EAST

ASIA PACIFIC

5% (65 jets)

3% (39 jets)

LATIN AMERICA 4% (52 jets)

92

Feasibility Study

Regional Aircraft: High Worldwide Demand l Regional traffic is forecast to triple in 20 years. l The potential demand for the next 20 years foresees 7800 new aircraft for a

corresponding value of 200 billion dollars ($ 10 billion per year). China Russia&CIS

Delivery Forecast by geographical area Next 20 years

Asia&Pacific M.East&Africa

26 %

Europe L. America N. America 0

500

1000

1500

2000

Number of Aircraft

2500

3000

• Regional market is changing: – airlines are becoming less dependent from Majors (more efficient aircraft required, economically driven choice) – low cost airlines are entering regional market (37% of 2005 regional sales) • More than 40% of new connections opened in the last 5 years are operated only by regional aircraft. Prof. Bento Silva de Mattos

Prof. Bento Silva de Mattos

Feasibility Study

Regional Aircraft: Important Role in ATS Departures Wide Body

Fleet

8%

Wide Body 41%

8800 Units

Regional

46%

Regional

14%

correlated with community noise

46%

Narrow Body

45%

Flown Hours Narrow Body

correlated with gaseous emissions

Wide Body 23%

Total World - Year 2005

29%

Regional

48% Narrow Body

u European

regional fleet represents 20% of current worldwide regional fleet u Fully 60% of airports with scheduled service are served only by regional aircraft. Sources: Alenia data processed from Lundkvist, Avsoft and Back-OAG databases

Prof. Bento Silva de Mattos

Feasibility Study

Market Analysis Quem compra Ex. 150-200 lugares

Maiores possibilidades de compras: Low Cost Airlines

95

Prof. Bento Silva de Mattos

Feasibility Study

Market Analysis CRJ 953 A/C

30 – 60 seater airliner

YAK-40 222 A/C

ERJ 900 A/C

Hawker 16 A/C

Do328 jet 44 A/C

Frota Atual 350

Deliveries [A/C]

300 250 200 150 100 50 0 1993

1998

2003

2008

2013

2018

2023

Análise Típica

Probabilidade

Feasibility Study: Risks

Feasibility Study

Impacto Riscos • Problemas de Certificação – Atrasos no Lançamento • Falta de Financiamento • Custo mais alto do que o Planejado •Tamanho da Empresa •Problemas Externos- Estabilidade Política/Financeira do País

O Board da Empresa tem que conhecer seus pontos vulneráveis e se preparar para superá-los

Resultados • Riscos Identificados • Plano de Ação para cada Risco • Riscos Classificados 97

Feasibility Study

Terms concerning Financial Analysis •VPL-Valor Presente Liquido: é o valor onde é recuperado o investimento considerando as taxas de juros do mercado financeiro. •Pay Back Time: é o tempo para recuperar o seu investimento sem juros de capital. •Break Even Point: é a quantidade de vendas de aeronaves necessária à recuperação do investimento. •TIR: é a taxa de desconto que iguala o valor presente das receitas com o valor do investimento inicial do projeto. 98

Prof. Bento Silva de Mattos

Feasibility Study

Investment Analysis • Demand prediction: 10 years starting in 2013. • Internal Rate of Return: 18%.

Selling Price (US$ million)

Market Analysis

(Range x Cruise Speed x Cabin Diameter)/ 106

Conceptual Phase (Estudo de Conceitos)

Conceptual Phase

Scope Ø Detailed budget Ø Master Phase Plan ØWork Breakdown Structure (WBS) Ø Quality Ø Rules, standards, and norms

Conceptual Phase

Scope (cont.)

Aircraft Configuration Ø

Requirements shall be checked and improved

Ø

Aircraft sizing

Ø

Wind-tunnel testing (wing planform and section geometry)

Ø

Structual layout

Ø

System layout and preliminary system integration

Ø

Technical drawings

Ø

Performance calculation (aerodynamic database).

Ø

Engine selection (supplier)

Ø

Preliminary safety assessment.

103

Feasibility Study

Phase 1 Major Deliverables

• Conceptual design of the related aircraft Ø Desenhos preliminares- 3D Ø Reports • TD-Technical Description: Aircraft systems • EBD-Engineering Basic Data Ø Performance Ø Structural layout

104 Prof. Bento Silva de Mattos

Master Phase Plan Airplane Announcement

2002

Start of Authority Program Major Firm to Offer Launch Configuration Assembly

787-8 First Flight

787-8 Enters Service

2003

2007

2008

2004

2005

2006

787-3 Enters Service

2009

787-9 Enters Service

2010

105

Missão do Avião - HLR • Ao final da extensa e crítica Fase 0 chega-se a um dos mais importantes Deliverables: o doc com a Missão da Aeronave e os HLR (High Level Requirements). São oriundos da Inteligência de Mercado e da área de Planejamento Estratégico da Empresa, profundamente trabalhados com o Anteprojeto. • Nessa altura as grandes decisões estratégicas da caracterização do produto foram tomadas e elas influenciarão de maneira marcante o que vem pela frente, por exemplo: Fly by wire Ø Materiais Ø Motorização Ø Nível Tecnológico Ø Conceito Família

Ø

Modernidade/Desafios

106

Conceptual Phase

Most important objectives from a conceptual design perspective are :

• Cabin/Baggage size: cross-section, length, volume & access • Field performance: Balanced Field Length (BFL), Weight-Alt.-Temp. (WAT), approach speed (VREF) • En route performance: Initial Cruise Altitude (ICA), cruise speed(s), buffet limits, range • Keep BOW as low as possible to be competitive • DOC goal must be achieved • Others include block fuel, aft-body strike, derate schedule

Conceptual Phase

Conceptual Phase

Conceptual Phase

Objectives vs. Aircraft Parameters

Passenger Comfort + Field Performance + Range + Remained requirements

DOC

Best valued product for the market

110

Conceptual Phase

Conceptual Phase

Morphology Selection • Morphology of an aircraft is the combination of wings, fuselage, landing gear, empennage and power plant integrated to fulfill (as much as possible) the MR&O

• A myriad of configurations are available •Selection of the configuration layout depends upon numerous factors: -Mission role -Economics -Operational and functional requirements -Safety and reliability -Type of propulsion system -Commonality with other variants/derivatives

112

Conceptual Phase

Carrier-based AEW Platform Selection

113

Conceptual Phase

Fighter concepts developed by NASA for the F-15 mission requirements

LFAX-4—a variable-sweep configuration LFAX-8— a fixed-sweep version of LFAX-4 LFAX-9—wing-mounted twin-engine configuration LFAX-10—similar in external shape to Soviet MiG-25 Foxbat

114

Conceptual Phase

Kelly Johnson Sketch for the P-38 Fighter

115 Prof. Bento Silva de Mattos

Commonality • Much of focus in product family design is to improve commonality and standardization within the family • What is commonality? – Possession of common features or attributes in either the product or the manufacturing process for a set of products

• A product platform is defined “as the common elements, especially the underlying core technology, implemented across a range of products” (McGrath, 1995) • Main advantage of commonality within a product family: – maintain economies of scale (and scope) in manufacturing and production processes

116

Conceptual Phase

Advantages of Commonality • Decrease lead times (and risk) in product development • Reduce product line complexity • Reduce set-up and retooling time • Fewer components in inventory • Fewer parts need to be tested and qualified Other advantages? 117

Conceptual Phase

• Lack of distinctiveness • Hinder innovation and creativity • Compromise product performance

Performance

Disadvantages of Commonality Individually Optimized Designs

Poor Designs

Best Designs

Designs Based on Common Platform

Degree of Commonality

Despite disadvantages of commonality, it does provide a useful metric for assessing families of products. 118

Conceptual Phase

The 787 Family of Aircraft

787-3

787-8 210-250 passengers (three-class) 7,650 – 8,200 nm

290-330 passengers (two-class) 2,500 – 3,050 nm

787-9 250-290 passengers (three-class) 8,000 – 8,500 nm Prof. Bento Silva de Mattos

119

Conceptual Phase

Embraer Aircraft Family EMBRAER 170

EMBRAER 175

95% Commonality

85% Commonality EMBRAER 190

95% Commonality EMBRAER 195

Prof. Bento Silva de Mattos

Common pilot type rating 100% commonality in the cockpit High level of commonality in system components 120 100% flying commonality due to fly-by-wire system

Conceptual Phase

Performance of the E-Jets

121 Prof. Bento Silva de Mattos

Conceptual Phase

Boeing 777 Passenger Doors

• Each passenger door (8 total) has different sets of parts with subtly different shapes and sizes for its position on the fuselage • Challenge: make the hinge common for all of the doors • Result: not only a common hinge but also a common door mechanism

777 Passenger Door (Sabbagh, 1996)

98% of all door mechanisms are common

Conceptual Phase

Wing-Mounted or Fuselage-Mounted Engines?

123 Prof. Bento Silva de Mattos

Conceptual Phase

Wing-Mounted or Fuselage-Mounted Engines? Wing Mounted

• More critical for flutter problems • Prone to water spray ingestion • Larger landing gear • Enable eventually additional rear doors • Engines alleviate bending moment • Disturb the airflow over the wing • Can easily be struck and damaged in a misjudged crosswind landing • The length of fuel lines minimized • May limit the flap span • Less available fuel volume for wing mounted engines because dry bays in the wing fuel tanks to cater for disc bursts are required

124 Prof. Bento Silva de Mattos

Conceptual Phase

Wing-Mounted or Fuselage-Mounted Engines? Rear Mounted • May suffer from boundary layer ingestion • Bleed air supply more complicated • Difficult to inspect by the crew and maintenance team • Thrust line above the cg • Critical for stretched versions • Larger tailplane • Lower cabin noise level • Rear mounted engines often require soft (rubber/fluid) engine mounts to absorb vibration and blade off loads. For wing mounted engines the flexible wings act as effective dampers thus allowing engines to use cheaper hard mount arrangements • Heavier aft fuselage structure • Ice shed from the wing and aircraft nose can be ingested by the engine • There is the possibility of high drag from the convergent/divergent channel formed between the nacelle and the fuselage wall on rear mounted engine installations • Aft fuselage mounted engines reduce the rolling moment of inertia. This can be a disadvantage if there is significant rolling moment created by asymmetric stalling. The result can be an excessive roll rate at the stall 125 Prof. Bento Silva de Mattos

Conceptual Phase

Case Study: Lockheed Galaxy

126 Prof. Bento Silva de Mattos

Conceptual Phase

Case Study: Lockheed Galaxy

1

2

3 4

Four concepts proposed by Lockheed

127 Prof. Bento Silva de Mattos

Conceptual Phase

Prof. Bento Silva de Mattos

Case Study: Lockheed Galaxy Competing C-5 configurations during tests in the Langley 8-Foot Transonic Pressure Tunnel.

Boeing concept

Douglas concept

Lockheed concept

Case Study: Lockheed Galaxy

Conceptual Phase

Boeing concept

The C-5 design submitted by Boeing was found to have superior aerodynamic cruise performance in the transonic wind-tunnel tests performed at Langley. Boeing’s experience with the C-5 competition coupled with Boeing management’s vision of the marketability of jumbo civil transports (and interest from Pan American Airlines) led to the development of the Boeing 747, which enabled Boeing to dominate the world market with a new product line. Although the Lockheed concept 747 was a completely new aircraft design (low wing, passenger-carrying civil aircraft), the Douglas concept general configuration influence of the earlier C-5 candidate is in evidence. Prof. Bento Silva de Mattos

Conceptual Phase

Some Successful Unusual Aircraft Configurations Lockheed P-38 Lightning

Lockheed Constellation

Kamov Ka-26 130 Prof. Bento Silva de Mattos

Prof. Bento Silva de Mattos

Conceptual Phase

Some Successful Unusual Aircraft Configurations Savoia-Marchetti Jahú

Boeing 727

Convair B-36 131

Prof. Bento Silva de Mattos

Conceptual Phase

Some Successful Unusual Aircraft Configurations

çSAAB Viggen è

North American P-82 Twin Mustang

132

Conceptual Phase

Initial Configuration Need to evaluate the “first shot”(initial configuration; Does satisfies MR&O?

• Dimensions • Comfort • Amenities

• Economics • Performance

Should be met, since it was designed for

Do not know, need to compute aircraft technical characteristics (weights, aero, etc.)

133

Conceptual Phase

Initial Configuration • Need to evaluate the technical characteristics (how they are evaluated or predicted) • weights • aerodynamics • performance • propulsion • economics • Initially done within Advanced Design with empirical and/or statistical and/or analytical methods • Implication of specialists in some areas

134

Conceptual Phase

Pressure Distribution on Fuselages

Comparisons of crown line pressure distributions for a low wing transport configuration at M∞ = 0.84 and α = 2.8o , Boeing 747. Source: AIAA Paper No 72-188

Mach number distribution on fuselage nose, McDonnell-Douglas DC-10, Mach = 0.85. 135

Conceptual Phase

Forward Fuselage of Some Airliners

EMB-110 Bandeirante McDonnell Douglas DC-10

Boeing 777 Embraer E-170

Conceptual Phase

Forward Fuselage of Some Airliners

Airbus A-320

Boeing 767

Boeing 737

Embraer ERJ-145

Conceptual Phase

Cabin Design ØMost aircrafts are designed from the “inside –out” ØGeometric definitions dictated by cabin and cockpit comfort and ergonomics as defined in the MR&O ØCabin Layout Definition • Cross-section (seats abreast, personal comfort, ergonomics) • Windows • Doors and stairs • Lavatories, galleys, wardrobes • Emergency egress and emergency equipment • Environmental climate control, air conditioning

138

Configuração Básica Aeronave

Conceptual Phase

Definição da “Cross Section”

CRJ 200

ATR 42 / 72

Saab 340 / 2000

DHC 8

Dornier 328

Benchmark

ERJ 145

EMBRAER 170/190 139

Conceptual Phase

Cabin Design

140

Conceptual Phase

Cabin Design

141

Conceptual Phase

Cabin Design Volume above cabin floor • Housing the passengers and seats (sometimes systems, e.g. avionics racks, PATS or Branson tanks) • Aisle(s) • Overhead bins, galleys, and, lavatories and wardrobes (or freight)

Volume below the floor • Cargo and freight • Landing gear • Center wingbox(or above) • Fuel tank(s) • Various systems

Key considerations when choosing the geometry • Functionality (living volume) : maximize • Weight (stress and loads) : minimize • Drag (performance) : minimize • Manufacturing (cost) : minimize

142

Prof. Bento Silva de Mattos

Conceptual Phase Technology Assessment

American Airliners Operating in the 30s

143

Conceptual Phase Technology Assessment

Prof. Bento Silva de Mattos

Early Jet Airliners

Aircraft

First Flight

Service Entry

Boeing 707

July 1958

October 1958

Douglas DC-8

May 1958

September 1959

Convair 990 Coronado

January 1961

January 1962

Vickers VC-10

June 1962

April 1964

144

Prof. Bento Silva de Mattos

Conceptual Phase Technology Assessment

Early Jet Age

Boeing 707 / Douglas DC-8 / Boeing 747 / Sud-Aviation Caravelle

Late Jet Age

Bombardier CRJ-200/ Bombardier CRJ-700/Embraer ERJ-145 / Embraer E-Jets 145

Conceptual Phase Technology Assessment

Prof. Bento Silva de Mattos

Regional jets

No Props

Aircraft

First Flight

Service Entry

Capacity (Pax)

Embraer ERJ-145

August 1995

December 1996

50

Bombardier CRJ-100

May 1991

November 1992

44 - 50

Fokker 70

July 1994

October 1994

70 - 85

Avro RJ 70

July 1992

September 1993

70 - 82 146

Prof. Bento Silva de Mattos

Conceptual Phase Technology Assessment

Some Airliners Operating in 2008 Airbus A320

Early 80’s technology

Boeing 767

Boeing 737-200

Late 70’s technology

Late 60’s technology

Prof. Bento Silva de Mattos

Conceptual Phase Technology Assessment

Technology Assessment Concorde was an ogival (also "ogee") delta-winged aircraft with four Olympus engines based on those originally developed for the Avro Vulcan strategic bomber. The engines were jointly built by Rolls-Royce and SNECMA. Concorde was the first civil airliner to have an (in this case analogue) fly-by-wire flight control system. It also employed a distinctive droop snoot lowering nose section for visibility on approach. The principal designer who worked on the project was Pierre Satre, with Sir Archibald Russell as his deputy. Concorde had an average cruise speed of Mach 2.02 (about 2,140 km/h or 1,330 mph) with a maximum cruise altitude of 18,300 meters (60,000 feet), more than twice the speed of conventional aircraft. The average landing speed was 298 km/h (185 mph, 160 knots). The flight deck Concorde pioneered the following technologies: For high speed and optimization of flight: • Double-delta (ogee/ogival) shaped wings • Variable inlet ramps controlled by digital computers • Supercruise capability • Thrust-by-wire engines, predecessor of today’s FADEC-controlled engines • Droop-nose section for improved visibility in landing For weight-saving and enhanced performance: • Mach 2.04 (~2,200 kilometers per hour (1,400 mph) cruising speed for optimum fuel consumption (supersonic drag minimum, although turbojet engines are more efficient at high speed)) • Mainly aluminum construction for low weight and conventional manufacture (higher speeds would have ruled out aluminum) • Full-regime autopilot and autothrottle allowing "hands off" control of the aircraft from climb out to landing • Fully electrically controlled analogue fly-by-wire flight controls systems • Multifunction flight control surfaces • High-pressure hydraulic system of 28 MPa (4,000 psi) for lighter hydraulic systems components • Data Highways for the transmission of aerodynamic measurements (total pressure, static pressure, angle of attack, side-slip) from the Air Intake Sensor Units at the front of the aircraft to the Air Intake Control Units mounted near the rear of the aircraft. • Fully electrically controlled analogue brake-by-wire system • Pitch trim by shifting fuel around the fuselage for centre-of-gravity control • Parts made using "sculpture milling" from single alloy billet reducing the part-number count, while saving weight and adding strength • Lack of Auxiliary power unit relying on the fact that Concorde will be used for services to big airports, where a ground air start cart would be available

Prof. Bento Silva de Mattos

Airbus Technology 1/2 1974

A300

1977

A300

1982 A300FF

1983

A310

1985 A300-600

Q Q Q Q Q Q

Conceptual Phase Technology Assessment

Twin-engine, twin-aisle configuration Triplex power and control systems Advanced supercritical aerofoil Full flight regime auto-throttle Automatic wind-shear protection Just in Time manufacturing

Q

Cat. IIIA autoland

Q Q

Digital auto-flight system Two-person cockpit

Q Increased wing aspect ratio and thickness Q Advanced CRT cockpit displays with unique

electronic centralised aircraft monitor Q Composite materials (secondary structure) Q Electrical signaling of secondary controls Q

Half-generation advance” turbofan powerplant (CF6-80C2)

Prof. Bento Silva de Mattos

Airbus Technology 2/2 1985 A310-300

1988

A320

1993

A330 A340

1999

A380

Q Q Q Q

Conceptual Phase Technology Assessment

Advanced aluminium alloys Composite materials in primary structure Trim tank/centre-of-gravity control Carbon brakes, radial tyres

Sidestick controller Fly-by-wire Second generation digital auto flight system Extensive use of composites and advanced aluminium alloys Q Active controls Q Q Q Q

Q Extension of A310/A300 and A320 advanced technology Q All new advanced technology wing Q CCQ & MFF Q Carbon Fiber Reinforced plastic (CFRP) for primary structures Q GLARE on upper fuselage panels Q Laser welded lower fuselage Q New Ethernet architecture for flight controls Q Decentralized & high pressure hydraulics system

R&T delivery to A380 Some examples of successful research

Conceptual Phase Technology Assessment

Carbon Composite Section 19

Flap vortex generators

Horizontal tail plane designed for relaxed stability

Automated wing assembly

High Re (Reynolds Number) Wing Design

Extensive use of Knowledge Based Engineering New front Fuselage concept

Upper fuselage skin in GLARE

Full double deck fuselage Electro-hydraulic actuators Variable frequency power generation

Integrated and modular avionics architecture (IMA)

Bonded metallic outwing box Dual air conditioning pack concept

2 hydraulic (5000 psi) + 2 electrical channel architecture for flight controls and landing gear

On board maintenance system

Centre wing box in CFRP

New four post main landing gear (4-6-6-4 wheels configuration) Skin to Stringer Welding (first on A318)

Technologies have to be developed generally and then 151 applied on products

Conceptual Phase Technology Assessment

Prof. Bento Silva de Mattos

Composite Solutions Applied Throughout the 787

Other Fiberglass 5% 10% Carbon laminate Carbon sandwich

Titanium 15%

Composites 50%

Fiberglass Aluminum Aluminum/steel/titanium pylons

Aluminum 20% 152

Conceptual Phase Technology Assessment

Boeing 787: Quiet for Communities San Diego Intl Airport 85 dBA NADP 2 (ICAO-B)

RWY 27

Takeoff noise contours - 3000 nm mission

767-300 777-200

7878

Conceptual Phase Technology Assessment

Boeing 787: Quiet for Communities San Diego Intl Airport 85 dBA NADP 2 (ICAO-B)

RWY 09

Takeoff noise contours - 3000 nm mission

7878

777-200

767-300

Conceptual Phase Technology Assessment

Prof. Bento Silva de Mattos

Airframe Technology What is being done?

Avionics (inside Pressure cabin) - Flight Data Recorder Avionics (inside Pressure cabin) - Alt & Airspeed - Navigational - Multifunctional Disply (MFD) - Primary Flight Display (PFD)

Hydraulic Pumps Electrical generators System runs -ECS -Electrical -Hydraulics

APU

Air cycle machines Fuel pumps Ox bottles Air pre-coolers Hydraulic reservoirs Hydraulic accumulators Fuel heat exchanger

Ram Air Turbine (aux elec)

Fuel pumps Electrically driven Hydraulic pump Electrical “J” Box Batteries

Antenna

Electrical/ Hydraulics (Nose steering)

Supersonic Business Jet

More Ideas...

Conceptual Phase Technology Assessment

Ground-based power sources for take-off and landing The objective here is to reduce the installed power and systems on the aircraft as a means to reduce weight and fuel consumption. For take-off, electrical, steam or magnetic devices using oil based, nuclear or solar energy sources could be used. Aircraft ramps, MAGLEV or catapults could be used, using supplementary rocket power. For landing aircraft weight could be reduced by eliminating the undercarriage with landings on water or on small cars using electro-magnetic fields to position the aircraft, para-foil landings etc.

Prof. Bento Silva de Mattos

More Ideas...

Conceptual Phase Technology Assessment

The Cruiser/Feeder concept including mid-air refueling The concept envisages very large - possibly nuclear-powered - aircraft flying on stable circuitous routes that connect major centers of population. These large cruisers remain airborne for very long periods so that they could be considered to be permanently cycling around their designated route. They would fly at an economical altitude and speed which would not vary substantially. Linking these cruisers to fixed bases near the population centers would be short range shuttle aircraft designed only to travel from the ground to the an interception with the cruiser and back again. The feeder airliners would be able to land on or dock with the cruiser for the transfer of passengers and freight, possibly via a kind of pallet system. New methods of air refueling would need to be safer and easer to handle than the current system and automation would be required. The design of the feeder aircraft would also need attention – possibly an advanced super quiet VSTOL aircraft with pre-loaded passenger containers.

Prof. Bento Silva de Mattos

Conceptual Phase

Need to Develop capabilities for multiple challenges

Past : one single concept Past : one single to best meet all requirements concept to best meet all requirements

Today : concepts tailored to fit specific sets of requirements 1 - The Low Cost A/C

The idea is to identify the concepts to explore the more relevant capabilities and meet the widest range of challenges

2 - The Green A/C 3 - The Passenger Friendly 4 - The Value of Speed 5 - The Flying Truck

Conceptual Phase

Preliminary Weight Estimation • Aircraft weight, and its accurate prediction, is critical as it affects all aspects of performance. • Designer must keep weight to a minimum as far as practically possible. • Preliminary estimates possible for take-off weight, empty weight and fuel weight using basic requirement, specification (assumed mission profile) and initial configuration selection.

Prof. Bento Silva de Mattos

Conceptual Phase

Preliminary Weight Estimation • Most aircraft of reasonably conventional design can be assumed to fit into one of the 12 categories. • New correlations may be made for new categories (e.g. UAVs). • Account may also be made for effects of modern technology (e.g. new materials) – method presented in Roskam Vol.1, p.18. • Raymer method uses Table 3.1 & Fig 3.1 (p.13). Prof. Bento Silva de Mattos

Conceptual Phase

CG Location The precise location of the aircraft cg is essential in the positioning of the landing gear, as well as for other applications, e.g., flight mechanics, stability and control, and performance. Primarily, the aircraft cg location is needed to position the landing gear such that ground stability, maneuverability, and clearance requirements are met.

161 Prof. Bento Silva de Mattos

Conceptual Phase

Roskam Weight Estimation Method

Category 7 Prof. Bento Silva de Mattos

Category 8

Prof. Bento Silva de Mattos

Engine weight – 1000 lb

Weight Estimation Engine

Net sea level static thrust – 1000 lb

Dry engine weight. Source: NASA CR 2320

Conceptual Phase

Prof. Bento Silva de Mattos

Weight Breakdown

Conceptual Phase

Prof. Bento Silva de Mattos

Conceptual Phase

Preliminary Weight Estimation Process – Flow Diagram

Conceptual Phase

Drag Estimation Drag •Empirical •semi-empirical •CFD •wind tunnel

Prof. Bento Silva de Mattos

Conceptual Phase

Lift-to-Drag Ratio Estimation

( L / D ) max

1 ep AR = 2 CD 0

Source: Loftin, LK, Jr.. Quest for performance, The evolution of modern aircraft. NASA SP-468

167

Prof. Bento Silva de Mattos

Conceptual Phase

Effective Lift-Curve Slope Helmbolt equation:

C La

AR = C la 2 2 (C la / p ) + ( C la / p ) + AR

Comparison of a NACA 65-210 airfoil lift curve with that of a wing using the same airfoil (McCormick).

168

Prof. Bento Silva de Mattos

Conceptual Phase

Low-speed Aerodynamics

169

Conceptual Phase

Low-speed Aerodynamics Evaluation

Source: Bombardier Aerospace Prof. Bento Silva de Mattos

Conceptual Phase

Estimation of CL,max • Wing CL,max is always less than the section maximum value. • An initial approximation of CL,max for a swept wing is: (C L ,max ) 3 D = 0 .9 (C L ,max ) 2 D ´ cos L

171 Prof. Bento Silva de Mattos

Conceptual Phase

Effect of High-Lift Devices

Effect of leading edge devices on lift curve (Jenkinson).

172 Prof. Bento Silva de Mattos

Conceptual Phase

Estimation of CL,max ( D C L ,max ) 3 D = ( D C L ,max ) 2 D ( S flapped / S ref ) cos L HL

Definition of flapped wing area (Roskam).

173 Prof. Bento Silva de Mattos

Conceptual Phase

Refined Method for Computing CL,max

Spanwise lift distribution (Jenkinson).

174 Prof. Bento Silva de Mattos

Prof. Bento Silva de Mattos

Conceptual Phase

Performance • Now that the characteristics of the aircraft are known performances can be computed • Performances have direct impact on configuration and vice-versa • Most important performance items: – – – – –

takeoff ICA (Initial Cruise Altitude) cruise landing operating costs

175

Conceptual Phase

Performance - Takeoff BFL (Balanced Field Length): • BFL is the takeoff distance • BFL is essentially a OEI (one engine inoperative) takeoff distance - AEO (all engine operative) takeoff distances will be much shorter •“Balanced ”refers to the fact that the distance is linked to a speed called the decision speed around which the whole takeoff procedure evolves OEI

Prof. Bento Silva de Mattos

Prof. Bento Silva de Mattos

Conceptual Phase

Performance - Takeoff BFL (Balanced Field Length): A good simple formula to approximate BFL is as follows

( ) S BFL = (T W )s C k W

Lto

Prof. Bento Silva de Mattos

Conceptual Phase

Performance - Climb Climb (ICA, Initial Cruise Altitude) • Important thrust sizing parameter • Wing should be sized for achieving ~ best L/D at top of climb • and Max. Climb Thrust sized at that point

Prof. Bento Silva de Mattos

Conceptual Phase

Performance - Range • Important parameter as it sizes the takeoff weight of the aircraft • This is the classical Breguet Range Equation:

• Although not accurate for a whole mission, it gives a good understanding of the driving parameters

Prof. Bento Silva de Mattos

Conceptual Phase

Performance Evaluation

180

Conceptual Phase

Payload vs. Range An aircraft does not have a single number that represents its range. Even the maximum range is subject to interpretation, since the maximum range is generally not very useful as it is achieved with no payload. To represent the available trade-off between payload and range, a range-payload diagram may be constructed as shown in the figure below

Prof. Bento Silva de Mattos

Boeing 737-200

Payload vs. Range Graphs

Source: http://www.boeing.com

Boeing 737-700

Conceptual Phase

Prof. Bento Silva de Mattos

Conceptual Phase

Range Payload Profile

Cessna Citation CJ4 Source: Business & Commercial Aviation, March 2010

Prof. Bento Silva de Mattos

Specific Range Graphs

Conceptual Phase

Dassault Falcon 7X Cessna Citation CJ4

Source: Business & Commercial Aviation, March 2010

Conceptual Phase

Turbofan thrust specific fuel consumption variations (High BPR)

Conceptual Phase

Turbofan thrust specific fuel consumption variations (High BPR)

Conceptual Phase

Turbofan Performance Variation Turbofan thrust specific fuel consumption variations (High BPR)

187

Conceptual Phase

Aircraft Systems - Engine Engine : most important (and expensive) system on aircraft •

The primary goal is to determine the minimum thrust and fuel burn to satisfy aircraft performance Other requirements include cost, noise/vibration, installation effects, weight, reliability and availability; involves analysis of 2-3 off-the-shelf power plants May involve studying paper engines assuming a trade-off between BPR, OPR, mass flow, temperatures, etc. May also involve the investigation of alternative technologies

• •

Sizing calculations conducted in order to determine the scale, i.e. dimensions and weight Critical conditions for the engine are takeoff, climb, cruise, OEI; one critical scenario is generally the determining case During conceptual design sizing and optimization analysis Engine performance usually calculated from mathematical model provided by the engine manufacturer (“deck”) A deck may not always be available, in such cases use similar engine but linearly scaled to desired engine size Alternatively, a first-order rubber engine model is utilized, i.e. fractional change from a reference engine table

188

Conceptual Phase

Aircraft Systems – Fuel System (F-16C)

Prof. Bento Silva de Mattos

Conceptual Phase

Aircraft Systems – Hydraulic System (F-16C)

Conceptual Phase

Structural Layout •Trata-se da parte de maior longevidade do Projeto. •Para instalar os sistemas temos que apóia-los, fixá-los em algum lugar, assim é comum a estrutura ser o ponto de partida. • Distribuição cavernas e reforçadores. • Segmentação logística.

para

produção,

• Requisitos de certificação.

parceiros

e

Arquitetura Estrutural Wing

•Distribuição longarinas na Asa. •Fixação Trem de Pouso. • Janelas de Inspeção. • Fixação Asa/Stub. •Fixação Pilone. •Sistema degelo. • Combustível. • Instal. Superf. hipersustent. •Fixação/Distribuição superfícies de controle.

Conceptual Phase

Conceptual Phase

Access Doors

F-15 F-16

Structural Layout Ligação dos módulos-grande impacto no peso da estrutura. Flanges – Parafusos-etc.

Integração Preliminar Reserva de Espaços e Soluções

Logística/Segmentação Industrial Ø

Ø

Este tipo de questão, dependendo dos parceiros e da dimensão do avião, pode ter um forte impacto nesta fase do projeto da Estrutura.

Às vezes tem-se uniões adicionais em função da logística (containeres, carretas, estradas, redes elétricas, viadutos, etc). 196

Conceptual Phase

Cost Structure

Recurring

Non-recurring Ø

Infra-structure

Ø

Manufacturing

Ø

Engineering

Ø

System integration

Ø

Prototypes

Ø

Materials

Ø

Flight tests

Ø

Processes

Ø

Certification

Ø

Overhead & Management

Ø

Taxes, fees

197

Prof. Bento Silva de Mattos

Conceptual Phase

Cost Diagram

Recurring Cost

Non-recurring Cost

198

Conceptual Phase

Cost Estimation Airplane

199

Conceptual Phase

Conceitos Gerais: Composição de Custos Learning Curve

• R1 = 0.93 (until

10th

aircraft)

• R2 = 0.96 (after 10th aircraft) • T598 = 56119mh (estimated) • T10 = 71407mh (equation) • T1 = 90874mh (equation)

Total man-hour required

Tn = T1 × N

log Ri log 2

10

x104

9 8 7 6 5

0

100

200

300

400

500 600

Aircraft number

Maior quantidade aviões => menor custo => mais lucros. 200

Prof. Bento Silva de Mattos

Conceptual Phase

Manufacturing Cost Model

Representative recurring cost breakdown by parts for a large commercial jet (from Markish)

Conceptual Phase

Lifecycle Cost

202

Conceitos Gerais: Composição de Custos Operating Cost

203

Conceitos Gerais: Composição de Custos AROC

204

NECESSIDADES DO COMPRADOR DO PRODUTO CUSTO OPERACIONAL DA AERONAVE è QUAL É O NEGÓCIO DAS EMPRESAS AÉREAS COMERCIAIS ? PRODUZIR E VENDER ASSENTOS-MILHAS - ASM - ( OU ASSENTOS-QUILÔMETROS ) è CADA ASM TEM UM DETERMINADO CUSTO PARA O OPERADOR, COMO SEGUE : TOC = DOC + IOC TOC = CUSTO OPERACIONAL TOTAL DOC = CUSTO OPERACIONAL DIRETO IOC = CUSTO OPERACIONAL INDIRETO 205

Direct Operating Cost- DOC

SÃO INCLUÍDOS NO DOC : § DEPRECIAÇÃO CONTÁBIL DO PRODUTO, SEGUROS E CUSTOS DE FINANCIAMENTO, OU, A TAXA DE ARRENDAMENTO, SE FOR O CASO. § SALÁRIOS E ENCARGOS DE PILOTOS E ATENDENTES DE BORDO § MANUTENÇÃO ( MOTORES, ESTRUTURA E SISTEMAS ) § COMBUSTÍVEL § TAXAS AEROPORTUÁRIAS E OUTROS CUSTOS COMPOSIÇÃO TÍPICA DO DOC PARA UM JATO DE 50 ASSENTOS – ETAPA DE 400 nm

206

Conceptual Phase

Tests with Scaled Models

C-5 ditching model with simulated structural skin on bottom of model.

207 Prof. Bento Silva de Mattos

Conceptual Phase

Tests with Scaled Models

Active load alleviation test of the C-5 in the Langley 16-Foot Transonic Dynamics Tunnel.

208 Prof. Bento Silva de Mattos

Conceptual Phase

Tests with Scaled Models

Clipped wing model of the C-5 in the Langley 16-Foot Transonic Tunnel for flutter tests. 209 Prof. Bento Silva de Mattos

Conceptual Phase

Tests with Scaled Models

F-14 model in spin recovery tests in the Langley Spin Tunnel. 210 Prof. Bento Silva de Mattos

Prof. Bento Silva de Mattos

Conceptual Phase

Catapult facility experiments

A380 free-flight model in catapult facility, ONERA Lille, and F1 wind tunnel, ONERA

Catapult

Recovery system

• Characterization of Near and Mid field (up to x/b=60) • Test of 3 different A380 configurations • Applied methods: PIV / smoke visualization 2D and 3D simulations 5 hole probe (near field at FI wind tunnel)

Gust generators

211

Conceptual Phase

Acoustics: Out-Of-Flow-Array with 2x2m2 Cross Section

Traversable Array

Far-Field Microphone Traverse

212

Conceptual Phase

Acoustics: Out-Of-Flow-Array with 4x4m2 Cross Section Set-ups with Full-scale Models

Full-scale landing gear

Full-scale wing

Conceptual Phase

Ground Effect Testing

214 Prof. Bento Silva de Mattos

Conceptual Phase

Flight Test with Scaled Model

Langley technician Ronald White with one of two F-15 drop models used for research on spin-entry characteristics. Source: http://oea.larc.nasa.gov/PAIS/Partners/F_15.html Prof. Bento Silva de Mattos

Early Wind-Tunnel Testing

Conceptual Phase

A despeito dos grandes avanços das análises com CFD, os ensaios aerodinâmicos ainda são indispensáveis.

At left Túnel: NLR Modelo: CMT1 (1/21) Suporte da Balança Tras. Total de Corridas: 105 Período: Abril/2001

216 Prof. Bento Silva de Mattos

Conceptual Phase

Case Study : EMBRAER 170

CADA CASO É UM CASO. A MELHOR CONFIGURAÇÃO PARA JATOS REGIONAIS DE PEQUENO PORTE ( FUSELAGEM PARA TRÊS FILAS DE ASSENTOS ), POR UMA SÉRIE DE MOTIVOS, É A CONFIGURAÇÃO ADOTADA PARA O ERJ 145 ( MOTORES NA FUSELAGEM ). O CASO DO EMBRAER 170 É DIFERENTE; VÁRIAS CONFIGURAÇÕES FORAM FORMULADAS, ANALISADAS E SUBMETIDAS À APRECIAÇÃO DOS CLIENTES POTENCIAIS, COMO SEGUE :

217

Case Study : EMBRAER 170 ESCOLHA DA CONFIGURAÇÃO FINAL PARA O EMBRAER 170 : A CONFIGURAÇÃO ‘4-ABREAST’, COM FUSELAGEM DE DUPLO BULBO E MOTORES SOB A ASA, SERIA A ESCOLHA MAIS ADEQUADA, PELOS MOTIVOS ABAIXO :

ERJ 170 : CONCEITO DO PRODUTO PROPOSTO

·

MÁXIMO DE EFICIÊNCIA E PRODUTIVIDADE : ‘ JATO NO AR E NO SOLO ’

·

MÁXIMO DE ACEITAÇÃO POR PARTE DOS PASSAGEIROS : CONFORTO DE CABINE E AUSÊNCIA DE ASSENTOS REJEITADOS ( FILA DO MEIO )

·

FAMÍLIA DE 70 A 110 ASSENTOS, PROVENDO VANTAGENS DE COMUNALIDADE PARA A COMPOSIÇÃO DA FROTA

218

Conceptual Phase

Case Study : EMBRAER 170 A ) DERIVAÇÃO DO ERJ 145, ALARGANDO-SE AS PARTES CILÍNDRICAS DA FUSELAGEM :

219

Conceptual Phase

Case Study : EMBRAER 170 B ) FUSELAGEM ‘4-ABREAST’ CIRCULAR, MOTORES NA FUSELAGEM, ASA DERIVADA DO ERJ 145 :

220

Conceptual Phase

Case Study : EMBRAER 170 FUSELAGEM ‘4-ABREAST’ DUPLO BULBO, MOTORES SOB A ASA

( CONCEITO TOTALMENTE NOVO ) :

221

Conceptual Phase

Case Study : EMBRAER 170 D ) FUSELAGEM ‘5-ABREAST’ CIRCULAR, MOTORES SOB A ASA :

222

Case Study : EMBRAER 170 EMBRAER 170 : CONFIGURAÇÃO ESCOLHIDA

• Quatro portas na cabine • Menor tempo de serviço no solo • Posicionamento adequado de pontos de serviço • Compartimentos de bagagem dianteiro e traseiro • Baixo risco de colisão de equipamentos de apoio • Fluxo simultâneo de passageiros e serviço de cabine

223

Customer Needs: Air Canada Fleet Renewal 2007

“The Boeing 777 is 26 percent cheaper to operate than the Airbus A340s, now used on many international routes. “ “The Brazilian-made Embraer 190 is 18 percent cheaper to run than Air Canada's Airbus A319s, the airline's mainstay for shorter haul flights.” Montie Brewer, Airline’s chief executive. 224

Configuração Básica Congelada • Aqui é tomada a primeira importante decisão de congelamento da configuração da aeronave • Nesta etapa é definida a concepção estrutural e o sistema propulsivo, e não se muda mais. Pode até mudar, mas o preço é extremamente alto. • Os demais itens, por exemplo, os aviônicos embarcados no Cockpit vêm num grau de prioridade menor, junto com outros elementos críticos.

Basic Configuration is Frozen

226

Preliminary Design Phase

Escopo Fase 2-Projeto Preliminar

Desenvolvimento dos estudos de engenharia e projeto. Projeto aerodinâmico final da fuselagem; da asa;das empenagens; dos hipersustentadores; ailerons do leme; e do profundor. Ensaios em túnel vento 2a etapa (cargas, deflexão flaps, influência do motor, avaliar efeitos). Ø

Projeto estrutural preliminar dos segmentos da fuselagem, asa e empenagens horizontal/vertical. Ø

Arquitetura e definição funcional dos sistemas a serem aplicados no aviãodiagramas funcionais, esquemas, layouts, DMU, etc.. Ø

Ø

Definição das cargas - estáticas e dinâmicas.

Ø

Avaliação da estabilidade e controle.

Análise estrutural. ØDefinição detalhada das interfaces funcionais e físicas.

Ø

Ø

Consolidação do desempenho (QV).

Elaboração das especificações técnicas dos subsistemas e componentes para compra.

Ø

Ø

Analise de Riscos detalhada – FMEAs (Failure Mode and Effect Analysis).

Ø

Preparação de desenhos (3D) e layouts necessários à definição.

Scope of the Preliminary Design (Phase 2) • Identificação dos itens típicos/críticos e solução de todas as questões que possam impactar o projeto. • Seleção final de fornecedores. • Pesquisa de normas, padrões e leis aplicáveis. • Plano de Produção e projeto preliminar do ferramental. • Definição do suporte à operação do avião. • Celebração de contratos com terceiros. • Realização de ensaios de componentes e partes de soluções estruturais.

Integração de Sistemas: Mock-up de Madeira Reserva de Espaços e Soluções

EMB-145

Desenvolvimento dos Estudos de Engenharia e Projeto

•A vantagem do uso do CATIA é a migração (aproveitamento) de dados da Concepção, desde dos primeiros estudos na Fase 0.

CATIA

DMU Nav

VPM •Nesta fase temos a maior influência desse aplicativo na eficiência do projeto. 231

Desenvolvimento dos Estudos de Engenharia e Projeto (2) Gestão da Configuração

• Caso 170

•A Gestão da Configuração é um item extremamente crítico entre os parceiros, principalmente quando se trata de um desenvolvimento globalizado. 232

Desenvolvimento dos Estudos de Engenharia e Projeto (3) Desenvolvimento Centralizado • Durante esta Fase é importante que os parceiros estejam o mais próximo possível. • Foi o que a Embraer fez com o 170. Parceiros na Empresa com acesso simultâneo. Parceiro 3

Integradora

Parceiro 1

VPM

Parceiro N Parceiro 2

233

Arquitetura e Integração Detalhada • A evolução dos DMU- Intensa nesta fase. DMUs • Não é exagero afirmar que, hoje, só é possível esse tipo de parceria em função da existência desses aplicativos e redes.

234

Arquitetura e Integração Detalhada (3) •Compatibilidades físicas

• A evolução dos DMU- intensa nesta fase. Tudo é desenhado e dimensionado. 235

Arquitetura e Integração Detalhada(5)

DMU na Cablagem

236

Projeto Ferramental/Instalações

Montagem final - Doca ou Linha ?

237

Projeto Ferramental/Instalações (2) Processos e Infra-estrutura



Alto envolvimento das áreas nas decisões de projeto.



O envolvimento da Produção – processos- também vai sendo direcionado aos detalhes do projeto.

• Conhecimento Tecnológico • Conhecimento das ferramentas. • Conhecimento do mercado de materiais.

238

Access to Repair Work/ Maintenance Plan

Ensaios Qualificação/Certificação Tipos de Ensaios x Fase

• Ensaios em Solo de Sistemas e componentes Estruturais estáticos-fases 2/3 Ø Funcionais-fases 2/3 Ø Ambientais-fases 2/3 Ø

• Ensaios em Vôo-Fase 3 • Ensaios são uma questão de compromisso, entre tempo e configuração. Quanto mais cedo melhor, mas não adianta estar muito fora da configuração final. 240

Engineering Solutions

A 32nd Tactical Fighter Squadron F-15C climbs out shortly after takeoff . The bird-strike resistant windshield consists of a center polycarbonate layer surrounded by a inner and outer layers of fusion bounded cast acrylic. The polycarbonate canopy is made in two sections, separated by a thin red frame. The canopy material is 0.74 cm thick and is covered by a abrasion resistant finishing. The F-15 engine intakes are fully lowered to maximize airflow into the engines during takeoff.

Engineering Solutions A mass balance tops the vertical stabilizer of the F-15 fighter. This reduces flutter caused by aerodynamic forces. A Loral AN/ALR-56 Radar Warning Receiver (RWR) is immediately below the mass balance. A red anticollision light is placed below the RWR.

242

Engineering Solutions A heat exchanger is placed closed to the centerline of F-15 fighter fuselage, between the engines nacelles. Air heated by midfuselage electrical equipment vents from the exchanger’s aft end. Grated openings allow heated air to escape from the engine bays, reducing temperature inside these areas. The small Doppler antenna aft the heat exchanger constantly measures the aircraft altitude and feeds this information to the navigation system.

243

Engineering Solutions

Boarding steps in use on a A-7D Corsair. Note that the gun gas vent door is open.

244

Engineering solutions: Ultra Long-range Business Jet Bombardier Global Express XRS Bombardier developed a slat out/flaps up high-lift configuration that is intended to give operators more flexibility when operating at hot and high airports. The goal was to boost maximum allowable takeoff weight as limited by one engine inoperative, second segment climb requirements. The alternate high-lift configuration produces mixed results. Less lift accompanied reduced drag with the slats out/flaps up configuration, resulting in higher V speeds and longer takeoff field lengths. In the case of the XRS, brake energy limits are also a factor, at times resulting in a substantial reducing in maximum allowable takeoff weight. For instance, when departing from a 5000-foot elevation, ISA+20oC airport and assuming a slats out/flaps six-degree configuration, the XRS has a maximum allowable takeoff weight of 94,543 pounds and a 7,851-foot takeoff field length. The second segment climb requirements is a limiting factor. Configuring with a slats out/flaps up at the same airport as above, takeoff weight is limited to 88,311 pounds because of the brake energy limits (1000 nm range penalty). Takeoff field length also increases to 8,359 ft because of higher V speeds. Source: Business & Commercial Aviation, March 2010

Interfaces e Integração de Sistemas • Questões de projeto e integração rigorosamente resolvidas • Descrição Técnica e EBD editados. • DMU e desenhos 3D elaborados. • Análises elaboradas.

The aircraft is fully defined!

Arquitetura e Integração Detalhada (4) A asa é um bom exemplo de um sistema de integração complexa: leve, resistente, importância primária no desempenho, volumosa, selada e com uma variedade enorme de sistemas fixados nela.

Detailed Design Phase

Escopo da Fase 3 - Projeto Detalhado • Execução dos desenhos de fabricação em 2D e montagem, com o detalhamento completo da estrutura e sistemas:materiais e tecnologias; tolerâncias de fabricação; tratamento térmico/superficial; montabilidade; normas aplicáveis; etc. • Fabricação do ferramental de produção. • Elaboração do plano de manutenção e projeto do GSE. • Elaboração dos processos de fabricação e montagem do avião.

Escopo da Fase 3 - Projeto Detalhado

• Construção funcionais.

e montagem do

RIG para ensaios

• Realização dos ensaios funcionais completos. • Fabricação de protótipos. • Fabricação de FTI (avionicos) para os protótipos e dispositivos de testes. • Execução campanhas de ensaios em vôo de qualificação e de certificação do produto.

Projeto Detalhado • Continuação Caso Embraer 170 Ø Ø Ø Ø

Volta às origens. Parceiros com DMU parcial. Controle Geral da Embraer. CC complexo. Partner 3

EMBRAER

Partner 2

Partner 1

Partner N

Projeto Detalhado (2) Desenhos 2D

• Depois que está tudo definido, gera-se os desenhos de fabricação em 2D.

• Embraer 145 ~ 30.000 Desenhos • Embraer 170 ~ 60.000 Desenhos

252

Desenhos 2D

Projeto Detalhado

• Grande esforço e alto custo na conversão. • Em princípio, cada parceiro faz a sua parte.

253

Construção dos Protótipos

• Automação x Manual

254

Construção dos Protótipos (4) Manufatura- Integração

área do gabarito reservada área gabarito reservada parado aviões de maior para aviões de maior comprimento de fuselagem comprimento de fuselagem (ERJ 190)

255

Execução dos Ensaios

•Tipos de Ensaio: Solo e em Vôo Ø

Estruturais

Ø

Ambientais (ruído e vibração)

Ø

Funcionais

Ø

Vôo (Desempenho/QDV)

256

Ensaios Funcionais Iron Bird - Instrumentation

Iron Bird - Cockpit

QLanding

gear, wheels and brakes QHydraulic

system 257

Ensaios Estruturais de Fadiga e Vibração üLimit and Ultimate Load Tests Completed üResidual Strenght Test

258

Ensaios Esrtuturais de Fadiga e Vibração (2) Wing Up Bending Test

259

Outros Ensaios Bird Strike

Flape

Windshield / Direct View Window

260

Other Testing Estouro de Pneu

261

Outros Ensaios: Aeroacústica

Full-scale landing gear

Full-scale wing

Flight Tests Performance – Flight Characteristics– Regular Operation as Airliner

• • • •

Ensaios configurados à certificação Programa de Ensaios-Plano e Instrumentação Esforço na elaboração dos relatórios de certificação Tremendo investimento em protótipos e operações

263

Outros Ensaios Baixas Temperaturas no solo

Alaska Picture freely distributed in the Embraer’s Website

264

Flight Test

Ice Contamination

Picture freely distributed in the Embraer’s Website

Issuing Manuals

Engine Exhaust Temperatures Max Take-Off Power - GP 7200 Engines

Source: Airbus

Issuing Manuals

Danger Areas of the Engines Breakaway Power - GP 7200 Engines

Source: Airbus

Certification

268

Certification

269

Entrada em Serviço

Dados obtidos em apresentações disponíveis na Internet

270

Embraer 170/175 – Frota em Operação Airline

EIS

A/C in Service

Acc. FH

March 17, 2004

10

37,353

US Airways

April 04, 2004

12

54,182

Alitalia

April 26, 2004

6

19,263

Republic Holdings

October 22, 2004

54

127,226

Cirrus Airlines

January 15, 2005

1

1,824

AIR CANADA

July 27, 2005

15

12,455

September 08, 2005

3

2,916

FINNAIR

October 01, 2005

5

3,189

Paramount

October 19, 2005

1

2,089

Saudi Arabian Airlines

February 01, 2006

4

905

E 170/175

March 17, 2004

111

Lot Polish

Hong Kong Express

Source: Airlines (as of Mar 17th 2006) EI 19/JJan/06

261,402

Embraer 170/175 - Estatística E170/175 Operators Aircraft in Service Flight Hours Flight Cycles

10 111 261,402 175,886

as of Mar 17th 2006

272

Embraer 170/175 Dispatch Reliability

Worldwide

Aircraft in Service

Schedule Reliability (SR*)

Completion Rate (CR*)

111

98.2%

99.6%

22

98.8%

99.5%

10

98.2%

99.3%

Europe

LOT

(*) Monthly. Ref. date: Mar 15th, 2006 273

Reliability Diagnosis

Product Technical Issues

Spare Parts Availability

Specific Operators Environment

274

E170/175 Dispatch Reliability Status

EMBRAER 170 - WW FLEET Dispatch Reliability - 12 Months Running Average 100.0 99.6

99.5

SR/CR (%)

99.0 98.5 98.0 97.8 97.5 97.0 96.5 96.0 FEB

MAR

APR

MAY

JUN

JUL

AUG

2005CR - 12M

SEP

OCT

SR - 12M

NOV

DEC

JAN

FEB

MAR

2006 2752006) (as of Mar 15th,

E170/175 Dispatch Reliability Status EMBRAER 170 - European FLEET Dispatch Reliability - 12 Months Running Average 100.0 99.7

99.5

SR/CR (%)

99.0 98.6

98.5 98.0 97.5 97.0 96.5 96.0 FEB

MAR

APR

MAY

JUN

JUL

AUG

SEP

OCT

DEC

JAN

FEB

MAR

2006

2005 CR - 12M

NOV

SR - 12M

(as of Mar 15th, 2006)

The End Thanks...

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF