Nylon Final 6
Short Description
First year chemical engineering essay on nylon. I did write this....
Description
NYLON Chemical Properties, Process and Applications
Author: Cameron Kashani Date started: 13th October 2010
The report has been prepared for ACME Textile Company – technical division
0|Page
CONTENTS
EXECUTIVE SUMMARY
2
1
Introduction
3
2
History
3
3
Chemical Properties
3
4
Applications
9
5
Production Process
10
6
Transportation Criteria
11
7
Laws and Regulations
11
8
Conclusion
11
Appendix A – References
12
1|Page
Executive Summary Aim – To write an write an informative report on report on Nylon. Objectives To highlight the highlight the history of history of nylon, its origins and origins and its inventors. To describe the describe the chemistry of chemistry of Nylon, the most common version of version of nylon and nylon and to review the chemical structure of structure of an example of nylon, its structure and structure and its properties. To describe the describe the uses of uses of nylon, both in both in everyday life and life and industry. To state how nylon is processed and produced. To identify nylon's storage requirements and requirements and transportation. To state any state any laws and laws and regulations on any of the of the above in above in the UK. To list the list the references used in used in compiling this compiling this report. Writing process Firstly, various sources were sources were found on the internet and internet and from books . The sources were sources were checked for checked for validity . This was done by checking from checking from where the where the source originated (eg. originated (eg. if the source originated from ). originated from a company or company or university then university then it was valid ). Before it Before it was written, the sections of sections of the report were report were planned . The report was then written with written with special attention to attention to referencing sources when sources when stating the relevant information.
Additional information and Conclusion Information on Information on the transport and delivery and delivery and laws and regulations were regulations were harder to harder to find . All the aims and aims and objectives were fulfilled .
2|Page
1
Introduction
This is a report investigating the textile polymer called Nylon. The report will also attempt to give a brief history and informative description of what nylon is. The report will also include references and sources of information.
2
History
Nylon is a material that was first produced by a team of scientists, led by "American chemist Wallace Hume Caruthers (1896-1937)" at Du Pont in the 1930s, as described by Hegde et al (2004). According to Hegde et al (2004) it was "the first truly synthetic fiber to be commercialized (1939)."
3
Chemical Properties
Nylon is an artificially produced "thermoplastic" polymer (Hegde et al [2004]) with several useful properties. As explained by Hegde et al (2004) it is produced by reacting a diamine with a dioic acid. The most commonly used version of nylon is 6-nylon as Aharoni (1997) explains in his book. To demonstrate the chemistry of polymers, however, 6,6-nylon will be used as an example. 6,6-nylon involves two monomers; "hexamethylenediamine (1,6-diaminohexane, H2N(CH2)6-NH2)" and "adipic acid (Hexane-1,6-dioic acid, HOOC-(CH2)4-COOH)" which Cotton (2010) states in his report. The structures of 6,6-nylon's two monomers are shown in the table (page 4).
3|Page
Picture
Description The chemical structure of hexamethylenediamine. Picture by ChemBlink (2010). The chemical structure of adipic acid. (picture: Biological Magnetic Resonance Data Bank 2010).
A table showing the mechanism of the production of 6,6-nylon. All the information is taken from the diagrams which are taken from the Polymer Science learning center (2010).
Step of the mechanism
What occurs in the mechanism Oxygen from one adipic acid molecule, donates a pair of electrons to a hydrogen atom of a hydroxide group in another adipic acid molecule. This causes the oxygen atom to become protonated, making the carbon atom it is bonded to vulnerable to nucleophilic attack.
1
4|Page
A nitrogen atom from the hexamethylenediamin e atom donates an electron pair to the slightly positive carbon atom on the protonated adipic acid molecule.
2 The hydrogen atom bonded to the protonated oxygen atom, donates an electron pair to the oxygen atom, which then donates an electron pair to the carbon atom, which then donates an electron pair to the hydroxide group. The hydroxide group then donates an electron pair to a hydrogen atom, which donates an electron pair to the positive nitrogen atom. This results in a "dimer" being produced as well as a molecule of water and a hydrogen ion.
3 5|Page
The final product is shown in the diagram (6,6 – nylon).
The bonds between the chains are hydrogen bonds as explained by the Polymer Science Learning Center (2010). These bonds determine nylon's properties, (especially "strength" [Lagasse 2008]). How the polymer chains are arranged also determines nylon's properties. There are two types of structures in polymers, as explained by Rosato (1997). He details how polymers can be crystalline or amorphous. In nylon, the long chains can align (crystalline). Any other structure, as Rosato (1997) explains, is amorphous.
6|Page
A table taken from Rosato’s book (1997).
A list of nylon’s properties from the CES Edupack (2010).
7|Page
The "non-equilibrium melting point of 6,6-nylon 6,6 -nylon is around 255-60°C" 255-60°C" as Aharoni (1997) states in his book. According to Aharoni (1997), this is determined by the number of "CH2 units in the diamine and the dicarboxylic acid components".
Nylon is also recyclable. Here is nylon's recyle mark (CES Edupack [2010]). As the CES Edupack (2010) details, during primary production, 5.5 – 5.6 kg of CO2 is released per kg of nylon produced.
8|Page
4
Applications
Cotton (2010) intimates that, because of its corrosion free nature, nylon was used in toothbrushes (as shown in the advertisement). A “Dr. West’s” nylon toothbrush advertisement. Picture taken from Cotton’s nylon
report (2010).
Information from the list is from the CES Edupack (2010)
-
Light duty gears Bushings sprockets and bearings electrical equipment housings Lenses Containers Tanks Tubing furniture casters plumbing connections bicycle wheel covers ketchup bottles Chairs toothbrush bristles Handles Bearings food packaging Ropes
A list of nylon uses directly from the CES Edupack (2010).
Because of the "extreme toughness, strength and peculiar ability to be formed into fibres" (Adams 1939), nylon is ideal for such applications as handles and chairs, which take loads, or for ropes and toothbrush bristles, which require fibres.
9|Page
5
Production Process Nylon salt
Hexamethylene diamine
Raw materials
1
2 Adipic acid
3 Concentrated
“Linear Superpolymers”
5
solution.
6
Nylon solution 4
A flowchart describing the production of nylon. All the information from this flowchart is from
6,6-Nylon
the narrow fabrics website (2010).
filaments.
- Description of flow chart 1. Processing of raw materials. 2. The monomers are "combined". They are mixed together (not reacted, that occurs in the reaction vessels). 3. The nylon salt is dissolved in water. It is possible to infer that this makes the salt easier to transport. 4. "In the spinning mill, salt is heated in evaporators to obtain a concentrated solution." This could be to increase the reaction rate between the "two chemicals". 5. Reaction vessels use heat to combine the "two molecules of the two chemicals into large chainlike molucules known as 'linear superpolymers'". 6. The "linear superpolymers" move around a casting wheel. A spinneret spinneret removes strands of nylon from the molten nylon which are "air-cooled to form filaments". All information from the description above is from the narrow fabrics website (2010).
10 | P a g e
A more complex and in depth flow chart is shown below.
A flow chart from the Pall corporation (accessed 2010).
6
Transportation Criteria
Inchem (2010) states that "crystalline AH salt" (which it says is "produced in closed systems by mixing adipic acid and 1,6-hexanediamine 1 ,6-hexanediamine in water at approx. 90 °C") °C") is transported at 90 °C "on tank trucks, ships ship s or tank wagons" wagons " in "stainless steel tanks". It also states how the tanks are insulated as to ensure the AH salt remains a liquid.
7
Laws and regulations
Direct Plastics (2004) states that there is "no warning necessary" under "EU guidelines". Under "potential risks", the website explains that nylon is not harmful. Direct Plastics (2004) also states that 6,6-nylon can be recycled and "if no use is possible, product waste can, in accordance with official local regulations, be mixed with household waste or incinerated in an appropriate place". The "conditions to avoid" are also stated; apparently temperatures above 300° 3 00°C C results in thermal decomposition which can produce toxic gases (e.g. carbon monoxide and nitric oxide).
8
Conclusion
The chemistry, properties and production of nylon are far easier to find than the laws and transportation of nylon. However, I feel I have succeeded in fulfilling my aims and objectives for this report.
11 | P a g e
Appendix A – References "n-Nylons: Their Synthesis, Structure and Properties"; pages 63, 170 Shaul M. Aharoni (1997) "The Columbia Encyclopedia Sixth Edition"; Paul Lagasse (2008) " http://www.narrow-fabrics-manufacturers.com/articles/nylon6-6.html "; Online B2B Marketplace narrow fabrics (consulted 13/10/2010 at 17:21) "http://www.engr.utk.edu/mse/Textiles/Nylon%20fibers.htm http://www.engr.utk.edu/mse/Textiles/Nylon%20fibers.htm""; Raghavendra R. Hegde, Atul Dahiya, M. G. Kamath (Monika Kannadaguli and Ramaiah Kotra) University of Tennessee Knoxville (consulted 14/10/2010 at 11:48, last updated April 2004) "http://www.chm.bris.ac.uk/motm/nylon/nylonv.htm http://www.chm.bris.ac.uk/motm/nylon/nylonv.htm""; Simon Cotton, Uppingham School, Rutland, UK from the University of Bristol school of chemistry (consulted 14/10/2010 at 12:29, last updated 01/06/2010) " http://www.chemblink.com/products/124-09-4.htm http://www.chemblink.com/products/124-09-4.htm""; ChemBlink (consulted 14/10/2010 at 13:20) "http://www.bmrb.wisc.edu/metabolomics/mol_summary/?molName=Adipic_acid "; Biological Magnetic Resonance Data Bank (consulted 15/10/2010 at 12:24) "http://pslc.ws/macrogcss/nysyn.html http://pslc.ws/macrogcss/nysyn.html""; Polymer science learning center (consulted 23/10/2010 at 16:46) "http://pslc.ws/macrog/lab/lab01.htm http://pslc.ws/macrog/lab/lab01.htm""; Polymer science learning center (consulted 24/10/2010 at 21:22) "www.nap.edu/html/biomems/wcarothers.pdf www.nap.edu/html/biomems/wcarothers.pdf""; National academies press; National Academy of Sciences: biographical memoir of Wallace Hume Carothers by Roger Adams (presented at an annual meeting 1939) (consulted 24/10/2010 at 21:29) "Plastics Processing Data Handbook (2nd Edition)" pages 59, 60 accessed through Knovel.com (consulted 27/10/2010 at 19:54); Author: Dominick Rosato (1997) CES Edupack 2010; MaterialUniverse: Polyamides (Nylons, PA) (accessed 29/10/2010 at 22:57) "http://www.pall.com/pdf/PPG3a.pdf http://www.pall.com/pdf/PPG3a.pdf""; Pall corporation; Nylon 66 Fiber Production (accessed 30/10/2010 a 14:00) "http://www.inchem.org/documents/sids/sids/3323533.pdf http://www.inchem.org/documents/sids/sids/3323533.pdf""; INCHEM Chemical Safety Information from Intergovernmental Organizations (accessed 30/10/2010 at 15:44) "http://www.directplasticsonline.co.uk/pdf/HSE_Nylon_66.pdf http://www.directplasticsonline.co.uk/pdf/HSE_Nylon_66.pdf""; Direct Plastics (written 15/04/2004) (accessed 30/10/2010 at 16:37)
Word count: Around 1090 words excluding references, subtitles, tables, the title page, flowcharts and this sentence.
12 | P a g e
View more...
Comments