Origen e historia de la física

May 4, 2018 | Author: alfonsogutierrez | Category: Quantum Mechanics, Physics & Mathematics, Physics, Physical Sciences, Science
Share Embed Donate


Short Description

Download Origen e historia de la física...

Description

ORIGEN E HISTORIA DE LA FÍSICA Se conoce que la mayoría de las civilizaciones de la antigüedad trataron desde un principio de explicar el funcionamiento de su entorno; miraban las estrellas y pensaban cómo ellas podían regir su mundo. Esto llevó a muchas interpretaciones de carácter más filosófico que físico; no en vano en esos momentos a la física se le llamaba filosofía natural. Muchos filósofos se encuentran en el desarrollo primigenio de la física, como Aristóteles, Tales de Mileto o Demócrito, por ser los primeros en tratar de buscar algún tipo de explicación a los fenómenos que les rodeaban. A pesar de que las teorías descriptivas del universo que dejaron estos pensadores eran erradas, éstas tuvieron validez por mucho tiempo, casi dos mil años, en parte por la aceptación de la Iglesia Católica de varios de sus preceptos, como la teoría geocéntrica o las tesis de Aristóteles. Esta etapa, denominada oscurantismo en la ciencia, termina cuando Nicolás Copérnico, considerado padre de la astronomía moderna, en 1543 recibe la primera copia de su De Revolutionibus Orbium Coelestium. A pesar de que Copérnico fue el primero en formular teorías plausibles, es otro personaje al cual se le considera el padre de la física como la conocemos ahora. Un catedrático de matemáticas de la Universidad de Pisa a finales del siglo XVI cambiaría la historia de la ciencia, empleando por primera vez experimentos para comprobar sus aseveraciones: Galileo Galilei. Con la invención del telescopio y sus trabajos en planos inclinados, Galileo empleó por primera vez el método científico y llegó a conclusiones capaces de ser verificadas. A sus trabajos se les unieron grandes contribuciones por parte de otros científicos como Johannes Kepler, Blaise Pascal y Christian Huygens. Posteriormente, en el siglo XVII, un científico inglés reúne las ideas de Galileo y Kepler en un solo trabajo, unifica las ideas del movimiento celeste y las de los movimientos en la Tierra en lo que él llamó gravedad. En 1687, Sir Isaac Newton, en su obra Philosophiae Naturalis Principia Mathematica, formuló los tres principios del movimiento y una cuarta Ley de la gravitación universal, que transformaron por completo el mundo físico; todos los fenómenos podían ser vistos de una manera mecánica. El trabajo de Newton en el campo perdura hasta la actualidad; todos los fenómenos macroscópicos pueden ser descritos de acuerdo a sus tres leyes. Por eso durante el resto de ese siglo y el posterior siglo XVIII todas las investigaciones se basaron en sus ideas. De ahí que se desarrollaron otras disciplinas, como la termodinámica, la óptica, la mecánica de fluidos y la mecánica estadística. Los conocidos trabajos de Daniel Bernoulli, Robert Boyle y Robert Hooke, entre otros, pertenecen a esta época. Es en el siglo XIX donde se producen avances fundamentales en la electricidad y el magnetismo, principalmente de la mano de Charles-Augustin de Coulomb, Luigi Galvani, Michael Faraday y Georg Simon Ohm, que culminaron en el trabajo de James Clerk Maxwell de 1855, que logró la unificación de ambas ramas en el llamado electromagnetismo. Además, se producen los primeros descubrimientos sobre radiactividad y el descubrimiento del electrón por parte de Joseph John Thomson en 1897. Durante el Siglo XX, la física se desarrolló plenamente. En 1904 se propuso el primer modelo del átomo. En 1905, Einstein formuló la Teoría de la Relatividad especial, la cual coincide con las Leyes de Newton cuando los fenómenos se desarrollan a velocidades

pequeñas comparadas con la velocidad de la luz. En 1915 extendió la Teoría de la Relatividad especial, formulando la Teoría de la Relatividad general, la cual sustituye a la Ley de gravitación de Newton y la comprende en los casos de masas pequeñas. Max Planck, Albert Einstein, Niels Bohr y otros, desarrollaron la Teoría cuántica, a fin de explicar resultados experimentales anómalos sobre la radiación de los cuerpos. En 1911, Ernest Rutherford dedujo la existencia de un núcleo atómico cargado positivamente, a partir de experiencias de dispersión de partículas. En 1925 Werner Heisenberg, y en 1926 Erwin Schrödinger y Paul Adrien Maurice Dirac, formularon la mecánica cuántica, la cual comprende las teorías cuánticas precedentes y suministra las herramientas teóricas para la Física de la materia condensada. Posteriormente se formuló la Teoría cuántica de campos, para extender la mecánica cuántica de manera consistente con la Teoría de la Relatividad especial, alcanzando su forma moderna a finales de los 40, gracias al trabajo de Richard Feynman, Julian Schwinger, Tomonaga y Freeman Dyson, quienes formularon la teoría de la electrodinámica cuántica. Asimismo, esta teoría suministró las bases para el desarrollo de la física de partículas. En 1954, Chen Ning Yang y Robert Mills desarrollaron las bases del modelo estándar. Este modelo se completó en los años 1970, y con él fue posible predecir las propiedades de partículas no observadas previamente, pero que fueron descubiertas sucesivamente, siendo la última de ellas el quark top. Los intentos de unificar las cuatro interacciones fundamentales han llevado a los físicos a nuevos campos impensables. Las dos teorías más aceptadas, la mecánica cuántica y la relatividad general, que son capaces de describir con gran exactitud el macro y el micromundo, parecen incompatibles cuando se las quiere ver desde un mismo punto de vista. Es por eso que nuevas teorías han visto la luz, como la supergravedad o la teoría de cuerdas, que es donde se centran las investigaciones a inicios del siglo XXI.

Física antes de los griegos Como ya sabemos la física es la ciencianatural ciencianatural que estudia los fenómenos físicos, propiedades del espacio, tiempo, materia, energía y sus interacciones. Los chinos, los babilonios, los egipcios y los mayas observaron los movimientos de los planetasy planetas y lograron predecir los eclipses, pero no consiguieron encontrar un sistema subyacente que explicara el movimiento planetario. Las especulaciones de los filósofosgriegos filósofosgriegos introdujeron dos ideas fundamentales sobre los componentes del Universo. Al inicio de los tiempos existieron los llamados fenómenos naturales, como la lluvia, eclipses, el día, erupciones volcánicas, truenos, o caída libre, fue entonces que los humanos, al darse cuenta de esto fueron haciéndose preguntas de cómo ocurría eso, tratando de explicar y formular explicaciones que dieran razones para explicar dichos sucesos. Con el paso del tiempo hubieron pensadores que se enfocaban a observar estos fenómenos y así tratar de explicarlos y así fueron pasando muchos años, eran muchísimas las teoríasfallidas teoríasf allidas de estos observadores, pero aun así seguían intentando dar respuesta lógica de tales sucesos. Cabe señalar que estos primeros experimentosson experimentos son la base de la física actual. Entre las primeras civilizaciones que dieron margen a primeros experimentos son: chinos, egipcios, mayas, babilonios, los cuales trataron de explicar los días y estaciones del año, creando así sus propios calendarios, otras civilizaciones alcanzaron grandes creaciones en tecnologías como metalurgia, construcción de herramientas y edificaciones.

Es así que empezando a entender los fenómenos naturales se dieron cuenta que podían aprovecharlos de alguna u otra forma, así empezaron a hacer los calendarios, pirámides, y toda clasede clasede trabajos.

Física durante los griegos Los griegos hicieron grandes aportaciones a la física, tanto en sus observaciones como en los conocimientos, pero ellos cometieron el error de no haber experimentado a la realidad, y así no fueron comprobadas sus leyes. Un ejemplo de un filósofo matemático griego es el de Pitágoras, el cual creía en que la tierraera tierraera circular, famoso sobre todo por el teorema de Pitágoras, afirmo que todo era matemáticas.

Algunos de sus descubrimientos son: las ternas pitagóricas, sólidos regulares, números perfectos, números irracionales, medias y números figurados. Esta época fue muy importante y más para los griegos, ya que estos observaban los fenómenos y hacían sus conclusiones, otro científico importante es empédocles. Empédocles fue un político y filosofo griego el cual tenía varias de las teorías raíces, una de ellas era la de la evolución orgánica, la cual suponía que en un principio había numerosas partes de hombres y animales distribuidas al azar, juntándose por amor y odio.

Aristóteles: fue uno de los más influyentes filósofos de la antigüedad, fue el formalizador de la economía, astronomía, anatomía y biología. Sus influencias son Platón, Sócrates, y Heráclito, los experimentos de los ya mencionados le sirvieron a Aristóteles para reafirmar hipótesis, y así descubrir si era verdad o no.

Aristóteles propuso la teoría de la generación espontanea la cual propone el origen espontaneo de peces e insectos a partir del rocío, la humedad y el sudor. Otro filósofo fue Arquímedes: Matemático griego, físico, ingeniero, inventor y astrónomo, es considerado uno de los filósofos más importantes de la época clásica. Entre sus conocimientos y estudios están la hidrostática, estática y la explicación del principio de la palanca.

Ideo el principio de Arquímedes: leyfísica leyfísica que establece que cuando un objeto se sumerge total o parcialmente en un líquido, este experimenta un empuje hacia arriba igual al peso del líquido desalojado. La tarea de hacer experimentos o mediciones no fue nada fácil, pero como ya pudimos ver, los griegos hicieron un papel importante en trabajar bajo las leyes de fenómenos naturales, algunos no mencionados son: Demócrito, galileo, newton y Epicuro.

La Física en la Edad Media Con el paso de los años y a la llegada de la edad media se puede decir que no fue una gran época de hallazgos en ningún campo de occidente, lo trascendente fue que los escritos de Aristótelesfueron Aristótelesf ueron traducidos, aproximadamente en 1500, y así se buscaría mejorar el método científico y la búsqueda de nuevas teorías que derrumbarían el sistema aristotélico. Los experimentos matemáticos en esta época sirvieron bastante en la idea del método deductivo. Un filosofo que realizo sus estudios en esta época fue bacón, el cual fue un continuador del método inductivo, este reafirmo el valor de la cienciaexperimental, cienciaexperimental, y así a lo contrario de Aristóteles cambia la manera de ver a los fenómenos naturales. Esta época es considerada la etapa oscura de la humanidad, debido a que si alguien se dedicaba a hacer explicar fenómenos en la naturalezaera naturalezaera considerado pagano. Algunos de los científicos que hicieron experimentos a escondidos por el temor de ser castigados fueron: Mendel y Da Vinci. Gregorio Mendel fue un monje católico el cual describió las llamadas leyes de Mendel, que rigen la herencia genética, inicialmente realizo cruces de semillas, ahí estudiando las características de genes.

Leyes de mendel: 





Primera ley, o Principio de la uniformidad: "Cuando se cruzan dos individuos de raza pura, los híbridos resultantes son todos iguales." individuos homocigotas, uno dominante (AA) y otro recesivo (aa), origina sólo individuos heterocigotas, es decir, los individuos de la primera generación filial son uniformes entre ellos (Aa). Segunda ley, o Principio de la segregación: "Ciertos individuos son capaces de transmitir un carácter aunque en ellos no se manifieste". El cruce de dos individuos de la F1 (Aa) dará origen a una segunda generación filial en la cual reaparece el fenotipo "a", a pesar de que todos los individuos de la F1 eran de fenotipo "A". Esto hace presumir a Mendel que el caracter "a" no había desaparecido, sino que sólo había sido "opacado" por el caracter "A", pero que al reproducirse un individuo, cada caracter segrega por separado. Tercera ley, o Principio de la transmisión independiente : Esta ley hace referencia al cruce poli híbrido (monohíbrido: cuando se considera un carácter; polihibrido: cuando se consideran dos o más caracteres). Mendel trabajó este cruce en guisantes, en los cuales las características que él observaba ( color de la semilla y rugosidad de su superficie) se encontraban en cromosomas separados. De esta manera, observó que los caracteres se transmitían independientemente unos de otros. Esta ley, sin embargo, deja de cumplirse cuando existe vinculación (dos genes están en locus muy cercanos y no se separan en la meiosis). meiosis).

La edad media no tuvo muchas buenas nuevas, ya que la iglesiaordenaba iglesiaordenaba la quema viva de todo aquel que estudiaba la física, por eso los grandes inventores italianos dejaron de ser productivos, y la ciencia se paso a Alemania, Holanda e Inglaterra.

La Física en el Renacimiento A la llegada del renacimiento los sabios griegos emigran a Italiacon Italiacon los manuscritos de platón y Aristóteles. Los hombres habían estado convencidos del fin de una época, y la ruptura con el mundo medieval. El hombre descubre lo que es la libertad y la inteligencia, junto con la corriente del pensamiento de esa época la cual es el humanismo, el cual trata de un movimiento que buscaba mediante la enseñanza de gramática, historia, poesía y filosofía al cultivo de aprendizajedel aprendizaje del hombre El renacimiento también fue una etapa en la cual se precipitan los grandes descubrimientos, y no solo el de América, sino científicos: Nicolás Copérnico: el cual afirma que la tierragira tierragira alrededor del sol. Galileo: confirma el giro de la tierra alrededor del sol y descubre leyes matemáticas de la caída de los cuerpos. Kepler: expone en 1618 las 3 leyes del movimiento planetario. Servet: el cual concibe por primera vez la idea de la circulación de la sangre. En esta épocael espíritu humano se dedicó a observar la naturaleza y a buscar su lugar en ella. Ante él se abrió un reino lleno de enigmas y secretos, un nuevo mundo, un cosmos de belleza extraordinaria en el que se intuía un orden sublime. Si antes se buscaba comprender la naturaleza desde dentro, como un todo y siempre bajo la perspectiva del destino humano en el más allá, ahora la mirada se dirige hacia la abundancia de fenómenos, que, por supuesto, se siguen considerando obra de Dios. Si antes se había mirado hacia abajo, hacia la totalidad del mundo físico, desde el más allá, ahora el hombre se situaba entre las cosas, y desde ellas alzaba la mirada al cielo. El punto central del pensamiento se trasladó de lo sobrenatural a lo natural. Junto a la revelación de Dios por la palabra, surgió la revelación de Dios a través de su obra; junto a las Santas Escrituras apareció el libro de la naturaleza, cuya interpretación se convertía ahora en la tarea principal. Explicar la palabra de Dios era competencia de los teólogos; examinar su obra incumbía a los estudiosos de los fenómenos naturales. Comenzaba una secularizaciónde la ciencia y de la filosofía, y el establecimiento de estos nuevos objetivosfavoreció objetivosf avoreció la emancipación paulatina y definitiva del hombre con respecto a la Iglesia, que había acaparado hasta ahora su vida intelectual. La Física en el periodo clásico En el siglo XIX fue donde se producen avances fundamentales en la electricidad y el magnetismo, también se producen descubrimientos de radioactividad y el descubrimiento del electrón. Durante el siglo XX la física se desarrollo plenamente: En 1904 se propuso el primer modelo atómico En 1905 Einstein formulo la teoríade teoríade la relatividad especial el cual coincide con las leyes de newton y características de la velocidad. En 1915 se formula la teoría de la relatividad general la cual sustituye la ley de gravitación de newton.

La Física en el periodo moderno La definición de física separa a la "moderna" de la "antigua", la primera se refiere particularmente en la interacción entre partículas la cual será observada con la ayuda de un microscopio. A través de este enfoque se han obtenido diferentes avances tecnológicos en infinidad de campos; por ejemplo, la termodinámicadesarrollada termodinámicadesarrollada en el siglo XIX, es la encargada de establecer y cuantificar la base de las ingenierías mecánicas y químicas. Los conceptos termodinámicos como el volumen, la temperatura y la presión de un gas son necesarios para entender el funcionamiento de los sistemasquímicos sistemasquímicos e industriales que rigen en la actualidad. Durante el siglo XIX los físicos solían ser a la vez filósofos, matemáticos, biólogos, químicos o ingenieros; actualmente la física se ha desarrollado a tan grandes escalas que los físicos modernos limitan su atención sólo a dos ramas de su ciencia. Los descubrimientos más preponderantes de esta época en electricidad y magnetismo forman hoy parte del campo de ingenieros de comunicaciones y electrónicos ya que los mismos poseen propiedades de este ámbito. Hacia 1880 la física presentaba un panorama distinto ya que la mayoría de los fenómenos podían explicarse mediante la mecánicade mecánica de Newton, la teoría electromagnética de Maxwell y la termodinámica de Boltzmann, sólo quedaba resolver unos pocos inconvenientes. La explicación de los espectros de emisión y absorción de los gasesy sólidos y la determinación de las propiedades del éter eran fenómenos revolucionarios que estallaron en 1895 cuando Wilhelm Roentgen descubrió los rayos X; luego, Joseph Thompson descubrió el electrón y en 19896 Antoine Becquerel la radiactividad. Estos descubrimientos completaron lo que se creía "completo" y muchos de ellos desafiaban todas las teorías disponibles. Algunos de los descubrimientos más importantes de la física en el periodo moderno: 1895: Se descubren los rayos X y se estudian sus propiedadesEl físico alemán Wilhelm Röntgen logra la primera radiografía experimentando con un tubo de rayos catódicos que había forrado en un grueso papel negro. Se da cuenta que el tubo además emitía unos misteriosos rayos a los que llamó X, estos tenían la propiedad de penetrar los cuerpos opacos. Por este aporte fue galardonado con el primer Premio Nobel de Física en 1901 1905: La Teoría de la Relatividad redefine el tiempoy tiempoy el espacio Albert Einstein publica su Teoría de la Relatividad Especial, la cual postula que nada puede moverse más rápido que la luz, que el tiempo y el espacio no son absolutos, y que la materiay la energía son equivalentes. (E=mc2) 1913: Se expone el modelo de átomo de Niels Bohr, físico danés, presenta su modelo atómico en que los electrones giran a grandes velocidades en órbitas circulares alrededor del núcleo ocupando la órbita de menor energía posible, esto es, la órbita más cercana al núcleo. El electrón puede "subir" o "caer" de nivel de energía, para lo cual necesita "absorber" o "emitir" energía, por ejemplo en forma de radiación o de fotones. 1930: Se inventa el plásticoEl químico alemán Hermann Staudinger muestra cómo las pequeñas moléculas forman cadenas de polímeros, estructura fundamental del plástico, y sugiere cómo hacer polímeros. En la Compañía E.I. du Pont de Nemours, el químico norteamericano Wallace Hume Carohers desarrolla el nylon y la goma sintética.

1932: Se descubre el neutrónEl físico británico James Chadwick bombardea berilio con núcleos de helio, y encuentra el neutrón, el segundo constituyente del núcleo atómico  junto con el protón. protón. Esta partícula partícula eléctricamente eléctricamente neutra puede puede ser usada usada para para bombardear y probar el núcleo. 1969: El ser humano llega a la LunaEn una proeza que dio inicio a la exploración humana directa de los cuerpos astronómicos, el astronauta estadounidense Neil Armstrong se convierte en el primer ser humano que camina en la Luna. Experimentos cruciales Galileo: La caída de los cuerpos con un plano inclinado en contra de lo que planteaba Aristóteles que creía que los objetos más pesados caían más de prisa que los ligeros. Realizó experimentos con el plano inclinado para llegar a la conclusión, que «los objetos se aceleran independientemente de su masa» ya que en un plano inclinado sólo ralentiza el movimiento de caída (disminuye el valor de la aceleración) pero no altera su naturaleza (la aceleración sigue siendo constante). En sus experimentos Galileo dejaba rodar esferas de distinta masa por un plano inclinado y de sus resultados concluyó además que partiendo del reposo, con la bola parada en el punto más alto del plano inclinado, la distancia recorrida era proporcional al cuadrado del tiempo transcurrido. transcurrido. Newton: Descomposición de la luz solar mediante un prisma. Isaac Newton nació el año que murió Galileo. Graduado por el Trinity College en Cambridge en 1665, estuvo escondido en casa durante un par de años esperando el fin de la plaga. El saber común sostenía que la luz blanca era la forma más pura (otra vez Aristóteles) y que la luz coloreada tenía por tanto que ser alterada de alguna forma. Para probar esta hipótesis, Newton dirigió un haz de luz solar a través de un prisma de cristal y mostró que esta se descomponía en un fundido espectral sobre la pared. La gente ya conocía los arcos iris, por supuesto, pero eran considerados sólo como preciosas aberraciones. En realidad, Newton concluyó, que eran esos colores - rojo, naranja, amarillo, verde, azul, añil, violeta y las graduaciones intermedias - los que eran fundamentales. Lo que parecía simple en su superficie, un haz de luz blanca, era bellamente complejo si uno lo miraba más detenidamente. En los anteriores experimentos nos podemos dar cuenta que estos filosofos hicieron predicciones muy bien acertadas y así realizaron teorías, hipó tesis y demas en sus experimentaciones en el ámbito de la física.

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF