Oswaal Maths

January 27, 2019 | Author: ultimatorZ | Category: Circle, Trigonometric Functions, Mathematical Concepts, Elementary Geometry, Geometry
Share Embed Donate


Short Description

kk...

Description

Karnataka Secondary Education Examination Board (KSEEB) for SSLC 2015 Examination

SAMPLE QUESTION PAPERS solutions Mathematics

Class

Published by :

OSWAAL BOOKS OSWAAL  BOOKS “Oswaal House” 1/1 1/11, 1, Sahitya Kunj, M.G. Road, AGRA-282002 Ph.: 0562-2857671, 2527781, Fax : 0562-2854582, 2527784 www.oswaalbooks.com ooks.com email : [email protected], website : www.oswaalb

10

S O L U T I O N S SAMPLE QUESTION PAPER - 6 Self Assessment ______  _____________ _____________ _____________ _____________ _____________ ___________ ____

Time : 3 Hours 45 Minutes

Maximum Marks : 80

I. Solutions of Multiple Multiple Choice Questions 1. (C) – 1

12. Statemen Statementt : The rectangle contained

 by any two sides of a triangle is equal to rectangle contained by altitude drawn to the third side and the circum diameter. 1

1

2. (B) 6

1

3. (D) 0·3

1

4. (A) 30

1

5. (C) a = 1, b = – 3

1

6. (B)

1

⇒ ∠ ABC +

∠ ABC = 180°

7. (D)

1



∠ ABC = 180°

8. (C) (0, – 7)

1



∠ ABC =

∠ ABC + ∠BOC = 180°

  13.

½

× 180°

II. Solutions of one mark questions

= 72°.

9.

½

  14. Volume of double cone (½ + ½ = 1)

=

1 3

2

πr  (h + H ) units.

1

III. Solutions of two marks questions   15. 10.

n( A  A ∪ B) = n( A  A – B) + n(B – A) + n( A  A ∩ B)½

= 7 + 11 + 4   11.

½ 2

½

=2×3×5

½

2

 f (– (– 1) = (1)  + 2(1)  – 3(1) + 4

∴ LCM (12, 15, 30) = 2  × 3 × 5

=1+2–3+4 = 4.

= 22 × 3, 15 = 3 × 5 and 30

= 22. 3

12 = 2 × 2 × 3

= 60 1

HCF (12, 15, 30) = 3

½ ½

   0    1   –   s   s   a    l    C   r   e   p   a    P   n   o    i    t   s   e   u    Q   e    l   p   m   a    S  ,    )    C    L    S    S    (   a    k   a    t   a   n   r   a    K    l   a   a   w   s    O

   S    C    I    T    A    M    E    H    T    A    M

S O L U T I O N S SAMPLE QUESTION PAPER - 6 Self Assessment ______  _____________ _____________ _____________ _____________ _____________ ___________ ____

Time : 3 Hours 45 Minutes

Maximum Marks : 80

I. Solutions of Multiple Multiple Choice Questions 1. (C) – 1

12. Statemen Statementt : The rectangle contained

 by any two sides of a triangle is equal to rectangle contained by altitude drawn to the third side and the circum diameter. 1

1

2. (B) 6

1

3. (D) 0·3

1

4. (A) 30

1

5. (C) a = 1, b = – 3

1

6. (B)

1

⇒ ∠ ABC +

∠ ABC = 180°

7. (D)

1



∠ ABC = 180°

8. (C) (0, – 7)

1



∠ ABC =

∠ ABC + ∠BOC = 180°

  13.

½

× 180°

II. Solutions of one mark questions

= 72°.

9.

½

  14. Volume of double cone (½ + ½ = 1)

=

1 3

2

πr  (h + H ) units.

1

III. Solutions of two marks questions   15. 10.

n( A  A ∪ B) = n( A  A – B) + n(B – A) + n( A  A ∩ B)½

= 7 + 11 + 4   11.

½ 2

½

=2×3×5

½

2

 f (– (– 1) = (1)  + 2(1)  – 3(1) + 4

∴ LCM (12, 15, 30) = 2  × 3 × 5

=1+2–3+4 = 4.

= 22 × 3, 15 = 3 × 5 and 30

= 22. 3

12 = 2 × 2 × 3

= 60 1

HCF (12, 15, 30) = 3

½ ½

   0    1   –   s   s   a    l    C   r   e   p   a    P   n   o    i    t   s   e   u    Q   e    l   p   m   a    S  ,    )    C    L    S    S    (   a    k   a    t   a   n   r   a    K    l   a   a   w   s    O

   S    C    I    T    A    M    E    H    T    A    M

2|

OSWAAL OSWAAL Karnataka CBSE(SSLC), (CCE), Mathematics

Class –10

=

½

= 1½

16.

as

5–4 =1

½

  21. Let p(x) = 2x3 – 5x2 + x + a and f (x) = ax3 + 2x2 – 3

  U = Students appeared from examination M = Maths S = Science Percentage of students failed in both = 1% = ½   17. (i) Three-digit numbers less than 500 =4×4×3 = 48 ½ H

4

3

P1

=–2+a

½

4

P1

= 8a + 8 – 3

=5



– 2 + a = 2(8a + 5)



– 2 + a = 16a + 10



15a = – 12 a =

½

For degree q(x) = degree r(x), we have

U P1

degree of quotient will be equal to the degree of remainder when quotient is not constant.

∴ Total required numbers = 48 + 20 + 5

= 73.

½

=

Example :

p(x) = 7x3 + 2x + 5, g (x) = 7x2

1

q(x) = x and r(x) = 2x + 5

Clearly, degree q(x) = 1 = degree q(x) =

½

x = 121.



½

19. ( 3 18 + 2 12 ) ( 50 − 27 ) ½

= 9 2 ( 5 2 − 3 3) + 4 3( 5 2 − 3 3 )

½

½

 g (x) · q(x) + r(x) = 7x2 (x) + (2x + 5)

= 7x3 + 2x + 5 = p(x) ½

  22. Here, a = 1, b = – 3, c = 1

½

45 × 2 − 27 6 + 20 6 − 12 × 3

1

Checking for division algorithm :

Thus, division algorithm is satisfied.

= ( 9 2 + 4 3 ) (5 2 − 3 3 )

=

½

OR

½ 5

½

R1 = 2R2



(iii) One-digit numbers less than 500

½

R2 = f (2) (2) = a(2)3 + 2(2)2 – 3

and

Given,

U



=

= 16 – 20 + 2 + a

= 8a + 5

= 5 × 4 = 20

18.

= 2(2)3 – 5(2)2 + 2 + a

P1

(ii) Two-digit numbers less than 500

5P 1

R1 = p(2)



U



4P 1

Since R1 and R2 are the remainders r emainders when p(x) and f (x) are divided by ( x – 2).

m + n =

½

mn =

½

= ½

= 5

20.

5

+2

3 −

5

−2

=

5 ( 5 − 2 ) − 3 ( 5 + 2) ( 5 )2



( 2 )2

1



= =

½

Sample Mathematics Class –10 OSWAAL Question CBSE (CCE),Papers

| 33   26. Rough sketch :

= =9–2=7 2

½ 2

L.H.S. = sec θ + cosec θ

  23.

=

½ sin 2 θ + cos 2 θ

= =

cos2 θ · sin 2 θ

½ ½

1 cos2

θ · sin 2 θ

½

= sec2 θ · cosec2 θ

½

= R.H.S.

½

  24.

Point of division P  y-coordinate of P =

1 · y + 2( − 1) 1+2

= 2 (given)

 y = 2 × 3 + 2 =8

(100 + 150) × 50

½

½ 27.

l = 4 cm 2πR = 18

∴ M bisect the chord AB.

 MB =

× 100 × 150 ½

= 7500 + 6250 + 7500 = 21250 sq. m.

Draw OM ⊥ AB. ∴

× 150 × 100 +

+

  25. Radius of circle, OB = 13 cm

 

=

½

=2

⇒ ⇒

Area of field ABCD = Ar (∆ APB) + Ar (trapezium PBCQ) + Ar (∆CQD) ½

½

½



R =

=

cm

½

 AB

2πr = 6 =

× 24

= 12 cm



½

In rt. ∆OMB, by Pythagoras theorem OM2 = OB2 – MB2

½

= 132 – 122 OM = 5 cm.

=

cm

½

Curved surface area of frustum = πl(R + r) ½ = π × 4 = 4π ×

= 169 – 144 = 25 ∴

r =

½

= 48 cm2.

½

| 4 OSWAAL CBSE (CCE), Mathematics Class –10 4 | OSWAAL OSWAAL Karnataka CBSE(SSLC), (CCE), Mathematics Class –10 OR Given, r1 = 12 cm, h1 = 20 cm, r2 = 3 cm, h2 = ?

We know,

=



=



h2 =

= 5 cm ½ ∴ The cut to be made at 5 cm from the water. ∴ Height of frustum so obtained, h = 20 – 5 = 15 cm ½ Volume of the frustum = = =

2

2

πh(r1  + r2  + r1r2)

½

30.

P(red ball) =

½

P(blue ball) =

½

=2× x = 12 Hence, number of blue balls is 12. IV. Solutions of three marks questions Sn = 3n2 + 4n   31. Given,

½



½

Sn – 1 = 3(n – 1)2 + 4(n – 1)



= 3(n2 – 2n + 1) + 4n – 4 = 3n2 – 2n – 1

× 189

= 2970 cm .   28. Given, N  = 7, A = 10, R = 5 The graph is as follows :

½

According to the question, P(blue ball) = 2 × P(red ball)

× 15(144 + 9 + 12 × 3)

3

Number of red balls = 6 Let number of blue balls = x Total number of balls = 6 + x

½

th

n  term, T n = Sn – Sn – 1

½

= (3n2 + 4n) – (3n2 – 2n – 1)

½

= 6n + 1

½

T 25 = 6 × 25 + 1



= 151 2

29. Given, in ∆LMN , ∠LMN  = ∠PNK  = 46° ∠ M = a, PN  = x or N  = b, NK  = c ½ LM || PN  ∴ ½ (If corresponding angles are equal then lines are parallel)

1

  32. d2

fd 2

− 10

100

200

185

− 5

25

125

6

252

0

0

0

47

5

235

5

25 5

125

52

2

104

10

100

200

x

f

fx

32

2

64

37

5

42

n = 20

d

=

x−x

Σfx

Σfd 2

= 840

= 650

1

Arithmetic Mean = = 42 S.D. = ∴

= ∴

(corollary of Thales theorem) ½ = ∴

x =

½

1 ½

σ =

= = 5·7

½

  33. The given equation is in the form  Ax2 + Bx + C = 0, where A = b – c, B = c – a and C = a – b ½

Sample Mathematics Class –10 OSWAAL Question CBSE (CCE),Papers For equal roots, 2

B  – 4 AC = 0 ½ ⇒ (c – a)  – 4(b – c) (a – b) = 0 ½ 2 2 2 ⇒ c  – 2ac + a  – 4(ab – b  – ca + cb) = 0 ½ 2 2 2 ⇒ c  – 2ac + a  – 4ab + 4b  + 4ca – 4bc = 0 c2 + a2 + 2ca – 4ab – 4bc + 4b2 = 0 ⇒ ⇒ (c + a)2 – 4b(a + c) + (2b)2 = 0 ½ 2 ⇒ [(c + a) – 2b]  = 0 ⇒ (c + a) – 2b = 0 c + a = 2b. ½ ∴ OR Let the cost price be ` x. Selling price = ` 18·75 ∴ Loss = cost price – selling price 2



× x = x – 18·75

1

x2 = 100x – 1875 x2 – 100x + 1875 = 0 ⇒ x2 – 75x – 25x + 1875 = 0 ⇒ ⇒ x(x – 75) – 25(x – 75) = 0 (x – 75)(x – 25) = 0 x – 75 = 0 or x – 25 = 0 ∴ ⇒ x = 75 or x = 25 The cost price is ` 75 or ` 25. 34. Given, ∆ ABC ~ ∆PQR Since triangles are similar, therefore

| 55 OR Given : ∆ ABC ~ ∆PQR ar (∆ ABC) = ar (∆PQR)

½

To prove : ∆ ABC ≅ ∆PQR Proof : We know that areas of similar triangles are proportional to the squares of the corresponding sides. ½ ∴

=

=

=



1 =

=

=

½



= ⇒

=

1

[·.· given, areas are equal] ½ 2 2 2 ⇒ AB  = PQ , BC  = QR  and CA  = RP  AB = PQ, BC = QR and CA = RP ½ ∴ Hence, ∆ ABC ≅ ∆PQR [SSS criteria] ½   35. Let the height of flagpost, PQ = x Angle of elevation at C = 30° 2

1

= k (say)

…(i) ½

a = kp, b = kq, c = kr

½

2

2

½

When moved 6 m towards the post i.e., at B, angle of elevation = 30° + 15° = 45°

Now,

In ∆ AOB, =

½

=



In ∆OAC,

=

= k  

…(ii) ½

From (i) and (ii), we have =

=

=

·

½

tan 45° = 1 =

= OB = x

1

tan 30° =



=



x + 6 =

=6⇒

…(i) 1 =6

| 6 OSWAAL CBSE (CCE), Mathematics Class –10 6 | OSWAAL OSWAAL Karnataka CBSE(SSLC), (CCE), Mathematics Class –10 x =



Hence, height of the post =

m.

1

OR Given : O  is the centre of the circle. P  is an external point. PA and PB are the two tangents drawn from an external point P. ½

OR Given, x sin θ = y cos θ ⇒

 

x =

…(i) 1

and x sin3 θ + y cos3 θ = sin θ cos θ  Eliminating x from (i) and (ii), we get .sin3 θ + y cos3 θ = sin θ cos θ 2

…(ii)

½

3

⇒ y cos θ sin θ + y cos θ = sin θ cos θ

 y cos θ [sin2 θ + cos2 θ] = sin θ cos θ  y cos θ (1) = sin θ cos θ ⇒  y = sin θ  ⇒ …(iii) 1 Substituting this value of  y in (i), x = cos θ  …(iv) ∴ Squaring (iii) and (iv) and then adding, we get x2 + y2 = cos2 θ + sin 2 θ = 1 ½ 36. Given :  A  and B are the centres of touching circles. P is the point of contact. ½

To prove : ∠ AOB + ∠ APB = 180° Proof : In quadrilateral PAOB,

½

∠PAO + ∠ AOB + ∠OBP + ∠ APB = 360°

½

But

∠PAO = 90° and ∠OBP = 90°

½

∴ 90° + ∠ AOB + 90° + ∠ APB = 360°

½

⇒ ∠ AOB + ∠ APB = 360° – (90° + 90°)

= 360° – 180° = 180°.

½

V. Solutions of four marks questions   37. Three numbers are in G.P.

Let numbers are

a, ar.

Product of numbers = ⇒ ∴

× a × ar

343 = a3 ⇒ a = a =7

1

Sum of the three numbers. 57 =



+ a + ar

57r = a + ar + ar2 [Multiply by r] 57r = 7 + 7r + 7r2

½

57r – 7r = 7r2 + 7 ∴

To prove : A, B and P are collinear. Construction : Draw the tangent XPY . Join AP and BP. ½ Proof : Since radius drawn at the point of contact is perpendicular to the tangent. ∴

∠ APX   = 90°

½

and

∠BPX   = 90°

½



∠ APX  = ∠BPX  = 90°

7r2 – 50r + 7 = 0 7r2 – 49r – r + 7 = 0

7r(r – 7) – 1(r – 7) = 0 (r – 7) (7r – 1) = 0 r – 7 = 0, 7r = 1 r = 7 or r =

Numbers are

⇒ AP and BP lies on the same line.

½

Hence, A, B and P are collinear.

½

1

½

a, ar

7, 7 × 7 i.e., 1, 7, 49.

1

Sample Question Papers Papers (SA-2)

|| 7

OR

Let r be a common ratio of the G.P. a, b, c, d then b = ar, c = ar2 and d = ar3. ½ 2 2 2 L.H.S. = (b – c)  + (c – a)  + (d – b) = (ar – ar2)2 + (ar2 – a)2 + (ar3 – ar)3 2 2

2

2

2

2

2 2

2

1 2

= a r  (1 – r)  + a  (r  – 1)  + a r  (r  – 1) = a2[r2(r – 2r + r2) + (r4 – 2r2 + 1)

+ r2(r4 – 2r2 + 1)] 1 = a2[r2 – 2r3 + r4 + r4 – 2r2 + 1 + r6 – 2r4 + r2] = a2 (r6 – 2r3 + 1) = a2 (1 – r3)2

1

32

= (a – ar )

= (a – d)2 = R.H.S.   38.

½

2

 y = x  + 2 The value of  y for corresponding values of x are given in the following table : x

− 2

− 1

0

1

2

 y

6

3

2

3

6

In ∆ ABD,  AD2 = AB2 + BD2 (Pythagoras Theorem) … ½ 2 In ∆ ABC,  AC = AB2 + BC2 (Pythagoras theorem) …(ii) ½ From eqn. (i),  AD2 = AB2 +

(D is the mid-point of BC) ½ ⇒ 4 AD = 4 AB2 + BC2 BC2 = 4 AD2 – 4 AB2  ⇒ …(iii) ½ Using this in eqn. (ii),  AC2 = AB2 + 4 AD2 – 4 AB2 ½ 2 2 2  AC = 4 AD  – 3 AB . Proved. ½ C1 = R = 5·5 cm   40. C2 = r = 3·5 cm d = 5·5 + 3·5 = 9 cm C3 = R – r = 5·5 – 3·5 = 2 cm 1 Steps of construction : (a) Draw AB = 9 cm. (b) Construct circles C1 and C2 at A and B, with radius 5·5 cm and 3·5 cm respectively. ½ 2

2

The curve i.e., parabola does not intersect the x-axis. 2 ∴ There is no real value of x  for x   + 2 = 0. Hence, there are no real roots. 1 39. Given :  ABC is right angled at B and D is the mid-point of BC. ½ BD = DC =

BC

½

(c) Draw C3 with centre  A and radius R – r = 2 cm. ½ (d) Construct perpendicular bisector to  AB  bisecting AB at M. (e) With M as centre and radius MA, draw C4. ½ (f) Join AM and AN  to intersect C3 at M and N  and produce them to meet the circle C1 at P and R. ½ (g) Join BM and BN . (h) With the radius MB with P and R as centres, draw arcs to intersect C2 at Q and S. (j) Join PQ and RS. ½ ∴ PQ and RS are D.C.T. By measurement : PQ = RS = 8·7 cm. ½ ●●

8|

OSWAAL CBSE (CCE), Mathematics

 

Class –10

SAMPLE QUESTION PAPER - 7

Self Assessment ___________________________________________    0    1   –   s   s   a    l    C   r   e   p   a    P   n   o    i    t   s   e   u    Q   e    l   p   m   a    S  ,    )    C    L    S    S    (   a    k   a    t   a   n   r   a    K    l   a   a   w   s    O

Time : 2 Hours 45 Minutes

Maximum Marks : 80

I. Solutions of Multiple Choice Questions 1. (C) 24th 1 2. (D) a haptagon 1 3. (C) 0 ≤ r ≤ 1 1 4. (B) 0·7 1 3 5. (B) x 1 6. (D)

1 1 1

7. (B) II quadrant 8. (C) (0, 0) II. Solutions of one mark questions 9. Euclid’s division lemma : Given positive integers a  and b  there exist unique integers q   and r  satisfying a = bq + r, 0 ≤ r < b. 10.  A ∩ (B ∪ C) = ( A ∩ B) ∪ ( A ∩ C). 1   11. Since the curve cut the x -axis at 3 points. ½ ∴ Number of zeroes of  f (x) = 3. ½   12. Two triangles are said to be similar if : (i) their corresponding sides are proportional and ½ (ii) their corresponding angles are equal. ½   13. There two tangents are parallel. 1 Volume of sphere I 14. = Volume of sphere II

   S    C    I    T    A    M    E    H    T    A    M

=

½

III. Solutions of two marks questions   15. If the number is divisible by 35, 56 and 91, then it is the LCM of these numbers. By prime factorization, 35 = 5 × 7, 56 = 2 3 × 7 and 91 = 7 × 13 3 ∴ L.C.M. (35, 56, 91) = 2  × 5 × 7 × 13 = 3640 1 The least number divisible by 35, 56 and 91 is 3640. Since it leaves a remainder 7, the required number is 3640 + 7 = 3647. 1 16. Two sets  A   and B   are disjoint sets when  A ∩ B = φ. ½  A = {1, 2, 3, 4} and B = {4, 5, 6, 7} ½  A ∩ B = {4} ≠ φ ½ ∴ A and B are not disjoint sets. ½ n C2 = 10   17.

= 10

⇒ ⇒ ⇒

n2 – n – 20 = 0 (n – 5) (n + 4) = 0

⇒ n = 5 or n = – 4, which is not possible.

n = 5.



½

½ ½ ½ 3

  18. The 3 particular books can be arranged in P3 ways. ½

3 particular books as one and remaining 4 books can be arranged in 5P5 ways. ½ Total number of ways = 3P3 × 5P5

½

= (3 × 2 × 1) × (5 × 4 × 3 × 2 × 1) ⇒

=



½

= 6 × 120 = 720

½

Sample Question Papers 9 | 3

=

19.

a 3 · ab +

OSWAAL CBSE (CCE), Mathematics

3

ab · b3

1

=

½

=

½

=

=

= cos2 θ – (1 – cos2 θ)

x =

20.

| 9 Class –10

2

=



= 2 cos θ – 1 = R.H.S.

½

½

½ ½

  24. For line I, slope m1 =

=



1 2 6

+

5

×

2 6



5

2 6



5

½

=

=

∴ x +

½

For line II, slope m2 =

=

½

=

½

  21. Let f (x) = x3 + x2 – 3x + 5 and g (x) = x – 1 By synthetic division, 1 1 1 –3 5 1 2 –1 1 2 –1 4 2 ∴ Quotient, q(x) = x  + 2x – 1 1 and remainder, r(x) = 4 1 OR Here, p(x) = ax2 + bx + c Since zeroes are reciprocal to each other, then

let α and

=1

 be the zeroes of p(x).

1

=

½

Since two lines are perpendicualr, then m1m2 = – 1 ∴ 1×

½

=–1



1 = – m – 2



m = –1 – 2

=–3

½

25. Steps of construction :

(a) Draw a line segment O1O2 = 5 cm. (b) With O1 and O2 as centres draw two circles C1 and C2 of same radii 3 cm.

∴ Product of zeroes, α ×

= 1 =



1+1

or a = c,

Which is the required condition. 22. Here, a = 49, b = – k , c = – 81 Let one root is m, then other root is – m. ∴ Sum of roots = ⇒

m + (– m) =



0 =



k  = 0

23. L.H.S. =

1 26. Scale 25 m = 1 cm ½ ½ ½

1 ½

=

½

10 ||

OSWAAL OSWAAL Karnataka CBSE(SSLC), (CCE), Mathematics Class –10

 AP  AQ  AR  AD QE QB RC 27. Given, r =

= 100 m = 4 cm = 150 m = 6 cm = 200 m = 8 cm = 300 m = 12 cm = 50 m = 2 cm = 75 m = 3 cm = 100 m = 4 cm

= πr(2h + l)

1

= 8 cm, h = 15 cm

l =

½

=

[4·8 + 8·5]

=

× 13·3

= 313·5 m2 2 ∴ Cost of canvas used at ` 50/m = 313·5 × 50 = ` 15675.   28. F = 6, E = 12, V  = 8

½

½ ½

= = 17 cm

½

T.S.A. = 2πrh + πr2 + πrl = πr(2h + r + l)

½

=

× 8[30 + 8 + 17]

=

× 8 × 55

= 1383 cm2 (Approx.) OR

½

Euler’s formula for polyhedra F + V  = E + 2 ⇒ 6 + 8 = 12 + 2 ⇒ 14 = 14, which is true Hence, Euler’s formula is verified.  AB2 = AC ·AM    29. (Corollary) 2  AB = AC·16 MC ⇒ ⇒

 AB = 4

Again

BC2 = AC ·MC  BC =  AC·MC

  AC·MC

½ ½ ½ ½

…(i) ½

½

2

l =

( 4 )2

15   +       2  



(Corollary) …(ii) ½

From (i) and (ii), we have  AB = 4BC ½   30. If three coins are tossed together, then the sample space is S = {HHH , HHT , HTH , THH , HTT , THT , TTH , TTT } ∴ n(S) = 8 ½ (i) An event of getting atmost two heads is  A = {HHT , HTH , THH , HTT , THT , TTH , TTT } ⇒ n( A) = 7 ½ Curved surface area = 2πrh + πrl



P( A) =

=

½

Sample Question Papers 11 |

OSWAAL CBSE (CCE), Mathematics

(ii) An event of getting all heads is B = {HHH } ⇒ n(B) = 1 P(B) =



=

From (ii), 2(14 + 2x2) + 3x2 = 203 ⇒ 28 + 4x2 + 3x2 = 203 ⇒ 7x2 = 203 – 28

½

IV. Solutions of three marks questions   31. Let the three terms in H.P. are a, b, c. a = 2c, ∴ (given) …(i) ½ Now, b = H.M. between a and c = 20, (given) ½ ⇒

= 20



= 20



= 20 ⇒

½ 4 3

c =



c = 20

= 15

½

a = 2 × 15 = 30 From (i), Hence, three terms are 30, 20 and 15.

½ ½

  32.  f 

C.I.

20 − 40 2 40 − 600 7 60 − 80 12 80 − 100 19 100 − 120 5 n = 45 Totall

x midpoint 30 50 70 90 110

 fx

d

=

x −x

d2

60 30 − 78 = − 48 2304 350 50 − 78 = − 28 784 840 70 − 78 = − 8 64 1710 90 − 78 = − 12 144 550 110 − 78 = − 32 1024 Σfx = 3510

fd 2

4608 5488 768 2736 5120 Σfd 2 = 18720

1

Now, mean

= =

= 78

½

x2 =



| 11 Class –10

½

= 25

x = 5 cm ½ 2 2  y = 2x  + 14 From (i), = 2(5)2 + 14 = 64  y = 8 cm. ∴ ½ Hence, the length of the sides of squares are 5 cm and 8 cm. OR Let one odd positive number be x. then other will be = x + 2 According to the question, x2 + (x + 2)2 = 130 1 2 2 x  + x  + 4 + 4x = 130 ⇒ ⇒ 2x2 + 4x + 4 = 130 ⇒ 2x2 + 4x – 126 = 0 x2 + 2x – 63 = 0 ⇒ x2 + 9x – 7x – 63 = 0 ⇒ ½ x(x + 9) – 7(x + 9) = 0 ⇒ ⇒ (x – 7)(x + 9) = 0 ½ ⇒ x – 7 = 0 or x + 9 = 0 x = 7 or x  = – 9 (not possible) ⇒ x =7   So, Hence, odd positive numbers are 7, 9. 1 34. Given : In ∆ ABC and ∆DEF, ∴

∠BAC = ∠EDF

Variance,

2

σ =

∠ ABC = ∠DEF

 

and

∠ ACB = ∠DFE

= = 416 S.D., σ =

½

= 20·396 ½ This means, each score on an average deviates from mean value, 78 by 30·396. ½   33. Let the length of the smaller square = x m and length of the larger square = y cm According to the question,  y2 – 2x2 = 14 …(i) ½ and From (i),

2 y2 + 3x2 = 203  y2 = 14 + 2x2

…(ii) ½ ½

To prove :

= Construction : Mark  X  on  AB  and Y  on  AC, such that AX  = DE and AY  = DF, Join XY . 1 Proof : In ∆ AXY  and ∆DEF, ∠ A = ∠D 

[Given]

12 ||

OSWAAL OSWAAL Karnataka CBSE(SSLC), (CCE), Mathematics Class –10

∴ ∴

 

 AX  = DE,

[By construction]

 AY  = DF

[By construction]

∆ AXY  = ∆DEF 

[SAS-criteria]

 XY  = EF

½

and

∠ AXY  = ∠DEF [Congruent triangles]



∠ AXY  = ∠DEF = ∠ ABC  [Given] .. ∠ AXY  = ∠ ABC [ .  ∠ AXY  and ∠ ABC

Since ∴ ⇒

are corresponding angles]  XY || BC ½ =

½

[Basic proportionality theorem and corollary] ⇒

=

In ∆OAB, tan 60°

Proved. ½

OR In the figure,  ABCD is a rhombus. ∴  AB = BC = CD = AD  AD || BC and AB || DC

x  y

=



 y =

1



x – 24 =

½

½ ⇒

= 24



= 24 ⇒ x =

Hence, height of the cliff, x =



=

=4

½

=

m.

OR

In ∆ ADQ and ∆PCQ, AD || PC ∴

½

[·.· AD = BC] ½



cos θ (1 + sin θ) + cos θ (1 − sin θ) (1 − sin θ)(1 + sin θ)

 = 4

1

cos θ + cos θ sin θ + cos θ − cos θ sin θ



⇒ ∴

=

+1

½

=

+1

[·.· DC = BC] ½



=4 ½



=4



=4

1= =

  35. Let the height of the cliff be x from the ground. OD = x – 24 ∴ In ∆OCD,

tan 45° =

1

Proved. ½ ⇒ 



1 − sin2 θ

=1

= 1 ⇒ y = x – 24

1

cos θ =

=

= cos 60° ∴ θ = 60°. ½   36. Let AB be a diameter of a given circle and let CD and EF be the tangent lines drawn to the circle at A and B respectively. Since tangent at a point to a circle is perpendicular to the radius through the point.

Sample Question Papers 13 |

OSWAAL CBSE (CCE), Mathematics

13 Class |–10

The sum of squares of extremes = 58 ∴ (a – r)2 + (a + r)2 = 58 (5 – r)2 + (5 + r)2 = 58 (25 + r2 – 10r) + (25 + r2 + 10r) = 58 2

1

2

25 + r  + 25 + r  = 58 2r2 = 58 – 50 r2 =  AB ⊥ CD and AB ⊥ EF ∴ ∠CAB = 90° and ∠ ABF = 90° ∠CAB = ∠ ABF ∠CAB and ∠ ABF are alternate int. angles. CD || EF ∴ OR  AB = BC (a) In ∆ ABC, ∴ ∠C = ∠ A ∴

1 ½ ½ 1

=4

r = ± 2



1

The terms of AP in order : a – r, a, a + r i.e., 5 – 2, 5, 5 + 2 or 5 + 2, 5, 5 – 2 i.e., 3, 5, 7 or 7, 5, 3.

1

OR

Let, given series be 4 + 12 + 16 + … Here,

a = 4, r =

…(i)

=3=

⇒ Series (i) is geometric series.

Sn =

 



a =

=5

1

, if r > 1

½

= 52

1

S3 =



Also, ∠ A + ∠B + ∠C = 180° ∠C + 68° + ∠C = 180° 2∠C = 112° ⇒ ∠C = 56° ∴ ∠ ACB = 56° 1 (b) In the figure, ∠ AOB = 2∠ ACB = 2 × 56° = 112° 1 (c) In the quadrilateral OADB, ∠ A = ∠B = 90° (·.· AD and BD are tangents to the circle) ∴ ∠ AOB and ∠ ADB = 180° 112° + ∠ ADB = 180° ∴ ∠ ADB = 180° – 112° = 68° 1 V. Solutions of four marks questions   37. Let the three terms of A.P. are a – r, a and a + r. Sum of these terms = 15, given a – r + a + a + r = 15 ⇒ 3a = 15

½

= and

S6 =

= = 1456 Now,

1

=

S3 : S6 = 1 : 28. 1 2   38. x  – x – 2 = 0 ⇒ x  – (x + 2) = 0 split the equation  y = x2 and y = 2 + x Steps : ∴

2

(a) Prepare the table for corresponding values of x and y satisfying the equation  y = x2. x

0

1

 y

0

1



1

2

1

2



4

4

1

( x , y) (0 , 0) ( 1, 1) ( − 1, 1) ( 2, 4) ( − 2, 4)

(b) Prepare the table for corresponding values of x and y satisfying the equation  y = 2 + x. x

0

1

2

 y

2

3

4



1

1



2

0

( x , y) ( 0 , 2 ) (1, 3 ) (2 , 4 ) ( − 1 , 1) ( − 2 , 0 )

1

14 ||

OSWAAL OSWAAL OSWAAL Karnataka CBSE(SSLC), (CCE), Mathematics Class –10

In ∆ABC and ∆DAC ,

(c) Choose the scale of x-axis, 1 cm = 1 unit  y-axis, 1 cm = 1 unit (d) Plot the points (0, 0); (1, 1); (– 1, 1); (2, 4) and (– 2, 4) on the graph sheet. (e) Join the points by a smooth curve. (f) Plot the points (0, 2); (1, 3), (2, 4); (– 1, 1) and (– 2, 0) on the graph sheet. (g) Join the points to get a straight line. (h) From the intersecting points (– 1, 1) and (2, 4) of curve and the line, draw the perpendiculars to the x-axis.

∠BAC = ∠ ADC = 90° ∠ ACB = ∠ ACD ∴

∆ ABC || ∆DAC



=



½

BC·DC = AC2 

…(ii) ½

By adding (i) and (ii), we get BC·BD + BC·DC = AB2 + AC2 ⇒ ⇒

BC(BD + DC) = AB2 + AC2 2

½

2

BC·BC = AB  + AC ,

(as BD + DC = BC) ∴

2

2

BC  = AB  + AC2

½

Hence, in a right-angled triangle, square of hypotenuse is equal to the sum of the square of the other two sides. ½

1   40.

C1 = R = 3 cm, C2 = r = 2 cm C3 = R + r = 5 cm

(i) Perpendiculars meet the x-axis at the points  A(– 1, 0) and B(2, 0). 2 ∴ Roots of the equation x – x – 2 = 0 are x = – 1 and x = 2. 1 39. Given : In ∆ ABC, ∠BAC = 90° BC2 = AB2 + AC2 To prove : ½ Construction : Draw AD ⊥ BC

Distance of the centres, d = (3 + 2 + 3) cm

= 8 cm

1

Steps of construction :

(a) With ‘ A’ as centre, draw circle C1 with radius 3 cm. With ‘ B’ as centre, draw circle C2 with radius 2 cm. With ‘ A’ as centre draw circle C3 with radius 5 cm. ½

1

Proof : In ∆ ABC and ∆DBA, ∠BAC = ∠BDA = 90° ∠ ABC = ∠ ABD ∴ ∆ ABC || ∆DBA ½ (AA-similarity criteria) ⇒ ⇒

= BC·BD = AB2 

…(i) ½

(b) Construct the tangents BM to circle C3 from the external point B. Join AM. ½ (c) Let AM intersect circle C1 at P. (d) From B, draw AP || BR. Join PR. ∴ PR is the transverse common tangent. ½ By measurement, PR = 7 cm. ½ ●●

15 |

OSWAAL CBSE (CCE), Mathematics

Class –10

SAMPLE QUESTION PAPER - 8 Self Assessment ___________________________________________

Time : 2 Hours 45 Minutes I. Solutions of Multiple Choice Questions 1. (B) A, G, H  are in G.P. 2. (D) 3

Maximum Marks : 80 13. Since M is mid point of  AB, then 1 1

 AM =

3. (D)

1

=

4. (D) Coefficient of variation

1

= 8 cm

5. (C) 0

1

 AB

× 16

and ∠OMA = 90° ∴

2

½ 2

OM = OA  – AM

6. (C)

1

7. (B) 12

1

= 100 – 64

8. (D) x = 2, y = 6

1

= 36

= (10)2 – (8)2



II. Solutions of one mark questions

L.C.M. (a, b) × H.C.F. ( a, b) = a × b

III. Solutions of two marks questions   15. Let

∴ H.C.F. (36, 32) =



= 4.

½

B – A = {1, 2, 3} ∴ (B – A)′= U – (B – A) = {0, 4, 5, 6, 7, 8, 9} ½

  11. Given, product of zeroes = 3

= 3k – 6 = k ⇒ 2k  = 6 ⇒ k  = 3.

is a rational number say r. =r

   S    C    I 2 = ½    T ⇒ =    A ∴ =    M which is a contradiction as right hand    E side is a rational number while  is an    H irrational number. ½    T Hence is an irrational number.    A ½    M ½



=



½

= 2π(R + r) (h + R – r).

½

Here a = 36, b = 32 and L.C.M. (36, 32) = 288



OM = 6 cm.

  14. T.S.A. of right circular hollow cylinder

9. We know that

  10.

2

½ ½

  12. If a straight line is drawn parallel to one side of a triangle, then it divides the other two sides proportionally. 1

   0    1   –   s   s   a    l    C   r   e   p   a    P   n   o    i    t   s   e   u    Q   e    l   p   m   a    S  ,    )    C    L    S    S    (   a    k   a    t   a   n   r   a    K    l   a   a   w   s    O

Squaring both sides, we get

5

16 ||

OSWAAL OSWAAL Karnataka CBSE(SSLC), (CCE), Mathematics Class –10

p(x) is zero, when = 0 or

16. (i)

i.e., when x = 1

=0 or x =

∴ Required zeroes are

and

·

1

(ii) OR p(x) = 4x  + 2x3 – 3x2 + 8x + 5a 4

Let

By factor theorem, (x + 2) is a factor of p(x) if p(– 2) = 0 1

1

From (i) and (ii),

4

17. Two bowlers out of 5 can be chosen in C2 ways. ½

Remaining 9 players out 17 – 5 = 12 can be chosen in 12C9 ways. ½ ∴ Total number of ways = C2 ×

12

5

C9 = C2 ×

12

C3

½

64 – 16 – 12 – 16 + 5a = 0



20 + 5a = 0 a =

  22. Here,

½



n(n – 1) = 20 × n



n – 1 = 20



n = 21.

=

and

=



=

33

=

12

x2 – (m + n)x + mn = 0

½

½

27

x2 – 4x + 1 = 0.

½

1

4 cos θ = 11 sin θ

  23. ⇒ 

=

1

∴ Required equation is

1

=

1

mn = ( 2 + 3 )( 2 − 3 )

=4–3=1

½ 4 ×3

m =

1

  19. L.C.M. of orders 3 and 4 surds = 12 ∴

= – 4. and n =

m + n = =4

and

n

P2  = 20 P1

  18.





n

2



= = 10 × 220 = 2200.

3

⇒ 4(– 2)  + 2(– 2)  – 3(– 2)  + 8(– 2) + 5 a = 0

5

5

p(– 2) = 0



 A ∩ (B ∪ C) = ( A ∩ B) ∪ ( A ∪ C)

cos θ =

sin θ

½



20.

=

5 ( 5 + 3 ) − 3( 5 − 3 ) (

= = 21. Let

5 )2 − (

3 )2

1

½

=

½

½

=4

½

p(x) =

=

=   24.

= =

=

1

d =  AB =

·

½

Sample Question Papers 17 |

OSWAAL CBSE (CCE), Mathematics

=

17 Class |–10

½

=

BC =

= =

92

( 1)2

+ −

81 + 1

=

½

82

CA =

=

82 + 8 2

=

= 2 cm

 AQ = 100 metre =

= 5 cm

 AR = 120 metre =

= 6 cm

RC  = 60 metre =

= 3 cm

½

Since AB = BC, the triangle is isosceles.   25. Given, OP ⊥ AB and OQ ⊥ CD ⇒ OP bisects AB and OQ bisects CD ⇒ AP =

PB = 40 metre =

 AB and CQ =

CD

½

½

1

  27. Volume of hemispherical tank 

m3

= =

m3 m3

Volume to be emptied =  Join OA and OC. In ∆OPA and ∆OQC, OP = OQ  (Given) OA = OC (Radii of a same circle) ∠P = ∠Q (each is a rt. angle) ∴ ∆OPA ≅ ∆OQC (RHS property) ½ ⇒  AP = CQ  (C.P.C.T.) ½ ⇒

 AB =

CD ⇒ AB = CD.

= ∴

= 7 cm

 AP = 50 metre =

= 2·5 cm

QE = 80 metre =

= 4 cm

99000 28

 litres

½

seconds

= 990 seconds = 16·5 minutes

½

OR Diameter of hemisphere = Side of cubical box ⇒ 2R = 7 cm

½

  26. Given, Scale 20 m = 1 cm

 AD = 140 metre =

Required time =

1



 

R =

cm

½

S.A. of solid = S.A. of the cube – area of base  of hemisphere + CSA of  hemisphere ½ 2 2 = 6l  – πR  + 2πR2

18 ||

OSWAAL OSWAAL OSWAAL Karnataka CBSE(SSLC), (CCE), Mathematics Class –10

= 6l2 + πR2

½

= 6 × 49 + ½ = 332·5 cm2.   28. A network is traversable if it contains : (i) two odd nodes and any number of even nodes, or 1 (ii) all even nodes. 1   29. (i) In ∆ ABC and ∆ AMP, ∠ A = ∠ A  (Common) ∠ ABC = ∠ AMP = 90° (Given)



∠B = 30° + d

= 30° + 30° = 60°   and ∠C = 30° + 2d = 30° + 2 × 30° = 90° ∴ ∆ ABC is a right angled triangle.   32. For English : Given, = 56 and σ = 5·75 C.V. =

× 100

=

× 100

= 10·27 C.V. for English = 10·27 Similarly, C.V. for mathematics =

=

∆ ABC ~ ∆ AMP

1 (ii) Since ∆ ABC ~ ∆ AMP  (Proved) ∴ Corresponding sides are proportional. ⇒

=

1

  30. The total number of mangoes after mixing  = 9 + 30 = 39 n(S) = 39 ∴ ½ (a) An event of selecting a good mango, n( A) = 30

P( A) =

½

(b) An event of selecting a rotten mango, n(B) = 9 ∴

P(B) =

·

IV. Solutions of three marks questions   31. In ∆ ABC, let ∠ A = 30°   Since ∠ A, ∠B and ∠C are in A.P. ∴ ∠B = 30° + d and ∠C = 30° + 2d But ∠ A + ∠B + ∠C = 180° ⇒ 30° + 30° + d + 30° + 2d = 180° ⇒ 3d = 90° ⇒ d = 30°

½

× 100

x = 3 or x =

(not possible) Hence, the whole number = 3. 1 OR Here, a = 1, b = 1, c = – (a + 2)(a + 1) x =

½ ½ ½

½

= 9·68 ½ On comparison, the co-efficient of variation (C.V.) in mathematics is the least. Hence, the performance in Mathematics is more consistent. 1   33. Let the number be x. According to the question, 3x2 – 4x = 15 ⇒ 3x2 – 4x – 15 = 0 1 2 ⇒ 3x  – 9x + 5x – 15 = 0 ⇒ 3x(x – 3) + 5(x – 3) = 0 ⇒ (x – 3)(3x + 5) = 0 1 x – 3 = 0 or 3 x + 5 = 0 ⇒ ⇒

1

1

× 100

= 8·56 and C.V. for science ∴ by AA-criteria,

½ ½

½

= =

½

Sample Question Papers 19 |

=

4 a 2 + 12 a + 9

− 1±

2

=

½

=

½

x =





 

In ∆PQR, ∠PQR PQ2 ∴ PD But PQ2 ∴ ⇒

19 Class |–10

OR = 90° and QP ⊥ PR = PR × PD  (corollary) = 4DR (given) = PR × 4DR

PR =

PQ2

…(i) 1

4DR

 1 + ( 2 a + 3) 2

= and

OSWAAL CBSE (CCE), Mathematics

= a + 1

½

x =

= – (a + 1)

=

½

34. Given : ABC is a triangle in which DE || BC. To prove :

=

½

Again, ⇒

QR2 = PR × DR (corollary) PR =

…(ii) 1

From equations (i) and (ii), we get

Construction : Draw DN ⊥ AE and EM ⊥ AD.  Join BE and CD. ½

= PQ2 = 4QR2 PQ = 2QR. ⇒ Proved. 1   35. Let BD is the height of the tree. It is broken at  A such that ⇒

 AD = AC = x, say

=

Proof :

=

and

area ( ∆ ADE)

…(i) ½

=

area ( ∆DEB)

In ∆ ABC, ∠ ACB  = 60°, ∠B = 90° ∴

tan 60° =

∆DEB and ∆DEC lies on the same base DE and



 AB =

 between the same parallel lines DE and BC. ½ ∴ area (∆DEB) = area (∆DEC) ½ Hence from (i) and (ii), we have

By Pythagoras theorem,  AC2 = AB2 + BC2 x2 =

=

=

…(ii) ½

½

m

= 1200 + 400

1

20 ||

OSWAAL OSWAAL OSWAAL Karnataka CBSE(SSLC), (CCE), Mathematics Class –10

= 1600

⇒ BPC is a straight line.

x = 40



1

 

Height of the tree = BD = AB + x = =

 

m.

Hence, B, P, C are collinear. ½ OR  AB = 10 cm Given,  AO = OB = OQ (Radii of a circle) and

1

OR

L.H.S. = =

tan

=

 AB

=

× 10

= 5 cm

½

θ + sec θ − (sec 2 θ − tan 2 θ )

tan

θ − sec θ + 1

[·.· 1 = sec 2 θ – tan2 θ] 1 =

(tan

θ + sec θ) − [(sec θ + tan θ)

tan

(sec

θ − tan θ) ]

θ − sec θ + 1

½

= (tan θ + sec θ)

½

= (tan θ + sec θ) ×

½

OC = AC – OA



=6–5 = 1 cm  

Let

PC = PQ = x



OP = OQ – PQ

=

(Radii of a circle)

= (5 – x) cm

= R.H.S.

½

36. Given : Circles with centres X  and Y  touch each other externally at P. Construction : Join AP, BP, PC and PD.

½

Proof : Since AB is the diameter. ∠ APB = 90° (Angle in a semi-circle) i.e.,   …(i) ½

 

½

Since OB is a tangent at C to a smaller circle. PC ⊥ CO



In ∆PCO, by Pythagoras theorem, OP2 = OC2 + PC2

(5 – x)2 = (1)2 + x2 2

1

2

25 + x  – 10x = 1 + x

x2 – 10x – x2 = 1 – 25 x =

= 2·4 ∴ Radius of the smaller circle = x = 2·4 cm. 1

V. Solutions of four marks questions   37. Given, b = G.M. of a and c =

 

Again, CD is the diameter. ∠CPD  = 90°



(Angle in a semi-circle) …(i) ½ From (i) and (ii), ∠ APB = ∠CPD = 90°

½

…(i) ½

x = A.M. of a and b =

…(ii) ½

 y = A.M. of b and c =

…(iii) ½

From (i), b2 = ac ⇒ c =

½

Now,

½

⇒ Vertically opposite angles are equal. ⇒ APD and BPC are two intersecting straight

lines.

½

=

Sample Question Papers 21 |

OSWAAL CBSE (CCE), Mathematics

=

½

=

½

21 Class |–10

1

= ½ OR

Let the three terms of G.P. be

½

The curve is a parabola which intersect the x-axis at the points  A(– 3, 0) and B(2, 0).

× a × ar = 216

Given,

3



a  = (6)



a =6

2

∴ The roots of equation x  + x – 6 = 0 are

3

½

and

= 156 2



a

= 156



36

= 156 r2 + r + 1 =



3r2 + 3r + 3 – 13r = 0



3r2 – 10r + 3 = 0



3r2 – 9r – r + 3 = 0



3r(r – 3) – 1(r – 3) = 0

⇒ ⇒

(r – 3) (3r – 1) = 0 r = 3

½

  39. Let

1

 AD = x

 

then

CA = 2 AD = 2x

 

and

BD = 3 AD = 3x

½

r

1

So, by Pythagoras theorem  AC2 = AD2 + CD2 ⇒

(2x)2 = x2 + CD2



CD2 = (2x)2 – x2

= 4x2 – x2 = 3x2

r =

1

6, 6 × 3 i.e., 2, 6, 18. ½

∴ Required terms are

x = – 3 and x = 2.

In ∆ ADC, ∠ ADC = 90°

r =



or

  38.

a, ar.



CD =

In ∆BDC,

∠D = 90°

BC2 = BD2 + CD2

 y = x  + x – 6 The values of  y for corresponding values of x are given in the following table :

0

1

2

–1

–2

–3

 y

 – 6

–4

0

–6

–4

0

= = 9x2 + 3x2 = 12x2 BC = Also,

1

1

By Pythagoras theorem,

2

x

3x 2 + x 3

 AB = AD + DB

= x + 3x = 4x

1

22 ||

OSWAAL OSWAAL OSWAAL Karnataka CBSE(SSLC), (CCE), Mathematics Class –10

Now,  AC2 + BC2 = = 4x2 + 12x2 = 16x2 = AB2

1

∴ By converse of Pythagoras theorem., ∆ ABC is right angle triangle, right angled at C.

 

Hence, ∠BCA  = 90°.

Proved. ½

  40. Distance between the centres,

d = 2 cm C1 = R = 5 cm C2 = r = 3 cm C3 = R – r

= 1·5 cm

1

Steps of construction :

(a) With ‘ A’ as centre draw circle C1. With ‘B’ as centre draw circle C2 and with ‘ A’ as centre, draw circle C3. 1

1 (b) Construct the tangents BN  and BM to circle C3 from the external point B. Join  AN   and  AM. (c) Let AN  produce meet the circle C1 at P and  AM produce at R. 1 (d) With centres P and R and radius PB draw two arcs to intersect C2 at Q and S. Join PQ and RS. ∴ PQ and RS are the direct common tangents. 1 ●●

23 |

OSWAAL CBSE (CCE), Mathematics

Class –10

SAMPLE QUESTION PAPER -9 Self Assessment ___________________________________________

Time : 2 Hours 45 Minutes

Maximum Marks : 80

I. Solutions of Multiple Choice Questions 1. (D) 15 2. (A) 24 3. (C) Determining the boiling point of water 4. (A) are equal to one another 5. (D) (B) and (C) are correct 6. (D) 2 7. (A) 14 8. (C)

  13. ·.· 1 1 1 1 1 1

OQ ⊥ AB ⇒ ∠OQB = 90° In ∆OPQ, OP = OQ ⇒

= 25° 2

  14. Volume = πr h

1 1

=

=

½

 A = {1, 2, 3}

  10.

 

and

½ ½

× 7 × 7 × 10

= 1540 cm3.

½

III. Solutions of two marks questions   15.

= which is a irrational number.

∠OPQ = ∠OQP

= 90° – 65°

II. Solution of one mark questions 9.

½

344 = 2 × 2 × 2 × 43 = 23 × 43

½

60 = 2 × 2 × 3 × 5 = 22 × 3 × 5

(·.· x ∈ N )

B = {3, 1}

½

∴ H.C.F. = (344, 60)

= 22 = 4

(·.· 3 y = 9 ⇒ y = 3 and 2 y = 2 ⇒ y = 1) ½

½

But L.C.M. (a, b) × H.C.F. ( a, b) = a × b ½

∴  A ∪ B = {1, 2, 3} ∪ {1, 3} = {1, 2, 3} =  A ½

  11. Dividend = Divisor × Quotient + Remainder 1 12.

∴ L.C.M. (344, 60) =

= = 5160.

½

16.

BD2 = AD × CD



= 16 × 4 = 64 BD = 4 cm

½

½

1

   0    1   –   s   s   a    l    C   r   e   p   a    P   n   o    i    t   s   e   u    Q   e    l   p   m   a    S  ,    )    C    L    S    S    (   a    k   a    t   a   n   r   a    K    l   a   a   w   s    O

   S    C    I    T    A    M    E    H    T    A    M

24 ||

OSWAAL OSWAAL OSWAAL Karnataka CBSE(SSLC), (CCE), Mathematics Class –10

21. Given, p(x) = x3 – 1, g (x) = x – 1

n( A) = 35, n(B) = 20 + 10

2 + x +1 3 x −1 x

x−

= 30

)

1

x

n( A) only = 35 – 10

3 − x2

( −) ( +)

= 25 ∴

2 −1 2 x −x x

n( A ∪ B) = 25 + 10 + 20

= 55

( −)

½

( +) 1 1 ( −) ( +) 0 x−

Teachers = 6, Doctors = 4 No. of Committees : Possibilities Teachers Doctors No. of ways 6 C = 15 4C = 6 (i) 15 × 6 = 990 4 2 6 C = 20 4C = 4 (ii) 20 × 4 = 80 3 3 6 C = 15 4C = 1 (iii) 15 × 1 = 15 2 4 Total 185

  17.

Total = 185 committees

2

(n + 1) ! = 12 × ( n – 1) !

  18.

⇒ (n + 1)n × (n – 1) ! = 12 × ( n – 1) ! ⇒

(n + 1)n = 12, as (n – 1) !



(n + 1)n = 4 × 3

½ ≠

 0 ½

= (3 + 1) = 3 n =3

∴ 1/3

  19. Let

a =2

½

 – 1/3

 and b = 2

, then

a3 = 2 and b3 = 2 – 1 = a3 + b3 = 2 +

∴ 2

½

½

=

2

⇒ (a + b) (a  + b  – ab) =

½

 + 2 – 1/3) [(21/3)2 + (2 – 1/3)2  – 21/3 × 2 – 1/3)] =



(21/3 + 2 – 1/3) (22/3 + 2 – 2/3 – 1) =

Since

2

∴ Quotient, q(x) = x  + x + 1

 

and remainder, r(x) = 0 1 Verification : We know that p(x) = g (x)·q(x) + r(x) Now, g (x)·q(x) + r(x) = (x – 1)(x2 + x + 1) + 0 = x3 + x2 + x – x2 – x – 1 = x3 – 1 = p(x) Thus, Division Algorithm is verified. 1 OR 3 p(x) = x  – 3x2 + ax – 10 Let By factor theorem, if ( x – 5) is a factor of x3 – 3x2 + ax – 10, then p(5) = 0. p(5) = 0 ∴ 3 2 ⇒ (5)  – 3(5)  + a(5) – 10 = 0 1 ⇒ 125 – 75 + 5a – 10 = 0 ⇒ 40 + 5a = 0



½

a =



  22. Given,

1/3

⇒ (2

x−



½

1

B = a2 = a =±

is a rational number, so R.F. of

(21/3 + 2 – 1/3) is (2 2/3 + 2 – 2/3 – 1).

=–8

=±2 Now, if B =

1

then

20. (3 2 + 2 3 )( 2 3 − 4 2 )

= 3 2 (2 3 − 4 2 ) + 2 3(2 3 − 4 2 ) 1 = 6 6 − 12 × 2 + 4 × 3 − 8 6 = =

1

a = ±2

=±2 =±2×4 = ± 8.

1

Sample Question Papers 25 |

OSWAAL CBSE (CCE), Mathematics

25 Class| –10

  26. Scale 20 m = 1 cm 23.

 AP = 50 m = ½

=

= 2·5 cm

PB = 100 m =

= 5 cm

 AQ = 80 m =

= 4 cm

½

=

=

1

½

= tan A cot B

½

  24. Let the required ratio be m : n.

Given,

( x1, y1) = (– 3, 10), (x2, y2) = (6, – 8)

and

(x, y) = (– 1, k )

½

By section formula,



x =

½

–1 =

½



– m – n = 6m – 3n



– m – 6m = – 3n + n



– 7m = – 2n



=



m : n = 2 : 7.

QE = 60 m =

= 3 cm

 AR = 120 m =

= 6 cm

RC = 70 m =

= 3·5 cm

 AD = 200 m =

= 10 cm

1

  27. Curved surface area of frustum of a cone ½

  25. From construction,

= πl(r1 + r2)

1

=

× 5(10 + 4)

½

=

× 5 × 14

= 220 cm2. ½

½

OR

Given, for melted cone, h = 3·6 cm, r = 1·6 cm For recast cone, ∠ ACB = 90° = ∠ ADB

½

∠ AEB = 90° = ∠ AFB

½

Hence, angles in semi-circle are right angle. ½

R = 1·2 cm, H  = ?

According to the question, Vol. of melted cone = Vol. of recasted cone

½

26 ||

OSWAAL OSWAAL OSWAAL Karnataka CBSE(SSLC), (CCE), Mathematics Class –10

2

πr h =



2

πR H 

½

2

½

2

⇒  (1·6)  × (3·6) = (1·2)  × H  ⇒

H  =

n(S) = 36   30. Here, (i) Let A be the event of getting an even sum. ∴  A = {(1, 1), (1, 3), (1, 5), (2, 2) (2, 4), (2, 6), (3, 1), (3, 3), (3, 5), (4, 2), (4, 4), (4, 6), (5, 1), (5, 3), (5, 5), (6, 2), (6, 4), (6, 6)} n( A) = 18 ⇒

=

1

(ii) Let B be the event of getting a total of 7. B = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)} ∴ ⇒ n(B) = 6

½

= 6·4 cm Hence, height of recasted cone = 6·4 cm. 28. N  = 8, A = 8, R = 6

,

P( A) =



=

,

∴ P(B) =

1

1 IV. Solutions of three marks questions 31. Let 3 terms of G.P. are

Euler’s formula for a graph N  + R = A + 2



+ a + ar = 7

…(i)

and

× a × ar = 8

…(ii) ½

½

a3 = 23 ⇒ a = 2

(ii) ⇒

4+6 =8+2 10 = 10, which is true

From (i),

½

Hence, Euler’s formula is verified by given network.

a, ar.

+ 2 + 2r = 7 2



½ ½

=7–2

29. In ∆ AEB and ∆CED, ∠ ABE = ∠EDC 

(Given)

∠ AEB = ∠CED 

(V.O.A.)

⇒ ⇒ ⇒

2

=5

2r2 – 5r + 2 = 0 (r – 2) (2r – 1) = 0 r = 2 or r =



 

½

When r = 2, three terms of G.P. are 2, 2 × 2 i.e., 1, 2, 4 , three terms of G.P. are

When r = ∴ by AA-criterion, ∆ AEB ~ ∆CED

½



=

½



=

(Given, CD = 4 AB)



DE =

Now,

BD = BE + ED = BE + 4BE



BD = 5BE

= 4BE

½

½

2 1/ 2

32.

½

, 2, 2 ×

i.e., 4, 2, 1.

Scores x

d = x−x

d2

40

− 8

64

36

− 12

144

64

− 16

256

48

0

0

52

4

16

Σx = 240

Σd 2 = 480

½

1

Sample Question Papers 27 | Here

n =5

Mean



OSWAAL CBSE (CCE), Mathematics

=

½

σ =

1

C.V. =

σ

× 100 =

x

9·79

× 100 =

20·39

48

½

From (i) and (ii), we have 2x2 = 3x + 20 ⇒ 2x2 – 3x – 20 = 0 2 ⇒ 2x  – 8x + 5x – 20 = 0 ⇒ 2 x(x – 4) + 5( x – 4) = 0 ⇒ (x – 4) (2 x + 5) = 0

  33. Let time taken by tap of larger diameter = x hrs.

Since both the water taps together can fill a tank in 2

hrs. i.e., in

hrs.

∴ In 1 hr. both fill the portion of tank =

=



½ ½

x = 4 or x =



and time taken by tap of smaller diameter = (x + 2) hrs.

27 Class| –10

(not possible) ½

x =4 Hence, age of son = 4 years and age of father,  y = 2x2 = 2(4)2 = 32 years. ½ 34. Given : In ∆ ABC in which P and Q are points on AB and AC respectively such that PQ || BC and AD is the median, cutting BC at E. ∴

1

= ⇒  ⇒ ⇒

or or ⇒ ⇒ ⇒ 

35(2x + 2) 12x  – 46x – 70 6x2 – 23x – 35 6x2 – 30x + 7x – 35 6x(x – 5) + 7(x – 5) (6x + 7) (x – 5) 2

= 12x(x + 2) =0 =0 =0 =0 =0

x =

1

or x = 5

PE = EQ To prove : 1 Proof : In ∆ ABD, .. PE || BD ( . PQ || BC, given) ∴

=  

…(i) 1 (Thales theorem)

Rejecting x = In ∆ ADC,

(because time cannot be negative) x = 5 hrs. ∴ Hence, smaller tap can fill the tank in 5 + 2 = 7 hrs and larger tap in 5 hrs. 1 OR Let the age of son = x years and the age of father = y years  y = 2x2  Condition I : …(i) ½ After 8 years, son’s age = x + 8 and father’s age = y + 8 Condition II :  y + 8 = 3(x + 8) + 4 ⇒  y = 3x + 24 + 4 – 8 ⇒  y = 3x + 20 ⇒ …(ii) ½

EQ || DC 

(·.· PQ || BC, given)

∴ By Thales theorem,

=

…(ii)

From (i) and (ii), we have = But

BD = DC (·.· AD is the median)



PE = EQ.

1

OR Given : ∆ ABC and ∆BDC are on the same base BC. To prove :

=

½

Construction : Draw AE ⊥ BC and DF ⊥ BC ½

28 ||

OSWAAL OSWAAL Karnataka CBSE(SSLC), (CCE), Mathematics Class –10

Proof : In ∆ AOE and ∆DOF ∠ AOE = ∠DOF (Vertically opposite angles) ∠ AEO = ∠DFO = 90° (Construction)



1 =h



h =

1

OR

L.H.S. = =

½

=

½

=

tan 2 θ + cot 2 θ + 2 tan θ cot θ

as tan a cot θ = 1 1 ∴

∆ AOE ~ ∆DOF 



=

(AA-Criteria) 1

Now,

=

=

½

·

Proved. ½

=

½

= tan θ + cot θ = R.H.S. ½   36. Since tangents from an exterior point to a circle are equal in length. ∴ BP = BQ (tangents drawn from B) …(i) CP = CR (tangents drawn from C) …(ii)   and AQ = AR (tangents drawn from A)…(iii) 1

  35. Let height of aeroplane, PC = h km Distance between two stones A and B = 1 km   Let AC = x km ⇒ BC = (1 – x) km

In ∆PCA, tan α = ⇒

x =

1

In ∆PCB, tan β = ⇒

1–x =



=



1 =

1

From (iii), we have  AQ = AR ⇒  AB + BQ = AC + CR  AB + BP = AC + CP  ⇒ (iv) 1 Now, Perimeter of ∆ ABC = AB + BC + AC = AB + (BP + PC) + AC = ( AB + BP) + ( AC + PC) = 2( AB + BP), using (iv) = 2( AB + BQ), using (i) = 2 AQ ∴

 AQ =

(Perimeter of ∆ ABC)

1

Sample Question Papers 29 |

 

OSWAAL CBSE (CCE), Mathematics

OR Three circles with centres A, B and C touch each other externally. Let r1, r2 and r3 are the radius of circles C1, C2 and C3 respectively. ½

a =



29 Class| –10

=

=

=

1

∴ Sum of first mn terms

=

½

= =

Let

 AB = 7 cm r1 + r2 = 7



…(i)

BC = 8 cm r2 + r3 = 8



 

and ⇒

…(ii)

r3 + r1 = 9

…(iii) 1

Adding all there, we get 2(r1 + r2 + r3) = 7 + 8 + 9 = 24 ⇒

r1 + r2 + r3 = 12

…(iv) ½

Now apply [(iv) – (i)], we get r3 = 12 – 7



= 5 cm Apply [(iv) – (ii)], we get r1 = 12 – 8



= 4 cm Apply [(iv) – (iii)], we get r2 = 12 – 9



½

OR (i) Here, Arithmetic series is 1800 + 1750 + 1700 + … a  = 1800, d = T 2 – T 1  = 1750 – 1800 = – 50, n = 12, S12 = ? ½

Sn =

CA = 9

(mn + 1).

∴ S12  =

[2a + (n – 1)d] [2 × 1800 + (12 – 1)(– 50)]

½ ½

= 6[3600 + 11(– 50)] = 6[3600 – 550] = 6 × 3050 = 18300 1 ∴ Total amount paid in 12 instalments = ` 18,300. (ii) Extra amount paid = ` 18,300 – ` 15,000 = ` 3,300 1 2  y = – x  + 8x – 16   38. The values of  y for corresponding values of x are given in the following table : 1

= 3 cm So, radii of the circles are 5 cm, 4 cm and 3 cm. 1 V. Solutions of four marks questions   37.

T n = a + (n – 1)d =

…(i) ½

T m = a + (m – 1)d =

…(ii) ½ 2

Apply [(i) – (ii)], we get (n – m)d = ⇒

=

α =

(i) ⇒ a + (n – 1)

1

=

30 ||

OSWAAL OSWAAL Karnataka CBSE(SSLC), (CCE), Mathematics Class –10

The curve i.e., parabola intersects the x-axis at only one point  A(4, 0). ∴ The roots of the equation are 4 and 4. 1   39. In right ∆ ABD, by Pythagoras theorem  AB2 = AD2 + BD2  …(i) ½ In right ∆ ADC, by Pythagoras theorem  AC2 = AD2 + DC2  …(ii) ½

Subtracting (ii) from (i), we get  AB2 – AC2 = BD2 – DC2 ∴ =



CD =



 AB2 – AC2 =

BC

½ ½

= Thus 2 AB2 + BC2 = 2 AC2. ½ 40. Steps of construction : (a) C1 and C2 are two concentric circles with common centre O and radii 2 cm and 4 cm respectively. ½ (b) Take point P from O at a distance 8 cm such that OP = 8 cm. ½

½

 – DC2, Given, BD =

CD

 AB2 – AC2 =

½

Since

=

½



=

 

(c)  M is mid-point of OP. ½ (d) With M as centre and OM as radius, draw a circle to cut C1 and C2 at  A, B, C and D respectively. Join PA, PB, PC and PD. 1½ (e) PA and PB are tangents to C1. ½ (f) PC, PD and tangents to C2. ½ ●●

31 |

OSWAAL CBSE (CCE), Mathematics

Class –10

SAMPLE QUESTION PAPER -10 Self Assessment ___________________________________________

Time : 2 Hours 45 Minutes I. Solutions of Multiple Choice Questions 1. (C) 200

Maximum Marks : 80 ∴ C.S.A. of a cone

1

= πrl

½

2. (C)

1

=

3. (B) 40%

1

= 220 cm2.

4. (A)

1

× 100

1

6. (D) cot 0°

1

7. (C) y = 3x

1

8. (D) None of these

1

½

III. Solutions of two marks questions   15.

5. (B) – 4

× 7 × 10

3825 = 3 × 3 × 5 × 5 × 17 = 32 × 52 × 17.

1

II. Solutions of one mark questions 9. We know that

first number × second number = HCF × LCM ½ ∴ HCF × LCM = 50 × 95 = 4750

n( A′) = n(U) – n( A)

  10.

½ ½

= 28 – 12 = 16.

½

  11. The graph of  f (x) intersect the x-axis at two points. ½ ∴ Number of real zeroes of  f (x) = 2.

½

  12. If a straight line divides two sides of a triangle proportionally, then the straight line is parallel to the third side. 1   13. Since ∴

  14. r =

 AB || PT  and ∠PAB = 60° ∠ APT  = ∠PAB = 60°

= 7 cm, l = 10 cm

½ ½

1   16. To prove,  A ∪ (B ∩ C) = ( A ∪ B) ∩ ( A ∩ C)

   0    1   –   s   s   a    l    C   r   e   p   a    P   n   o    i    t   s   e   u    Q   e    l   p   m   a    S  ,    )    C    L    S    S    (   a    k   a    t   a   n   r   a    K    l   a   a   w   s    O

   S    C    I ={ }    T  A ∪ (B ∩ C) = {1, 2, 3, 5, 7, 11} ∪ { } = {1, 2, 3, 5, 7, 11} …(i) 1    A Again ( A ∪ B) ∩ ( A ∪ C)    M = {1, 2, 3, 4, 5, 6, 7, 8, 10, 11}    E ∩ {1, 2, 3, 5, 7, 9, 11}    H = {1, 2, 3, 5, 7, 11} …(ii)    T From (i) and (ii), we have    A  A ∪ (B ∩ C) = ( A ∪ B) ∩ ( A ∪ C) 1    M B ∩ C = {2, 4, 6, 8, 10} ∩ {1, 3, 5, 7, 9, 11}

32 ||

OSWAAL OSWAAL Karnataka CBSE(SSLC), (CCE), Mathematics Class –10 ⇒

n

Cr =

17.

1



n

Cn – r =

= nCr

=

27a + 27 – 13 = 54 – 12 + a 27a + 14 = 42 + a



26a = 28



a =

1 ½

=

½

1

OR

Let 18. 9P3 + 3 × 9P2 =

·

p(x) = xn – 1

In order to show that ( x  – 1) is a factor of n (x  – 1), it is sufficient to show that p(1) = 0 1 ∴

p(1) = 1n – 1 = 1 – 1 = 0 n

∴ (x – 1) is a factor of ( x  – 1).

1

  22. Here a = 1, b = p, c = q

=

Let one root be m, then other root is 3 m.

=

½



sum of roots =

= 10P3.

½



m + 3m =

19.

= = =

1

½

p 1



4m = – p



m = – 

p 4

½

and product of roots =

= ⇒

= =

½

1

=q



20. R.F. of denominator ( 3 + 6) is ( 6 − 3 ) ∴

m × 3m =

=

½

=

½

=

½

3p2 = 16q.



cos θ =

23.

½ ½

= =

½

  21. Let

p(x) = ax3 + 3x2 – 13

 

 g (x) = 2x3 – 4x + a

and

By Pythagoras theorem,  AB2 = AC2 – BC2

By remainder theorem, the two remainders are p(3) and g (3).

= (13)2 – (5)2

By the given condition,

= 169 – 25

p(3) = g (3) 3

2

3

⇒ a(3)  + 3(3)  – 13 = 2(3)  – 4(3) + a

= 144 1



 AB = 12.

½

Sample Question Papers 33 |

OSWAAL CBSE (CCE), Mathematics

Now,

sin θ =

½

and

tan θ =

½

33 Class| –10

  24.  AD is median. ∴ D is mid-point of BC.

½

Co-ordinates of D = = (– 2, 3) Now,  AD =

= 3 cm

GC = 75 m =

=3m

½ ½

 AD = 100 m =

= ∴ Length of median through A = ∠ ADB = ∠ ACB = 70°

  25.

 AG = 75 m =

units. ½

  27. Given,

½

= 4 cm.

1

h = 20 cm

External radius R = 12·5 cm

(Angles in the same segment of a circle)

Internal radius r = 11·5 cm TSA of the pipe = 2πh(R + r) + 2π(R2 – r2)

1

= 2π(R + r) (h + R – r) = 2× =

× 44 × 24 × 21

= 3168 cm2.

In ∆ ABD, ∠DAB + ∠DBA + ∠ ADB = 180° ½ 60° + ∠DBA + 70° = 180° ½ ⇒ ∠DBA = 180° – (60° + 70°) = 180° – 130° = 50° ½   26. Given, Scale 25 m = 1 cm

(12·5 + 11·5) (20 + 12·5 – 11·5) ½

OR



 AF = 25 m =

= 1 cm

For cone,  

r1 = 5 cm and h = 20 cm

Let r2 be the radius of sphere, then Vol. of the recasted sphere = Vol. of the metallic cone 3

FB = 50 m =

πr2 =

= 2 cm ⇒

 AH  = 50 m =

= 2 cm

HE = 50 m =

= 3 cm

½

⇒ ∴

2

πr1 h

1

4r23 = r12h r23 = r2 = 5 cm.

1

34 ||

OSWAAL OSWAAL OSWAAL Karnataka CBSE(SSLC), (CCE), Mathematics Class –10

28. For hexahedron, F = 6, V  = 8, E = 12

1

IV. Solutions of three marks questions n = 25, which is odd   31. Here,

So, middle term =

term

=

Euler’s formula for solid F + V  = E + 2

½

6 + 8 = 12 + 2 ⇒

14 = 14, which is true

½

term

= 13th term T 13 = 12 ∴ ⇒ a + (13 – 1)d = 12 a + 12d = 20 ⇒ ∴ 

Hence, Euler formula is verified.

Sum, S25 =

[2a + (25 – 1)d]

=

29.

=

 M ↔ Z, L ↔ Y , K ↔ X 

KL ↔ XY , KM ↔ XZ, ML ↔ ZY  ½

The yield of ragi =

·

½

n(S) = 64C3

= = 64 × 21 × 31

½

On a chess board, there will be 32 black and 32 white squares. Let A be the event of selecting 2  black and 1 white or 1 black and 2 white, n( A) = 32C2 × 32C1 + 32C1 × 32C2

= 2 × 32C2 × 32C1 × 32

= 32 × 31 × 32 P( A) =

½

× 8100

= 2250 tons The yield sugarcane =

  30. There are 64 squares in a chess out of which 3 are to be selected, so



½ ½

× 8100

= 900 tons

Corresponding ratios are

=2×

½

1

Corresponding sides are

=

…(i) 1

[2a + 24d]

= 25[a + 12d] = 25[20] = 500   32. (a) The yield of rice

In ∆KLM  and ∆ XYZ, corresponding vertices are

½ (Given)

½

·

1

½

× 8100

= 1800 tons The yield of others=

× 8100

½

= 3150 tons ½ (b) From pie-chart increase in degree of ragi over rice = 100° – 40° = 60° ½ ∴

% increase =

× 100

= 16·66% ½   33. Let the three consecutive numbers be x, x + 1, x + 2. As per given condition, x2 + (x + 1)2 + (x + 2)2 = 149 ½ 2 2 2 ⇒ x  + x  + 2x + 1 + x  + 4x + 4 = 149 ½ 2 ⇒ 3x  + 6x + 5 – 149 = 0 ⇒ 3x2 + 6x – 144 = 0 x2 + 2x – 48 = 0 ⇒ ½ 2 ⇒ x  + 8x – 6x – 48 = 0 x(x + 8) – 6(x + 8) = 0 ⇒ ½

Sample Question Papers 35 |

OSWAAL CBSE (CCE), Mathematics

(x + 8) (x – 6) = 0 ⇒ x = – 8 or x = 6 x ≠ – 8 Since x =6 ∴ x + 1 = 7, x + 2 = 8 Hence, the three numbers are 6, 7, 8. OR Let altitude of the triangle be x cm, then  base is (x + 4) cm.

35 Class| –10



Area of triangle = 48 =



= ½

it’s ½

× base × altitude ½ × (x + 4) × x

=

½

½

Hence, Area of ∆DEF : Area of ∆ ABC = 1 : 4. 1 OR EF || CD In ∆ ADE, By B.P.T.,

=

In ∆ ABC,

DE || BC

By B.P.T.,

=

…(i) 1

…(ii) 1

96 = x2 + 4x ⇒ x2 + 4x – 96 = 0 2 ⇒ x  + 12x – 8x – 96 = 0 ½ ⇒x(x + 12) – 8(x + 12) = 0 ⇒ (x + 12) (x – 8) = 0 ½ x = 8 or x  = – 12 (not possible) ⇒ ∴ Altitude = 8 cm. ½ 34. Proof : In ∆ ABC, D, E and F are the mid-points of AB, BC and AC respectively. ⇒

From equations (i) and (ii), we have = ⇒

 AD2 = AF × AB.

1

  35. Let the distance of the cloud P   from the observation S is y.

FE joins the mid-points of  AC and BC. ∴ FE || AB and FE =

 AB

(∴ Mid-point theorem) Similarly,

DF || BC and DF =

BC

and

DE || AC and DE =

 AC

1

In ∆ ABC and ∆EFD, ∠ ABC = ∠EFD

(·.· opp. angles of paralellogram BEFD) ∠BCA = ∠FDE

(·.· opp. angles of parallelogram ECFD) ∴ by AA-criteria, ∆ ABC ~ ∆EFD

1

36 ||

OSWAAL OSWAAL Karnataka CBSE(SSLC), (CCE), Mathematics Class –10

Height of cloud above lake = PT  = H  R be the reflection of P, then TR = H 

½

In ∆PQS, tan α = H  – h = x tan α 



…(i) ½

In ∆SQR, tan β = H  + h = x tan β 



…(ii) ½

Apply [(ii) – (i)], we get 2h = x tan β – x tan α

½

x =



Now in ∆PQS, sec α =

½

 y = x sec α =



·

½

OR

Given,

sin θ – cos θ = (sin θ – cos θ)2 =

⇒  2

2

⇒ sin θ + cos θ – 2 sin θ cos θ = ⇒ ⇒

½

1 – 2 sin θ cos θ =

½

2 sin θ cos θ =

½

Now, (sin θ + cos θ)2 = sin2 θ + cos2 θ + 2 sin θ cos θ = 1 + 2 sin θ cos θ =1+   36. Let

In ∆PBQ, ⇒

3

=

4

7 4

½ ½ ½

∠BPQ = x°

BP = BQ (Radii of a same circle) ∠BQP = ∠BPQ (Angles opposite

to equal sides of a triangle) ∴

From (i) and (ii), we have ∠BQP = ∠ ARP ⇒ Corresponding angles are equal. ½  AR || BQ. ∴ Hence proved. ½ OR  AB || CD Given, ∴ ∠ ABC = ∠BCD (Alternate angles) ½ But, again ∠ ABC = 55° ∴ ∠BCD = 55° ½ Again ∠BOD = 2∠BCD (central angle is twice the inscribed angle) ∴ ∠BOD = 2 × 55° = 110° 1

∠BQP = x°



∠ ARP = x°

∠BOD + ∠BPD = 180°



110° + ∠BPD = 180°



∠BPD = 180° – 110° = 70°.

½ ½

V. Solutions of four marks questions   37. Let the common ratio of G.P. is r and first term is a, then G.P. is

a, ar, ar2, ar3, ar4, …

According to first condition, a × ar × ar2 × ar3 × ar4 = 1

 AP = AR ∠ ARP = ∠ APR



…(i) 1

Similarly, in ∆PAR ⇒

Since the tangents at B  and D intersect each other at point P.

…(ii) 1



a5r10 = 1



ar2 = 1

…(i) 1

Sample Question Papers 37 |

OSWAAL CBSE (CCE), Mathematics

37 Class| –10

According to second condition, a + ar + ar2 = a(1 + r + r2) =

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒

½

1 r

2

(1 + r + r2) =

4(1 + r + r2) 4 + 4r + 4r2 3r2 – 4r – 4 3r2 – 6r + 2r – 4 3r(r – 2) + 2(r – 2) (r – 2) (3r + 2)

= 7r2 = 7r2 =0 =0 =0 =0

2 1 ½

r = 2 or r =

Hence, common ratio = 2 and

·

1

OR Let the common ratio of G.P. be r and first term  be a, then G.P. is a, ar, ar2, ar3, … T 4 = 125 ⇒ ar3 = 125 …(i) 1

Sn =

When x =

then y =

From graph, when y = 5, we get x = + 3·1 or – 3·1 = ± 3·1



1

  39. In right ∆LMA, by Pythagoras theorem

 AL2 = AM2 + LM2 

½

…(i) ½

In right ∆LMB, by Pythagoras theorem LB2 = LM2 + MB2  ∴

=



=

1 + r3 = 126 r3 = 125 = (5)3 ⇒ ∴ r =5 From (i),a × 53 = 125 ⇒ 125a = 125 ⇒ a =1 ∴ Required G.P. is 1, 1 × 5, 1 × 5 2, 1 × 53, … i.e., 1, 5, 25, 125, …

…(ii) ½



  38.

 y =

1

In right ∆ ALB, by Pythagoras theorem  AB2 = AL2 + LB2 2

2

½ 2

2

2

⇒ ( AM + BM) = AM  + LM  + LM  + MB ½

½

2

2

⇒ AM  + BM  + 2 AM.BM

= 2LM2 + AM2 + BM2 1

x2



2LM2 = 2 AM.BM



LM2 = AM.BM 

…(iii) ½

Dividing equation (i) by (ii), we get The values of  y for corresponding values of x are given in the following table : 1

½

= =

 AM 2 + AM.BM BM 2 + AM.BM

,  using (iii)

½

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF