Offshore Concepts

April 29, 2017 | Author: Zack Lee | Category: N/A
Share Embed Donate


Short Description

Download Offshore Concepts...

Description

Expanding Facilities Knowledge Workshop‐Offshore Concept Selection 

An Overview of Offshore Concepts

Presented by: 

Christopher M. Barton Director‐Business Acquisition

# 1

An Overview of  Offshore Concepts •Safety Minute •Putting Energy Demand in Perspective •Introduction to Offshore Concepts  •Field Development Planning •Floating Platform Selection •TLP Technology  •Spar Technology •Semi technology •FPSO Technology # 2

Safety Minute Workplace Dangers Safety Quiz: It's important for employees to be able to  spot potential dangers in and around the  workplace. Please study these pictures and see if  you can spot the dangers yourself...

# 3

Putting Energy Demand in Perspective

# 8

Coal, Oil and Natural Gas Will Remain Indispensable

# 9

8

Oil Supply Challenge

Significant capacity additions required to meet demand Source: Based on IEA World Energy Outlook 2007 Natural decline forecast at 8% rate # 10 Observed decline forecast at 4.5% rate requires substantial investment

Where Will the Energy Come From?  Increasing resource 

nationalization;  diminished access  Non‐OPEC struggling  to increase production  Little spare OPEC  capacity  Depletion is real  Super majors will be  compelled to focus on  organic growth  Deepwater will drive growth # 11

Future Oil & Gas Deepwater Potential

# 12

Lease Activity Will Continue to  Drive Deepwater GOM

Gulf of Mexico Lease Sales

# 13

Miocene & Lower Tertiary Discoveries  Will Drive Deepwater GOM

# 14

Pre‐Salt Discoveries Will Drive Deepwater Brazil

# 15

Prolific Discoveries Will Continue to  Drive Deepwater West Africa

# 16

Introduction to  Offshore Concepts

# 17

The Offshore Industry 60 Years Old and Still Growing • First well drilled out of sight of land in 1947 in 20’ w.d. • Today, we are drilling in 10,000’ • First offshore platform installed in 1947 in 20’ • Today, platforms are installed in depths exceeding 8,000’ • World’s tallest structure was installed offshore in 1979 in 373’ • Today, a fixed platform stands in excess of 1,800’

• First subsea tree installed in early 1960’s in less than 300’ • Today, subsea trees are installed in over 9,000’

# 18

Floating Systems…then and now June 1947 ‐ Oil & Gas Journal

Semi

FPSO

Compliant Tower

Feb 1959 ‐ Offshore Magazine

TLP

# 19

Spar

Offshore Field Development •

Jacket type fixed steel structures  have traditionally proven to be  the most cost effective and  safest means of developing  offshore fields.



Economics and increasing water  depths are driving the use of  other alternatives :   •

Concrete structures



Subsea systems



Floating systems # 20

Offshore Field Development •

The water depths in which fixed platforms are installed  vary from a few feet to as much as 1,850 ft

# 21

Deepwater Development Tools

System types can be grouped into 2 categories: 1.

Dry Tree Systems – Compliant Tower, TLP, Spar

2.

Wet Tree Systems – TLP, FPSOs, Spar, Semi # 22

Predominant Floater Types There are four primary industry recognized wet  and dry tree solutions; accepted because: • Proven ‐ Many years of Operating history • Functional ‐ Used for a large variety of  functions, wet or dry tree • Scaleable – Wide range of topsides  payloads

Tension Leg  Platform

• Adaptable – Applications worldwide Truss Spar

Semi‐submersible (Semi) FPSO # 23

Motions and Loads are Controlled by…

Primary

Secondary

Mooring System •Tendons

Hull Configuration •Column to Pontoon  Volumetric Ratio

Spar

Hull Configuration  •Draft •Heave Plates

Mooring System  •Taut •Synthetics

Semi

Hull Configuration  •Column Stabilized •Small WP Area

Mooring System  •Taut •Synthetics

Hull Configuration  •WL Length •Mass

Mooring System •Orientation •Head‐on  Environment

TLP

Ship‐ Shape

# 24

Natural Periods of Motion Vertical  Motions are  Controlled by  Tendons

Spread Moored

Design Wave Energy

Vertically Moored

Vertical Motions  are Controlled Hull  Configuration

Typical 100‐Yr Design  Wave Spectrum

5

10

15

Period (sec) # 25

20

25

30

Comparison of Primary Characteristics Issue Water Depth

TLP

Spar

More Sensitive

Ship‐Shape

Less sensitive

Platform  Motions

Excellent – Very low  vertical motions, i.e.  heave, roll and pitch

Good – Low vertical  motions (pitch to 8‐ 10 deg). Sensitive to  long period waves.

Transport

Single piece complete

Single piece hull

Quayside deck lift  and integration

Hull upending and  offshore deck lift and  integration

Installation

Semi

# 26

Motions limit  application to wet  trees

Motions limit  application to wet  trees

Single piece complete Single piece complete Quayside deck lift  and integration

Shipyard module lift  and integration

Comparison of Primary Characteristics (continued)

Issue

TLP

Mooring  System

Vertical tendons

Mooring  Footprint

Small and compact,  same dimensional  order as hull

TTR Support Wellbay Storage  Capability

Spar

Semi

Taut or semi‐taut spread mooring legs

Ship‐Shape Spread catenary or  turret moored

Large, approximately 2X water depth.  Impacts field  development layout, but allows drilling flexibility.

Short stroke  tensioners

Air cans or long  stroke tensioners

N/A

N/A

Conventional, within  columns

Confined within  moonpool

N/A

N/A

No

Yes, but not typical

No

Yes, typical

# 27

Generally Accepted Floater Application Ranges • Combination of water depth, metocean conditions and topsides influence the  choice between a TLP, Semi, and Spar. 50,000

Spar Semi

Facility Payload (st)

40,000

30,000

TLP 20,000

10,000

0 0

2,000

4,000

6,000

Water Depth (ft) # 28

8,000

10,000

Deepwater Production vs Drilling The Gap is Closing Fast

# 29

Growth in Floating Production Systems

# 30

Deepwater Floaters Installed

24 Tension Leg Platforms 

18 Spar Platforms

128 FPSO Vessels

39 Semi FPS Platforms # 31

Deepwater Milestones

# 32

Field Development Planning

# 33

Phases of a Field Development Project

Feasibility  Studies

Concept  Studies

• Identify  development  alternatives • Determine  technical  feasibility

• Screen  alternatives • Select  development  concept

FEED

Execute EPCI

• Define  development  concept • Design basis • Cost • Schedule • Execution Plan

• Detail design • Construction • Installation • HUC

# 34

Project Success Hinges on Front End 

# 35

Ability to Influence Cost 40%

Relative Level  of Influence on Cost

3% Concept/FEE D

Typical   Project Cost Distribution

37% 10%

E

P

C

10%

I

Solid execution strategy  needed early in order  to “get it right” # 36

7

It Takes A Village …. The Many Facets of Field  Development Planning Business Mgmt

Geologists

Partners

Geophysicists

Risk, Safety

Petroleum Engineers Sub Surface

Business

Economics

Midstream, Sales,  Marketing

Surface

Project Mgmt/ Execution Operations/ Installation

Reservoir Drilling & Completion Subsea Systems

Topsides Facilities # 37

Marine/Riser Systems

Major Field Development Drivers Drivers Subsurface

Surface

Business

Impact

Uncertainty

Recoverable Reserves

Very High

Very High

Well Count, Rate, Recovery

Very High

High

Production Profile

High

High

Facility Capex, Drillex

High

Moderate

Schedule to Peak Hydrocarbons

High

Moderate

Opex

Moderate

Moderate

Oil / Gas Price

Very High

Very High

Partners, PSAs, Taxes, Royalties

High

Low

Safety, Reliability

High

Low

# 38

Floating Platform Selection

# 39

Key Drivers for Floating System Selection • Reservoir characteristics are key • Field layout / future expandability • Riser options / platform motions • Metocean criteria • Deck requirements • Local content requirements • Drilling & completion strategy • Robustness • Risk issues & mitigating measures • Execution plan and delivery model

# 40

Floating Platform Selection Issues TLP

Spar (Truss)

Semisub (Four Column)

FPSO (Ship Shape)

Water Depth (m)

Up to 1500

No practical limit

No practical limit

No practical  limit

Trees

Wet or dry

Wet or dry

Wet

Wet

Drilling/Workover

Yes

Yes

Yes

No

Storage

No

No

No

Yes

Steel tendons

Taut‐spread wire  or poly

Semi‐taut spread  wire or poly

Semi‐taut  spread wire or  poly Only in mild  environment

Platform Configuration

Station‐keeping

SCR*

No constraint

No constraint

Motion  optimization  needed

TTRs*

No constraint

No constraint

No

No

Quayside or  floatover

Offshore or  floatover

Quayside or  floatover

Quayside

Contracting Flexibility

Good

Good

Better

Best

Hull weight sensitivity   to topside

Most

# 41 Somewhat

Somewhat

Least

Topside Integration

Completion Strategy Drives Floater Selection Criteria

Total Subsea (wet‐tree)

Surface (dry‐tree)

CAPEX Cost

Lower

Higher

DRILEX Cost

Higher

Lower

OPEX Cost

Higher

Lower

Lower

Higher

Lower

Higher

Production  Reliability Reservoir  Mgmt and  Productivity

# 42

Dry Trees vs. Wet Trees Key Driver: Wellbore Access Dry Tree (Direct Vertical Access) • Single drill center • Lower OPEX and life cycle costs  for medium and large  developments • Simpler hardware • Minimize well intervention cost  and downtime • Less flow assurance risk • Potentially higher recovery • Difficult for semi due to motions

• • • • • • • •

Wet Tree (Indirect Access) Multi drill centers Lower CAPEX, but potentially higher OPEX Minimize drilling costs and risks for large  area extent reservoirs Minimize project schedule Maximize development plan flexibility Ultra deepwater capability not tied to host  platform Maximize project economics for small  developments More complex flow assurance issues

# 43

Number of Wells by Facility Type

# 44

Direct Well Access Riser Options

Direct Tensioned Riser  Air Can Tensioned Riser  TTR Tubing Tie‐back Riser Compliant Vertical Access Riser (CVAR) Near or At‐Surface Completion # 45

Stricter Stricter Hull Motion Hull Motion Requirements Requirements

Indirect Well Access Riser Options

Steel Catenary Risers (SCR) Hybrid Risers Flexible Catenary Risers

Stricter Stricter Hull Motion Hull Motion Requirements Requirements



Placid GC 29. First Deep Water Free‐Standing  Production Riser System.  Installation, Drilling,  Production, and Workover from the Same Semi. • Enserch GB 388. # 46

Option Identification – Building Blocks DEVELOPMENT OPTIONS

Selection of potential development options Development Option Components

STORAGE & EXPORT

SUBSTRUCTURES

DRILLING

Development Option Strategies

Permanent Platform Facilities

Tender Assist Drilling

MODU Drilled

Dry Trees

Dry Trees

Wet Trees

Floating Production Unit

Dry Tree Unit

TLP

Subsea Tiebacks

FSO

SPAR

Facilities Elements

SemiSubmersible

FPSO

# 47

All Wet Tie-backs

Wet & Dry

Pipeline

Roadmap for Establishing Size of Floating Platform Reservoir • Geometry • Connectivity

Size (Recoverable Reserves)

• Well Count • Well Location • Production Profile

• Water Depth • Metocean

• Geology • Rock Properties

• Flow Assurance • Boosting • Intervention

• Oil / Gas Production Throughput • Dry or Wet Trees • Drilling or No Drilling

Fluid Properties (P, V, etc.)

• Depth Below M/L • Salt Layer

• Drilling, Completions

• Production Riser Size, Type • Station Keeping Type

• Production Riser Weight • Station Keeping Weight

Topside Weight Total Facility Payload Hull Size

• Integrated Oil Storage / Shuttle • Oil Pipeline • Export Riser Size, Type

• Type, Amount Boosting • Workover Rig • Wax Hydrate Management

# 48

Pipeline Infrastructure

• Export Riser Weight

TLP Technology

# 49

TLP Statistics Installed :

24

First:

1984, Hutton, Conoco

Locations:

North Sea, Angola, Gulf of Mexico, Indonesia and Equatorial Guinea

Deepest:

4,674 ft., Magnolia GB783/84

# 50

Current TLP Installed Base – by Location

# 51

TLP Components – Topsides • Production Facilities • Drilling Systems • Utilities Columns • Accommodations & Helideck – Hull • Columns • Pontoons • Pontoon Extensions • Riser Porches – Mooring System • Tendon Porches • Tendons • Foundations – Riser System • Drilling and Production Risers • Trees and associated components # 52

Topsides

Pontoons

Tendons

Proprietary TLP Designs and Technology Providers

MODEC DESIGN

SBM ATLANTIA DESIGNS

FLOATEC DESIGNS

# 53

Typical Functions of a TLP Functions Considered Full PDQ: • Fully Self Contained • Export to Pipeline or FSO Wellhead Platform: • Drilling only (on  platform) • Support of Dry Trees • Export to FPSO Tender Assisted Drilling: • Drilling Systems on TAD Vessel • Benign Metocean Regions Wet Tree Application with Production  and Quarters: • No Drilling • Export to Pipeline or FSO # 54

TLP Drilling & Production Configurations

Wellhead platform mode  with remote production

Platform drilling  & production mode

Tender assist drilling  & production mode # 55

FPSO

Kizomba A ETLP Configuration

SWHP Functions and Particulars : • Drilling • Well Intervention • Dry Tree Manifold • Displacement ‐ 53,033 mt • Draft ‐ 34 m • 36 TTRs • Tendons ‐ 4 x 2

# 56

Water Depth ‐ 1,178 m (3,865 ft)

Magnolia ETLP Configuration

Functions and Particulars : • Full production • Workover rig • 15,230 st total topsides  payload • 8 TTRs • Import / export risers • 4 x 2 stepped tendons

# 57

Water Depth – 4,674 ft

Typical TLP Tendon Make‐up MWL +3937 ft

Each Segment (240 ft)  consists 60 ft pipes girth  welded

Pretension

2750 kips Connected to Tendon Porch

TTS 1 2 3 4

Segments 1 to 14

5

TTS, TBS and MB1 to MB 14 ALL Approx. 240 ft long

14 TBS Mudline

# 58

TLP Tendon Porches

Open Tendon  Porch

Stepped Tendon  System

Closed Tendon  Porch

# 59

Free Standing Tendon Installation WD 1200 m (3937 ft)

Water Surface

TTS

Buoys Connected 100 ft from top of  tendon Buoy Dimension: 18’ OD x 50 ft long Main Pipe

TBS

Mud line

# 60

TLP Riser Stack‐ups

Hanging Hydraulic Tensioners

# 61

Conventional TLP Tensioners

# 62

Typical Wellbay Layout (TLP Supported Risers)

# 63

Project Photos

# 64

Hull Component Fabrication # 65

# 66

Panel Line Work

# 67

Hull Fabrication Dry Dock Based

Hull Fabrication at Quayside Land Based

# 68

Preparing for Loadout

# 69

Hull Loadout # 70

# 71

Hull Float On

Mars TLP

Kizomba TLP

Ram/Powell TLP

Ursa TLP ‐ Barge

# 72

Hull Transportation

# 73

Hull Sailaway

Hull Float‐Off (Ram/Powell TLP)

# 74

Deck/Hull Quayside Integration Land Based Crane

# 75

Deck Lift & Integration

System Delivery

(Ram/Powell TLP)

# 76

System Delivery

Deck Lift & Integration # 77

(Ram/Powell TLP)

Deck Lift & Integration

System Delivery

(Ram/Powell TLP)

# 78

Deck Lift & Integration (Kizomba “A” ETLP)

# 79

Deck Integration (Magnolia TLP)

# 80

Platform Commissioning (Performed at Quayside)

# 81

Platform Dry Transport

# 82

Platform Dry Transport (Next Stop ‐ Angola)

# 83

# 84

Platform Wet Tow to Location

TLP Pile Fabrication and Pre‐Installation

# 85

TLP Tendon Pre‐Installation

Tendon Pre‐Installation

# 86

TLP Topsides Installation ‐ Offshore

# 87

Platform Commissioning # 88

(Brutus TLP)

# 89

TLP Installed

Spar Technology

# 90

Spar Statistics Installed :

18

First:

1996, Neptune, VK 826

Deepest:

Perdido 8,008 ft. Alaminos Canyon 857

Construction: 0 Locations:

Gulf of Mexico, Malaysia

# 91

Spar Features 

Unconditionally Stable  Failsafe ballast system  Simple ballast system



Topsides Hard Tank

Mooring Line Failure not  Catastrophic  Redundancy  Spar continues to float

Truss

 Down flooding difficult



Risers Protected from Loop  Currents and Waves Soft Tank # 92

Current Spar Installed Base – by Location

# 93

Spar Hull Diameter Comparison

# 94

Current Installed Base

# 95

Spar Flexibility and Scalability  Holstein Truss Spar • # Dry Trees – TTR’s: 20 • # SCR’s: 2 • Pay Load: 37,000 mt • Estimated Reserves: 400 MBOE

Red Hawk Cell Spar • # Subes Trees: 2 • # SCR’s: 3 • Pay Load: 5,460 mt • Estimated Reserves: 50 MBOE

# 96

Current Installed Base

# 97

Hull Design Drivers • Payload • Hard tank compartmentation  • Ballasting – Variable (sea‐water) – Fixed (magnetite) • In‐hull storage of chemicals, diesel, etc.  • Fabrication & installation – Yard limitations (skidway spacing, quay depth, cranes) – Heavy lift transport vessel – Offload draft – Wet tow & up‐end (keel tank sizing) – Topside lift • Performance criteria (pitch, surge & heave) # 98

Geotechnical Considerations • Bathymetry (bottom contours, escarpments, etc.)  • Geotechnical (hazards, soils, faults, etc.)

Medusa

Devils Tower

Front Runner

# 99

Spar Mooring Systems • • • •

Chain‐Wire‐Chain system Driven or suction anchor piles Grouped or equally spread Sized for both intact and  broken line conditions • Active system

TRUSS SPAR PLATFORM

TRUSS SPAR PLATFORM MWL

MWL

R4 STUDLESS CHAIN

RQ4 STUDLESS CHAIN

SCR PORCHES SCR (TYP.)

SCR (

TTR

SPIRAL STRAND STEEL WIRE

Synthetic Ropes

10°-14° (TYP.)

8200'-0"

Steel Wires

POLYSTER ROPE 3 SEGMENTS

R4 STUDLESS ANCHOR CHAIN

OR CHAIN

ELEVATION VARIES TION PILE ANCHOR

SCOPE FROM FAIRLEAD

SUCTION PILE ANCHOR

MOORING / RISER ELEVATION

# 100

(-) 8200'-0" 8000'-0"

Spar Risers • Direct vertical access wells (Dry Tree) – Top‐tensioned, rigid risers – single or double cased • Import flowline risers (Wet Tree) – Steel catenary – Flexible pipe • Export pipelines risers – Top‐tensioned – Steel catenary – Flexible pipe • Control umbilical bundles

# 101

Riser System Options: Wet Trees Riser Hang‐off Porch:  Flexjoint  Stress Joint

Pull Tubes:  Flexibles  SCR’s # 102

Riser System Options: Dry Trees Buoyancy Can

Hydraulic Multi-riser Buoyancy Can

# 103

Spar Buoyancy Can Tensioner (non‐Spar supported)

# 104

Spar Ram Type Tensioners (Spar‐supported)

# 105

Riser Options (Flexibility): Combination Dry & Wet Tree

Pull Tubes, SCR’S OR Flexibles

Dry Tree Riser Slots, Top Tensioned Buoynacy Cans

# 106

Centerwell Drivers • Dry trees – Number of well slots – Riser make‐up / buoyancy can size – Tree size and access requirements – Drilling riser slot • Wet trees and umbilicals – Number – Sizes (hang‐off loads)  – Azimuths • Pump casings, disposal caisson, cuttings chute, exhaust  ventilation, etc.

# 107

Centerwell Arrangement ‐ Example Export  Lines (2)

Misc. Utilities

Drain Sump Flowlines (10) Buoyancy  Cans (8) Umbilicals (5)

# 108

Topsides Drivers • Payload ‐ Weight, Mass, VCG & HCG – Initial and future – Lift and operating conditions • Wind sail areas (directional) & elevation of resultant wind  pressure • Prevailing wind directions • Wave crest elevation & air gap (set deck elevations) • Lift equipment constraints on topside geometry • Centerwell access

# 109

Spar Hard Tank Build Philosophy

Panel Line

Ring Sections

1/8 Sections

1/4 Sections

# 110

1/2 Sections

Full Sections

HT Half Ring Assembly and Mating Methodology Upper Half Ring Section Assembly

H

Lower Half Ring Section Assembly

Ring Section Mating

# 111

HT Segments & Center Bulkhead Sub‐Assembly

First Cutting of Steel

Center Bulkhead Assembly

Segment Full Welding

Shifting Segment to Erection # 112

1/8 Segment Assembly

Shifting Center Bulkhead

Hard Tank Half Ring Sections Assembly UPPER SECTION BLOCK C

BULKHEAD

BLOCK D

BLOCK F

BLOCK E

LOWER SECTION BLOCK B

BLOCK A

BULKHEAD

BLOCK G

# 113

BLOCK H

Hard Tank Half Ring Sections Mating 1

2

3

4

5

6

# 114

Hard Tank Sections Mating & Joining

# 115

Soft Tank Block Erection

# 116

Spar Hull Assembly

# 117

Spar Hull Ready For Loadout

# 118

Spar Hull Load‐out # 119

Spar Hull Load‐out # 120

Spar Hull Tie‐Downs

# 121

Spar Hull Ready for Transport

# 122

Spar Hull Transport # 123

Spar Hull Offload

# 124

Hull Wet Tow to Site

# 125

Spar Hull Wet Tow and Upend

# 126

Hull Upend Sequence

Wet Tow Ballast

# 127

Post Up‐end Stages

Post Upend

Install SCRs

Fixed Ballast

Set TWD

Set Topside

Install Moorings

Topside Set # 128

Remove TWD

Operating

Mooring System Components

# 129

Anchor Types Suction Piles 60 st – 250 st

Drag Anchors Driven Piles 150 st  30 st –– 230 st 50 st

# 130

Driven Piles 150 st – 230 st

Mooring Installation

Set Work Deck

Chain Jacks # 131

# 132

Temporary Work Deck

Anchor Chain  Hook‐up

# 133

Ready for Topsides Installation

# 134

Topsides Installation

# 135

# 136

Topsides Installation

Topsides Installation

# 137

Spar Topsides Installation (Floatover)

# 138

Spar Riser Installation Seafloor Stress‐Joint & Connector

Surface Wellhead & Tree

Flowline Jumpers & Umbilicals

Buoyancy Can Stem Centralizers Keel and Transition J

Tapered Stress & Cross Production Riser

Subsea Wellhead

Tieback Connector

Buoyancy Can

Keel‐Joint # 139

Casing

Spar Riser Installation Jumpers

Upper Stem

Can Installation

Surface Wellhead & Tree

Flowline Jumpers & Umbilicals

Buoyancy Can Stem Centralizers Keel and Transition Joints

Tapered Stress & Crossover Joints Production Riser

Subsea Wellhead

Tieback Connector

Tree & Access Platform

Jumper Hoses # 140

Spars Installed

# 141

Semi‐FPS Technology

# 142

Semi‐FPS Statistics • Operating : 39 • First:

1975, Argyll, Hamilton

• Deepest:

7,920 ft, MC920 Independence Hub

• Locations: Worldwide

# 143

Current Semi‐FPS Installed Base – by Location

# 144

Semi‐FPS Components Topsides

Columns

Pontoons

Moorings

# 145

Topsides •Production Facilities •Utilities •Accommodations Hull •Columns •Ring Pontoon Mooring System •Polyester/wire •Anchor piles  (suction/driven) Riser System •Steel Catenary Risers

Conventional Production Semi‐FPS

# 146

The Evolution of the  Post‐Katrina Deep Draft Design

Conventional  Production Semi

Deep Draft Semi Pre‐Katrina

• Column extended for deep draft • Reduced column/pontoon size for  better motion

Deep Draft Semi Post‐Katrina

• Column extended for air gap • Increased column spacing for  stability # 147

Proprietary Semi‐FPS Designs and  Technology Providers

ATANTIA 

AKER KVAERNER 

DEEP DRAFT DESIGN

DEEP DRAFT DESIGN

EXMAR DESIGN 

MOSS MARITIME DESIGN

# 148

GVA / KBR DESIGN

FLOATEC DEEP DRAFT DESIGN

Typical Semi Topsides

# 149

Typical Semi‐FPS Hull Block Breakdown

# 150

Semi‐FPS Hull Construction (Nodes Sub‐block Assembly)

# 151

Semi‐FPS Hull Construction (Pontoon Sub‐block Assembly)

# 152

Semi‐FPS Hull Construction (Erection of Nodes Sub‐block)

# 153

Semi‐FPS hull Construction (Pontoon Erection)

# 154

Semi‐FPS Hull Construction (Consolidating Pontoons in Dry Dock)

# 155

Semi‐FPS Hull Construction (Consolidating Pontoons in Dry Dock)

# 156

Semi‐FPS Hull Construction (Undocking of Pontoons)

# 157

Semi‐FPS Hull Construction (Undocking of Pontoons)

# 158

Semi‐FPS Hull Construction (Column Block Assembly)

# 159

Semi‐FPS Hull Construction (Consolidating Column Blocks)

# 160

Semi‐FPS Hull Construction (Erection of Column Blocks)

# 161

Semi‐FPS Hull Construction (Completed Lower Hull Ready for Transport)

# 162

Semi‐FPS Hull Dry Transport

# 163

Semi‐FPS Topsides Construction

# 164

Topsides Integration Semi‐FPS Topsides Integration ‐ Floatover (Floatover Option)

 Topsides is  skidded onto  barge  Barge is  pulled to site

Marine Mating (Hull  and Topsides)

Hull is dry‐transported, offloaded  and wet‐towed to installation site. Hull is moored, ballasted and in position  # 165

Semi‐FPS Topsides Integration (Mating Completed)

# 166

Land‐based Semi‐FPS Construction

# 167

Topsides Integration

# 168

Semi‐FPS Topsides Integration (Single Lift)

# 169

Integrated Semi‐FPS Dry Transport

# 170

Semi‐FPS Wet Tow to Field

# 171

Semi‐FPS Wet Tow to Field

# 172

Semi‐FPS in Operation

# 173

FPSO Technology

# 174

FPSO Statistics

Operating 128 6,086 ft.,  Deepest Roncador 1977 First Castellon, Shell Locations

Worldwide # 175

Current FPSO Installed Base – by Location

# 176

Ship‐shape FPSO Components Topsides

Hull (Conversion or New Build) Turret and Mooring (Permanent or disconnect) # 177

Round FPSO Components

# 178

FPSO Layout

# 179

FPSO Topsides Modules Power Future

Oil

Production

Module

Dehydration

Manifolds

Seawater

Generation

Deaeration

(3 trains)

S1

LP & MP Gas Compression

Power

S6

S7

Generation

S4

S5

S2

S3

P1

Main E&I Bldg

S8

P2 Oil Offloading

P3 P8

Seawater Water Injection

P4 P7

P6

P5 Seawater Filtration & Utilities

HP & HHP Gas Compression

Production Manifolds Gas Dehydration

LLP Gas

Oil

Compression

Dehydration

# 180

# 181

FPSO Station Keeping Key Considerations • Permanent vs. Disconnectable • Turret Location on the Hull (internal vs external) • Mooring Material – Polyester vs. Steel Wire

• Anchor Selection   – Suction Piles vs. Vertically Loaded Anchors

• Dependent on: – Weather conditions – Water depth – Number/diameter of risers

# 182

FPSO Mooring Systems

# 183

FPSO Mooring Components

# 184

FPSO Construction – Ship Shape

# 185

FPSO Construction – Ship Shape

# 186

FPSO Construction – Round Shape

# 187

FPSO Construction – Round Shape

# 188

Round FPSO Dry Transport

# 189

Round FPSO Wet Transport

# 190

FPSO’s in Transit

# 191

Ship‐shape FPSO’s in Operation

# 192

Round FPSO in Operation

# 193

The Next Generation FPSO • Combines the benefits  of a MODU and a  floating storage,  production and  offloading unit

The Azurite FDPSO # 194

FloaTEC Contact Thanks!

# 195

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF