Open Pit Mine Planning Handbook.pdf

August 8, 2017 | Author: JhônatanColana | Category: Economic Geology, Crystalline Solids, Minerals, Mining, Geology
Share Embed Donate


Short Description

Download Open Pit Mine Planning Handbook.pdf...

Description

Open Pit Mine Planning Handbook

OPEN PIT MINE PLANNING HANDBOOK Chapters

1.

Geology and modelling

Orebody modelling

2.

Geostadistic

Kriging y and geological resource estimation

3.

Final Pit

Mineral resource and Ore reserve estimation

4.

Phase design

Phase design theory

5.

Scheduling

Life of mine and dump design

6.

Mining equipment

Haul Road design by MineHaul

7.

NPV Scheduler

Sequential extraction optimal (optional)

8.

Whittle Four – X

Milawa algorithm (optional)

9.

Conditional Simulation

Modelling Under Uncertainty

1 AEGMIN

1.

GEOLOGY AND MODELLING – OREBODY MODELLING

1.1

Project creation

The base of mining business begins with drillholes and orebody modelling, so we are going to create our project.

2 AEGMIN

3 AEGMIN

4 AEGMIN

5 AEGMIN

6 AEGMIN

:

1.2

Database

So we have 4 basics files: Header, Assays, Litho and Survey.

7 AEGMIN

8 AEGMIN

9 AEGMIN

10 AEGMIN

11 AEGMIN

We create file DAT201.IA with main data, then we create file 11 and 12 with 10211

12 AEGMIN

13 AEGMIN

We load data to file 11 and 12 with 20101

14 AEGMIN

15 AEGMIN

Is very important to have information of rock, alteration and mineralization.

El modelo clásico de Lowell y Gilbert (1970) Economic Geology V.65, p. 373-407; Basado en el estudio de los depósitos de San Manuel - Kalamazoo. • Zonación de tipos de alteración hidrotermal relacionados a intrusiones ígneas: Zona potásica, en el núcleo del sistema: biotita, ortoclasa y cuarzo. Zona Fílica (Sericítica), envuelve al núcleo potásico: cuarzo, sericita y pirita (hasta 20% del volumen). Zona argílica, externa a la sericítica: minerales de arcilla, montmorillonita, clorita, pirita. Zona propilítica, halo de alteración más externo, normalmente fuera del cuerpo de mena económica: clorita, epidota, albita, calcita. A niveles profundos reconocen un núcleo de cuarzo, sericita, clorita, feldespato potásico y una zona externa de clorita, sericita, epidota, magnetita. • Zonación de mineralización hipógena (primaria): Núcleo de baja ley: bajo contenido de calcopirita, pirita, molibdenita; magnetita en porción profunda. Zona de mena, formando un cilindro en la parte externa de la zona de alteración potásica e interna de la zona de alteración sericítica: calcopirita (1-3%), pirita (1%), molibdenita (0,03%). Zona de Pirita, corresponde ~ zona fílica: pirita (10%), calcopirita (0.1-3%), trazas de molibdenita. Zona de baja pirita, ~ coincidente con zona propilítica: 2% pirita. Zona Periférica: calcopirita, galena, esfalerita, Au, Ag.

16 AEGMIN

Esquema general de pórfido cuprífero indicando la zona de mena (ore zone) en torno a un núcleo de baja ley (low grade core), el halo de pirita diseminada (pyrite halo) y la aureola de alteración hidrotermal hipógena.

Distribución de zonas de alteración hidrotermal en un pórfido cuprífero de acuerdo al modelo clásico de Lowell y Gilbert (1970). Núcleo de alteración potásica rodeado de alteración fílica (cuarzo-sericítica), alteración argílica local en torno a zona fílica y halo externo de alteración propilítica.

17 AEGMIN

Distribución de minerales de mena en un pórfido cuprífero típico. py = pirita, cpy = calcopirita , mo = molibdenita , mt = magnetita.

Zonación por efectos supergenos en un pórfido cuprífero: Gossan o sombrero de hierro en la parte superior (minerales oxidados de hierro), seguido en profundidad por una zona lixiviada (leached zone), luego de una zona oxidada (minerales oxidados de cobre), luego una zona de enriquecimiento supergeno (sulfuros secundarios) y la zona primaria o hipógena en profundidad.

18 AEGMIN

1.3

Drillhole view

19 AEGMIN

20 AEGMIN

21 AEGMIN

1.4

Load Topography

22 AEGMIN

23 AEGMIN

So we have contour of topography each 1 m, then we triangulate.

24 AEGMIN

1.5

Grid set creation

We have drillholes with a peuso mesh of 50x50m.

We create grid set NS

25 AEGMIN

The same way for EW and Bench

26 AEGMIN

27 AEGMIN

1.6

File 13 creation

28 AEGMIN

29 AEGMIN

30 AEGMIN

31 AEGMIN

32 AEGMIN

33 AEGMIN

34 AEGMIN

1.7

File 08 and 09 composite files.

Create file 08 and 09 with this procedure 10209

35 AEGMIN

After of that follow the procedure 50101

36 AEGMIN

37 AEGMIN

38 AEGMIN

39 AEGMIN

1.8

Geologic modelling

We model the ore body, with cross section NS, EW and by benches. We start EW cross sections.

40 AEGMIN

41 AEGMIN

42 AEGMIN

And finally we have EW sections of primary zone

43 AEGMIN

Now we continue with NS sections

44 AEGMIN

Now we continue with bench sections but before create a guide with triangulation of each section

Only in this way you can see where is the section in every bench.

45 AEGMIN

46 AEGMIN

47 AEGMIN

PZ SZ LZ DYKE SILL

201 202 203 204 205

Primary zone Secondary zone Leach zone Dyke Sill

We have designed primary, secondary and leach zone. We create material for each zone

48 AEGMIN

49 AEGMIN

The same for each zone 1.9

Block model creation

50 AEGMIN

51 AEGMIN

We add topography

We are going to codify in the block model primary, secondary and leach zone.

52 AEGMIN

53 AEGMIN

54 AEGMIN

55 AEGMIN

56 AEGMIN

1.10

Backload composites

57 AEGMIN

We clone 8 and 9 file with new item called MIN2, where will save backload mineral zones from block model.

58 AEGMIN

59 AEGMIN

60 AEGMIN

2.

GEOSTATISTIC – KRIGING AND GEOLOGY RESOURCE ESTIMATION

2.1

Variograms

This analysis should be very detailed; we are going to use the next software called MSDA

61 AEGMIN

62 AEGMIN

63 AEGMIN

64 AEGMIN

We choose Variograms 0;0, 150;0, 240;30 and 330;0

65 AEGMIN

66 AEGMIN

67 AEGMIN

68 AEGMIN

69 AEGMIN

70 AEGMIN

The same way for estimation domain 02 We choose Variograms 180;30, 210;60, 240;60, 270;30, 300;30, 330;0,

71 AEGMIN

You have to remember the elements: Au, Ag, PB, Zn, As and Mo, but for RMR and SG is not necessary to do a variografic analysis because you´ll use inverse distance weighted method for interpolation.

2.2

Kriging

We use procedure 62401

72 AEGMIN

73 AEGMIN

74 AEGMIN

75 AEGMIN

76 AEGMIN

The same for primary zone but you have to use variograma VCU201.

2.3

Inverse Distance Weighted

77 AEGMIN

78 AEGMIN

79 AEGMIN

2.4

Geological Resource classification

80 AEGMIN

81 AEGMIN

82 AEGMIN

83 AEGMIN

84 AEGMIN

Además necesitamos clasificar nuestras reservas en probadas, probables y posibles. Con respecto a las restricciones del cálculo de los Recursos, anteriormente se han tomado como parámetros distancias mínimas de cierre krigeados y número de compósitos (comp. de 15 m.) para la estimación de los bloques de 20x20x15 m. por el método geoestadístico (Kriging Ordinario): Para recursos Geológicos se había considerado Probado, Probable y Posible de acuerdo al siguiente criterio: Probado: La distancia de cierre de los compósitos al centro del bloque está dentro de los 60 m. y el número de compósitos debe ser mayor o igual a 3 compósitos en los cálculos de kriging ordinario. Probable: Criterio 1: La distancia de cierre de los compósitos al centro del bloque está dentro de los 60 m. y el número de compósitos es igual a 2 compósitos en los cálculos de kriging ordinario. Criterio 2: La distancia de cierre de los compósitos al centro del bloque está entre los 60 m y 110 m. y el número de compósitos es igual o mayor a 2 compósitos en los cálculos de kriging ordinario. Posible: La distancia de cierre de los compósitos al centro del bloque están de 110 m. a 200 m. y el número de compósitos es mayor o igual a 2 compósitos de los cálculos de kriging ordinario. En nuestro caso clasificaremos las reservas por distancias del bloque a la muestra y por el número de muestras que toma el bloque para obtener su contenido de cobre. Asi que haremos un multirun

85 AEGMIN

86 AEGMIN

87 AEGMIN

88 AEGMIN

89 AEGMIN

90 AEGMIN

91 AEGMIN

92 AEGMIN

93 AEGMIN

94 AEGMIN

95 AEGMIN

96 AEGMIN

3.

FINAL PIT - MINERAL RESOURCE AND ORE RESERVE ESTIMATION

3.1

Model Preparation

Before to find the final pit, we have to prepare the model. We are going to codify MAT1 = 1 Primary zone, MAT1 = 2 Secondary Zone and MAT1 = 3 Waste,

Model Preparation MAT1 = 1 Primary sulphide

97 AEGMIN

98 AEGMIN

99 AEGMIN

Model Preparation MAT1 = 2 Secondary sulphide

100 AEGMIN

101 AEGMIN

3.2

GSF creation

102 AEGMIN

103 AEGMIN

3.3

Geotechnical Parameters

We have four geotechnical zones with the following slope angles

104 AEGMIN

We codify in the model MAT2, but first we create materials for each Structural Domain or Geotechnical Zone

105 AEGMIN

106 AEGMIN

Then the solids of geotechnical zones we put the code

Then we codify in the item MAT2

107 AEGMIN

108 AEGMIN

After we extract Slope Code from Model, with this procedure you add information of geotechnical zones for MSOPIT, so we are going to use complex angles.

109 AEGMIN

110 AEGMIN

3.4

MSOPIT – Economic Planner – Mineral Resource Estimation

111 AEGMIN

112 AEGMIN

113 AEGMIN

Primary zone

114 AEGMIN

Secondary zone

Waste

115 AEGMIN

116 AEGMIN

117 AEGMIN

118 AEGMIN

119 AEGMIN

We suppose our cutoff grade is 0.14% Cut

Then we obtain a solid with the original topography.

120 AEGMIN

Then we get the final report

121 AEGMIN

122 AEGMIN

123 AEGMIN

124 AEGMIN

Mineral Resourse Estimation Cutoff 0.14% CUT Tonnage CUT MO AU AG Measured 374,483,852 0.418 0.017 0.017 5.988 Indicated 203,501,367 0.408 0.017 0.017 5.471 Inferred 77,618,502 0.420 0.017 0.016 5.019 Total 655,603,721 0.415 0.017 0.017 5.713

125 AEGMIN

3.5

MSOPIT – Economic Planner – Pit shell for Ore Reserve Estimation

126 AEGMIN

127 AEGMIN

3.6

Final Pit Design – Ore Reserve Estimation

We use Pit Expansion Tools

128 AEGMIN

129 AEGMIN

130 AEGMIN

131 AEGMIN

132 AEGMIN

133 AEGMIN

134 AEGMIN

135 AEGMIN

136 AEGMIN

137 AEGMIN

138 AEGMIN

139 AEGMIN

4.

PHASE DESIGN - THEORY

4.1

Phase Design – Economic Planner

Mineral Desmonte SR Total Material

TM 541,994,498 598,236,010 1.10 1,140,230,508

Mineral por Fase años por fase 135,498,624.50 3.7 Material por Fase 285,057,627 Mill dia 120,000 100,000 80,000

Planta año 43,800,000 36,500,000 29,200,000

Vida 12.37430361 años 14.84916433 años 20.48753459 años

Mining by year daily mining 76,787,520 210,376.77 2 palas 4100 o 495HR 1 cargadorLT 2350 o excavadora CAT 6060

año 1 año 2 - 15

mineral 36,500,000 36,500,000

waste 12,775,000 45,625,000

Total 49,275,000 82,125,000

4 fases que abastesca 3.7 años

real mining by year real daily mining 82,125,000.00 225,000.00

daily 135,000 225,000

Shovel 495HR 4100 XPC Hydraulic Shovel CAT 6060 90,000 45,000 180,000 45,000

140 AEGMIN

141 AEGMIN

142 AEGMIN

143 AEGMIN

144 AEGMIN

145 AEGMIN

146 AEGMIN

147 AEGMIN

148 AEGMIN

149 AEGMIN

4.2

Operative Phase Design

Based on nested pits from different copper price, so we design operative phase using Pit Expansion Tools

150 AEGMIN

151 AEGMIN

Phase 01 Phase 02 Phase 03 Phase 04 Total

kt 113,461 101,173 158,196 170,515 543,345

Total min cut au ag 0.59 0.02 6.4 0.37 0.02 6.4 0.37 0.02 5.6 0.37 0.02 5.3 0.418 0.01694 5.817713

recu 86.4 87.5 85.2 87.7

reau 39.2 39.7 38.7 39.9

reag 64 64 63 65

lastre kt 45,564 46,373 168,423 314,037 574,397

Total kt 159,025 147,546 326,619 484,552 1,117,742

REM 0.40 0.46 1.06 1.84 1.06

Años Cu Fino Mineral kt 3.1 579.7 2.8 329.5 4.3 499.6 4.7 557.6 14.9 1,966.4

% Ingreso Fino por Cu MUS$ 29.5 2,940 16.8 1,671 25.4 2,533 28.4 2,827 100 9,971

Costo MUS$ 1,145 1,032 1,784 2,158 6,119

Cu Fino Indice (Lb) (US$/lb) 1,278,048,821 1.40 726,452,815 0.88 1,101,396,427 0.68 1,229,299,321 0.54 4,335,197,385

152 AEGMIN

4.3

Pre – Scheduling – MSVALP

Before MSVALP, we introduce phase design topography in File from PIT30 (initial) to PIT34

153 AEGMIN

154 AEGMIN

155 AEGMIN

156 AEGMIN

157 AEGMIN

158 AEGMIN

159 AEGMIN

160 AEGMIN

161 AEGMIN

162 AEGMIN

5.

SCHEDULING – LIFE OF MINE AND DUMP DESIGN

5.1

Phase preparation

For phase preparation we have to follow the steps. Create this csv file with 20 classes called ZONE.CSV

163 AEGMIN

164 AEGMIN

165 AEGMIN

166 AEGMIN

167 AEGMIN

Then we create partial files of every operative phase design

168 AEGMIN

169 AEGMIN

170 AEGMIN

171 AEGMIN

172 AEGMIN

With this last run we create scd files from partial files.

173 AEGMIN

5.2

MSSP –Scheduling

174 AEGMIN

175 AEGMIN

176 AEGMIN

177 AEGMIN

178 AEGMIN

179 AEGMIN

180 AEGMIN

181 AEGMIN

182 AEGMIN

183 AEGMIN

184 AEGMIN

185 AEGMIN

186 AEGMIN

187 AEGMIN

Now we need to see the scheduling 3D.

188 AEGMIN

189 AEGMIN

190 AEGMIN

Period 01

191 AEGMIN

Period 02

Period 03

192 AEGMIN

Period 04

Period 05

193 AEGMIN

Period 06

Period 07

194 AEGMIN

Period 08

Period 09

195 AEGMIN

Period 10

Period 11

196 AEGMIN

Period 12

Period 13

197 AEGMIN

Period 14

Period 15

198 AEGMIN

5.3

Final waste dump design

199 AEGMIN

200 AEGMIN

6.

MINING EQUIPMENT - HAUL ROAD DESIGN BY MINEHAUL

6.1

Data preparation

We do contours from every solid phase each 15 m.

And original topography 15m and 3m.

201 AEGMIN

202 AEGMIN

203 AEGMIN

6.2

Mine Haul

204 AEGMIN

205 AEGMIN

206 AEGMIN

207 AEGMIN

208 AEGMIN

209 AEGMIN

210 AEGMIN

211 AEGMIN

212 AEGMIN

213 AEGMIN

214 AEGMIN

215 AEGMIN

216 AEGMIN

217 AEGMIN

v

218 AEGMIN

v

219 AEGMIN

v

220 AEGMIN

v

221 AEGMIN

222 AEGMIN

223 AEGMIN

224 AEGMIN

225 AEGMIN

226 AEGMIN

Fix these periods for simulation, find a destination for these tonnages. Our first calculation of number of trucks is

227 AEGMIN

After correction we have this

228 AEGMIN

And theorical number trucks are

229 AEGMIN

7.

NPV SCHEDULER – SEQUENTIAL EXTRACTION OPTIMAL

7.1

New Project

For NPV Scheduler we have to follow the steps.

We create a new model with extension npv, with MAT3 and MAT4 added. Where MAT3 is only mineral from secondary and primary zone, MINN = 201 and 202 and CONF=1 and 2

230 AEGMIN

231 AEGMIN

232 AEGMIN

233 AEGMIN

234 AEGMIN

235 AEGMIN

236 AEGMIN

237 AEGMIN

7.2

Economic Model

238 AEGMIN

239 AEGMIN

240 AEGMIN

241 AEGMIN

242 AEGMIN

243 AEGMIN

7.3

Pit Final

244 AEGMIN

245 AEGMIN

246 AEGMIN

247 AEGMIN

7.3

Phase Design

248 AEGMIN

249 AEGMIN

250 AEGMIN

251 AEGMIN

7.4

Scheduling

252 AEGMIN

253 AEGMIN

254 AEGMIN

255 AEGMIN

256 AEGMIN

257 AEGMIN

258 AEGMIN

259 AEGMIN

260 AEGMIN

261 AEGMIN

262 AEGMIN

263 AEGMIN

8.

WHITTLE FOUR-X - MILAWA ALGORITHM

8.1

New Model from Minesight for Whittle FX

For Whittle FX we clone a model to make some modifications

264 AEGMIN

265 AEGMIN

266 AEGMIN

267 AEGMIN

Then, export the model with this run

268 AEGMIN

269 AEGMIN

8.2

Whittle Four – X

270 AEGMIN

271 AEGMIN

272 AEGMIN

273 AEGMIN

Reblock the model 2x2x1

274 AEGMIN

275 AEGMIN

276 AEGMIN

277 AEGMIN

278 AEGMIN

279 AEGMIN

280 AEGMIN

281 AEGMIN

282 AEGMIN

283 AEGMIN

284 AEGMIN

285 AEGMIN

8.3

Milawa algorithm

286 AEGMIN

287 AEGMIN

288 AEGMIN

According to Milawa Algorithm Pit 24 is the highest NPV, then this is the Optimum Pit, and the Pit36 with RF =1 is the Ultimate Pit, you can see graphic difference between this two PITS

289 AEGMIN

9.

CONDITIONAL SIMULATION - MODELLING UNDER UNCERTAINTY

9.1

Conditional Simulation

We create a new model call min15.sim, where we are going to save simulations only 25 of CU, but we can save 50, 100 or more.

290 AEGMIN

We do declustering

291 AEGMIN

292 AEGMIN

We create the normal score with thee information of composites

293 AEGMIN

294 AEGMIN

295 AEGMIN

296 AEGMIN

297 AEGMIN

Then we do Gaussian transformation with MSDA

298 AEGMIN

299 AEGMIN

300 AEGMIN

301 AEGMIN

Then model variograms for 201 and 202 zone

302 AEGMIN

Then we model the variogram 3D for 201 and 202

303 AEGMIN

304 AEGMIN

305 AEGMIN

306 AEGMIN

307 AEGMIN

308 AEGMIN

309 AEGMIN

310 AEGMIN

311 AEGMIN

312 AEGMIN

9.2

Post - Simulation

Mean,

 

Variance,

∑  



 

Standard deviation,



Where number of simulations

∑  

 √ 

Coefficient of variation

 

 

Likelihood of each block was calculated above 0.14% de CU ° "# $%&'($" .)%

.%  *"('&

° "# $%&'($"  

313 AEGMIN

314 AEGMIN

315 AEGMIN

Likelihood 80% above 0.14% CU

316 AEGMIN

REFERENCES

W. Hustrulid, M. Kuchta and R.K. Martin (2013). “Open Pit Mine Planning and Design”, Netherlands Estados Unidos, Tomo 2, Tercera Edición. Ratan Raj Tatiya (2013). “Surface and Underground Excavations, 2nd Edition: Methods, Techniques and Equipment” Gustavo. A. García (2012). “Uso de la Incertidumbre de Leyes para Cuantificar Riesgo en el Diseño de Pit Final Grueso Antapaccay”, Cusco – Perú. R. Dimitrakopoulos (2010). “Advances in Orebody Modelling and Strategic Mine Planning I, Old and New Dimensions in a Changing World”, Australia. Oy Leuangthong y Clayton Deutsch (2004). “Geostatistics Banff 2004”, Estados Unidos. Margaret Armstrong (2011). “Plurigaussian Simulations in Geosciences”, Berlin – Alemania. R. Dimitrakopoulos (2010). “Advances in Orebody Modelling and Strategic Mine Planning I, Old and New Dimensions in a changing world”, Australia. Christian Lantuéjoul (2010). “Geostatistical Simulation Models and Algorithms”, Berlin – Alemania. Hans Wackernagel (2010). “Multivariate Geostatistics”, Berlin – Alemania. M. Armstrong, P. A. Dowd (2010). “Geostatistical Simulations”, Fontainebleau – Francia. Gustavo. A. García (2009). “Optimización en el Planeamiento a Largo Plazo en Yacimientos de pórfidos cupríferos, con la aplicación de secuencia de extraccion optima de Minado”, Arequipa – Perú. R. Dimitrakopoulos (2007). “Orebody Modelling and Strategic Mine Planning, Uncertainty and Risk Management Models”, Australia. Marco Alfaro (2008). “La Simulacion Condicional en un Deposito Minero”, Chile. Marco Alfaro (2007). “Estimación De Recursos Mineros”, Chile. A. G. Journel, Ch. J. Huijbregts (2003). “Mining Geostatistics”, New Jersey – Estados Unidos. Margaret Armstrong (1998). “Basic Linear Geostatistics”, Berlin – Alemania. Pierre Goovaerts (1997). “Geostatistics for Natural Resources Evaluation”, New York – Estados Unidos.

317 AEGMIN

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF