Please copy and paste this embed script to where you want to embed

PARISUTHAM INSTITUTE OF TECHNOLOGY AND SCIENCE DEPARTMENT OF INFORMATION TECHNOLOGY

IT2302 – Information Theory and Coding Technical Questions and Answers

1. New abbreviation of Binary digit is represented by _______ a) Binit b) bin c) Digi d)bit 2. Unit of information is _______ a) Bytes b) bytes/message c) bits d) bit 3. In more uncertainty about the message, information carried is _____ a) less b) more c) very less d) both a&b 4. If receiver knows the message being transmitted, the amount of information carried is_______ a) 1 b) 0 c) -1 d) 2 5. Amount of Information is represented by ______ a) IK b)pK c) 1/ pK d) H

6. Average information is represented by_____ a) Entropy b) code redundancy c) code efficiency d) code word 7. Average Information______ a) Total information b) Entropy No. of Message No. of Message c) Entropy d) Message Rate No. of Message No. of Message 8. Information Rate is represented by_____ a) r b) rH c) R d) rR 9. Source Coding Theorem is represented by_____ a) Huffman’s 1st theorem b) Shannon’s 1st theorem c) Shannon’s 2nd theorem d) Both a&b 10. The codeword generated by the encoder should be ______ a) Digits in Nature b) Codes in Nature c) Binary in Nature d) Values in Nature

11. Coding Efficiency of the source encoder is defined as,______ a) η = Nmin b) η = H N N c) N≥H d) η = H(X2) N 12. Code redundancy is represented by_____ a) γ b) 1- γ c) γ 2 d) σ 13. Code Variance is represented by_____ a) σ -1 b) Pk c) σ2 d) η2 14. Variable length coding is done by source encoder to get______ a) Lower efficiencies b) Higher efficiencies c) Moderate efficiencies d) Both a&b 15. Prefix Code Satisfies_______ a) McMillan inequality b) Shannon’s 1st Theorem c) Huffman Coding d) Shannon’s 2nd Theorem

16. The Channel is Discrete, when Both X and Y are________ a) Analog b) Discrete c) discrete Analog d)Both a&b 17. The conditional entropy H(Y/X) IS Called______ a) Uncertainty b) Information c) Equivocation d) Certainty 18. Standard Probability of m ∑ p(xi,yj)=_______ i=1 a) p(xi) b) p(yj) c) p(xi,yj) d) p(yj, xi) 19. H(X,Y)= H(X/Y) +_______ a) H(X) b) H(Y) c) H(Y/X) d) H(X,Y) 20. H(X,Y)= H(Y/X) +______ a) H(X) b) H(Y) c) H(Y/X) d) H(X,Y)

21. H(X) = m ∑ pi log2 (_______) i=1 a) pi b) pk c) 1/pi d)1/ pk 22.. Average rate of information going into the channel is given as,_____ a) Din= H(X) b) Din= rH(X) c) Din= H(Y) d) Din= rH(y) 23. Average rate of information transmission Dt across the channel______ a) Dt = [H(X)-H(X/Y)] b) Dt = [H(Y)-H(X/Y)] c) Dt =[H(X)-H(X/Y)]r d) Dt = [H(X)+H(X/Y)] 24. In case of errorless transmission H(X/Y)=0,Hence Din=________ a) H(X) b) Dt c) H(Y) d) rH(X) 25. Mutual Information is represented as,________ a) I(X/Y) b) I(X;Y) c) I(X,Y) d) I(X:Y)

26. The mutual information is Symmetric_______ a) I(X;Y)= I(X,Y) b) I(X;Y)= I(Y:X) c) I(X;Y)= I(X:Y) d) I(X;Y) = I(Y;X) 27. I(X;Y) = H(X)_______ a) - H(X) b) - H(X/Y) c) - H(Y/X) d) - H(X,Y) 28. I(X;Y) = H(Y)_______ a) - H(X) b) - H(X/Y) c) - H(Y/X) d) - H(X,Y) 29. Mutual information is always_______ a) +ve b) –ve c) 0 d) Both a&c 30. I(X;Y) is related to the joint entropy H(X,Y) by_______ a) I(X;Y)= H(X) – H(X,Y) b) I(X;Y)= H(X) + H(X,Y) c) I(X;Y)= H(X) +H(Y) – H(X,Y) d) I(X;Y)= H(X)- H(Y) – H(X,Y)

31. Channel Capacity of the discrete memoryless channel is_____ a) C = max b) C = max P(Xi) I(X;Y) P(Yj) I(X;Y) c) C = max d) C = max P(Xi) I(X:Y) P(Xi) I(Y;X) 32. Channel matrix is otherwise is called as______ a) Probability Matrix b) Transition Matrix c) Probability Transition Matrix d) None 33. (Entropy) H=0, if PK=_______ a) 0 b) 1 c) -1 d) Both a&b 34. DMS of Entropy H(S), the average codeword length of a prefix code is bounded as H(S) ≤

View more...
IT2302 – Information Theory and Coding Technical Questions and Answers

1. New abbreviation of Binary digit is represented by _______ a) Binit b) bin c) Digi d)bit 2. Unit of information is _______ a) Bytes b) bytes/message c) bits d) bit 3. In more uncertainty about the message, information carried is _____ a) less b) more c) very less d) both a&b 4. If receiver knows the message being transmitted, the amount of information carried is_______ a) 1 b) 0 c) -1 d) 2 5. Amount of Information is represented by ______ a) IK b)pK c) 1/ pK d) H

6. Average information is represented by_____ a) Entropy b) code redundancy c) code efficiency d) code word 7. Average Information______ a) Total information b) Entropy No. of Message No. of Message c) Entropy d) Message Rate No. of Message No. of Message 8. Information Rate is represented by_____ a) r b) rH c) R d) rR 9. Source Coding Theorem is represented by_____ a) Huffman’s 1st theorem b) Shannon’s 1st theorem c) Shannon’s 2nd theorem d) Both a&b 10. The codeword generated by the encoder should be ______ a) Digits in Nature b) Codes in Nature c) Binary in Nature d) Values in Nature

11. Coding Efficiency of the source encoder is defined as,______ a) η = Nmin b) η = H N N c) N≥H d) η = H(X2) N 12. Code redundancy is represented by_____ a) γ b) 1- γ c) γ 2 d) σ 13. Code Variance is represented by_____ a) σ -1 b) Pk c) σ2 d) η2 14. Variable length coding is done by source encoder to get______ a) Lower efficiencies b) Higher efficiencies c) Moderate efficiencies d) Both a&b 15. Prefix Code Satisfies_______ a) McMillan inequality b) Shannon’s 1st Theorem c) Huffman Coding d) Shannon’s 2nd Theorem

16. The Channel is Discrete, when Both X and Y are________ a) Analog b) Discrete c) discrete Analog d)Both a&b 17. The conditional entropy H(Y/X) IS Called______ a) Uncertainty b) Information c) Equivocation d) Certainty 18. Standard Probability of m ∑ p(xi,yj)=_______ i=1 a) p(xi) b) p(yj) c) p(xi,yj) d) p(yj, xi) 19. H(X,Y)= H(X/Y) +_______ a) H(X) b) H(Y) c) H(Y/X) d) H(X,Y) 20. H(X,Y)= H(Y/X) +______ a) H(X) b) H(Y) c) H(Y/X) d) H(X,Y)

21. H(X) = m ∑ pi log2 (_______) i=1 a) pi b) pk c) 1/pi d)1/ pk 22.. Average rate of information going into the channel is given as,_____ a) Din= H(X) b) Din= rH(X) c) Din= H(Y) d) Din= rH(y) 23. Average rate of information transmission Dt across the channel______ a) Dt = [H(X)-H(X/Y)] b) Dt = [H(Y)-H(X/Y)] c) Dt =[H(X)-H(X/Y)]r d) Dt = [H(X)+H(X/Y)] 24. In case of errorless transmission H(X/Y)=0,Hence Din=________ a) H(X) b) Dt c) H(Y) d) rH(X) 25. Mutual Information is represented as,________ a) I(X/Y) b) I(X;Y) c) I(X,Y) d) I(X:Y)

26. The mutual information is Symmetric_______ a) I(X;Y)= I(X,Y) b) I(X;Y)= I(Y:X) c) I(X;Y)= I(X:Y) d) I(X;Y) = I(Y;X) 27. I(X;Y) = H(X)_______ a) - H(X) b) - H(X/Y) c) - H(Y/X) d) - H(X,Y) 28. I(X;Y) = H(Y)_______ a) - H(X) b) - H(X/Y) c) - H(Y/X) d) - H(X,Y) 29. Mutual information is always_______ a) +ve b) –ve c) 0 d) Both a&c 30. I(X;Y) is related to the joint entropy H(X,Y) by_______ a) I(X;Y)= H(X) – H(X,Y) b) I(X;Y)= H(X) + H(X,Y) c) I(X;Y)= H(X) +H(Y) – H(X,Y) d) I(X;Y)= H(X)- H(Y) – H(X,Y)

31. Channel Capacity of the discrete memoryless channel is_____ a) C = max b) C = max P(Xi) I(X;Y) P(Yj) I(X;Y) c) C = max d) C = max P(Xi) I(X:Y) P(Xi) I(Y;X) 32. Channel matrix is otherwise is called as______ a) Probability Matrix b) Transition Matrix c) Probability Transition Matrix d) None 33. (Entropy) H=0, if PK=_______ a) 0 b) 1 c) -1 d) Both a&b 34. DMS of Entropy H(S), the average codeword length of a prefix code is bounded as H(S) ≤

Thank you for interesting in our services. We are a non-profit group that run this website to share documents. We need your help to maintenance this website.

To keep our site running, we need your help to cover our server cost (about $400/m), a small donation will help us a lot.