NX Nastran 8 Verification Manual

December 13, 2017 | Author: MSC Nastran Beginner | Category: Finite Element Method
Share Embed Donate


Short Description

Download NX Nastran 8 Verification Manual...

Description

NX Nastran 8 Verification Manual

Proprietary & Restricted Rights Notice

© 2011 Siemens Product Lifecycle Management Software Inc. All Rights Reserved. This software and related documentation are proprietary to Siemens Product Lifecycle Management Software Inc. NASTRAN is a registered trademark of the National Aeronautics and Space Administration. NX Nastran is an enhanced proprietary version developed and maintained by Siemens Product Lifecycle Management Software Inc. MSC is a registered trademark of MSC.Software Corporation. MSC.Nastran and MSC.Patran are trademarks of MSC.Software Corporation. All other trademarks are the property of their respective owners.

TAUCS Copyright and License TAUCS Version 2.0, November 29, 2001. Copyright (c) 2001, 2002, 2003 by Sivan Toledo, Tel-Aviv University, [email protected]. All Rights Reserved. TAUCS License: Your use or distribution of TAUCS or any derivative code implies that you agree to this License. THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. Permission is hereby granted to use or copy this program, provided that the Copyright, this License, and the Availability of the original version is retained on all copies. User documentation of any code that uses this code or any derivative code must cite the Copyright, this License, the Availability note, and "Used by permission." If this code or any derivative code is accessible from within MATLAB, then typing "help taucs" must cite the Copyright, and "type taucs" must also cite this License and the Availability note. Permission to modify the code and to distribute modified code is granted, provided the Copyright, this License, and the Availability note are retained, and a notice that the code was modified is included. This software is provided to you free of charge. Availability (TAUCS) As of version 2.1, we distribute the code in 4 formats: zip and tarred-gzipped (tgz), with or without binaries for external libraries. The bundled external libraries should allow you to build the test programs on Linux, Windows, and MacOS X without installing additional software. We recommend that you download the full distributions, and then perhaps replace the bundled libraries by higher performance ones (e.g., with a BLAS library that is specifically optimized for your machine). If you want to conserve bandwidth and you want to install the required libraries yourself, download the lean distributions. The zip and tgz files are identical, except that on Linux, Unix, and MacOS, unpacking the tgz file ensures that the configure script is marked as executable (unpack with tar zxvpf), otherwise you will have to change its permissions manually.

2

NX Nastran 8 Verification Manual

Contents

Proprietary & Restricted Rights Notice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Part I: Introduction Overview of the Verification Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 Running the Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 Part II: Linear Statics Verification Using Theoretical Solutions Overview of Linear Statics Verification Using Theoretical Solutions . . . . . . . . . . . 3-1 Understanding the Test Case Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 Understanding Comparisons with Theoretical Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 Point Load on a Cantilever Beam . . . . . . . . . . . . . . . . . . . . . . Axial Distributed Load on a Linear Beam . . . . . . . . . . . . . . . . Distributed Loads on a Cantilever Beam . . . . . . . . . . . . . . . . . Moment Load on a Cantilever Beam . . . . . . . . . . . . . . . . . . . . Edge Pressure on Beam Element - Torque Loading . . . . . . . . . Thermal Strain, Displacement, and Stress on Heated Beam . . . Uniformly Distributed Load on Linear Beam . . . . . . . . . . . . . . Membrane Loads on a Linear Quadrilateral Thin Shell Element Axial Loading on Rod Element . . . . . . . . . . . . . . . . . . . . . . . . Stress on a Beam as It Expands and Closes a Gap . . . . . . . . . . Thin Wall Cylinder in Pure Tension . . . . . . . . . . . . . . . . . . . . Thin Shell Beam Wall in Pure Bending . . . . . . . . . . . . . . . . . . Strain Energy of a Truss . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . .

4-1 4-3 4-4 4-6 4-7 4-9 4-11 4-13 4-15 4-17 4-18 4-20 4-22

Part III: Linear Statics Verification Using Standard NAFEMS Benchmarks Overview of Linear Statics Verification Using Standard NAFEMS Benchmarks . . . 5-1 Understanding the Test Case Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1 Elliptic Membrane . . . . . . . . . . . . . . . . . . Cylindrical Shell Patch Test . . . . . . . . . . . . Hemisphere-Point Loads . . . . . . . . . . . . . . Z-Section Cantilever . . . . . . . . . . . . . . . . . Skew Plate Normal Pressure . . . . . . . . . . . Thick Plate Pressure . . . . . . . . . . . . . . . . . Solid Cylinder/Taper/Sphere — Temperature

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. 6-1 . 6-5 . 6-8 6-10 6-12 6-14 6-18

NX Nastran 8 Verification Manual

3

Contents

Part IV: Normal Mode Dynamics Verification Overview of Normal Mode Dynamics Verification Using Theoretical Solutions . . . 7-1 Understanding the Test Case Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 Understanding Comparisons with Theoretical Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1 Natural Frequency of Circular Ring with Axisymmetric Model . . . . . . Undamped Free Vibration — Single Degree of Freedom . . . . . . . . . . . Two Degrees of Freedom Undamped Free Vibration — Principle Modes Three Degrees of Freedom Torsional System . . . . . . . . . . . . . . . . . . . Two Degrees of Freedom Vehicle Suspension System . . . . . . . . . . . . . Two Degrees of Freedom Vehicle Suspension System . . . . . . . . . . . . . Cantilever Beam Undamped Free Vibrations . . . . . . . . . . . . . . . . . . . Natural Frequency of a Cantilevered Mass . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . .

8-1 8-2 8-4 8-5 8-7 8-8 8-10 8-12

Part V: Normal Mode Dynamics Verification Using Standard NAFEMS Benchmarks Overview of Normal Mode Dynamics Verification Using Standard NAFEMS Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1 Understanding the Test Case Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1 Beam Element Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1 Pin-ended Cross — In-plane Vibration . . . . . . . . . . Pin-ended Double Cross - In-plane Vibration . . . . . . Free Square Frame - In-plane Vibration . . . . . . . . . Cantilever with Off-center Point Masses . . . . . . . . . Deep Simply-Supported Beam . . . . . . . . . . . . . . . . Circular Ring — In-plane and Out-of-plane Vibration Cantilevered Beam . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . .

10-1 10-3 10-6 10-8 10-9 10-11 10-13

Shell Element Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1 Thin Square Cantilevered Plate — Symmetric Modes . . . . Thin Square Cantilevered Plate — Anti-symmetric Modes Free Thin Square Plate . . . . . . . . . . . . . . . . . . . . . . . . . Simply Supported Thin Square Plate . . . . . . . . . . . . . . . Simply Supported Thin Annular Plate . . . . . . . . . . . . . . Clamped Thin Rhombic Plate . . . . . . . . . . . . . . . . . . . . . Cantilevered Thin Square Plate with Distorted Mesh . . . . Simply Supported Thick Square Plate, Test A . . . . . . . . . Simply Supported Thick Square Plate, Test B . . . . . . . . . Clamped Thick Rhombic Plate . . . . . . . . . . . . . . . . . . . . Simply Supported Thick Annular Plate . . . . . . . . . . . . . . Cantilevered Square Membrane . . . . . . . . . . . . . . . . . . . Cantilevered Tapered Membrane . . . . . . . . . . . . . . . . . . Free Annular Membrane . . . . . . . . . . . . . . . . . . . . . . . . Cantilevered Thin Square Plate . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . .

11-1 11-3 11-6 11-8 11-10 11-12 11-15 11-19 11-22 11-25 11-27 11-30 11-33 11-35 11-38

Axisymmetric Solid and Solid Element Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . 12-1

4

NX Nastran 8 Verification Manual

Contents

Free Cylinder — Axisymmetric Vibration . . . . . . . . . . . . . Thick Hollow Sphere — Uniform Radial Vibration . . . . . . . Simply Supported Annular Plate — Axisymmetric Vibration Deep Simply Supported "Solid" Beam . . . . . . . . . . . . . . . . Simply Supported "Solid" Square Plate . . . . . . . . . . . . . . . Simply Supported "Solid" Annular Plate . . . . . . . . . . . . . . Cantilevered Solid Beam . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . .

12-1 12-3 12-6 12-8 12-11 12-15 12-19

Part VI: Verification Test Cases from the Societe Francaise des Mecaniciens Overview of Verification Test Cases Provided by the Societe Francaise des Mecaniciens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-1 Understanding the Test Case Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-1 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2 Mechanical Structures — Linear Statics Analysis with Beam or Rod Elements . . 14-1 Short Beam on Two Articulated Supports . . . . . . . Clamped Beams Linked by a Rigid Element . . . . . Transverse Bending of a Curved Pipe . . . . . . . . . . Plane Bending Load on a Thin Arch . . . . . . . . . . . Grid Point Load on an Articulated CONROD Truss Articulated Plane Truss . . . . . . . . . . . . . . . . . . . . Beam on an Elastic Foundation . . . . . . . . . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . .

14-1 14-2 14-4 14-7 14-9 14-12 14-15

Mechanical Structures — Linear Statics Analysis with Shell Elements . . . . . . . . . 15-1 Plane Shear and Bending Load on a Plate . . . . . . . . . . . . . . . . . . . . . Infinite Plate with a Circular Hole . . . . . . . . . . . . . . . . . . . . . . . . . . Uniformly Distributed Load on a Circular Plate . . . . . . . . . . . . . . . . . Torque Loading on a Square Tube . . . . . . . . . . . . . . . . . . . . . . . . . . . Cylindrical Shell with Internal Pressure . . . . . . . . . . . . . . . . . . . . . . Uniform Axial Load on a Thin Wall Cylinder . . . . . . . . . . . . . . . . . . . Hydrostatic Pressure on a Thin Wall Cylinder . . . . . . . . . . . . . . . . . . Gravity Loading on a Thin Wall Cylinder . . . . . . . . . . . . . . . . . . . . . Pinched Cylindrical Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Spherical Shell with a Hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bending Load on a Cylindrical Shell . . . . . . . . . . . . . . . . . . . . . . . . . Uniformly Distributed Load on a Simply-Supported Rectangular Plate Uniformly Distributed Load on a Simply-Supported Rhomboid Plate . . Shear Loading on a Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . .

15-1 15-3 15-6 15-8 15-10 15-14 15-17 15-20 15-23 15-25 15-28 15-31 15-34 15-37

Mechanical Structures — Linear Statics Analysis with Solid Elements . . . . . . . . . 16-1 Solid Cylinder in Pure Tension . . . . . . . . . . . . . . . . . . . Internal Pressure on a Thick-Walled Spherical Container Internal Pressure on a Thick-Walled Infinite Cylinder . . Prismatic Rod in Pure Bending . . . . . . . . . . . . . . . . . . Thick Plate Clamped at Edges . . . . . . . . . . . . . . . . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. 16-1 . 16-7 16-12 16-17 16-21

Mechanical Structures — Normal Mode Dynamics Analysis . . . . . . . . . . . . . . . . . 17-1 Lumped Mass-Spring System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-1 Short Beam on Simple Supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-4 Axial Loading on a Rod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-7

NX Nastran 8 Verification Manual

5

Contents

Cantilever Beam with a Variable Rectangular Section Thin Circular Ring . . . . . . . . . . . . . . . . . . . . . . . . . Thin Circular Ring Clamped at Two Points . . . . . . . . Vibration Modes of a Thin Pipe Elbow . . . . . . . . . . . . Cantilever Beam with Eccentric Lumped Mass . . . . . Thin Square Plate (Clamped or Free) . . . . . . . . . . . . Simply-Supported Rectangular Plate . . . . . . . . . . . . Thin Ring Plate Clamped on a Hub . . . . . . . . . . . . . . Vane of a Compressor - Clamped-free Thin Shell . . . . Bending of a Symmetric Truss . . . . . . . . . . . . . . . . . Hovgaard’s Problem — Pipes with Flexible Elbows . . . Rectangular Plates . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

17-10 17-12 17-15 17-18 17-21 17-24 17-26 17-28 17-31 17-34 17-37 17-40

Mechanical Structures — Normal Mode Dynamics Analysis and Model Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-1 Transient Response of a Spring-Mass System with Acceleration Loading . . . . . . . . . . . . . 18-1 Transient Response of a Clamped-free Post . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-4 Stationary Thermal Tests — Heat Transfer Analysis . . . . . . . . . . . . . . . . . . . . . . . 19-1 Hollow Cylinder - Fixed Temperatures . . . . . . . . Hollow Cylinder - Convection . . . . . . . . . . . . . . . Cylindrical Rod - Flux Density . . . . . . . . . . . . . . Hollow Cylinder with Two Materials - Convection Wall-Convection . . . . . . . . . . . . . . . . . . . . . . . . Wall-Fixed Temperatures . . . . . . . . . . . . . . . . . . L-Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Orthotropic Square . . . . . . . . . . . . . . . . . . . . . . Hollow Sphere - Fixed Temperatures, Convection . Hollow Sphere with Two Materials - Convection .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . .

19-1 19-3 19-5 19-7 19-10 19-12 19-14 19-16 19-19 19-22

Thermo-mechanical Tests — Linear Statics Analysis . . . . . . . . . . . . . . . . . . . . . . . 20-1 Orthotropic Cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-1 Thermal Gradient on a Thin Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-4 Simply-Supported Arch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-7 Part VII: Material Nonlinear (Plasticity) Verification Using Standard NAFEMS Benchmarks Overview of the Material Nonlinear (Plasticity) Verification Using NAFEMS Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-1 Understanding the Verification Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-1 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-1 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-1 Plane Strain Elements - Perfect Plasticity Tests . . Plane Strain Elements - Isotropic Hardening Tests Plane Stress Elements - Perfect Plasticity Tests . . Plane Stress Elements - Isotropic Hardening Tests Solid Element - Perfect Plasticity Tests . . . . . . . . Solid Element - Isotropic Hardening Tests . . . . . .

6

NX Nastran 8 Verification Manual

.. . .. .. .. ..

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. 22-1 . 22-5 . 22-9 22-13 22-17 22-22

Contents

Part VIII: Geometric Nonlinear Verification Using Standard NAFEMS Benchmarks Overview of the Geometric Nonlinear Verification Using NAFEMS Test Cases . . . 23-1 Understanding the Verification Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-1 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-1 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-1 Straight Cantilever with End Moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-1 Straight Cantilever with Axial End Point Load - Brick Elements . . . . . . . . . . . . . . . . . . . 24-6 Straight Cantilever with Axial End Point Load - BEAM Elements . . . . . . . . . . . . . . . . . 24-11 Lee’s Frame Buckling Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-15 Large Displacement Elastic Response of a Hinged Spherical Shell Under Uniform Pressure Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-18 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-21 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-21

NX Nastran 8 Verification Manual

7

Part

I

Introduction

NX Nastran 8 Verification Manual

Chapter

1 Overview of the Verification Manual

This guide contains verification test cases for NX Nastran. These test cases verify the function of the different NX Nastran analysis types using theoretical and benchmark solutions from well-known engineering test cases. Each test case contains test case data and information, such as element type and material properties, results, and references. The guide contains test cases for: •

Linear Statics verification using theoretical solutions



Linear Statics verification using standard NAFEMS benchmarks



Normal Mode Dynamics verification using theoretical solutions



Normal Mode Dynamics verification using standard NAFEMS benchmarks



Verification Test Cases from the Societe Francaise des Mecaniciens



Material Nonlinear (Plasticity) verification using standard NAFEMS benchmarks (NX Nastran only)



Geometric Nonlinear verification using standard NAFEMS benchmarks

NX Nastran 8 Verification Manual

1-1

Chapter

2

Running the Test Cases

All verification test cases are available as *.dat files and are included in the NX Nastran installation in the directory path install_dir/NXr/nast/demo. The test cases are relatively simple, and most have closed-form theoretical solutions. Differences between finite element and theoretical solutions are in most cases negligible. Some tests would require an infinite number of elements to achieve an exact solution. Elements are chosen to achieve reasonable engineering accuracy with reasonable computing times. Note Actual results from NX Nastran may vary insignificantly from the results presented in this document. This variation is generally due to different methods of performing real number algorithms on different systems.

NX Nastran 8 Verification Manual

2-1

Part

II Linear Statics Verification Using Theoretical Solutions

NX Nastran 8 Verification Manual

Chapter

3 Overview of Linear Statics Verification Using Theoretical Solutions

The purpose of these linear statics test cases is to verify the function of the NX Nastran software using theoretical solutions. The test cases are relatively simple in form and most of them have closed-form theoretical solutions. The theoretical solutions shown in these examples are from well-known engineering texts. For each test case, a specific reference is cited. All theoretical reference texts are listed at the end of this topic. The finite element method is very flexible in the types of physical problems represented. The verification tests provided are not exhaustive in exploring all possible problems, but represent common types of applications. This overview provides information on the following: •

Understanding the test case format



Understanding comparisons with theoretical solutions



References

3.1

Understanding the Test Case Format

Each test case is structured with the following information. •



Test case data and information: o

Physical and material properties

o

Finite element modeling (modeling procedure or hints)

o

Units

o

Solution type

o

Element type

o

Boundary conditions (loads, restraints)

Results

NX Nastran 8 Verification Manual

3-1

Chapter 3



Overview of Linear Statics Verification Using Theoretical Solutions

References (text from which a closed-form or theoretical solution was taken)

In addition to these example problems, test cases from NAFEMS (National Agency for Finite Element Methods and Standards, National Engineering Laboratory, Glasgow, U.K.) have been executed. Results for these test cases can be found in the next section, Linear Statics Analysis Verification Using NAFEMS Standard Benchmarks.

3.2

Understanding Comparisons with Theoretical Solutions

While differences in finite element and theoretical results are, in most cases, negligible, some tests would require an infinite number of elements to achieve the exact solution. Elements are chosen to achieve reasonable engineering accuracy with reasonable computing times. Results reported here are results which you can compare to the referenced theoretical solution. Other results available from the analyses are not reported here. Results for both theoretical and finite element solutions are carried out with the same significant digits of accuracy. The closed-form theoretical solution may have restrictions, such as rigid connections, that do not exist in the real world. These limiting restrictions are not necessary for the finite element model, but are used for comparison purposes. Verification to real world problems is more difficult but should be done when possible. The actual results from the NX Nastran software may vary insignificantly from the results presented in this document. This variation is due to different methods of performing real numerical arithmetic on different systems. In addition, it is due to changes in element formulations which have been made to improve results under certain circumstances.

3.3 References The following references have been used in the Linear Statics Analysis verification problems presented: 1. Beer and Johnston. Mechanics of Materials. New York: McGraw-Hill, Inc., 1992. 2. Harris, C. O. Introduction to Stress Analysis. New York Macmillan1959. 3. Roark, R. and Young, W. Formulas for Stress and Strain, 5th Edition. New York: McGraw-Hill Book Company, 1975. 4. Shigley, J. and Mitchel L. Mechanical Engineering Design, 4th Edition. New York: McGraw-Hill Book Company, 1983. 5. Timoshenko, S. Strength of Materials, Part I, Elementary Theory and Problems. New YorK: Van Norstrand Reinhold Company, 1955.

3-2

NX Nastran 8 Verification Manual

Chapter

4

Test Cases

4.1 Point Load on a Cantilever Beam Determine the deflection of a beam at the free end. Determine the stress at the midpoint of the

beam.

Test Case Data and Information Input Files mstvl001.dat

Units Inch

NX Nastran 8 Verification Manual

4-1

Chapter 4

Test Cases

Model Geometry Length = 480 in.

Cross Sectional Properties •

Area = 30 x 30 in.



Iy = Iz = 67500 in.4

Material Properties •

E = 30E06 psi

Finite Element Modeling Create four successive linear beam (CBAR) elements along the X axis.

Boundary Conditions •

Restraints o



Restrain the left end of the beam in all six degrees.

Loads o

Set grid force to 50,000 lb in. the -Y direction.

Solution Type SOL 101 — Linear Statics

Results Result

Bench Value

NX Nastran

Von Mises Stress, grid point 1 (psi)

5333.

5333.

Y Deflection, grid point 5 (in)

0.9102

0.9130

References Beer and Johnston. Mechanics of Materials. New York: McGraw-Hill, Inc., 1992. p. 716.

4-2

NX Nastran 8 Verification Manual

Test Cases

4.2 Axial Distributed Load on a Linear Beam Determine the stress, elongation and resultant force due to an axial loading along a linear beam

element.

Test Case Data and Information Input Files mstvl002.dat

Units Inch

Model Geometry •

Length = 300 in.

Cross Sectional Properties •

Area = 9 in.2



square cross section (3 in. x 3 in.)



I = 6.75 in.4

Material Properties •

E = 30E+6 psi

Finite Element Modeling Create 30 beam element along the X axis, each 10 inches long.

Boundary Conditions •

Restraints o



Restrain one end of the beam in all six degrees.

Loads o

Set the axial distributed load (force per unit length) to 1000 lb/in. for the 10-inch long element furthest from the restrained end in the X direction.

NX Nastran 8 Verification Manual

4-3

Chapter 4

Test Cases

The boundary conditions are shown in the following figure:

Solution Type SOL 101 — Linear Statics

Results Result

Bench Value

NX Nastran

Von Mises Stress, grid point 1 (psi)

1111.

1111.

Deflection in X, grid point 2 (in)

0.01111

0.01093

Reaction in X, grid point 1 (lb)

–1.000E4

–1.000E4

References Beer and Johnston. Mechanics of Materials.. New York: McGraw-Hill, Inc., 1992. p. 76.

4.3 Distributed Loads on a Cantilever Beam Determine the deflection of a beam at the free end. Determine the stress at the midpoint of the beam and the reaction force at the restrained end.

4-4

NX Nastran 8 Verification Manual

Test Cases

Test Case Data and Information Input Files mstvl003.dat

Units Inch

Model Geometry Length = 480 in.

Cross Sectional Properties •

Area = 900 in.2



Square cross section (30 in. x 30 in.)



Iy = Iz = 67500 in.4

Material Properties •

E = 30E06 psi

Finite Element Modeling Create eight successive linear beam (CBAR) elements along the X axis.

Boundary Conditions •

Restraints o



Restrain the left end of the beam in all six degrees.

Loads o

Define a distributed load of 250 lb/in. in the –Y direction.

Solution Type SOL 101 — Linear Statics

Results Result

Bench Value

NX Nastran

X Stress at grid point 1 (psi)

6,400.

6,383.

Deflection Magnitude at grid point 5 (in)

0.8190

0.8225 *

Reaction Force Magnitude at grid point 1 (lb)

1.200E5

1.200E5

* Includes shear deformation which is neglected in theoretical value.

NX Nastran 8 Verification Manual

4-5

Chapter 4

Test Cases

References Beer and Johnston. Mechanics of Materials. New York: McGraw-Hill, Inc., 1992. p. 716.

4.4 Moment Load on a Cantilever Beam Determine the deflection of a beam at the free end. Determine the bending stress of the beam and the reaction force at the restrained end.

Test Case Data and Information Input Files mstvl004.dat

Units Inch

Model Geometry Length = 480 in.

Cross Sectional Properties •

Area = 900 in.2



Iy = Iz = 67500 in.4



Square cross section 30” x 30” inches

Material Properties •

4-6

E = 30 E+06 psi

NX Nastran 8 Verification Manual

Test Cases

Finite Element Modeling Create eight successive linear beam (CBAR) elements along the X axis.

Boundary Conditions •

Restraints o



Restrain the left end of the beam in all six degrees.

Loads o

Set the Z-moment of the end grid point to 2.5E06 in.-lb.

Solution Type SOL 101 — Linear Statics

Results Result

Bench Value

NX Nastran

Von Mises Stress at grid point 1 (psi)

555.6

555.6

Deflection Magnitude at grid point 5 (in)

0.1422

0.1422

Reaction Force Z Direction at grid point 1 (lb)

2.500E6

2.499E6

* Includes shear deformation which is neglected in theoretical value.

References Beer and Johnston. Mechanics of Materials. New York: McGraw-Hill, Inc., 1992. p. 716.

4.5 Edge Pressure on Beam Element - Torque Loading Determine the stress, elongation and resultant force due to a torque applied to a hollow cylinder at the free end.

NX Nastran 8 Verification Manual

4-7

Chapter 4

Test Cases

Test Case Data and Information Input Files mstvl005.dat

Units SI - meter

Model Geometry Length = 1.5 m

Cross Sectional Properties •

Radius1 = 0.02 m



Radius2 = .03 m

Material Properties •

E = 208.6 GPa

Finite Element Modeling •

Create a CBAR element along the X axis.



To find the maximum shearing stress, set the effective radius in torsion to 0.03 m.



The minimum shearing stress is located at a radius equal to 0.02 m.

4-8

NX Nastran 8 Verification Manual

Test Cases

Boundary Conditions •

Restraints o



Restrain the left end of the beam in all six degrees.

Loads o

Apply an edge torque equal to 4.08 kN-m along the 10 cm linear beam (CBAR) element furthest from the restrained end.

Solution Type SOL 101 — Linear Statics

Results Result

Bench Value

NX Nastran

Max Torsional Shear Stress (MPa)

120.0

120.0

Min Torsional Shear Stress (MPa)

80.00

80.00

Post Processing To obtain the minimum and maximum shear stress values, a post processor which supports contour plots of the torsional shear stress on the cross section using the linear beam (CBAR) element forces must be used. The cross section location can be anywhere except the free end of the beam.

References Beer and Johnston. Mechanics of Materials. New York: McGraw-Hill, Inc., 1992. p. 122.

4.6 Thermal Strain, Displacement, and Stress on Heated Beam A beam originally 1 meter long and at –50° C is heated to 25° C. First, determine the displacement and thermal strain on a cantilever beam. Fix the beam at the free end and then determine the displacement, reaction forces, and stresses along the beam. Next, fix the beam at both ends.

NX Nastran 8 Verification Manual

4-9

Chapter 4

Test Cases

Test Case Data and Information Input Files mstvl007.dat

Units SI - meter

Model Geometry Length = 1 m

Cross Sectional Properties •

Area = 0.01 m2

Material Properties •

E = 2.068E11 Pa



Coefficient of thermal expansion = 1.2E–05



v = 0.3

Finite Element Modeling •

Create 10 linear beam (CBAR) elements on the X axis and restrain the end grids in all directions.



Apply a temperature on all grid points.

4-10

NX Nastran 8 Verification Manual

Test Cases

Boundary Conditions •



Restraints o

Case 1: Restrain one end of the beam in all six directions.

o

Case 2: Restrain both ends of the beam in all six directions.

Loads o

Set grid temperatures to 25°C. Set the reference temperature to –50°C.

Solution Type SOL 101 — Linear Statics

Results Case 1 Result

Bench Value

NX Nastran

X Displacement at grid 11 (m)

.0009000

.0009000

Axial Thermal Strain

.0009000

.0009000

Case 2 Result

Bench Value

NX Nastran

X Displacement (m)

0

0

Axial Stress (Pa)

1.860E8

1.861E8

X Reaction Force (N)

1.860E6

1.861E6

References Beer and Johnston. Mechanics of Materials. New York: McGraw-Hill, Inc., 1992. p. 65.

4.7 Uniformly Distributed Load on Linear Beam A beam 40 feet long is restrained and loaded as shown with a distributed load of –833 lbs. per foot. Determine the bending stress and the deflection at the middle of the beam.

NX Nastran 8 Verification Manual

4-11

Chapter 4

Test Cases

Test Case Data and Information Input Files mstvl008.dat

Units Inch

Model Geometry Length = 480 in.

Cross Sectional Properties •

Rectangular cross section (1.17 in. x 43.24 in.)



Iz = 7892 in.4

4-12

NX Nastran 8 Verification Manual

Test Cases

Material Properties •

E = 30E06 psi

Finite Element Modeling Create 4 successive linear beam (CBAR) elements that are each 10 feet long.

Boundary Conditions •

Restraints o



Restrain the second and the fourth grids in five degrees of freedom. Do not restrain rotation about Z.

Loads o

Define a distributed load (force per unit length) of –833 lb/foot (global negative Y direction) on the end elements.

Solution Type SOL 101 — Linear Statics

Results Result

Bench Value

NX Nastran

Y Displacement at grid 3 (in.)

0.1820

0.182

Max bending stress (psi)

1.644E4

1.644E4

References Beer and Johnston. Mechanics of Materials. New York: McGraw-Hill, Inc., 1992. p. 98.

4.8 Membrane Loads on a Linear Quadrilateral Thin Shell Element A circle is scribed on an unstressed aluminum plate. Forces acting in the plane of the plate cause normal stresses. Determine the change in the length of diameter AB and of diameter CD.

NX Nastran 8 Verification Manual

4-13

Chapter 4

Test Cases

Test Case Data and Information Element Types cquad4

Input Files mstvl009.dat

Units Inch

Model Geometry •

Length = 15 in.



Diameter = 9 in.



Thickness = 3/4 in.

4-14

NX Nastran 8 Verification Manual

Test Cases

Material Properties •

E = 10E06 psi



Poisson’s ratio = 1/3



F(x)/L = 9,000 lb/in.



F(z)/L = 15,000 lb/in.

Finite Element Modeling Create 1/4 of the model and apply symmetry boundary conditions. Then multiply the answer by 2 for correct results. Remember to account for the ratio of the circle diameter to plate length.

Boundary Conditions •

Restraints o



Restrain the left end of the beam in all six degrees.

Loads o

Set the edge pressure to 9,000 lb/in. in the X direction and 15,000 lb/in. in the Z direction.

Solution Type SOL 101 — Linear Statics

Results Result

Bench Value

NX Nastran

X Diameter Change (in.)

–4.800E3

–4.800E3

Z Diameter Change (in.)

–14.40E3

–14.40E3

Post Processing Deflection •

(dx at grid point 7 – dx at grid point 10) x 2 = (0.004 – 0.0016) x 2 = 0.0048



(dz at grid point 7 – dz at grid point 24) x 2 = (0.012 –0.0048) x 2 = 0.0144

References Beer and Johnston. Mechanics of Materials. New York: McGraw-Hill, Inc., 1992. p. 85.

4.9 Axial Loading on Rod Element Determine the stress, elongation, and strain due to an axial load on a rod element.

NX Nastran 8 Verification Manual

4-15

Chapter 4

Test Cases

Test Case Data and Information Input Files mstvl011.dat

Units SI - meters

Model Geometry Length = 10 m

Cross Sectional Properties •

Area = 0.01 m2

Material Properties •

E = 200.0 GPa

Finite Element Modeling Create a rod (CROD) element along the X axis.

Boundary Conditions •

Restraints o



Restrain an end of the rod in the 3 translational degrees.

Loads o

Apply a grid point force in the positive X-direction of 500 kN.

Solution Type SOL 101 — Linear Statics

Results Result

Bench Value

NX Nastran

Axial Stress (MPa)

50.00

50.00

Axial Strain

0.0002500

0.0002500

Elongation (mm)

2.500

2.500

References Beer and Johnston. Mechanics of Materials. New York: McGraw-Hill, Inc., 1992. p. 716.

4-16

NX Nastran 8 Verification Manual

Test Cases

4.10 Stress on a Beam as It Expands and Closes a Gap Determine the stress on a beam as it expands thermally and closes a 0.002 inch gap. It is initially at 70 °F and is heated to 170 °F.

Test Case Data and Information Input Files mstvl013.dat

Units Inch

Model Geometry Length = 3 in.

Material Properties • •

E = 1.05E07 psi Coefficient of thermal expansion = 1.25E–05 in./(in.–°F)

Finite Element Modeling •

Create a single linear beam (CBAR) element on the X axis.

NX Nastran 8 Verification Manual

4-17

Chapter 4



Test Cases

Create an MPC to define the closing of the gap.

Boundary Conditions •

Restraints o



Restrain the free end of the beam in all six degrees.

Loads o

Set grid temperature to 170 °F.

o

Set the reference temperature to 70 °F.

Solution Type SOL 101 — Linear Statics

Results Result

Bench Value

NX Nastran

Axial Stress (psi)

–6.125E3

–6.125E3

References Harris, C. O. Introduction to Stress Analysis 1959. p. 58.

4.11 Thin Wall Cylinder in Pure Tension Determine the stress and deflection of a thin wall cylinder with a uniform axial load.

4-18

NX Nastran 8 Verification Manual

Test Cases

Test Case Data and Information Input Files mstvl014.dat

Units Inch

Model Geometry •

R = 0.5 in.



Thickness = 0.01 in.



y = 1.0 in.

Material Properties •

E = 10,000 psi

NX Nastran 8 Verification Manual

4-19

Chapter 4



Test Cases

n = 0.3

Finite Element Modeling Create 1/4 model of the cylinder with thin shell linear quadrilateral (CQUAD4) elements and symmetry boundary conditions.

Boundary Conditions •

Restraints o

Restrain edges of symmetry, in translation, in hoop direction, and rotation about Z axis.

o

Restrain one end in Y direction.

Loads o

Apply membrane edge pressure of p / (pi)D = 3.1831 where p = 10 psi

Solution Type SOL 101 — Linear Statics

Results Result

Bench Value

NX Nastran

Axial (Z) Stress (psi)

1.000E3

1.000E3

Axial (Z) Deflection (in.)

1.000

1.000

Radial Deflection (in.)

–0.01500

–0.01500

References Roark, R. and Young, W. Formulas for Stress and Strain, 6th Edition. New York: McGraw-Hill Book Company, 1989. p. 518, Case 1a.

4.12 Thin Shell Beam Wall in Pure Bending Determine the maximum stress, maximum deflection, and strain energy of a thin shell beam wall with a uniform bending load.

4-20

NX Nastran 8 Verification Manual

Test Cases

Test Case Data and Information Input Files mstvl015.dat

Units Inch

Model Geometry •

Length = 30 in.



Width = 5 in.



Thickness = 0.1 in.

Material Properties •

E = 30E06 psi



n = 0.03

NX Nastran 8 Verification Manual

4-21

Chapter 4

Test Cases

Finite Element Modeling Create a 30 in. x 5 in. plate with thing shell (CQUAD4) elements.

Boundary Conditions •

Restraints o



Restrain at one of the ends in all directions.

Loads o

Apply edge pressure of p/w = 1.2 lbs/in. where p = 6.0 lb.

Solution Type SOL 101 — Linear Statics

Results Result

Bench Value

NX Nastran

Max Z Deflection (in.)

4.320

4.264

Max Z Stress (psi)

2.160E4

1.980E4

Total Strain Energy (lb in.)

12.96

12.79

References Shigley, J. and Mitchel L. Mechanical Engineering Design, 4th Edition. New York: McGraw-Hill, Inc., 1983. pp. 134, 804.

4.13 Strain Energy of a Truss Determine the strain energy of a truss. The cross-sectional area of the diagonal members is twice the cross-sectional area of the horizontal and vertical members.

4-22

NX Nastran 8 Verification Manual

Test Cases

Test Case Data and Information Input Files mstvl016.dat

Units Inch

Model Geometry •

Length = 10 in.

Cross Sectional Properties •

Cross-sectional area (A) = 0.01 in.2

Material Properties •

E = 30E06 psi

Finite Element Modeling Create truss shown using rod (CROD) elements.

Boundary Conditions •

Restraints o

Restrain far left grid in directions: X, Y, Z, RX, RY.

o

Restrain far right grid in directions: Y, Z, RX, RY.

NX Nastran 8 Verification Manual

4-23

Chapter 4



Test Cases

Loads o

Apply grid force in Y direction on lower center grid; F= 300 lb.

Solution Type SOL 101 — Linear Statics

Results Result

Bench Value

NX Nastran

Total Strain Energy (lb in.)

5.846

5.846

References Beer and Johnston. Mechanics of Materials. New York: McGraw-Hill, Inc., 1992. p. 588.

4-24

NX Nastran 8 Verification Manual

Part

III Linear Statics Verification Using Standard NAFEMS Benchmarks

NX Nastran 8 Verification Manual

Chapter

5 Overview of Linear Statics Verification Using Standard NAFEMS Benchmarks

The purpose of these linear statics test cases is to verify the function of NX Nastran using standard benchmarks published by NAFEMS (National Agency for Finite Element Methods and Standards, National Engineering Laboratory, Glasgow, U.K.). These standard benchmark tests were created by NAFEMS to stretch the limits of the finite elements in commercial software. All results obtained using NX Nastran compare favorably with other commercial finite element analysis software.

5.1 Understanding the Test Case Format Each test case is structured with the following information: •

Test case data and information o

Physical and material properties

o

Finite element modeling (modeling procedure or hints)

o

Units

o

Finite element modeling information

o

Boundary conditions (loads and restraints)

o

Solution type



Results



Reference

5.2 Reference The following reference has been used in these test cases: NAFEMS Finite Element Methods & Standards, The Standard NAFEMS Benchmarks. Glasgow: NAFEMS, Rev. 3, 1990.

NX Nastran 8 Verification Manual

5-1

Chapter

6

Test Cases

6.1 Elliptic Membrane This test is a linear elastic analysis of an elliptic membrane (shown below) using coarse and fine meshes of plane stress elements and thin shell elements. It provides the input data and results for NAFEMS Standard Benchmark Test LE1.

Ellipses:

Test Case Data and Information Input Files le101.dat (plane stress quadrilateral) le102.dat (plane stress triangle) le103.dat (thin shell)

NX Nastran 8 Verification Manual

6-1

Chapter 6

Test Cases

Physical and Material Properties •

Thickness = 0.1 m



Isotropic material



E = 210E3 MPa



v = 0.3

Units SI

Finite Element Modeling •

Plane stress (only MID1 defined on PSHELL) linear (CQUAD4) and parabolic (CQUAD8) quadrilaterals — coarse and fine mesh.



Plane stress (only MID1 defined on PSHELL) linear (CTRI3) and parabolic (CTRI6) triangles — coarse and fine mesh.



Thin shell (MID1, MID2 and MID3 defined on PSHELL) linear (CQUAD4) and parabolic (CQUAD8) quadrilaterals — coarse and fine mesh.



The fine mesh is created by approximately halving the coarse mesh.

6-2

NX Nastran 8 Verification Manual

Test Cases

Boundary Conditions •

Uniform outward pressure at outer edge BC = 10 MPa



Inner curved edge AD unloaded



X displacement (edge AB) = 0

NX Nastran 8 Verification Manual

6-3

Chapter 6



Test Cases

Y displacement (edge CD) = 0

Solution Type SOL 101 — Linear Statics

Results Output — tangential edge stress at D (stress in Y direction)

Plane Stress Elements Test case

Grid point #

Bench Value

NX Nastran

Linear quad — coarse mesh

4

92.7

62.1

Linear quad — fine mesh

204

92.7

79.6

Parabolic quad — coarse mesh

104

92.7

82.1

Parabolic quad — fine mesh

304

92.7

89.9

Linear triangle — coarse mesh

4

92.7

52.9

Linear triangle — fine mesh

204

92.7

70.8

Parabolic triangle — coarse mesh

104

92.7

76.8

Parabolic triangle — fine mesh

304

92.7

93.6

Test case

Grid point #

Bench Value

NX Nastran

Linear quad — coarse mesh

4

92.7

62.1

Linear quad — fine mesh

204

92.7

79.6

Parabolic quad — coarse mesh

104

92.7

82.1

Parabolic quad — fine mesh

304

92.7

89.9

Thin Shell Elements

6-4

NX Nastran 8 Verification Manual

Test Cases

References NAFEMS Finite Element Methods & Standards, The Standard NAFEMS Benchmarks, Test No. LE1. Glasgow: NAFEMS, Rev. 3, 1990.

6.2 Cylindrical Shell Patch Test This test is a linear elastic analysis of a cylindrical shell (shown below) using thin shell elements and two different loadings. It provides the input data and results for NAFEMS Standard Benchmark Test LE2.

Test Case Data and Information Input Files •

le201a.dat (linear shell, case 1)



le201b.dat (parabolic shell, case 1)



le202a.dat (linear shell, case 2)



le202b.dat (parabolic shell, case 2)

Physical and Material Properties •

Thickness = 0.1 m

NX Nastran 8 Verification Manual

6-5

Chapter 6

Test Cases



Isotropic material



E = 210E3 MPa



v = 0.3

Units SI

Finite Element Modeling •

Thin shell linear (CQUAD4) and parabolic (CQUAD8) quadrilaterals

Boundary Conditions •

Translations and rotations (edge AB) = 0



Z translations and normal rotations (edge AD and edge BC) = 0

Case 1 loading: •

Uniform normal edge moment on DC = 1.0 kNm/m

Case 2 loading: •

Uniform outward normal pressure at mid-surface ABCD = 0.6 MPa



Tangential outward normal pressure on edge DC = 60.0 MPa

6-6

NX Nastran 8 Verification Manual

Test Cases

Solution Type SOL 101 — Linear Statics

Results Output — outer (convex) surface (top shell surface) tangential stress at point E (grid point 2): Test case

Filename

Bench Value

NX Nastran

Linear quad – case 1

le201a

60.00

51.8

Linear quad – case 2

le202a

60.00

51.1*

Parabolic quad – case 1

le201b

60.00

56.4

Parabolic quad – case 2

le202b

60.00

56.4*

* Since the shapes of the shells are an approximation to a cylindrical surface, an edge load will not be in the correct direction. To get this result, the edge load must be input as grid forces in the tangential direction.

Post Processing •

Stress component: Y

NX Nastran 8 Verification Manual

6-7

Chapter 6



Test Cases

Results obtained on the element top surface in cylindrical coordinate system

References NAFEMS Finite Element Methods & Standards, The Standard NAFEMS Benchmarks, Test No. LE2. Glasgow: NAFEMS, Rev. 3, 1990.

6.3 Hemisphere-Point Loads This test is a linear elastic analysis of hemisphere point loads (shown below) using coarse and fine meshes of thin shell elements. It provides the input data and results for NAFEMS Standard Benchmark Test LE3.

Test Case Data and Information Input Files •

le301.dat (linear quad, coarse mesh)



le302.dat (linear quad, fine mesh)



le303.dat (parabolic quad, coarse mesh)

Physical and Material Properties •

6-8

Thickness = 0.04 m

NX Nastran 8 Verification Manual

Test Cases



Isotropic material



E = 68.25 × 103 MPa



v = 0.3

Units SI

Finite Element Modeling •

Thin shell linear (CQUAD4) and parabolic (CQUAD8) quadrilaterals — coarse and fine mesh



Equally spaced grid points on AC, CE, EA



Point G at X = Y = Z = 10 /( 31/2) grid point 7

Boundary Conditions •

Edge AE symmetry about XZ plane (y = rotation x = rotation z = 0)



Edge CE symmetry about YZ plane (x = rotation y = rotation z = 0)



Point E (x = y = z = 0)



All other displacements on edge AC are free.



Concentrated radial load outward at A = 2KN



Concentrated radial load inward at C = 2KN

NX Nastran 8 Verification Manual

6-9

Chapter 6

Test Cases

Solution Type SOL 101 — Linear Statics

Results Output — X displacement at point A Mesh

Test Case

Bench Value NX Nastran

linear quad — coarse mesh

le301

0.185

0.1848

linear quad — fine mesh

le302

0.185

0.1865

parabolic quad — coarse mesh

le303

0.185

0.1416

References NAFEMS Finite Element Methods & Standards, The Standard NAFEMS Benchmarks, Test No. LE3. Glasgow: NAFEMS, Rev. 3, 1990.

6.4 Z-Section Cantilever This test is a linear elastic analysis of a Z-section cantilever (shown below) using thin shell elements. It provides the input data and results for NAFEMS Standard Benchmark Test LE5.

6-10

NX Nastran 8 Verification Manual

Test Cases

Test Case Data and Information Input Files •

le501.dat (linear quadrilateral)



le502.dat (parabolic quadrilateral)

Physical and Material Properties •

Thickness = 0.1 m



Isotropic material



E = 210E3 MPa



v = 0.3

Units SI

Finite Element Modeling •

Thin shell linear (CQUAD4) and parabolic (CQUAD8) quadrilaterals

Boundary Conditions •

All displacements on edges B1, B2, B3 = 0



Torque of 1.2MN applied at end C by two edge shears (at C1 & C3) of 0.6 MN

NX Nastran 8 Verification Manual

6-11

Chapter 6

Test Cases

Solution Type SOL 101 — Linear Statics

Results Output — averaged axial stress at mid-surface, point A, grid point 30 (compression) Result

Bench Value

NX Nastran

Linear quad - point A/grid point 30

–108.0

–111.0

Parabolic quad - point A/grid point 30

–108.0

–110.3

References NAFEMS Finite Element Methods & Standards. The Standard NAFEMS Benchmarks, Test No. LE5. Glasgow: NAFEMS, Rev. 3, 1990.

6.5 Skew Plate Normal Pressure This test is a linear elastic analysis of a plate (shown below) using thin shell elements. It provides the input data and results for NAFEMS Standard Benchmark Test LE6.

6-12

NX Nastran 8 Verification Manual

Test Cases

Test Case Data and Information Input Files •

le601.dat (linear and parabolic quad)



le602.dat (linear and parabolic triangle)

Physical and Material Properties •

Thickness = 0.01 m



Isotropic material



E = 210E3 MPa



v = 0.3

Units SI

Finite Element Modeling •

Thin shelllinear (CQUAD4) and parabolic (CQUAD8) quadrilaterals — coarse and fine mesh



Thin shell linear (CTRI3) and parabolic (CTRI6) triangles — coarse and fine mesh

Boundary Conditions •

Simple supports



Z displacement = 0



Normal pressure = –0.7KPa in the Z direction

Solution Type SOL 101 — Linear Statics

Results Output — maximum principal stress on the bottom surface at the plate center.

NX Nastran 8 Verification Manual

6-13

Chapter 6

Test Cases

Case le601 Mesh

Grid point #

Bench Value NX Nastran

Linear quad coarse mesh

9

0.802

0.325

Linear quad fine mesh

18

0.802

0.683

Parabolic quad coarse mesh

43

0.802

0.625

Parabolic quad fine mesh

52

0.802

0.719

Mresh

Grid point #

Bench Value

NX Nastran

Linear triangle coarse mesh

9

0.802

0.396

Linear triangle fine mesh

18

0.802

0.720

Parabolic triangle coarse mesh

43

0.802

0.926

Parabolic triangle fine mesh

52

0.802

0.857

Case le602

References NAFEMS Finite Element Methods & Standards. The Standard NAFEMS Benchmarks, Test No. LE6. Glasgow: NAFEMS, Rev. 3, 1990.

6.6 Thick Plate Pressure This article provides the input data and results for NAFEMS Standard Benchmark Test LE10. This test is a linear elastic analysis of a thick (shown below) using coarse and fine meshes of solid elements.

Ellipses:

6-14

NX Nastran 8 Verification Manual

Test Cases

Test Case Data and Information Input Files •

le1001.dat (linear and parabolic brick)



le1002.dat (linear and parabolic wedge)



le1003.dat (linear and parabolic tetrahedron)



le1004.dat (linear and parabolic pyramid)

Physical and Material Properties •

Isotropic material



E = 210E3 MPa



v = 0.3

Units SI

Finite Element Modeling •

Solid brick (CHEXA) linear and parabolic - coarse and fine mesh



Solid wedge (CPENTA) linear and parabolic - coarse and fine mesh



Solid tetrahedron (CTETRA) - linear and parabolic - coarse and fine mesh



Solid pyramid (CPYRAM) linear and parabolic - coarse and fine mesh (created by dividing each linear and parabolic brick element into 6 pyramid elements)

NX Nastran 8 Verification Manual

6-15

Chapter 6

Test Cases

Solid Brick

Solid Wedge

6-16

NX Nastran 8 Verification Manual

Test Cases

Solid Tetrahedron — fine mesh only

Boundary Conditions •

Uniform normal pressure on the upper surface of the plate = 1 MPa



Inner curved edge AD unloaded



X and Y displacements on faces DCD’C¢ and ABA¢B¢ = 0



X and Y displacements on face BCB¢C¢ are fixed



Z displacements along mid-plane are fixed

Solution Type SOL 101 — Linear Statics

Results Output — direct stress at point Dsyy

NX Nastran 8 Verification Manual

6-17

Chapter 6

Test Cases

Test Case le1001 Mesh

Grid point #

Bench Value

NX Nastran

Linear brick — coarse mesh

4

–5.50

–5.41

Linear brick — fine mesh

204

–5.50

–5.67

Parabolic brick — coarse mesh

104

–5.50

–6.13

Parabolic brick — fine mesh

304

–5.50

–6.04

Test Case le1002 Mesh

Grid point #

Bench Value

NX Nastran

Linear wedge — coarse mesh

4

–5.50

–5.94

Linear wedge — fine mesh

204

–5.50

–5.83

Parabolic wedge — coarse mesh

104

–5.50

–5.32

Parabolic wedge — fine mesh

304

–5.50

–6.01

Test Case le1003 Result

Grid point #

Bench Value

NX Nastran

Linear tetra — fine mesh

40

–5.50

–2.41

Parabolic tetra — fine mesh

171

–5.50

–5.28

Test Case le1004 Mesh

Grid point #

Bench Value

NX Nastran

Linear pyramid — coarse mesh

4

–5.50

–2.85

Linear pyramid — fine mesh

204

–5.50

–3.83

Parabolic pyramid — coarse mesh

104

–5.50

–5.60

Parabolic pyramid — fine mesh

304

–5.50

–5.72

References NAFEMS Finite Element Methods & Standards. The Standard NAFEMS Benchmarks, Test No. LE10. Glasgow: NAFEMS, Rev. 3, 1990.

6.7 Solid Cylinder/Taper/Sphere — Temperature This test is a linear elastic analysis of a solid cylinder with a temperature gradient (shown below) using coarse and fine meshes of solid elements. It provides the input data and results for NAFEMS Standard Benchmark Test LE11.

6-18

NX Nastran 8 Verification Manual

Test Cases

Test Case Data and Information Input Files •

le1101a.dat (linear brick — coarse mesh)



le1101b.dat (linear brick — fine mesh)



le1102a.dat (parabolic brick — coarse mesh)



le1102b.dat (parabolic brick — fine mesh)



le1103a.dat (linear wedge — coarse mesh)



le1103b.dat (linear wedge — fine mesh)



le1104a.dat (parabolic wedge — coarse mesh)



le1104b.dat (parabolic wedge — fine mesh)



le1105a.dat (linear tetra — coarse mesh)



le1105b.dat (linear tetra — fine mesh)



le1106a.dat (parabolic tetra — coarse mesh)



le1106b.dat (parabolic tetra — fine mesh)

NX Nastran 8 Verification Manual

6-19

Chapter 6

Test Cases



le1107a.dat (linear pyramid — coarse mesh)



le1107b.dat (linear pyramid — fine mesh)



le1108a.dat (parabolic pyramid — coarse mesh)



le1108b.dat (parabolic pyramid — fine mesh)

Physical and Material Properties •

Isotropic material



E = 210E3 MPa



v = 0.3



a = 2.3E–4 °C

Units SI

Finite Element Modeling •

Solid brick (CHEXA) linear and parabolic — coarse and fine mesh



Solid wedge (CPENTA) linear (6 grid point) and parabolic (15 grid point) — coarse and fine mesh



Solid tetrahedron (CTETRA) linear and parabolic — coarse and fine mesh



Solid pyramid (CPYRAM) linear and parabolic — coarse and fine mesh (created by dividing each linear and parabolic brick element into 6 pyramid elements)

6-20

NX Nastran 8 Verification Manual

Test Cases

Solid Brick

Solid Tetrahedron

NX Nastran 8 Verification Manual

6-21

Chapter 6

Test Cases

Boundary Conditions •

Linear temperature gradient in the radial and axial direction T° C = (X2 + Y2)1/2 + Z



X, Y, and Z displacements = 0



X and Y displacements on face BCB¢C¢ are fixed



Z displacements on XY-plane face and HIH¢I¢ face = 0

Solution Type SOL 101 — Linear Statics

Results Output - direct stress syy at point A File Name

Result

Grid point at Point A

Bench Value

NX Nastran

le1101a

Linear brick — coarse mesh

30

–105.0

–88.50

le1101b

Linear brick — fine mesh

71

–105.0

–98.3

le1102a

Parabolic brick — coarse mesh

67

–105.0

–100.4

le1102b

Parabolic brick — fine mesh

159

–105.0

–111.2

le1103a

Linear wedge — coarse mesh

33

–105.0

–10.0

le1103b

Linear wedge — fine mesh

74

–105.0

–48.3

le1104a

Parabolic wedge — coarse mesh

71

–105.0

–87.2

le1104b

Parabolic wedge — fine mesh

187

–105.0

–96.2

le1105a

Linear tetra — coarse mesh

8

–105.0

–31.4

6-22

NX Nastran 8 Verification Manual

Test Cases

File Name

Result

Grid point at Point A

Bench Value

NX Nastran

le1105b

Linear tetra — fine mesh

8

–105.0

–65.2

le1106a

Parabolic tetra — coarse mesh

8

–105.0

–89.6

le1106b

Parabolic tetra — fine mesh

8

–105.0

–97.3

le1107a

Linear pyramid — coarse mesh

30

–105.0

–57.0

le1107b

Linear pyramid — fine mesh

71

–105.0

–79.8

le1108a

Parabolic pyramid — coarse mesh

67

–105.0

–65.8

le1108b

Parabolic pyramid — fine mesh

159

–105.0

–108.8

References NAFEMS Finite Element Methods & Standards. The Standard NAFEMS Benchmarks, Test No. LE11. Glasgow: NAFEMS, Rev. 3, 1990.

NX Nastran 8 Verification Manual

6-23

Part

IV Normal Mode Dynamics Verification

NX Nastran 8 Verification Manual

Chapter

7 Overview of Normal Mode Dynamics Verification Using Theoretical Solutions

The purpose of these normal mode dynamics test cases is to verify the function of NX Nastran using theoretical solutions. The test cases are relatively simple in form and most of them have closed-form theoretical solutions. The theoretical solutions shown in these examples are from well known engineering texts. For each test case, a specific reference is cited. All theoretical reference texts are listed at the end of this topic. The finite element method is very flexible in the types of physical problems represented. The verification tests provided are not exhaustive in exploring all possible problems, but represent common types of applications. This overview provides information on the following: •

Understanding the test case format



Understanding comparisons with theoretical solutions



References

7.1 Understanding the Test Case Format Each test case is structured with the following information. •

Test case data and information: o

Physical and material properties

o

Finite element modeling (modeling procedure or hints)

o

Units

o

Solution type

o

Boundary conditions (loads and restraints/constraints)



Results



Reference

NX Nastran 8 Verification Manual

7-1

Chapter 7

Overview of Normal Mode Dynamics Verification Using Theoretical Solutions

7.2 Understanding Comparisons with Theoretical Solutions While differences in finite element and theoretical results are, in most cases, negligible, some tests would require an infinite number of elements to achieve the exact solution. Elements are chosen to achieve reasonable engineering accuracy with reasonable computing times. Results reported here are results which you can compare to the referenced theoretical solution. Other results available from the analyses are not reported here. Results for both theoretical and finite element solutions are carried out with the same significant digits of accuracy. The closed-form theoretical solution may have restrictions, such as rigid connections, that do not exist in the real world. These limiting restrictions are not necessary for the finite element model, but are used for comparison purposes. Verification to real world problems is more difficult but should be done when possible. The actual results from NX Nastran may vary insignificantly from the results presented in this document. This variation is due to different methods of performing real numerical arithmetic on different systems. In addition, it is due to changes in element formulations which have been made to improve results under certain circumstances.

7.3 Reference The following references have been used in the normal mode dynamics analysis verification problems presented: 1. Blevins, R. Formulas For Natural Frequency and Mode Shape, 1st Edition. New York: Van Norstrand Reinhold Company, 1979. 2. Timoshenko and Young. Vibration Problems in Engineering. New York: Van Norstrand Reinhold Company, 1955. 3. Tse, F., Morse, I., and Hinkle, R. Mechanical Vibrations, Theory and Applications. Boston: Allyn and Bacon, Inc., 1978. 4. Tse, F., Morse, I., and Hinkle, R. Mechanical Vibrations, 2nd Edition. Boston: Allyn and Bacon, Inc., 1978.

7-2

NX Nastran 8 Verification Manual

Chapter

8

Test Cases

8.1 Natural Frequency of Circular Ring with Axisymmetric Model Determine the frequency of radial vibration of an axisymmetric ring.

Test Case Data and Information Input File mstvn001.dat

Units Inch

Model Geometry •

Thickness = 0.05 in.



Radius = 100 in.

Material Properties •

Density = 0.00073 lb-sec2/in.4



E = 30E6 psi

NX Nastran 8 Verification Manual

8-1

Chapter 8

Test Cases

Finite Element Modeling Create a linear axisymmetric thin shell element (CCONEAX) .05 inches long at a radius of 100 inches from the center.

Solution Type SOL 103 — Normal Mode Dynamics, Lanczos Method

Results Result

Bench Value

NX Nastran

Frequency (Hz)

322.6

322.6

References Timoshenko and Young. Vibration Problems in Engineering, p. 425. New York: Van Norstrand Reinhold Company, 1955.

8.2 Undamped Free Vibration — Single Degree of Freedom Determine the natural frequency of the system shown.

8-2

NX Nastran 8 Verification Manual

Test Cases

Test Case Data and Information Input File mstvn002.dat

Units SI - meter

Model Geometry •

Length = 0.5 m



a = 0.3 m

Physical Properties •

mass = 20 Kg



k = 8 KN/m

Finite Element Modeling •

Create 5 rigid bar (RBAR) elements along the X axis. Each bar should be 0.1 m long.



A lumped mass (CONM2) element is applied on the end grid point.



A grid point-to-ground spring element (CELAS1) is applied 0.2 m from the lumped mass.

Boundary Conditions •

Restrain the first grid point to allow rotation only in the Z direction.

Solution Type SOL 103 — Normal Mode Dynamics, Lanczos Method

Results Result

Bench Value

NX Nastran

Frequency (Hz)

1.910

1.910

References Tse, F., Morse, I., and Hinkle, R. Mechanical Vibrations, Theory and Applications, p. 75. Boston: Allyn and Bacon, Inc., 1978.

NX Nastran 8 Verification Manual

8-3

Chapter 8

Test Cases

8.3 Two Degrees of Freedom Undamped Free Vibration — Principle Modes Determine the natural frequencies of a dynamic system with two degrees of freedom.

Test Case Data and Information Input File mstvn003.dat

Units SI- meter

8-4

NX Nastran 8 Verification Manual

Test Cases

Element Types •

Translational springs (CELAS1)



Lumped mass (CONM2)

Physical Properties •

Mass = 1 kg



k = 1 N/m

Finite Element Modeling •

Create four grid points on the Y axis.



Create three linear springs (CELAS1) with stiffness of 1 N/m and with a uniaxial stiffness reference coordinate system.



Create two lumped mass elements (CONM2) with a mass of 1 kg.

Boundary Conditions •

Restrain ends in all directions.



Restrain other grid points in all directions but Y.

Solution Type Normal Mode Dynamics - SOL 103, Lanczos method

Results Result

Bench Value

NX Nastran

Frequency of Mode 1 (Hz)

0.1592

0.1592

Frequency of Mode 2 (Hz)

0.2757

0.2757

References Tse, F., Morse, I., and Hinkle, R. Mechanical Vibrations, 2nd Edition, pp. 145-149. Boston: Allyn and Bacon, Inc., 1978.

8.4 Three Degrees of Freedom Torsional System Determine the natural frequencies of a dynamic system with three degrees of freedom.

NX Nastran 8 Verification Manual

8-5

Chapter 8

Test Cases

Test Case Data and Information Input File mstvn004.dat

Element Types •

Rotational springs (CELAS1)



Lumped mass (CONM2)

Units SI — meter

Physical Properties •

J = J1 = J2 = J3 = 0.1



k = k1 = k2 = k3 = 1 N*m

Finite Element Modeling •

Create four grid points on the X axis.



Create three linear torsional springs (CELAS1) with stiffness of 1 N*m and with a stiffness reference coordinate system being uniaxial.



Create three lumped mass elements (CONM2) with a mass coordinate system = 1 and with mass inertia system of: 0.1, 0.0, 0.0, 0.0, 0.0, 0.0.

Boundary Conditions •

Restrain one end in all directions.



Restrain the other grid points in all directions but RX.

Solution Type SOL 103 — Normal Mode Dynamics, Lanczos method

8-6

NX Nastran 8 Verification Manual

Test Cases

Results Result

Bench Value

NX Nastran

Frequency of Mode 1 (Hz)

0.2240

0.2240

Frequency of Mode 2 (Hz)

0.6276

0.6276

Frequency of Mode 3 (Hz)

0.9069

0.9069

References Tse, F., Morse, I., and Hinkle, R. Mechanical Vibrations, 2nd Edition, pp. 153-155. Boston: Allyn and Bacon, Inc., 1978.

8.5 Two Degrees of Freedom Vehicle Suspension System Determine the natural frequencies of dynamic system with two degrees of freedom. Degrees of freedom are one translational and one rotational.

Test Case Data and Information Input Files mstvn005.dat

Units SI - meter

NX Nastran 8 Verification Manual

8-7

Chapter 8

Test Cases

Physical Properties •

Mass = 1800 kg



K1 = 42000 N/m



K2 = 48000 N/m

Finite Element Modeling •

Create a linear translation spring (CELAS1) with stiffness of K1



Create a linear translation spring (CELAS1) with stiffness of K2



Create a lumped mass element (CONM2) with a mass coordinate system = 1 and mass inertia system of: 0.0, 0.0, 3528, 0.0, 0.0, 0.0.



Create a three-noded rigid element (RBE2)

Boundary Conditions •

Nodal displacement restraints o

Restrain grid points 4 and 5 in all directions.

o

Restrain the other grid points in all directions but Y and RZ.

Solution Type SOL 103 — Normal Mode Dynamics, Lanczos Method

Results Result

Bench Value

NX Nastran

Frequency of Mode 1 (Hz)

1.086

1.086

Frequency of Mode 2(Hz)

1.496

1.496

References Tse, F., Morse, I., and Hinkle, R. Mechanical Vibrations. Boston: Allyn and Bacon, Inc., 1978. pp. 150-153.

8.6 Two Degrees of Freedom Vehicle Suspension System Determine the natural frequencies of dynamic system with two degrees of freedom. Degrees of freedom are one translational and one rotational.

8-8

NX Nastran 8 Verification Manual

Test Cases

Test Case Data and Information Input File mstvn005.dat

Element Types •

Translational springs (CELAS1)



Lumped mass (CONM2)



Rigid (RBE2)

Units SI — meter

Model Geometry •

Length1 = 1.6 m



Length2 = 2.0 m



r = 1.4 m (gyration radius; J = m*r*r)

Physical Properties •

mass = 1800 kg



K1 = 42000 N/m

NX Nastran 8 Verification Manual

8-9

Chapter 8



Test Cases

K2 = 48000 N/m

Finite Element Modeling •

Create five grid points in the XY plane with the following coordinates: o

Grid point 1 = (0,0)

o

Grid point 2 = (12,0)

o

Grid point 3 = (–L1,0)

o

Grid point 4 = (L2,–1)

o

Grid point 5 = (–L1,–1)



Create a linear translation spring (CELAS1) with stiffness of K1 between grid point 1 and grid point 5.



Create a linear translation spring (CELAS1) with stiffness of K2 between grid point 2 and grid point 4.



Create a lumped mass element (CONM2) with a mass coordinate system = 1 and mass inertia system of: 0.0, 0.0, 3528, 0.0, 0.0, 0.0.



Create a three-grid-point rigid element (RBE2) using grid point 1, grid point 2, and grid point 3.

Boundary Conditions •

Restrain grid points 4 and 5 in all directions.



Restrain the other grid points in all directions but Y and RZ.

Solution Type SOL 103 — Normal Mode Dynamics, Lanczos Method

Results Result

Bench Value

NX Nastran

Frequency of Mode 1 (Hz)

1.086

1.086

Frequency of Mode 2(Hz)

1.496

1.496

References Tse, F., Morse, I., and Hinkle, R. Mechanical Vibrations, pp. 150-153. Boston: Allyn and Bacon, Inc., 1978.

8.7 Cantilever Beam Undamped Free Vibrations Determine the natural frequencies of a cantilever beam.

8-10

NX Nastran 8 Verification Manual

Test Cases

Test Case Data and Information Input File mstvn006.dat

Element Type Linear beam (CBEAM)

Units Inch

Model Geometry •

Length = 100 in.



Height = 2 in.

Physical and Material Properties •

w = 1 lb/in.



J = .10



Poisson’s ratio = .3

Calculated Data •

A = h2 = 4 in2



I = h4/12 = 1.33333



G = E/2 × 1/1 + nu = 11538461.54



m = w/g = 2.59067375E–3



Ip = Ixx + Iyy = 2.66666

Finite Element Modeling •

Create 11 grid points on X axis.

NX Nastran 8 Verification Manual

8-11

Chapter 8



Test Cases

Create 10 linear beams (CBEAM) between grid points.

Boundary Conditions •

Restrain one end grid point in all directions.

Solution Type SOL 103 — Normal Mode Dynamics, Lanczos Method

Results Result

Bench Value

NX Nastran

Frequency of Modes 1 & 2 (Transverse Vibration)

6.953

6.953

Frequency of Modes 3 & 4 (Transverse Vibration)

43.58

43.58

Frequency of Mode 5 (Torsional Vibration)

64.68

64.68

Frequency of Modes 6 & 7 (Transverse Vibration)

122.0

122.0

Frequency of Mode 8 (Torsional Vibration)

193.9

195.7

Frequency of Modes 9 & 10 (Transverse Vibration)

238.8

239.3

References Blevins, R. Formulas For Natural Frequency and Mode Shape, 1st Edition, pp. 108,193. New York: Van Norstrand Reinhold Company, 1979.

8.8 Natural Frequency of a Cantilevered Mass Determine the natural frequencies of a dynamic system consisting of a massless beam and a lumped mass at the end.

8-12

NX Nastran 8 Verification Manual

Test Cases

Test Case Data and Information Input File mstvn007.dat

Element Types •

Linear beam (CBAR)



Lumped mass (CONM2)

Units Inch

Model Geometry Length = 30 in.

Physical and Material Properties •

Mass = 0.5 lbm



E = 30E6 psi



Density = 1.0E–6



I = 1.5 in.4

Finite Element Modeling •

Create 2 grid points on the X axis with coordinates (0,0,0) and (30,0,0).



Create a linear beam (CBAR) element between grid points with shear area ratio = 0.



Create a lumped mass (CONM2) on one grid point with mass of 0.5 lbm.

Boundary Conditions •

Restrain wall end in all directions.



Restrain mass end in directions of Z, RX, and RY.

Solution Type SOL 103 — Normal Mode Dynamics, Lanczos method

Results Result

Bench Value

NX Nastran

Mode 2 Frequency (Hz)

15.92

15.92

NX Nastran 8 Verification Manual

8-13

Chapter 8

Test Cases

References Tse, F., Morse, I., and Hinkle, R. Mechanical Vibrations, 2nd Edition, p. 72. Boston: Allyn and Bacon, Inc., 1978.

8-14

NX Nastran 8 Verification Manual

Part

V Normal Mode Dynamics Verification Using Standard NAFEMS Benchmarks

NX Nastran 8 Verification Manual

Chapter

9 Overview of Normal Mode Dynamics Verification Using Standard NAFEMS Benchmarks

The purpose of these normal mode dynamics test cases is to verify the function of NX Nastran using standard benchmarks published by NAFEMS (National Agency for Finite Element Methods and Standards, National Engineering Laboratory, Glasgow, U.K.). These standard benchmark tests were created by NAFEMS to stretch the limits of the finite elements in commercial software. All results obtained using NX Nastran compare favorably with other commercial finite element analysis software. Results of these test cases using other commercial finite element analysis software programs are available from NAFEMS.

9.1 Understanding the Test Case Format Each test case is structured with the following information. •

Test case data and information: o

Units

o

Physical and material properties

o

Finite element modeling information

o

Boundary conditions (loads and restraints/constraints)

o

Solution type



Results



Reference

9.2 Reference The following reference has been used in these test cases: NAFEMS Finite Element Methods & Standards. Abbassian, F., Dawswell, D. J., and Knowles, N. C. Selected Benchmarks for Natural Frequency Analysis. Glasgow: NAFEMS, Nov., 1987.

NX Nastran 8 Verification Manual

9-1

Chapter

10

Beam Element Test Cases

10.1 Pin-ended Cross — In-plane Vibration This test is a normal mode dynamic analysis of a pin-ended cross (shown below) using beam elements. This document provides the input data and results for NAFEMS Selected Benchmarks for Natural Frequency Analysis, Test 1.

Attributes of this test are: •

Coupling between flexural and extensional behavior



Repeated and close eigenvalues

Test Case Data and Information Input Files •

nf001ac.dat (linear consistent)



nf001al.dat (linear lumped)

NX Nastran 8 Verification Manual

10-1

Chapter 10

Beam Element Test Cases

Units SI

Cross Sectional Properties •

Area = .015625 m2

Shear ratio: •

Y=0



Z=0

Material Properties •

E = 200E09 N/m2



r=8000 kg/m3



n = 0.29 (Poisson’s ratio)



G = 8.01E10

Finite Element Modeling •

Four linear beam (CBAR) elements per arm

Boundary Conditions •

X = Y = 0 at A, B, C, D



Z = Rx = Ry = 0 at all grid points

10-2

NX Nastran 8 Verification Manual

Beam Element Test Cases

Solution Type SOL 103 — Normal Mode Dynamics, Lanczos Method NX Nastran results were obtained in two different ways: •

Using lumped mass (lumped mass on, param coupmass = –1)



Using coupled mass (lumped mass off, param coupmass = 1)

Results Mode

Reference Value (Hz)

NAFEMS Target Value (Hz)

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass) (Hz)

1

11.34

11.34

11.33

11.34

2, 3

17.71

17.69

17.66

17.69

4

17.71

17.72

17.69

17.72

5

45.35

45.48

45.02

45.52

6, 7

57.39

57.36

56.06

57.43

8

57.39

57.68

56.34

57.75

References NAFEMS Finite Element Methods & Standards. Abbassian, F., Dawswell, D. J., and Knowles, N. C.Selected Benchmarks for Natural Frequency Analysis Test No. 1. Glasgow: NAFEMS, Nov., 1987.

10.2 Pin-ended Double Cross - In-plane Vibration This test is a normal mode dynamic analysis of a pin-ended double cross (shown below) using beam elements. This document provides the input data and results for NAFEMS Selected Benchmarks for Natural Frequency Analysis, Test 2.

NX Nastran 8 Verification Manual

10-3

Chapter 10

Beam Element Test Cases

Attributes of this test are: •

Coupling between flexural and extensional behavior



Repeated and close eigenvalues

Test Case Data and Information Input Files •

nf002ac.dat (linear consistent)



nf002al.dat (linear lumped)

Units SI

Cross Sectional Properties Key-in section: •

Area = .015625 m2

Shear ratio: •

Y=0



Z=0

Material Properties •

E = 200E09 N/m2



r = 8000 kg/m3

10-4

NX Nastran 8 Verification Manual

Beam Element Test Cases

Finite Element Modeling •

Four linear beam (CBAR) elements per arm

Boundary Conditions •

X = Y = 0 at A, B, C, D, E, F, G, H



Z = Rx= Ry = 0 at all grid points

Solution Type SOL 103 — Normal Mode Dynamics, Lanczos Method NX Nastran results were obtained in two different ways: •

Using lumped mass (lumped mass toggle on, param coupmass = –1)



Using coupled mass (lumped mass toggle off, param coupmass = 1)

Results Mode

Reference Value (Hz)

NAFEMS Target Value (Hz)

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass) (Hz)

1

11.34

11.34

11.33

11.34

2, 3

17.71

17.69

17.66

17.69

4, 5, 6, 7,8

17.71

17.72

17.69

17.72

9

45.35

45.48

45.02

45.52

10, 11

57.39

57.36

56.06

57.43

12, 13, 14, 15, 16

57.39

57.68

56.34

57.75

NX Nastran 8 Verification Manual

10-5

Chapter 10

Beam Element Test Cases

References NAFEMS Finite Element Methods & Standards. Abbassian, F., Dawswell, D. J., and Knowles, N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 2. Glasgow: NAFEMS, Nov., 1987.

10.3 Free Square Frame - In-plane Vibration This test is a normal mode dynamic analysis of a free square frame (shown below) using beam elements. This document provides the input data and results for NAFEMS Selected Benchmarks for Natural Frequency Analysis, Test 3.

Attributes of this test are: •

Coupling between flexural and extensional behavior



Rigid body modes (3 modes)



Repeated and close eigenvalues

Test Case Data and Information Input Files •

nf003ac.dat (linear consistent)



nf003al.dat (linear lumped)

Units SI

Cross Sectional Properties Shear ratio: •

Y = 1.0



Z = 1.0

10-6

NX Nastran 8 Verification Manual

Beam Element Test Cases

Material Properties •

E = 200E09 N/m2



r = 8000 kg/m3

Finite Element Modeling •

Four linear beam (CBAR) elements per arm

Boundary Conditions •

Rotations fixed, translations free

Solution Type SOL 103 — Normal Mode Dynamics, Lanczos Method NX Nastran results were obtained in two different ways: •

Using lumped mass (lumped mass toggle on, param coupmass = –1)



Using coupled mass (lumped mass toggle off, param coupmass = 1)

Results Mode

Reference Value (Hz)

NAFEMS Target Value (Hz)

NX Nastran NX Nastran Result (lumped Result (coupled mass) (Hz) mass) (Hz)

4

3.261

3.262

3.259

3.259

5

5.668

5.665

5.660

5.663

6, 7

11.14

11.15

10.89

11.13

8

12.85

12.83

12.74

12.80

9

24.57

24.66

23.53

24.64

10, 11

28.70

28.81

28.13

28.73

NX Nastran 8 Verification Manual

10-7

Chapter 10

Beam Element Test Cases

References NAFEMS Finite Element Methods & Standards. Abbassian, F., Dawswell, D. J., and Knowles, N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 3. Glasgow: NAFEMS, Nov., 1987.

10.4 Cantilever with Off-center Point Masses This test is a normal mode dynamic analysis of a cantilever with off-center point masses (shown below) using beam elements. This document provides the input data and results for NAFEMS Selected Benchmarks for Natural Frequency Analysis,Test 4.

Attributes of this test are: •

Coupling between torsional and flexural behavior



Inertial axis non-coincident with flexibility axis



Discrete lumped mass, rigid links



Close eigenvalues

Test Case Data and Information Input Files •

nf004a.dat

Units SI

Cross Sectional Properties Shear ratio: •

Y = 1.128



Z = 1.128

Material Properties •

10-8

E = 200E09 N/m

2

NX Nastran 8 Verification Manual

Beam Element Test Cases



r = 8000 kg/m3



n = 0.3

Finite Element Modeling •

Five linear beam (CBAR) elements along cantilever

Boundary Conditions •

X = Y = Z = Rx = Ry = Rz = 0 at A

Solution Type SOL 103 — Normal Mode Dynamics, Lanczos (Parameter COUPMASS = –1)

Results Mode

Reference Value (Hz)

NAFEMS Target Value (Hz)

NX Nastran Result (Hz)

1

1.723

1.723

1.714

2

1.727

1.727

1.720

3

7.413

7.413

7.554

4

9.972

9.972

9.954

5

18.16

18.16

17.68

6

26.96

26.97

26.78

References NAFEMS Finite Element Methods & Standards. Abbassian, F., Dawswell, D. J., and Knowles, N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 4. Glasgow: NAFEMS, Nov., 1987.

10.5 Deep Simply-Supported Beam This test is a normal mode dynamic analysis of a deep simply supported beam (shown below). This document provides the input data and results for NAFEMS Selected Benchmarks for Natural Frequency Analysis, Test 5.

NX Nastran 8 Verification Manual

10-9

Chapter 10

Beam Element Test Cases

Attributes of this test are: •

Shear deformation and rotary inertial (Timoshenko beam)



Possibility of missing extensional modes when using iteration solution methods



Repeated eigenvalues

Test Case Data and Information Input Files •

nf005ac.dat (linear consistent, param coupmass = 1)



nf005al.dat (linear lumped, param coupmass = –1)

Units SI

Cross Sectional Properties Shear ratio: •

Y = 1.176923



Z = 1.176923

Material Properties •

E = 200E09 N/m2



r = 8000 kg/m3



n = 0.3

Finite Element Modeling •

Five linear beam elements (CBEAM)

Boundary Conditions •

X = Y = Z = Rx =0 at A

10-10

NX Nastran 8 Verification Manual

Beam Element Test Cases



Y = Z = 0 at B

Solution Type SOL 103 — Normal Mode Dynamics, Lanczos Method NX Nastran results were obtained in two different ways: •

Using lumped mass (lumped mass on, param coupmass = –1)



Using coupled mass (lumped mass off, param coupmass = 1)

Results Mode

Reference Value (Hz)

NAFEMS Target Value (Hz)

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass) (Hz)

1, 2 (flexural)

42.65

42.57

43.15

43.26

3 (torsional)

77.54

77.84

77.20

77.84

4 (extensional)

125.0

125.5

124.5

125.5

5, 6 (flexural)

148.3

145.5

149.8

154.9

7 (torsional)

233.1

241.2

224.1

241.2

8, 9 (flexural)

284.6

267.0

271.0

306.7

References NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles, N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 5. Glasgow: NAFEMS, Nov., 1987.

10.6 Circular Ring — In-plane and Out-of-plane Vibration This test is a normal mode dynamic analysis of a circular ring (shown below) using beam elements. This document provides the input data and results for NAFEMS Selected Benchmarks for Natural Frequency Analysis, Test 6.

NX Nastran 8 Verification Manual

10-11

Chapter 10

Beam Element Test Cases

Attributes of this test are: •

Rigid body modes (six modes)



Repeated eigenvalues

Test Case Data and Information Input Files •

nf006ac.dat (param coupmass = 1)



nf006al.dat (param coupmass = –1)

Units SI

Cross Sectional Properties Shear ratio: •

Y = 1.128205



Z = 1.128205

Material Properties •

E = 200E09 N/m2



r = 8000 kg/m3



n = 0.3

Finite Element Modeling •

20 linear beam (CBAR) elements

10-12

NX Nastran 8 Verification Manual

Beam Element Test Cases

Boundary Conditions •

X = Y = Z = Rx = Ry = Rz active



Model is unsupported.

Solution Type SOL 103 — Normal Mode Dynamics, Lanczos Method NX Nastran results were obtained two different ways: •

Using coupled mass (param coupmass = –1)



Using lumped mass (param coupmass = 1)

Results Mode

Reference Value (Hz)

NAFEMS Target Value (Hz)

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass) (Hz)

7, 8 (out of plane)

51.85

52.29

51.62

52.38

9, 10 (in plane)

53.38

53.97

54.05

53.80

11, 12 (out of plane)

148.8

149.7

146.9

149.7

13, 14 (in plane) 151.0

152.4

152.2

151.5

15 (out of plane) 287.0

288.3

280.4

287.3

289.5

288.3

289.2

289.1

16 (in plane)

References NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles, N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 6. Glasgow: NAFEMS, Nov., 1987.

10.7 Cantilevered Beam This test is a normal mode dynamic analysis of a cantilevered beam (shown below). This document provides the input data and results for NAFEMS Selected Benchmarks for Natural Frequency Analysis, Test 71.

NX Nastran 8 Verification Manual

10-13

Chapter 10

Beam Element Test Cases

Attributes of this test are: •

Ill-conditioned stiffness matrix

Test Case Data and Information Input Files •

nf071a.dat (Test 1)



nf071b.dat (Test 2)



nf071c.dat (Test 3)

Units SI

Material Properties •

E = 200E09 N/m2



r=8000 kg/m3

Finite Element Modeling Three tests — all use linear beam (CBAR) elements •

Test 1: a = b



Test 2: a = 10b



Test3: a = 100b

Boundary Conditions •

X = Y = Rz = 0 at A



Z = 0 at all grid points



Rx = Ry = 0 at all grid points

10-14

NX Nastran 8 Verification Manual

Beam Element Test Cases

Solution Type SOL 103 — Normal Mode Dynamics, Lanczos Method Beams always use a coupled mass formulation (param coupmass = 1).

Results Mode

Reference Value (Hz)

Mesh

NX Nastran Result (Hz)

1

1.010

a=b

1.010

a = 10b

1.010

a = 100b

1.010

a=b

6.324

a = 10b

6.327

a = 100b

6.330

a=b

17.70

a = 10b

17.80

a = 100b

17.83

a=b

34.70

a = 10b

34.86

a = 100b

35.07

a=b

57.48

a = 10b

60.64

a = 100b

64.82

a=b

86.24

a = 10b

101.86

a = 100b

104.74

2

3

4

5

6

6.327

17.72

34.72

57.39

85.73

References NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles, N. C. Selected Benchmarks for Natural Frequency Analysis Test No. 71. Glasgow: NAFEMS, Nov., 1987.

NX Nastran 8 Verification Manual

10-15

Chapter

11

Shell Element Test Cases

11.1 Thin Square Cantilevered Plate — Symmetric Modes This test is a normal mode dynamic analysis of a thin, square, cantilevered plate meshed with NX Nastran shell elements. This document provides the input data and results for NAFEMS Selected Benchmarks for Natural Frequency Analysis, Test 11a.

Attributes of this test are: •

Symmetric modes, symmetric boundary conditions along the cutting plane

Test Case Data and Information Input Files •

nf011a_l.dat (4-noded quadrilateral, lumped mass)



nf011a_c.dat (4-noded quadrilateral, coupled mass)



nf011ha_l.dat (8-noded quadrilateral, lumped mass)



nf011ha_c.dat (8-noded quadrilateral, coupled mass)

Units SI

NX Nastran 8 Verification Manual

11-1

Chapter 11

Shell Element Test Cases

Material Properties •

E = 200E09 N/m2



r = 8000 kg/m3



n = 0.3

Finite Element Modeling Two tests: •

32 linear quadrilateral thin shell (CQUAD4) elements — thickness = 0.05m



8 parabolic quadrilateral thin shell (CQUAD8) elements — thickness = 0.05m

Boundary Conditions •

X = Y = Rz = 0 at all grid points



Z = Ry = Rx = 0 along Y-axis



Rx = 0 along Y = 5m

Solution Type SOL 103 — Normal Mode Dynamics, Lanczos Method Results were obtained in two different ways: •

11-2

Using lumped mass (param coupmass = –1)

NX Nastran 8 Verification Manual

Shell Element Test Cases



Using coupled mass (param coupmass = 1)

Results Mode

Reference Value (Hz)

Mesh

NX Nastran Result (lumped mass)(Hz)

NX Nastran Result (coupled mass(Hz)

1

0.4210

Linear

0.4150

0.4180

Parabolic

0.4150

0.4180

Linear

2.490

2.604

Parabolic

2.478

2.567

Linear

3.115

3.314

Parabolic

3.134

3.271

Linear

6.044

6.538

Parabolic

6.163

6.539

Linear

7.094

7.808

Parabolic

7.099

7.495

Linear

10.57

12.34

Parabolic

10.99

12.08

2 3 4 5 6

2.582 3.306 6.555 7.381 11.40

References NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles, N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 11a. Glasgow: NAFEMS, Nov., 1987.

11.2 Thin Square Cantilevered Plate — Anti-symmetric Modes This test is a normal mode dynamic analysis of a thin, square, cantilevered plate meshed with shell elements. This document provides the input data and results for NAFEMS Selected Benchmarks for Natural Frequency Analysis, Test 11b.

NX Nastran 8 Verification Manual

11-3

Chapter 11

Shell Element Test Cases

Attributes of this test are: •

Anti-symmetric modes

Test Case Data and Information Input Files •

nf011b.dat (linear (4-noded) quadrilateral)



nf011hb.dat (parabolic (8-noded) quadrilateral)

Units SI

Material Properties •

E = 200E09 N/m2



r = 8000 kg/m3



n = 0.3

Finite Element Modeling Two tests: •

32 linear quadrilateral thin shell (CQUAD4) elements — thickness = 0.05m



8 parabolic quadrilateral thin shell (CQUAD8) elements — thickness = 0.05m

Mesh only half the plate (10m × 5m).

Boundary Conditions •

X = Y = Rz = 0 at all grid points



Z = Ry = Rx = 0 along Y-axis



Rx = 0 along Y = 5m

11-4

NX Nastran 8 Verification Manual

Shell Element Test Cases

Solution Type SOL 103 — Normal Mode Dynamics, Lanczos Method NX Nastran results were obtained in two different ways: •

Using lumped mass (param coupmass = —1)



Using coupled mass (param coupmass = 1)

Results Mode

Reference Value (Hz)

Mesh

NAFEMS Target Value (Hz)

NX Nastran Result (lumped mass)(Hz)

NX Nastran Result (coupled mass(Hz)

1

1.029

Linear

1.019

1.000

1.020

Parabolic

1.018

1.005

1.022

Linear

3.839

3.570

3.767

Parabolic

3.710

3.597

3.725

Linear

8.313

7.091

8.113

Parabolic

7.768

7.026

7.786

Linear

9.424

8.047

9.025

Parabolic

8.483

8.133

8.690

11.73

9.940

11.69

11.19

10.15

11.19

17.82

14.22

17.44

15.76

14.21

16.78

2 3 4 5

3.753 7.730 8.561

not available Linear Parabolic

6

not available Linear Parabolic

NX Nastran 8 Verification Manual

11-5

Chapter 11

Shell Element Test Cases

References NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles, N. C. Selected Benchmarks for Natural Frequency Analysis Test No. 11b. Glasgow: NAFEMS, Nov., 1987.

11.3 Free Thin Square Plate This test is a normal mode dynamic analysis of a free thin square plate meshed with shell elements. This document provides the input data and results for NAFEMS Selected Benchmarks for Natural Frequency Analysis, Test 12.

Attributes of this test are: •

Rigid body modes (three modes)



Repeated eigenvalues

Test Case Data and Information Input Files •

nf012l_l.dat (linear (4-noded) quadrilateral, lumped mass)



nf012l_c.dat (linear (4-noded) quadrilateral, coupled mass)



nf012h_l.dat (parabolic (8-noded) quadrilateral, lumped mass)



nf012h_c.dat (parabolic (8-noded) quadrilateral, coupled mass)

Units SI

Material Properties •

E = 200E09 N/m2



r = 8000 kg/m3

11-6

NX Nastran 8 Verification Manual

Shell Element Test Cases



n = 0.3

Finite Element Modeling Two tests: •

64 linear quadrilateral thin shell (CQUAD4) elements — thickness = 0.05m



16 parabolic quadrilateral thin shell (CQUAD8) elements — thickness = 0.05m

Boundary Conditions •

X = Y = Rz = 0 at all grid points

Solution Type SOL 103 — Normal Mode Dynamics, Lanczos Method Results were obtained in two different ways: •

Using lumped mass (param coupmass = –1)



Using coupled mass (param coupmass = 1)

Results Mode

Reference Value (Hz)

Mesh

NAFEMS Target Value (Hz)

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass) (Hz)

4

1.622

Linear

1.632

1.578

1.624

Parabolic

1.532

1.584

1.619

Linear

2.402

2.241

2.389

Parabolic

2.356

2.233

2.363

Linear

3.006

2.804

2.979

Parabolic

2.861

2.808

2.929

5 6

2.360 2.922

NX Nastran 8 Verification Manual

11-7

Chapter 11

Shell Element Test Cases

Mode

Reference Value (Hz)

Mesh

NAFEMS Target Value (Hz)

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass) (Hz)

7, 8

4.233

Linear

4.251

3.931

4.237

Parabolic

4.122

3.944

4.158

Linear

7.859

6.822

7.790

Parabolic

7.363

6.813

7.477

Linear

8.027

6.822

7.790

Parabolic

7.392

6.813

7.477

9

7.416

10

Not available

References NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles, N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 12. Glasgow: NAFEMS, Nov., 1987.

11.4 Simply Supported Thin Square Plate This test is a normal mode dynamic analysis of a free thin square plate meshed with shell elements. This document provides the input data and results for NAFEMS Selected Benchmarks for Natural Frequency Analysis, Test 13.

Attributes of this test are: •

Well established



Repeated eigenvalues

Test Case Data and Information Input Files •

11-8

nf013l_l.dat (linear quadrilateral, lumped mass)

NX Nastran 8 Verification Manual

Shell Element Test Cases



nf013l_c.dat (linear quadrilateral, coupled mass)



nf013h_l.dat (parabolic quadrilateral, lumped mass)



nf013h_c.dat (parabolic quadrilateral, coupled mass)

Units SI

Material Properties •

E = 200E09 N/m2



r = 8000 kg/m3



n = 0.3

Finite Element Modeling Two tests: •

64 linear quadrilateral thin shell (CQUAD4) elements — thickness = 0.05m



16 parabolic quadrilateral thin shell (CQUAD8) elements — thickness = 0.05m

Boundary Conditions •

X = Y = Rz = 0 at all grid points



Z = Rx = 0 along edges X = 0 and X = 10m



Z = Ry = 0 along edges Y = 0 and Y = 10m

Solution Type SOL 103 — Normal Mode Dynamics, Lanczos Method NX Nastran results were obtained two different ways: •

Using lumped mass (param coupmass = –1)



Using coupled mass (param coupmass = 1)

NX Nastran 8 Verification Manual

11-9

Chapter 11

Shell Element Test Cases

Results Mode

Reference Value (Hz)

Mesh

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass) (Hz)

1

2.377

Linear

2.332

2.392

Parabolic

2.376

2.382

Linear

5.797

6.181

Parabolic

5.938

6.026

Linear

8.963

9.933

Parabolic

9.747

10.22

Linear

11.67

13.27

Parabolic

11.87

12.39

Linear

14.45

17.07

Parabolic

16.56

18.17

2, 3

5.942

4

9.507

5, 6

11.88

7, 8

15.45

References NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles, N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 13. Glasgow: NAFEMS, Nov., 1987.

11.5 Simply Supported Thin Annular Plate This test is a normal mode dynamic analysis of a free thin square plate meshed with shell elements. This document provides the input data and results for NAFEMS Selected Benchmarks for Natural Frequency Analysis, Test 14.

11-10

NX Nastran 8 Verification Manual

Shell Element Test Cases

Attributes of this test are: •

Curved boundary (skewed coordinate system)



Repeated eigenvalues

Test Case Data and Information Input Files •

nf014l_l.dat (linear quadrilateral, lumped mass)



nf014l_c.dat (linear quadrilateral, coupled mass)



nf014h_l.dat (parabolic quadrilateral, lumped mass)



nf014h_c.dat (parabolic quadrilateral, coupled mass)

Units SI

Material Properties •

E = 200E09 N/m2



r = 8000 kg/m3



n = 0.3

Finite Element Modeling Two tests: •

160 linear quadrilateral thin shell (CQUAD4) elements — thickness = 0.06 m



48 parabolic quadrilateral thin shell (CQUAD8) elements — thickness = 0.06 m

NX Nastran 8 Verification Manual

11-11

Chapter 11

Shell Element Test Cases

Boundary Conditions •

X = Y = Rz = 0 at all grid points



Z¢ = Rx¢ = 0 around the circumference

Solution Type SOL 103 — Normal Mode Dynamics, Lanczos Method NX Nastran results were obtained in two different ways: •

Using lumped mass (param coupmass = –1)



Using coupled mass (param coupmass = 1)

Results Mode

Reference Value (Hz)

Mesh

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass) (Hz)

1

1.870

Linear

1.859

1.877

Parabolic

1.840

1.873

Linear

5.293

5.249

Parabolic

5.111

5.151

Linear

10.03

9.983

Parabolic

9.673

9.713

Linear

14.37

15.41

Parabolic

13.95

14.92

Linear

16.10

15.55

Parabolic

15.55

15.71

Linear

18.07

19.09

Parabolic

17.38

18.52

2, 3

5.137

4, 5

9.673

6

14.85

7, 8

15.57

9

18.38

References NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles, N. C. Selected Benchmarks for Natural Frequency Analysis,, Test No. 13. Glasgow: NAFEMS, Nov., 1987.

11.6 Clamped Thin Rhombic Plate This test is a normal mode dynamic analysis of a free thin square plate meshed with shell elements. This document provides the input data and results for NAFEMS Selected Benchmarks for Natural Frequency Analysis, Test 15.

11-12

NX Nastran 8 Verification Manual

Shell Element Test Cases

Attributes of this test are: •

Distorted elements

Test Case Data and Information Input Files •

nf015l.dat linear (lumped)



nf015ha.dat parabolic (lumped)



nf015hb.dat parabolic (consistent)



nf015hc.data linear (consistent)

Units SI

Material Properties •

E = 200E09 N/m2



r = 8000 kg/m3



n = 0.3

Finite Element Modeling Two tests: •

144 linear quadrilateral thin shell (CQUAD4) elements — thickness = 0.05 m



36 parabolic quadrilateral thin shell (CQUAD8) elements — thickness = 0.05 m

NX Nastran 8 Verification Manual

11-13

Chapter 11

Shell Element Test Cases

Boundary Conditions •

X = Y = Rz = 0 at all grid points



Z¢ = Rx¢ = Ry¢ = 0 along all four edges

Solution Type SOL103 — Normal Mode Dynamics NX Nastran results were obtained two different ways: •

Using lumped mass (param coupmass = –1)



Using coupled mass (param coupmass = 1)

Results Mode

Reference Value (Hz)

Mesh

NAFEMS Target Value (Hz)

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass) (Hz)

1

7.938

Linear

8.142

7.818

7.955

Parabolic

7.873

7.902

7.929

Linear

13.89

12.83

13.39

Parabolic

12.48

12.85

13.01

Linear

20.04

17.81

19.07

Parabolic

17.31

17.95

18.47

Linear

20.17

18.55

19.24

Parabolic

18.74

18.96

19.17

2 3 4

11-14

12.84 17.94 19.13

NX Nastran 8 Verification Manual

Shell Element Test Cases

Mode

Reference Value (Hz)

Mesh

NAFEMS Target Value (Hz)

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass) (Hz)

5

24.01

Linear

27.70

23.67

26.19

Parabolic

27.95

23.88

25.23

Linear

32.05

27.70

29.82

Parabolic

25.88

27.91

28.81

6

27.92

References NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles, N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 15. Glasgow: NAFEMS, Nov., 1987.

11.7 Cantilevered Thin Square Plate with Distorted Mesh This test is a normal mode dynamic analysis of a free thin square plate meshed with shell elements. This document provides the input data and results for NAFEMSSelected Benchmarks for Natural Frequency Analysis, Test 16.

Attributes of this test are: •

Distorted meshes

Test Case Data and Information Input Files •

nf016a1.dat: (16 parabolic quad, lumped mass)



nf016a2.dat: (16 parabolic quad, coupled mass)



nf016b1.dat: (16 parabolic quad, lumped mass)



nf016b2.dat: (16 parabolic quad, coupled mass)

NX Nastran 8 Verification Manual

11-15

Chapter 11

Shell Element Test Cases



nf016c1.dat: (4 parabolic quad, lumped mass)



nf016c2.dat: (4 parabolic quad, coupled mass)



nf016d1.dat: (4 parabolic quad, lumped mass)



nf016d2.dat: (4 parabolic quad, coupled mass)

Units SI

Material Properties •

E = 200E09 N/m2



r = 8000 kg/m3



n = 0.3

Finite Element Modeling All tests — parabolic quadrilateral thin shell elements — thickness = 0.05m Four tests: •

Test 1 — 16 elements



Test 2 — 16 elements with specified grid points at the following XY coordinates: Coordinates

11-16

Node

X

Y

1

4.000

4.000

2

2.250

2.250

3

4.750

2.500

4

7.250

2.750

5

7.500

7.250

6

5.250

7.250

7

5.250

7.250

8

2.250

7.250

9

2.500

4.750

NX Nastran 8 Verification Manual

Shell Element Test Cases



Test 3 — 4 elements



Test 4 — 4 elements with a specified grid point at the following XY coordinate: Coordinates Node

X

Y

1

4.000

4.000

Boundary Conditions •

X = Y = Z = Ry = 0 along Y-axis

NX Nastran 8 Verification Manual

11-17

Chapter 11

Shell Element Test Cases

Solution Type SOL103 — Normal Mode Dynamics NX Nastran results were obtained in two different ways: •

Using lumped mass (param coupmass = –1)



Using coupled mass (param coupmass = 1)

Results Mode

Reference Value (Hz)

Test

NAFEMS Target Value (Hz)

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass) (Hz)

1

0.4210

1

0.4174

0.4139

0.4181

2

0.4174

0.4135

0.4182

3

0.4144

0.4021

0.4189

4

0.4145

0.4000

0.4192

1

1.020

0.9985

1.024

2

1.020

0.9967

1.024

3

0.9990

0.9347

1.021

4

1.002

0.9202

1.025

1

2.564

2.444

2.569

2

2.571

2.445

2.566

3

2.554

2.132

2.708

4

2.565

2.112

2.698

2

3

11-18

1.029

2.582

NX Nastran 8 Verification Manual

Shell Element Test Cases

Mode

Reference Value (Hz)

Test

NAFEMS Target Value (Hz)

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass) (Hz)

4

3.306

1

3.302

3.082

3.281

2

3.317

3.072

3.280

3

3.401

2.707

3.449

4

3.424

2.697

3.430

1

3.769

3.540

3.728

2

3.780

3.535

3.731

3

3.697

3.136

3.913

4

3.714

3.077

3.881

1

6.805

6.018

6.551

2

6.883

5.994

6.552

3

5.455

5.458

7.108

4

5.133

5.459

6.858

5

6

3.753

6.555

References NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles, N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 16. Glasgow: NAFEMS, Nov., 1987.

11.8 Simply Supported Thick Square Plate, Test A This test is a normal mode dynamic analysis of a free thin square plate meshed with shell elements. This document provides the input data and results for NAFEMS Selected Benchmarks for Natural Frequency Analysis, Test 21a.

Attributes of this test are:

NX Nastran 8 Verification Manual

11-19

Chapter 11

Shell Element Test Cases



Well established



Repeated eigenvalues



Effect of secondary restraints

Test Case Data and Information Input Files •

nf021a.dat: linear (lumped mass)



nf021ha.dat: parabolic (lumped mass)

Units SI

Material Properties •

E = 200E09 N/m2



r = 8000 kg/m3



n = 0.3

Finite Element Modeling Two tests: •

64 linear quadrilateral thin shell (CQUAD4) elements — thickness = 1.0 m



16 parabolic quadrilateral thin shell (CQUAD8) elements — thickness = 1.0 m

Boundary Conditions •

Z = 0 along all four edges



X = Y = Rz = 0 at all grid points



Rx = 0 along edges X = 0 and X = 10 m

11-20

NX Nastran 8 Verification Manual

Shell Element Test Cases



Ry = 0 along edges Y = 0 and Y = 10 m

Solution Type SOL103 — Normal Mode Dynamics NX Nastran results were obtained in two different ways: •

Using lumped mass (param coupmass = –1)



Using coupled mass (param coupmass = 1)

Results Mode

Reference Value (Hz)

Mesh

NAFEMS Target Value (Hz)

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass) (Hz)

1

45.90

Linear

46.66

45.83

46.35

Parabolic

45.94

46.17

45.83

Linear

115.8

110.6

114.1

Parabolic

110.4

110.3

109.4

Linear

177.5

164.8

174.3

Parabolic

170.4

167.3

169.8

Linear

233.4

211.8

227.1

Parabolic

212.8

204.6

208.2

2, 3 4 5, 6

109.4 167.9 204.5

NX Nastran 8 Verification Manual

11-21

Chapter 11

Shell Element Test Cases

Mode

Reference Value (Hz)

Mesh

NAFEMS Target Value (Hz)

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass) (Hz)

7, 8

256.5

Linear

283.6

250.5

276.9

Parabolic

270.0

249.3

268.4

Linear

371.1

313.1

364.3

Parabolic

344.8

311.4

319.4

Linear

371.1

338.4

385.8

Parabolic

344.8

347.6

319.4

9

336.6

10

336.6

References NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles, N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 21a. Glasgow: NAFEMS, Nov., 1987.

11.9 Simply Supported Thick Square Plate, Test B This test is a normal mode dynamic analysis of a free thin square plate meshed with shell elements. This document provides the input data and results for NAFEMS Selected Benchmarks for Natural Frequency Analysis, Test 21b.

Attributes of this test are: •

Well established



Repeated eigenvalues



Effect of secondary restraints

11-22

NX Nastran 8 Verification Manual

Shell Element Test Cases

Test Case Data and Information Input Files •

nf021b_c.dat (quadrilateral thin shell elements — coupled mass)



nf021b_l.dat (quadrilateral thin shell elements — lumped mass)



nf021hb_c.dat (parabolic thin shell elements — coupled mass)



nf021hb_l.dat (parabolic thin shell elements — lumped mass)

Units SI

Material Properties •

E = 200E09 N/m2



r = 8000 kg/m3



n = 0.3

Finite Element Modeling Two tests: •

64 linear quadrilateral thin shell elements — thickness = 1.0 m



16 parabolic quadrilateral thin shell elements — thickness = 1.0 m

Boundary Conditions •

Z = 0 along all four edges; X = Y = Rz = 0 at all grid points

NX Nastran 8 Verification Manual

11-23

Shell Element Test Cases

Chapter 11

Solution Type SOL103 — Normal Mode Dynamics NX Nastran results were obtained in two different ways: •

Using lumped mass (param coupmass = –1)



Using coupled mass (param coupmass = 1)

Results Mode

Reference Value (Hz)

Mesh

NAFEMS Target Value (Hz)

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass) (Hz)

1

45.90

Linear

44.75

44.65

44.96

Parabolic

44.13

44.82

44.49

Linear \

112.9

109.1

112.3

Parabolic

107.9

108.5

107.6

Linear

170.3

161.4

170.2

Parabolic

164.2

163.6

165.7

Linear

230.2

210.5

225.4

Parabolic

20.07

203.1

206.5

Linear

274.2

247.1

272.5

Parabolic

260.3

245.7

263.6

2, 3 4 5, 6 7, 8

11-24

109.4 167.9 204.5 256.5

NX Nastran 8 Verification Manual

Shell Element Test Cases

Mode

Reference Value (Hz)

Mesh

NAFEMS Target Value (Hz)

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass) (Hz)

9

336.6

Linear

356.0

308.8

358.4

Parabolic

342.8

307.2

318.6

Linear

356.0

337.6

384.8

Parabolic

342.8

346.9

318.6

10

336.6

References NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles, N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 21b. Glasgow: NAFEMS, Nov., 1987.

11.10 Clamped Thick Rhombic Plate This test is a normal mode dynamic analysis of a free thin square plate meshed with shell elements. This document provides the input data and results for NAFEMS Selected Benchmarks for Natural Frequency Analysis, Test 22.

Attributes of this test are: •

Distorted elements

Test Case Data and Information Input Files •

nf022l_l.dat



nf022l_c.dat



nf022h_l.dat



nf022h_c.dat

NX Nastran 8 Verification Manual

11-25

Chapter 11

Shell Element Test Cases

Units SI

Material Properties •

E = 200E09 N/m2



r = 8000 kg/m3



n = 0.3

Finite Element Modeling Two tests: •

100 linear quadrilateral thin shell (CQUAD4) elements - thickness = 1.0 m



36 parabolic quadrilateral thin shell (CQUAD8) elements - thickness = 1.0 m

Boundary Conditions •

X = Y = Rz = 0 at all grid points



Z¢ = Rx¢ = Ry¢ = 0 along all four edges

Solution Type SOL 103 – Normal Mode Dynamics NX Nastran results were obtained in two different ways: •

Using lumped mass (parm coupmass = –1)



Using coupled mass (param coupmass = 1)

11-26

NX Nastran 8 Verification Manual

Shell Element Test Cases

Results Mode

Reference Value (Hz)

Mesh

NAFEMS Target Value (Hz)

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass) (Hz)

1

134.0

Linear

137.8

131.2

134.3

Parabolic

133.9

134.9

135.2

Linear

218.5

200.4

211.9

Parabolic

203.3

204.4

206.3

Linear

295.4

262.0

286.6

Parabolic

271.4

270.3

276.4

Linear

296.8

273.6

287.0

Parabolic

283.7

286.9

289.1

Linear

383.6

327.0

373.3

Parabolic

346.4

337.5

353.8

Linear

426.6

372.2

410.6

Parabolic

386.6

384.7

394.0

2 3 4 5 6

201.4 265.8 282.7 334.5 Not available

References NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles, N. C.,Selected Benchmarks for Natural Frequency Analysis, Test No. 22. Glasgow: NAFEMS, Nov., 1987.

11.11 Simply Supported Thick Annular Plate This test is a normal mode dynamic analysis of a simply supported thick annular plate meshed with shell elements. This document provides the input data and results for NAFEMS Selected Benchmarks for Natural Frequency Analysis, Test 23.

NX Nastran 8 Verification Manual

11-27

Chapter 11

Shell Element Test Cases

Attributes of this test are: •

Curved boundary (skewed coordinate system)



Repeated eigenvalues

Test Case Data and Information Input Files nf023l_l.dat nf023l_c.dat nf023h_l.dat nf023h_c.dat

Units SI

Material Properties •

E = 200E09 N/m2



r = 8000 kg/m3



n = 0.3

Finite Element Modeling Two tests: •

160 linear quadrilateral thin shell (CQUAD4) elements — thickness = 0.6 m



48 parabolic quadrilateral thin shell (CQUAD8) elements — thickness = 0.6 m

11-28

NX Nastran 8 Verification Manual

Shell Element Test Cases

Boundary Conditions •

X = Y = Rz = 0 at all grid points



Z¢ = Rx¢ = 0 around the circumference

Solution Type SOL 103 — Normal Mode Dynamics NX Nastran results were obtained in two different ways: •

Using lumped mass (param coupmass = –1)



Using coupled mass (param coupmas = 1)

NX Nastran 8 Verification Manual

11-29

Chapter 11

Shell Element Test Cases

Results Mode

Reference Value (Hz)

Mesh

NAFEMS Target Value (Hz)

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass(Hz)

1

18.58

Linear

18.82

18.40

18.64

Parabolic

18.59

18.53

18.65

Linear

49.82

50.00

50.81

Parabolic

49.02

49.22

49.41

Linear

96.06

93.09

96.00

Parabolic

92.90

93.41

93.73

Linear

148.3

134.6

147.0

Parabolic

140.9

140.2

143.1

Not available

Linear

153.7

144.0

152.1

Parabolic

146.6

147.0

148.2

166.4

Linear

174.5

162.2

177.1

Parabolic

167.3

166.9

170.4

2, 3

48.92

4, 5

92.59

6

140.2

7, 8 9

References NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles, N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 23. Glasgow: NAFEMS, Nov., 1987.

11.12 Cantilevered Square Membrane This test is a normal mode dynamic analysis of a cantilevered square membrane meshed with shell elements. This document provides the input data and results for NAFEMS Selected Benchmarks for Natural Frequency Analysis, Test 31.

Attributes of this test are:

11-30

NX Nastran 8 Verification Manual

Shell Element Test Cases



Well established

Test Case Data and Information Input Files •

nf031l.dat (linear quadrilateral, lumped mass)



nf031a.dat (linear quadrilateral, coupled mass)



nf031h.dat (parabolic quadrilateral, lumped mass)



nf031j.dat (parabolic quadrilateral, coupled mass)

Units SI

Material Properties •

E = 200E09 N/m2



r = 8000 kg/m3



n = 0.3

Finite Element Modeling Two tests: •

64 linear quadrilateral thin shell (CQUAD4) elements - thickness = 0.05 m



16 parabolic quadrilateral thin shell (CQUAD8) elements - thickness = 0.05 m

NX Nastran 8 Verification Manual

11-31

Shell Element Test Cases

Chapter 11

Boundary Conditions •

X = Y = 0 along the Y axis



Z = 0 at all grid points

Solution Type SOL 103 — Normal Mode Dynamics NX Nastran results were obtained in two different ways: •

Using lumped mass (param coupmass = –1)



Using coupled mass (param coupmass = 1)

Results Mode

Reference Value (Hz)

Mesh

NAFEMS Target Value (Hz)

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass) (Hz)

1

52.40

Linear

52.91

52.48

52.78

Parabolic

52.64

52.30

52.60

Linear

126.1

125.6

126.1

Parabolic

125.9

125.7

125.9

Linear

143.2

139.6

142.9

Parabolic

141.5

139.5

141.4

Linear

228.9

215.1

227.5

Parabolic

224.6

214.4

224.3

Linear

247.9

240.1

247.4

Parabolic

243.3

242.3

242.9

2 3 4 5

11-32

125.7 140.8 222.5 241.4

NX Nastran 8 Verification Manual

Shell Element Test Cases

Mode

Reference Value (Hz)

Mesh

NAFEMS Target Value (Hz)

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass) (Hz)

6

255.7

Linear

260.6

252.4

259.8

Parabolic

256.8

254.6

256.6

References NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles, N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 31. Glasgow: NAFEMS, Nov., 1987.

11.13 Cantilevered Tapered Membrane This test is a normal mode dynamic analysis of a cantilevered tapered membrane meshed with shell elements. This document provides the input data and results for NAFEMS Selected Benchmarks for Natural Frequency Analysis, Test 32. Attributes of this test are:



Shear behavior



Irregular mesh



Symmetry

Test Case Data and Information Input Files •

nf032l.dat (linear quadrilateral, lumped mass)



nf032a.dat (linear quadrilateral, coupled mass)



nf032h.dat (parabolic quadrilateral, lumped mass)

NX Nastran 8 Verification Manual

11-33

Chapter 11



Shell Element Test Cases

nf032j.dat (parabolic quadrilateral, coupled mass)

Units SI

Material Properties •

E = 200E09 N/m2



r = 8000 kg/m3



n = 0.3

Finite Element Modeling Two tests: •

128 linear quadrilateral thin shell (CQUADR) elements — thickness = 0.1 m



32 parabolic quadrilateral thin shell (CQUAD8) elements — thickness = 0.1 m

Boundary Conditions •

X = Y = 0 along the Y axis



Z = 0 at all grid points

11-34

NX Nastran 8 Verification Manual

Shell Element Test Cases

Solution Type SOL 103 — Normal Mode Dynamics NX Nastran results were obtained in two different ways: •

Using lumped mass (param coupmas = –1)



Using coupled mass (param coupmass = 1)

Results Mode

Reference Value (Hz)

Mesh

NAFEMS Target Value (Hz)

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass) (Hz)

1

44.62

Linear

44.91

44.66

44.78

Parabolic

44.64

44.54

44.63

Linear

132.1

130.3

131.8

Parabolic

130.1

129.7

130.1

Linear

162.8

162.6

162.8

Parabolic

162.7

162.7

162.7

Linear

253.0

246.1

252.3

Parabolic

246.6

245.1

246.4

Linear

393.3

377.9

393.2

Parabolic

382.0

377.9

381.4

Linear

396.3

389.7

395.0

Parabolic

391.6

390.9

391.5

2 3 4 5 6

130.0 162.7 246.1 379.9 391.4

References NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles, N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 32. Glasgow: NAFEMS, Nov., 1987.

11.14 Free Annular Membrane This test is a normal mode dynamic analysis of a free annular membrane meshed with shell elements. This document provides the input data and results for NAFEMS Selected Benchmarks for Natural Frequency Analysis, Test 33.

NX Nastran 8 Verification Manual

11-35

Chapter 11

Shell Element Test Cases

Attributes of this test are: •

Repeated eigenvalues



Rigid body modes (three modes)

Test Case Data and Information Input Files •

nf033l.dat (linear quadrilateral, lumped mass)



nf033a.dat (linear quadrilateral, coupled mass)



nf033h.dat (parabolic quadrilateral, lumped mass)



nf033j.dat (parabolic quadrilateral, coupled mass)

Units SI

Material Properties •

E = 200E09 N/m2



r = 8000 kg/m3



n = 0.3

11-36

NX Nastran 8 Verification Manual

Shell Element Test Cases

Finite Element Modeling Two tests: •

160 linear quadrilateral thin shell (CQUAD4) elements — thickness = 0.06 m



48 parabolic quadrilateral thin shell (CQUAD8) elements — thickness = 0.06 m

Boundary Conditions •

Z = 0 at all grid points

Solution Type SOL 103 — Normal Mode Dynamics NX Nastran results were obtained two different ways: •

Using lumped mass (param coupmass = –1)



Using coupled mass (param coupmass = 1)

NX Nastran 8 Verification Manual

11-37

Chapter 11

Shell Element Test Cases

Results Mode

Reference Value (Hz)

Mesh

NAFEMS Target Value (Hz)

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass) (Hz)

4, 5

129.2

Linear

129.5

127.8

128.8

Parabolic

126.5

125.7

125.8

Linear

225.5

224.5

225.3

Parabolic

224.3

224.0

224.2

Linear

234.9

229.9

234.9

Parabolic

233.0

230.8

233.0

Linear

272.1

264.3

271.2

Parabolic

264.8

262.6

263.6

Linear

340.3

329.0

339.9

Parabolic

335.7

331.5

335.7

Linear

392.0

369.9

390.5

Parabolic

378.6

373.3

377.4

6

226.2

7, 8

234.7

9, 10

264.7

11, 12

336.6

13, 14

376.8

References NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles, N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 33. Glasgow: NAFEMS, Nov., 1987.

11.15 Cantilevered Thin Square Plate This test is a normal mode dynamic analysis of a cantilevered thin square plate meshed with shell elements. This document provides the input data and results for NAFEMSSelected Benchmarks for Natural Frequency Analysis, Test 73.

11-38

NX Nastran 8 Verification Manual

Shell Element Test Cases

Test Case Data and Information Input Files •

nf073a.dat (Test 1)



nf073b.dat (Test 2)



nf073c.dat (Test 3)



nf073d.dat (Test 4)

Units SI

Material Properties •

E = 200E09 N/m2



r = 8000 kg/m3



n = 0.3

Finite Element Modeling 16 parabolic quadrilateral thin shell (CQUAD8) elements — thickness = 0.05 m

Boundary Conditions X = Y = Z = Ry = 0 along the Y axis

NX Nastran 8 Verification Manual

11-39

Shell Element Test Cases

Chapter 11

Solution Type SOL 103 — Normal Mode Dynamics NX Nastran results were obtained in two different ways: •

Using lumped mass (param coupmass = –1)



Using coupled mass (param coupmass = 1)

Results Mode

Reference Value (Hz)

Mesh

NAFEMS Target Value (Hz)

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass) (Hz)

1

0.4210

Test 1

0.4174

0.4154

0.4183

Test 2

0.4174

0.4154

0.4183

Test 3

0.4175

0.4154

0.4184

Test 4

0.4184

0.4161

0.4192

Test 1

1.020

1.051

1.023

Test 2

1.020

1.006

1.023

Test 3

1.021

1.007

1.027

Test 4

1.032

1.015

1.024

Test 1

2.564

2.485

2.579

Test 2

2.597

2.509

2.605

Test 3

2.677

2.524

2.675

Test 4

2.850

2.563

2.672

Test 1

3.302

3.150

3.298

Test 2

3.345

3.180

3.332

Test 3

3.365

3.196

3.344

Test 4

3.571

3.373

3.535

Test 1

3.769

3.622

3.765

Test 2

3.888

3.713

3.862

Test 3

4.035

3.828

4.000

Test 4

5.466

4.935

5.360

Test 1

6.805

6.292

6.719

Test 2

7.517

6.901

7.399

Test 3

7.495

6.879

7.387

Test 4

——

——

——

2

3

4

5

6

11-40

1.029

2.582

3.306

3.753

376.8

NX Nastran 8 Verification Manual

Shell Element Test Cases

References NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles, N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 73. Glasgow: NAFEMS, Nov., 1987.

NX Nastran 8 Verification Manual

11-41

Chapter

12 Axisymmetric Solid and Solid Element Test Cases

12.1 Free Cylinder — Axisymmetric Vibration This test is a normal mode dynamic analysis of a free cylinder meshed with axisymmetric elements. This document provides the input data and results for NAFEMS Selected Benchmarks for Natural Frequency Analysis, Test 41.

Attributes of this test are: •

Rigid body modes (one mode)



Coupling between axial, radial, and circumferential behavior



Close eigenvalues

Test Case Data and Information Input Files •

nf041.dat (linear axisymmetric, lumped mass)



nf041a.dat (linear axisymmetric, coupled mass)



nf041h.dat (parabolic axisymmetric, lumped mass)



nf041j.dat (parabolic axisymmetric, coupled mass)

Units SI

NX Nastran 8 Verification Manual

12-1

Chapter 12

Axisymmetric Solid and Solid Element Test Cases

Material Properties •

E = 200E09 N/m2



r = 8000 kg / m3



n = 0.3

Finite Element Modeling Two tests: •

16 axisymmetric solid linear quadrilateral (CQUADX) elements



8 axisymmetric solid parabolic quadrilateral (CQUADX) elements

Boundary Conditions Unsupported

Solution Type SOL 103 — Normal Mode Dynamics NX Nastran results were obtained in two different ways: •

Using lumped mass (param coupmass = –1)



Using coupled mass (param coupmass = 1)

12-2

NX Nastran 8 Verification Manual

Axisymmetric Solid and Solid Element Test Cases

Results Mode #

Reference Value (Hz)

Mesh

NAFEMS Target Value (Hz)

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass) (Hz)

2

243.5

Linear

244.0

243.1

243.9

Parabolic

243.5

243.4

243.5

Linear

379.4

372.1

378.4

Parabolic

377.5

376.4

377.4

Linear

395.4

385.8

394.4

Parabolic

394.3

392.4

394.2

Linear

401.4

386.9

398.5

Parabolic

397.9

392.8

397.9

Linear

421.9

391.7

415.4

Parabolic

406.4

397.2

406.0

3

377.4

4

394.1

5

397.7

6

405.3

Note The reference value refers to the accepted solution to the problem.

References NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles, N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 41. Glasgow: NAFEMS, Nov., 1987.

12.2 Thick Hollow Sphere — Uniform Radial Vibration This test is a normal mode dynamic analysis of a thick hollow sphere meshed using axisymmetric elements. This document provides the input data and results for NAFEMS Selected Benchmarks for Natural Frequency Analysis, Test 42.

NX Nastran 8 Verification Manual

12-3

Chapter 12

Axisymmetric Solid and Solid Element Test Cases

Attributes of this test are: •

Curved boundary (skewed coordinate system)



Constraint equations

Test Case Data and Information Input Files •

nf042.dat (linear axisymmetric, lumped mass)



nf042a.dat (linear axisymmetric, coupled mass)



nf042h.dat (parabolic axisymmetric, lumped mass)



nf042j.dat (parabolic axisymmetric, coupled mass)

Units SI

Material Properties •

E = 200E09 N/m2



r = 8000 kg/m3



n = 0.3

Finite Element Modeling •

12-4

10 axisymmetric solid linear quadrilateral (CQUADX) elements -a = 5°

NX Nastran 8 Verification Manual

Axisymmetric Solid and Solid Element Test Cases

Boundary Conditions •

Z¢ displacement = 0 at all grid points



Grid points at the same R¢ are constrained to have the same r¢ displacement



One constraint set

Solution Type SOL 103 — Normal Mode Dynamics NX Nastran results were obtained in two different ways: •

Using lumped mass (param coupmass = –1)



Using coupled mass (param coupmass = 1)

Results Mode #

Reference Value (Hz)

Mesh

NAFEMS Target Value (Hz)

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass) (Hz)

1

369.9

Linear

370.6

369.3

369.6

Parabolic

370.0

369.7

369.7

Linear

841.2

828.1

837.7

Parabolic

838.1

836.2

837.7

Linear

1473.

1416.

1468.

Parabolic

1453.

1445.

1451.

Linear

2192.

2023.

2186.

Parabolic

2132.

2100.

2117.

Linear

2976.

2595.

2967.

Parabolic

2853.

2764.

2799.

2 3 4 5

838.0 1451. 2117. 2796.

NX Nastran 8 Verification Manual

12-5

Chapter 12

Axisymmetric Solid and Solid Element Test Cases

Note The reference value refers to the accepted solution to the problem.

References NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles, N. C. Selected Benchmarks for Natural Frequency Analysis Test No. 42. Glasgow: NAFEMS, Nov., 1987.

12.3 Simply Supported Annular Plate — Axisymmetric Vibration This test is a normal mode dynamic analysis of a simply supported annular plate meshed with axisymmetric elements. This document provides the input data and results for NAFEMS Selected Benchmarks for Natural Frequency Analysis, Test 43.

Attributes of this test are: •

Well established

Test Case Data and Information Input Files •

nf043a.dat (lumped mass)



nf043b.dat (coupled mass)



nf043c.dat (lumped mass)



nf043d.dat (coupled mass)

Units SI

Material Properties •

E = 200E09 N/m2



r = 8000 kg/m3



n = 0.3

12-6

NX Nastran 8 Verification Manual

Axisymmetric Solid and Solid Element Test Cases

Finite Element Modeling Two tests: •

60 axisymmetric solid linear quadrilateral (CQUADX) elements



5 axisymmetric solid parabolic quadrilateral (CQUADX) elements

Boundary Conditions •

Z = 0 at A

Solution Type SOL 103 — Normal Mode Dynamics NX Nastran results were obtained in two different ways: •

Using lumped mass (param coupmass = –1)



Using coupled mass (param coupmass = 1)

Results Mode #

Reference Value (Hz)

Mesh

NAFEMS Target Value (Hz)

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass) (Hz)

1

18.54

Linear

18.71

18.23

18.27

Parabolic

18.58

18.48

18.55

Linear

145.5

140.9

142.6

Parabolic

145.6

135.9

138.6

2

150.2

NX Nastran 8 Verification Manual

12-7

Chapter 12

Axisymmetric Solid and Solid Element Test Cases

Mode #

Reference Value (Hz)

Mesh

NAFEMS Target Value (Hz)

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass) (Hz)

3

224.2

Linear

224.2

224.2

224.2

Parabolic

224.2

224.1

224.2

Linear

385.6

366.3

376.5

Parabolic

374.1

345.3

360.3

Linear

689.3

647.7

677.8

Parabolic

686.0

592.7

640.2

4

358.3

5

629.2

Note The reference value refers to the accepted solution to the problem.

References NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles, N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 43. Glasgow: NAFEMS, Nov., 1987.

12.4 Deep Simply Supported "Solid" Beam This test is a normal mode dynamic analysis of a deep, simply supported beam meshed with solid elements. This document provides the input data and results for NAFEMS Selected Benchmarks for Natural Frequency Analysis , Test 51.

Attributes of this test are: •

Skewed coordinate system



Skewed restraints

12-8

NX Nastran 8 Verification Manual

Axisymmetric Solid and Solid Element Test Cases

Test Case Data and Information Input Files •

nf051a.dat (linear brick)



nf051b.dat (parabolic brick)



nf051c.dat (linear pyramid)



nf051d.dat (parabolic pyramid)

Units SI

Material Properties •

E = 200E09 N/m2



r = 8000 kg/m3



n = 0.3

Finite Element Modeling Four tests: •

30 solid linear brick (CHEXA) elements



5 solid parabolic brick (CHEXA) elements



180 solid linear pyramid (CPYRAM) elements (created by dividing each linear brick element into 6 pyramid elements)



30 solid parabolic pyramid (CPYRAM) elements (created by dividing each parabolic brick element into 6 pyramid elements)

NX Nastran 8 Verification Manual

12-9

Axisymmetric Solid and Solid Element Test Cases

Chapter 12

Boundary Conditions •

X¢ = Z¢ = 0 along AA¢



Z¢ = 0 along BB¢



Y¢ = 0 at all grid points on the plane Y¢ = 2.0 m

Solution Type SOL 103 — Normal Mode Dynamics NX Nastran results were obtained two different ways: •

Using lumped mass (param coupmass = –1)



Using coupled mass (param coupmass = 1)

Results Mode #

Reference Value (Hz)

Mesh

NAFEMS Target Value (Hz)

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass) (Hz)

1

38.20

linear brick

42.88

37.96

38.28

41.30

41.50

37.85

38.24

37.90

38.10

linear pyramid parabolic brick parabolic pyramid

12-10

NX Nastran 8 Verification Manual

38.82

Axisymmetric Solid and Solid Element Test Cases

Mode #

Reference Value (Hz)

Mesh

NAFEMS Target Value (Hz)

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass) (Hz)

2

85.21

linear brick

93.82

83.38

83.95

89.30

89.60

87.12

87.52

86.30

86.50

152.7

157.6

163.0

166.0

151.8

157.0

152.0

155.0

251.6

264.9

269.0

276.0

248.5

258.2

250.0

255.0

288.0

298.3

303.0

309.0

289.6

305.6

291.0

300.0

linear pyramid parabolic brick

88.45

parabolic pyramid 3

152.2

linear brick

170.7

linear pyramid parabolic brick

159.4

parabolic pyramid 4

245.5

linear brick

286.1

linear pyramid parabolic brick

259.2

parabolic pyramid 5

297.1

linear brick

318.9

linear pyramid parabolic brick parabolic pyramid

307.9

Note The reference value refers to the accepted solution to the problem.

References NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles, N. C., Selected Benchmarks for Natural Frequency Analysis Test No. 51. Glasgow: NAFEMS, Nov., 1987.

12.5 Simply Supported "Solid" Square Plate This test is a normal mode dynamic analysis of a simply supported square plate meshed with solid elements. This document provides the input data and results for NAFEMS Selected Benchmarks for Natural Frequency Analysis, Test 52.

NX Nastran 8 Verification Manual

12-11

Chapter 12

Axisymmetric Solid and Solid Element Test Cases

Attributes of this test are: •

Well established



Rigid body modes (three modes)



Kinematically incomplete suppressions

Test Case Data and Information Input Files •

nf052l.dat (linear brick)



nf052b.dat (parabolic brick)



nf052c.dat (linear pyramid)



nf052d.dat (parabolic pyramid)

Units SI

Material Properties •

E = 200E09 N/m2



r = 8000 kg/m3



n = 0.3

12-12

NX Nastran 8 Verification Manual

Axisymmetric Solid and Solid Element Test Cases

Finite Element Modeling Four tests: •

64 solid linear brick (CHEXA) elements



16 solid parabolic brick (CHEXA) elements



384 solid linear pyramid (CPYRAM) elements (created by dividing each linear brick element into 6 pyramid elements)



96 solid parabolic pyramid (CPYRAM) elements (created by dividing each parabolic brick element into 6 pyramid elements)

Boundary Conditions Z = 0 along the four edges on the plane Z = –0.5 m

NX Nastran 8 Verification Manual

12-13

Axisymmetric Solid and Solid Element Test Cases

Chapter 12

Solution Type SOL 103 normal modes NX Nastran results were obtained in two different ways: •

Using lumped mass (param coupmass = –1)



Using coupled mass (param coupmass = 1)

Results Mode #

Reference Mesh Value (Hz)

NAFEMS Target Value (Hz)

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass) (Hz)

4

45.90

51.65

44.04

45.24

66.90

68.00

43.81

44.16

44.70

44.80

106.5

113.7

154.0

160.0

105.2

107.9

109.0

110.0

155.5

172.3

195.0

197.0

156.3

163.9

166.0

169.0

193.6

196.8

207.0

212.0

194.0

193.9

194.0

194.0

200.1

209.6

207.0

212.0

193.5

206.6

196.0

207.0

linear brick linear pyramid parabolic brick

44.76

parabolic pyramid 5, 6

109.4

linear brick

132.7

linear pyramid parabolic brick

110.5

parabolic pyramid 7

167.9

linear brick

194.4

linear pyramid parabolic brick

169.1

parabolic pyramid 8

193.6

linear brick

197.2

linear pyramid parabolic brick

193.9

parabolic pyramid 9

206.2

linear brick

210.6

linear pyramid parabolic brick parabolic pyramid

12-14

NX Nastran 8 Verification Manual

206.6

Axisymmetric Solid and Solid Element Test Cases

Mode #

Reference Mesh Value (Hz)

NAFEMS Target Value (Hz)

NX Nastran Result (lumped mass) (Hz)

NX Nastran Result (coupled mass) (Hz)

10

206.2

210.6

200.1

209.6

220.0

223.0

193.5

206.6

196.0

207.0

linear brick linear pyramid parabolic brick

206.6

parabolic pyramid Note

The reference value refers to the accepted solution to the problem.

References NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles, N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 52. Glasgow: NAFEMS, Nov., 1987.

12.6 Simply Supported "Solid" Annular Plate This test is a normal mode dynamic analysis of a simply supported annular plate meshed with solid elements. This document provides the input data and results for NAFEMS Selected Benchmarks for Natural Frequency Analysis, Test 53.

Attributes of this test are: •

Curved boundary (skewed coordinate system)



Constraint equations

Test Case Data and Information Input Files •

nf053l.dat (linear brick)

NX Nastran 8 Verification Manual

12-15

Chapter 12

Axisymmetric Solid and Solid Element Test Cases



nf053h.dat (parabolic brick)



nf053c.dat (linear pyramid)



nf053d.dat (parabolic pyramid)

Units SI

Material Properties •

E = 200E09 N/m2



r = 8000 kg/m3



n = 0.3

Finite Element Modeling Four tests: •

60 solid linear brick (CHEXA) elements — a = 5°



5 solid parabolic brick (CHEXA) elements — a = 10°



360 solid linear pyramid (CPYRAM) elements (created by dividing each linear brick element into 6 pyramid elements)



30 solid parabolic pyramid (CPYRAM) elements (created by dividing each parabolic brick element into 6 pyramid elements)

12-16

NX Nastran 8 Verification Manual

Axisymmetric Solid and Solid Element Test Cases

Boundary Conditions •

q displacement = 0 at all grid points



Z displacement = 0 at all grid points along AA



Grid points at same R and Z are constrained to have same z displacement



One constraint set

Solution Type SOL 103 — Normal Mode Dynamics NX Nastran results were obtained in two different ways: •

Using lumped mass (param coupmass = –1)



Using coupled mass (param coupmass = 1)

NX Nastran 8 Verification Manual

12-17

Chapter 12

Axisymmetric Solid and Solid Element Test Cases

Results Mode #

Reference Value (Hz)

Mesh

NAFEMS Target Value (Hz)

NX Nastran NX Nastran Result Result (coupled mass) (lumped (Hz) mass) (Hz)

1

18.58

linear brick

19.66

18.57

18.61

19.90

19.90

18.45

18.58

21.30

21.50

138.8

140.5

147.0

148.0

135.9

140.3

140.0

143.0

224.2

224.4

224.0

224.0

223.7

224.2

224.0

225.0

361.8

372.1

383.0

390.0

351.2

371.9

359.0

376.0

643.8

674.7

684.0

690.0

624.7

679.6

640.0

683.0

linear pyramid parabolic brick

18.58

parabolic pyramid 2

140.2

linear brick

146.4

linear pyramid parabolic brick

140.4

parabolic pyramid 3

224.2

linear brick

224.3

linear pyramid parabolic brick

224.2

parabolic pyramid 4

358.3

linear brick

386.7

linear pyramid parabolic brick

374.0

parabolic pyramid 5

629.2

linear brick

689.5

linear pyramid parabolic brick parabolic pyramid

686.0

References NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles, N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 53. Glasgow: NAFEMS, Nov., 1987.

12-18

NX Nastran 8 Verification Manual

Axisymmetric Solid and Solid Element Test Cases

12.7 Cantilevered Solid Beam This test is a normal mode dynamic analysis of a cantilevered solid beam meshed using solid elements. This document provides the input data and results for NAFEMS Selected Benchmarks for Natural Frequency Analysis, Test 72.

Attributes of this test are: •

Highly populated stiffness matrix

Test Case Data and Information Input Files •

nf072a.dat (parabolic bricks – conventional)



nf072b.dat (parabolic bricks – unconventional)



nf072c.dat (parabolic pyramids – conventional)



nf072d.dat (parabolic pyramids – unconventional)

Units SI

Material Properties •

E = 200E09 N/m2



r = 8000 kg/m3



n=3

NX Nastran 8 Verification Manual

12-19

Chapter 12

Axisymmetric Solid and Solid Element Test Cases

Finite Element Modeling Four tests: •

Test 1: solid parabolic brick (CHEXA) elements, conventional grid point numbering



Test 2: solid parabolic pyramid (CPYRAM) elements (created by dividing each brick element into 6 pyramid elements), conventional grid point numbering



Test 3: solid parabolic brick (CHEXA) elements, unconventional grid point numbering



Test 4: solid parabolic pyramid (CPYRAM) elements (created by dividing each brick element into 6 pyramid elements), unconventional grid point numbering

12-20

NX Nastran 8 Verification Manual

Axisymmetric Solid and Solid Element Test Cases

Boundary Conditions •

X = Y = Z = 0 at all grid points on X = 0 plane



Y = 0 at grid points on Y = 1 m plane

Solution Type SOL 103 — Normal Mode Dynamics NX Nastran results were obtained in two different ways: •

Using lumped mass (param coupmass = –1)



Using coupled mass (param coupmass = 1)

NX Nastran 8 Verification Manual

12-21

Chapter 12

Axisymmetric Solid and Solid Element Test Cases

Results Mode #

Mesh

NAFEMS Target Value (Hz)

NX Nastran NX Nastran Result (lumped Result (coupled mass) (Hz) mass) (Hz)

1

Test 1

16.01

15.82

15.99

15.90

16.00

15.82

15.99

15.90

16.00

83.18

87.09

84.30

87.00

83.18

87.09

84.30

87.00

125.5

126.0

126.0

126.0

125.5

126.0

126.0

126.0

193.5

209.1

198.0

209.0

193.5

209.1

198.0

209.0

310.1

349.9

323.0

350.0

310.1

349.9

323.0

350.0

364.2

375.8

367.0

375.0

364.2

375.8

367.0

375.0

Test 2 Test 3

16.01

Test 4 2

Test 1

87.23

Test 2 Test 3

87.23

Test 4 3

Test 1

126.0

Test 2 Test 3

126.0

Test 4 4

Test 1

209.6

Test 2 Test 3

209.6

Test 4 5

Test 1

351.1

Test 2 Test 3

351.1

Test 4 6

Test 1

375.8

Test 2 Test 3 Test 4

375.8

References NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles, N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 72. Glasgow: NAFEMS, Nov., 1987.

12-22

NX Nastran 8 Verification Manual

Part

VI Verification Test Cases from the Societe Francaise des Mecaniciens

NX Nastran 8 Verification Manual

Chapter

13 Overview of Verification Test Cases Provided by the Societe Francaise des Mecaniciens

The purpose of these linear statics test cases is to verify the function of NX Nastran using standard benchmarks published by SFM (Societe Francaise des Mecaniciens. Paris, France) in Guide de validation des progiciels de calcul de structures. Included here are: •

Tests cases on mechanical structures using linear statics analysis, normal mode dynamics analysis, and model response.



Stationary thermal test cases using heat transfer analysis.



Thermo-mechanical test cases using linear statics analysis.

Results published in Guide de validation des progiciels de calcul de structures are compared with those computed using NX Nastran.

13.1 Understanding the Test Case Format Each test case is structured with the following information. •

Test case data and information: o

Input files

o

Units

o

Material properties

o

Finite element modeling information

o

Boundary conditions (loads and restraints)

o

Solution type



Results



Reference

NX Nastran 8 Verification Manual

13-1

Chapter 13

Overview of Verification Test Cases Provided by the Societe Francaise des Mecaniciens

13.2 Reference The following reference has been used in these test cases: Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990.

13-2

NX Nastran 8 Verification Manual

Chapter

14 Mechanical Structures — Linear Statics Analysis with Beam or Rod Elements

14.1 Short Beam on Two Articulated Supports This test is a linear statics analysis of a short, straight beam with plane bending and shear loading. It provides the input data and results for benchmark test SSLL02/89 from Guide de validation des progiciels de calcul de structures.



Area = 31E–04 m2



Inertia = 2810E–08 m4



Shear area ratio = 2.42

Test Case Data and Information Input Files ssll02.dat

Units SI

Material Properties •

E = 2E11 Pa



n = 0.3

NX Nastran 8 Verification Manual

14-1

Chapter 14

Mechanical Structures — Linear Statics Analysis with Beam or Rod Elements

Finite Element Modeling •

10 linear beam (CBAR) elements



11 grid points

The mesh is shown in the following figure:

Boundary Conditions •

Restrain both free ends of the beam in translation DOF. o

Edge load = 1E05 N/m in –Y direction

The boundary conditions are shown in the following figure:

Solution Type SOL 101 — Linear Statics

Results Result

Bench Value

NX Nastran

Displacement at point B v (m) (Grid point 7)

–1.259E–3

–1.249E–3

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SSLL02/89.

14.2 Clamped Beams Linked by a Rigid Element This test is a linear statics analysis of a straight, cantilever beam with plane bending and a rigid element. It provides the input data and results for benchmark test SSLL05/89 from Guide de validation des progiciels de calcul de structures.

14-2

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Beam or Rod Elements

Test Case Data and Information Input File ssll05.dat

Units SI

Material Properties •

E = 2E11 Pa



I = (4/3)E–08 m4

Finite Element Modeling •

20 linear beam (CBAR) elements



1 rigid element



26 grid points

The mesh is shown in the following figure:

Boundary Conditions •

Points A and C: Clamped



Point D: Set nodal force = 1000 N in –Y direction

The boundary conditions are shown in the following figure:

Solution Type SOL 101 — Linear Statics

NX Nastran 8 Verification Manual

14-3

Chapter 14

Mechanical Structures — Linear Statics Analysis with Beam or Rod Elements

Results Type

Grid point

Point

Bench Value

NX Nastran

v (m) Disp. Y

Grid point 6

B

–0.1250

–0.1250

v (m) Disp. Y

Grid point 3

D

–0.1250

–0.1250

V force (N) Y

Grid point 1

A

500.0

500.0

M moment (Nm) Rz

Grid point 1

A

500.0

500.0

V force (N) Y

Grid point 4

C

500.0

500.0

M moment (Nm) Rz

Grid point 4

C

500.0

500.0

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990 Test No. SSLL05/89.

14.3 Transverse Bending of a Curved Pipe This test is a linear statics analysis (three-dimensional problem) of a curved pipe with transverse bending and bending-torque loading. It provides the input data and results for benchmark test SSLL07/89 from Guide de validation des progiciels de calcul de structures.



R=1m



de = 0.02 m



di = 0.016 m



A = 1.131E-0–04 m2



Ix = 4.637E–09 m4

14-4

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Beam or Rod Elements

Test Case Data and Information Input Files •

ssll07a.dat linear beam



ssll07b.dat curved beam

Units SI

Material Properties •

E = 2E11 Pa



n = 0.3

Finite Element Modeling Test 1 •

90 linear beam (CBAR) elements



91 grid points

Test 2 •

90 curved beam (CBEND) elements



91 grid points

To obtain the point where q = 15° with accuracy, use surface mapped meshing on 1/4 of a cylinder. Then mesh a curved edge with the Surface Coating command and undo the mesh on the surface. The mesh for Test 1 is shown in the following figure:

NX Nastran 8 Verification Manual

14-5

Chapter 14

Mechanical Structures — Linear Statics Analysis with Beam or Rod Elements

Boundary Conditions •

Clamp point A.



Grid point force F = 100 N in Z direction.

The boundary conditions are shown in the following figure:

Solution Type SOL 101 — Linear Statics

Results Type

Grid point

Point

Bench Value

Test Number

NX Nastran

u (m) Disp. Z

Grid point 1

B

0.1346

1

0.1346

2

0.1346

1

76.67

2

77.51

1

–96.37

2

–95.70

Mt (Nm)*

Grid point 1

Mf (Nm)

Mf = bending moment Mt = torsional moment *See "Post Processing" below.

14-6

NX Nastran 8 Verification Manual

q = 15°

74.12 –96.59

Mechanical Structures — Linear Statics Analysis with Beam or Rod Elements

Post Processing Linear Beam (CBAR) Elements List beam forces on element 167, second end: •

Mf = torque



Mt = bending moment

Curved Beam (CBEND) Elements List beam forces on element 166, second end: •

Mf = torque



Mt = bending moment

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990.Test No. SSLL07/89..

14.4 Plane Bending Load on a Thin Arch This test is a linear statics analysis (plane problem) of a thin arc with plane bending. It provides the input data and results for benchmark test SSLL08/89 from Guide de validation des progiciels de calcul de structures.



R=1m



de = 0.02 m



di = 0.016 m



A = 1.131E–04 m2



Ix 4.637E–09 m4

NX Nastran 8 Verification Manual

14-7

Chapter 14

Mechanical Structures — Linear Statics Analysis with Beam or Rod Elements

Test Case Data and Information Input File ssll08.dat

Units SI

Material Properties •

E = 2E11 Pa



n = 0.3

Finite Element Modeling •

10 linear beam (CBAR) elements



11 grid points

14-8

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Beam or Rod Elements

Boundary Conditions •

Point A: Articulated Z



Point B: Sets Y and Z displacement to 0



Force = 100N in –Y direction

The boundary conditions are shown in the following figure:

Solution Type SOL 101 — Linear Statics

Results Type

Grid Point

Point

Bench Value

NX Nastran

Rz (rad)

2

A

–3.077E–2

–3.110E–2

Rz (rad)

1

B

3.077E–2

3.110E–2

Y (m)

7

C

-1.921E–2

–1.934E–2

X (m)

1

B

5.391E-2

5.374E–2

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SSLL08/89.

14.5 Grid Point Load on an Articulated CONROD Truss This test is a linear statics analysis of a plane truss with an articulated rod. It provides the input data and results for benchmark test SSLL11/89 from Guide de validation des progiciels de calcul de structures.

NX Nastran 8 Verification Manual

14-9

Chapter 14

Mechanical Structures — Linear Statics Analysis with Beam or Rod Elements

Test Case Data and Information Input File ssll11.dat

Units SI

Material Properties •

E = 1.962E11 Pa

14-10

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Beam or Rod Elements

Finite Element Modeling •

4 rod (CONROD) elements



4 grid points

The mesh is shown in the following figure:

Element

Length (m)

Area (m2)

AC

2.000E–4

CB

2.000E–4

CD

1.000E–4

BD

1.000E–4

Boundary Conditions •

Point A and B: Articulated



Point D: Set Nodal force = 9.81 E3 N in –Y direction

The boundary conditions are shown in the following figure:

Solution Type SOL 101 — Linear Statics

NX Nastran 8 Verification Manual

14-11

Chapter 14

Mechanical Structures — Linear Statics Analysis with Beam or Rod Elements

Results Type

Grid Point

Point

Bench Value

NX Nastran

X (m)

18.00

C

0.2652E–3

0.2652E–3

Y (m)

18.00

C

0.08839E–3

0.08839E–3

X (m)

2.000

D

3.479E–3

3.479E–3

Y (m)

2.000

D

–5.601E–3

–5.600E–3

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. (Paris, Afnor Technique, 1990..) Test No. SSLL11/89.

14.6 Articulated Plane Truss This test is a linear statics analysis of a straight cantilever beam with plane bending and tension-compression. It provides the input data and results for benchmark test SSLL14/89 from Guide de validation des progiciels de calcul de structures.



I1 = 5E–04 m4



I2 = 2.5E–04 m4

14-12

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Beam or Rod Elements

Test Case Data and Information Input Files •

ssll14a.dat (4 elements)



ssll14b.dat (10 elements)

Units SI

Material Properties •

E = 2.1E11 Pa

Finite Element Modeling Test 1 •

4 linear beam (CBAR) elements



5 grid points

Test 2 •

10 linear beam (CBAR) elements



11 grid points

The mesh for Test 2 is shown in the following figure:

NX Nastran 8 Verification Manual

14-13

Chapter 14

Mechanical Structures — Linear Statics Analysis with Beam or Rod Elements

Boundary Conditions •

Point A and B: Articulate



Set forces and moments to the following numeric values: o

p = –3,000 N/m

o

F1 = –20,000 N

o

F2 = –10,000 N

o

M = –100,000 Nm

The boundary conditions are shown in the following figure:

Solution Type SOL 101 — Linear Statics

Results Type

Grid Point

Point

Bench Value

Test Number

NX Nastran

Vertical reaction (N)

1.000

A

3.150E4

1

3.150E4

2

3.320E4

Hortizontal reaction (N)

1.000

1

1.920E4

2

2.061E4

Vertical Displacement (m)

8.000

1

–0.02100

2

–0.03161

A C

2.024E4 0.03072

Note NX Nastran takes shear effect into account.

14-14

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Beam or Rod Elements

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SSLL14/89.

14.7 Beam on an Elastic Foundation This test is a linear statics analysis (plane problem) of a straight beam with plane bending and an elastic support. It provides the input data and results for benchmark test SSLL16/89 from Guide de validation des progiciels de calcul de structures.

Test Case Data and Information Input File ssll16.dat

Units SI

Material Properties •

E = 2.1E11 Pa



K = 8.4E05 N/m2



Each spring stiffness is set to: K * L/(number of spring elements).

NX Nastran 8 Verification Manual

14-15

Chapter 14

Mechanical Structures — Linear Statics Analysis with Beam or Rod Elements

Finite Element Modeling •

50 linear beam (CBAR) elements



49 spring (CBUSH) elements



51 grid points

The mesh is shown in the following figure:

14-16

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Beam or Rod Elements

Boundary Conditions •

Point A and B: Articulated



Set forces and moments to the following numeric values: –F = –10000 N –p = –5000 N/m –M = 15000 Nm.

The boundary conditions are shown in the following figure:

Solution Type SOL 101 — Linear Statics

Results Type

Point

Bench Value

NX Nastran

Rotation(rad) Rz

A

—0.003050

–0.003034

1.167E4

1.158E4

–0.4233E–2

–0.4216E–2

Vertical Reaction force (N) Vertical Disp. (m)

D

NX Nastran 8 Verification Manual

14-17

Chapter 14

Mechanical Structures — Linear Statics Analysis with Beam or Rod Elements

Type

Point

M moment (Nm)*

Bench Value

NX Nastran

3.384E4

3.369E4

*List beam forces on element 26, first end, z bending moment.

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SSLL16/89.

14-18

NX Nastran 8 Verification Manual

Chapter

15 Mechanical Structures — Linear Statics Analysis with Shell Elements

15.1 Plane Shear and Bending Load on a Plate This test is a linear statics analysis (plane problem) of a plate with plane bending. It provides the input data and results for benchmark test SSLP01/89 from Guide de validation des progiciels de calcul de structures.



Thickness = 1 mm

Test Case Data and Information Input File sslp01.dat

Units SI

Material Properties •

E = 3E10 Pa



n = 0.25

NX Nastran 8 Verification Manual

15-1

Chapter 15

Mechanical Structures — Linear Statics Analysis with Shell Elements

Finite Element Modeling •

100 linear quadrilateral thin shell (CQUAD4) elements



126 grid points

The mesh is shown in the following figure:

Boundary Conditions •

Clamped Plate



Set a shear force with parabolic distribution on width and constant distribution on thickness.



Resultant force: p = 40 N.

The boundary conditions are shown in the following figure:

Solution Type SOL 101 — Linear Statics

Results Type

Grid point #

Location

Bench Value

NX Nastran

Y (mm)

Grid point 3

(L,y)

0.3413

0.3408

Displacement is shown in the following figure:

15-2

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990 Test No. SSLP01/89.

15.2 Infinite Plate with a Circular Hole This test is a linear statics analysis (plane problem) of a plate with tension-compression and a membrane effect. It provides the input data and results for benchmark test SSLP02/89 from Guide de validation des progiciels de calcul de structures.

NX Nastran 8 Verification Manual

15-3

Chapter 15

Mechanical Structures — Linear Statics Analysis with Shell Elements

Test Case Data and Information Input File sslp02.dat

Units SI

Material Properties •

E = 3E10 Pa



n = 0.25

15-4

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

Finite Element Modeling •

100 linear quadrilateral thin shell (CQUAD4) elements



121 grid points

The plate is meshed using the biasing option. The mesh is shown in the following figure:

Boundary Conditions •

u (0,y) = 0, Ry (y) = 0, Rz (y) = 0, (z = 0, all grid points)



n (x,0) = 0, Rx (x) = 0, Rz (x) = 0



Tension force P = 2.5 N/mm**2 (in plane force of 2500 N/m)

The boundary conditions are shown in the following figure:

NX Nastran 8 Verification Manual

15-5

Chapter 15

Mechanical Structures — Linear Statics Analysis with Shell Elements

Solution Type SOL 101 — Linear Statics

Results Type sqq

Point

Bench Value

NX Nastran

(a, 0)

7.500E7

7.528E7

sqq

(a, π/4)

2.500E7

2.511E7

sqq

(a, π/2)

–2.500E7

–2.452E7

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SSLP02/89.

15.3 Uniformly Distributed Load on a Circular Plate This test is a linear statics analysis (three-dimensional problem) of a circular plate fixed at the edge with transverse bending and a uniform load. It provides the input data and results for benchmark test SSLS03/89 from Guide de validation des progiciels de calcul de structures.

Test Case Data and Information Input Files •

ssls03a.dat linear quadrilateral



ssls03b.dat linear triangle

Units SI

15-6

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

Material Properties •

E = 2.1 x 1011 Pa



n = 0.3

Finite Element Modeling Test 1 •

38 linear quadrilateral thin shell (CQUAD4) elements



50 grid points

Test 2 •

53 linear triangular thin shell (CTRIA3) elements



38 grid points

Meshing is only done on 1/4 of the plate. The meshes are shown in the following figure:

NX Nastran 8 Verification Manual

15-7

Chapter 15

Mechanical Structures — Linear Statics Analysis with Shell Elements

Boundary Conditions •

Clamp free edges.



Uniform pressure p = –1000 Pa.



Symmetric conditions are applied to the sides.

The boundary conditions are shown in the following figure:

Solution Type SOL 101 — Linear Statics

Results Result

Grid Point

Point

Bench Value

Test Number NX Nastran

Z

1.000

Center O

–0.006500

1

–0.006600

w (m)

1.000

2

–0.006500

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SSLS03/89.

15.4 Torque Loading on a Square Tube This test is a linear statics analysis (three-dimensional problem) of a thin-walled tube loaded in torsion by pure shear at the free end. It provides the input data and results for benchmark test SSLS05/89 from Guide de validation des progiciels de calcul de structures.

15-8

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

Test Case Data and Information Input File ssls05.dat

Units SI

Material Properties • •

E = 2.1 x 1011 Pa = 0.3

Finite Element Modeling •

160 CQUAD4 elements



219 grid points

The mesh is shown in the following figure:

NX Nastran 8 Verification Manual

15-9

Chapter 15

Mechanical Structures — Linear Statics Analysis with Shell Elements

Boundary Conditions •

Plane X = 0



Clamped beam



Apply a torque equal to 10 Nm on the free end.

The boundary conditions are shown in the following figure:

Solution Type SOL 101 — Linear Statics

Results Result

Grid Point

Bench Value

NX Nastran

Disp. Y (m)

193.0

–6.170E–7

.6.170E–7

Disp. Rx (rad)

1.230E–5

1.230E–5

Stress XY Shear (Pa)

–11.00E4

–11.00E4

–9.870E–7

–9.870E–7

Disp. Rx (rad)

1.970E–5

1.970E–5

Stress XY Shear (Pa)

–11.00E4

–11.00E4

Disp. Y (m)

208.0

Results are post-processed using the Shell surface: Bottom option.

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SSLS05/89.

15.5 Cylindrical Shell with Internal Pressure This test is a linear statics analysis of a thin cylinder loaded by internal pressure. It provides the input data and results for benchmark test SSLS06/89 from Guide de validation des progiciels de calcul de structures.

15-10

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

Test Case Data and Information Input Files •

ssls06a.dat



ssls06b.dat

Units SI

Material Properties •

E = 2.1 x 1011 Pa



n = 0.3

NX Nastran 8 Verification Manual

15-11

Chapter 15

Mechanical Structures — Linear Statics Analysis with Shell Elements

Finite Element Modeling The meshes are shown in the following figure:

Test 1 •

100 linear quadrilateral thin shell (CQUAD4) elements



121 grid points

Test 2 •

400 liinear quadrilateral thin shell (CQUAD4) elements



441 grid points

15-12

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

Boundary Conditions •

Free conditions: To set free boundary conditions, use symmetry about XZ, XY, and YZ planes.



Internal pressure = 10000 Pa.

The boundary conditions are shown in the following figure:

Solution Type SOL 101 — Linear Statics

Results Type

Point

Bench Value

Test Number

NX Nastran

s11(Pa)

All

0

1

1.720

2

4.960

1

4.950E5

2

4.990E5

1

2.370E–6

2

2.380E–6

1

–1.420E–6

2

–1.430E–6

s22(Pa) ΔR(m) ΔL(m)

5.000E5 2.380E–6 –1.430E–6

All results are averages.

NX Nastran 8 Verification Manual

15-13

Chapter 15

Mechanical Structures — Linear Statics Analysis with Shell Elements

Post Processing •

s11 is the stress of z at grid point 11 (test 1) and grid point 21 (test 2)



s22 is the stress of x at grid point 111 (test 1) and grid point 421 (test 2)



ΔR(m) is the displacement of x at grid point 121 (test 1) and grid point 441 (test 2)



ΔL(m) is the displacement of z at grid point 121 (test 1) and grid point 441 (test 2)

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SSLS06/89.

15.6 Uniform Axial Load on a Thin Wall Cylinder This test is a linear static analysis of a thin cylinder loaded axially. It provides the input data and results for benchmark test SSLS07/89 from Guide de validation des progiciels de calcul de structures.

Test Case Data and Information Input Files •

ssls07a.dat – parabolic quadrilateral, thin shell



ssls07b.dat – parabolic triangle, thin shell

Units SI

15-14

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

Material Properties •

E = 2.1 x 1011 Pa



n = 0.3

Finite Element Modeling Test 1 •

200 parabolic quadrilateral thin shell (CQUAD8) elements



661 grid points

Test 2 •

400 parabolic triangular thin shell (CTRIA6) elements

The meshes are shown in the following figure:

NX Nastran 8 Verification Manual

15-15

Chapter 15

Mechanical Structures — Linear Statics Analysis with Shell Elements

Boundary Conditions •

Axial displacement = 0 in. X = 0 section



Uniform axial load q = 10000 N/m

The boundary conditions are shown in the following figure:

Solution Type SOL 101 — Linear Sstatics

Results Type

Point

Bench Value

Test Number

NX Nastran

s11(Pa)

Any

5.000E5

1

5.000E5

2

5.790E5

1

0

2

3.080E4

1

9.520E–6

2

9.560E–6

1

–7.140E-7

2

–7.330E–7

s22(Pa)

Any Any

ΔL(m) ΔR (m)

Any

0 9.520E–6 –7.140E–7

All results are averages.

Post Processing •

s11 is the stress of z at grid point 641 in coordinate system 2.

15-16

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements



s22 is the stress of y at grid point 641 in coordinate system 2.



ΔR is the displacement of x at grid point 641 in coordinate system 2.



ΔL is the displacement of z at grid point 641 in coordinate system 2.

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SSLS07/89.

15.7 Hydrostatic Pressure on a Thin Wall Cylinder This test is a linear statics analysis of a thin cylinder loaded by hydrostatic pressure. It provides the input data and results for benchmark test SSLS08/89 from Guide de validation des progiciels de calcul de structures.

Test Case Data and Information Input File ssls08.dat

Units SI

Material Properties •

E = 2.1 x 1011 Pa



n = 0.3

NX Nastran 8 Verification Manual

15-17

Chapter 15

Mechanical Structures — Linear Statics Analysis with Shell Elements

Finite Element Modeling •

200 parabolic quadrilateral thin shell (CQUAD8) elements



661 grid points

The mesh is shown in the following figure:

15-18

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

Boundary Conditions •

Restrain the grid points on side A (from grid point 21 to grid point 661) in the X translation and the Y and Z rotations.



Restrain the grid points on side B (from grid point 1 to grid point 641) in the Y translation and X and Z rotations.



Internal pressure p = p0 * Z/L with p0 = 20000 Pa.

The boundary conditions are shown in the following figure:

Solution Type SOL 101 — Linear Statics

Results Type

Grid Point

Point

Bench Value

NX Nastran

s11(Pa)

321.0

Any

0

8.800E3

L/2s22 (Pa)

321.0

x = L/2

5.000E5

4.970E5

ΔR (m)

321.0

x = L/2

2.380E–6

2.380E–6

ΔL (m)

1.000

x=L

–2.860E–6

2.860E–6

Ψ (rad)

321.0

1.190E–6

1.190E–6

Ψ represents the rotation of a generator.

Post Processing •

s11is the stress of z at grid point 321 in coordinate system 2

NX Nastran 8 Verification Manual

15-19

Chapter 15

Mechanical Structures — Linear Statics Analysis with Shell Elements



s22 is the stress of y at grid point 321 in coordinate system 2



ΔR is the displacement of x at grid point 321 in coordinate system 2



ΔL is the displacement of z at grid point 1 in coordinate system 2



Ψ is the rotation of y at grid point 321 in coordinate system 2

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SSLS08/89.

15.8 Gravity Loading on a Thin Wall Cylinder This test is a linear statics analysis of a thin cylinder loaded by its own weight. It provides the input data and results for benchmark test SSLS09/89 from Guide de validation des progiciels de calcul de structures.

Test Case Data and Information Input Files •

ssls09a.dat linear quadrilateral, thin shell



ssls09b.dat axisymmetric

Units SI

15-20

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

Material Properties •

E = 2.1 x 1011 Pa



n = 0.3



g = 7.85 x 104 N/m3



Mass = 8002 kg/m3

Finite Element Modeling Test 1 •

65 linear quadrilateral thin shell (CQUAD4) elements



84 grid points

Test 2 •

20 linear axisymmetric (CCONEAX) elements



21 grid points

The meshes are shown in the following figure:

NX Nastran 8 Verification Manual

15-21

Chapter 15

Mechanical Structures — Linear Statics Analysis with Shell Elements

Boundary Conditions •

Axial displacement = 0 in. Z = 0 section.



Gravity loading; gravity acts in the Z direction.

The boundary conditions are shown in the following figure:

Solution Type SOL 101 — Linear Statics

Results Type

Grid point

Point

Bench Value Test Number

NX Nastran

s22(Pa)

2.000

Any

0

1

–34.66

2

0

1

3.020E5

2

3.060E5

1

2.990E–6

2

2.990E–6

1

–4.390E–76

2

–4.480E–7

1

–1.120E–7

2

–1.120E–7

s11 (Pa)

2.000 1.000

Δz (m) ΔR (m) Ψ (rad)

2.000 10.00

x=0 x=L x=0 x–L

3.140E5 2.990E–6 –4.490E–7 1.120E–7

Post Processing Test 1 •

s11 is the stress of z at grid point 2 in coordinate system 2

15-22

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements



s22is the stress of x at grid point 2 in coordinate system 2



Δz is the displacement of z at grid point 1 in coordinate system 2



ΔR is the displacement of x at grid point 2 in coordinate system 2



Ψ is the rotation of y at grid point 10 in coordinate system 2

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SSLS09/89.

15.9 Pinched Cylindrical Shell This test is a linear statics analysis of a cylindrical shell with grid point forces, F, pinching as shown. It provides the input data and results for benchmark test SSLS20/89 from Guide de validation des progiciels de calcul de structures.

Test Case Data and Information Input Files •

ssls20a.dat linear triangle thin shells



ssls20b.dat linear quadrilateral thin shells

Units SI

NX Nastran 8 Verification Manual

15-23

Chapter 15

Mechanical Structures — Linear Statics Analysis with Shell Elements

Material Properties •

E = 10.5 x 106 Pa



n = 0.3125

Finite Element Modeling Test 1 •

296 linear triangular thin shell (CTRIA3) elements



173 grid points

Test 2 •

140 linear quadrilateral thin shell (CQUAD4) elements



165 grid points

The meshes are shown in the following figure:

15-24

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

Boundary Conditions •

Free conditions To set free boundary conditions, use symmetry about XY, XZ, and YZ planes.



Grid point forces Fy = –25 N at point D

The boundary conditions are shown in the following figure:

Solution Type SOL 101 — Linear Statics

Results Type

Point

Bench Value

Test Number NX Nastran

Disp. Y (Grid point 3) n(m)

D

–113.9E-3

1

–114.4E–3

2

–113.3E–3

Disp. Y (Grid point 3)

Post Processing •

n(m) is the displacement of y at grid point 3 (quadrilateral).

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SSLS020/89.

15.10 Spherical Shell with a Hole This test is a linear statics analysis of a spherical shell with a hole with grid point forces. It provides the input data and results for benchmark test SSLS21/89 from Guide de validation des progiciels de calcul de structures.

NX Nastran 8 Verification Manual

15-25

Chapter 15

Mechanical Structures — Linear Statics Analysis with Shell Elements

Test Case Data and Information Input Files •

ssls21a.dat – linear quadrilateral thing shells



ssls21b.dat – linear triangle thin shells



ssls21c – parabolic quadrilateral thin shells

Units SI

Material Properties •

E = 6.285 x 107 Pa



n = 0.3

15-26

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

Finite Element Modeling Test 1 •

100 linear quadrilateral thin shell (CQUAD4) elements



121 grid points

Test 2 •

200 linear triangular thin shell (CTRIA3) elements



121 grid points

Test 3 •

100 parabolic quadrilateral thin shell (CQUAD8) elements



441 grid points

The mesh is shown in the following figure:

NX Nastran 8 Verification Manual

15-27

Chapter 15

Mechanical Structures — Linear Statics Analysis with Shell Elements

Boundary Conditions •

Free conditions To set free boundary conditions, use symmetry about XY and YZ planes.



Grid point forces F = 2 Newtons Due to the symmetric boundary conditions, only half of the load is applied.

The boundary conditions are shown in the following figure:

Solution Type SOL 101 — Linear Statics

Results Result

Point

Bench Value

Test Number

NX Nastran

u (m) grid point 111

A(R,0,0)

9.400E–2

1

102.0E–3

Grid point 111

2

102.1E–3

Grid point 421

3

100.9E–3

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SSLS021/89.

15.11 Bending Load on a Cylindrical Shell This test is a linear statics analysis of a cylindrical shell with bending and membrane effect. It provides the input data and results for benchmark test SSLS23/89 from Guide de validation des progiciels de calcul de structures.

15-28

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

Test Case Data and Information Input Files •

ssls23a.dat (Test 1, linear)



ssls23b.dat (Test 2, parabolic)

Units SI

Material Properties •

E = 2.1 x 1011 Pa



n = 0.3

NX Nastran 8 Verification Manual

15-29

Chapter 15

Mechanical Structures — Linear Statics Analysis with Shell Elements

Finite Element Modeling Test 1 •

60 linear quadrilateral thin shell (CQUAD4) elements



78 grid points

Test 2 •

60 parabolic quadrilateral thin shell (CQUAD8) elements



215 grid points

The mesh is shown in the following figure:

Boundary Conditions •

AB side: Clamped in local system coordinates.



AD and BC sides: Restrain Z translation, qx and qy.



DC side: Set bending moment CZ to 1000 Nm/m. Set in plane force to 0.6E6 N/m.



ABCD surface: Set internal pressure to 0.6E06 N/m**2.



AD and DC sides are restrained in the global coordinate system.

The boundary conditions are shown in the following figure:

Solution Type SOL 101 — Linear Statics

15-30

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

Results Use coordinate system 3 (the cylindrical coordinate system) to display the results. Results are post-processed using the Shell surface middle option. Result

Point

Bench Value Test Number

Grid point 35

E

60.00 MPa

Grid point 93

NX Nastran

1

60.70

2

59.60

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SSLS023/89.

15.12 Uniformly Distributed Load on a Simply-Supported Rectangular Plate This test is a linear statics analysis of a plate with pressure loading and simple supports. It provides the input data and results for benchmark test SSLS24/89 from Guide de validation des progiciels de calcul de structures.

Test Case Data and Information Input Files •

ssls24a.dat (Test 1, coarse mesh)



ssls24b.dat (Test 2, fine mesh)



ssls24c.dat (Test 3, very fine mesh)

NX Nastran 8 Verification Manual

15-31

Chapter 15

Mechanical Structures — Linear Statics Analysis with Shell Elements

Units SI

Material Properties •

E = 1.0 x 107 Pa



n = 0.3

Finite Element Modeling Test 1 — a/b = 1 •

100 linear quadrilateral thin shell (CQUAD4) elements



121 grid points

Test 2 — a/b = 2 •

200 linear quadrilateral thin shell (CQUAD4) elements



231 grid points

Test 3 — a/b = 5 •

500 linear quadrilateral thin shell (CQUAD4) elements



561 grid points

The mesh is shown in the following figure:

15-32

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

Boundary Conditions Restraints •

All edges: w = 0



One corner fixed

Loads •

Set pressure = 1 N/m**2 in the –Z direction

The boundary conditions are shown in the following figure:

Solution Type SOL 101 — Linear Statics

Results Result

a/b

Parameters

Bench Value

Test Number

NX Nastran

61z direction

1.000

1.000a

0.004440

1

0.004500

116z direction

2.000

2.000a

0.01110

2

0.01110

281z direction

5.000

5.000a

0.01417

3

0.01406

61x component top surface

1.000

1.000b

2874.

1

2867.

116x component top surface

2.000

2.000b

6102.

2

6034.

NX Nastran 8 Verification Manual

15-33

Chapter 15

Mechanical Structures — Linear Statics Analysis with Shell Elements

Result

a/b

Parameters

Bench Value

Test Number

NX Nastran

281x component top surface

5.000

5.000b

7476.

3

7331.

Where: q = distributed load b = dimension t = thickness E = elastic modules b values of reference from the Guide de Validation are incorrect. The correct values are extracted from Formulas for Stress and Strain (Roark/Young). Note Note that the shell top surface corresponds to the side of the plate with negative global Z coordinates.

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SSLS024/89.

15.13 Uniformly Distributed Load on a Simply-Supported Rhomboid Plate This test is a linear statics analysis (three-dimensional problem) of a plate with pressure and transverse bending. It provides the input data and results for benchmark test SSLS25/89 from Guide de validation des progiciels de calcul de structures.

15-34

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements



Thickness = 0.01 m



b = 1.0 m



a = 2.0 m

Test Case Data and Information Input Files •

ssls25a.dat (Test 1)



ssls25b.dat (Test 2)

Units SI

Material Properties •

E = 36.0 x 106 Pa



n = 0.3

NX Nastran 8 Verification Manual

15-35

Chapter 15

Mechanical Structures — Linear Statics Analysis with Shell Elements

Finite Element Modeling •

a/b = 2



Linear quadratic thin shell (CQUAD4) elements

Test 1 •

q = 30°

Test 2 •

q = 45°

The mesh is shown in the following figure:

Boundary Conditions •

All edges: w = 0, one corner fixed



Pressure = 1 N/m2 in the –Z direction

The boundary conditions are shown in the following figure:

Solution Type SOL 101 — Linear Statics

15-36

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

Results Parameter a

Test Case

Bench Value

NX Nastran

Test 1

z displacement

116z displacement

ssls25a

–3.277E–3 m

–2.963E–3 m

Y stress

116y stress

–5.700E3 N/m2

–5.831E3 N/m2

Test 2

z displacement

116z displacement

ssls25b

–3.000E-3 m

–2.720E–3 m

Y stress

116Y stress

–5.390E3 N/m2

–5.441E3 N/m2

b a

b

Where: q = distributed load b = dimension t = thickness E = elastic modulus Values of reference from the Guide de validation are incorrect. The correct values are extracted from Formulas for Stress and Strain (Roark/Young), table 26, case number 14a.

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SSLS025/89.

15.14 Shear Loading on a Plate This test is a linear statics analysis of a thin plate with torque and shear loading. It provides the input data and results for benchmark test SSLS27/89 from Guide de validation des progiciels de calcul de structures.

NX Nastran 8 Verification Manual

15-37

Chapter 15

Mechanical Structures — Linear Statics Analysis with Shell Elements

Test Case Data and Information Input Files •

ssls27a.dat (Test 1, Mindlin)



ssls27b.dat (Test 2, Kirchoff)



ssls27c.dat (Test 3, Mindlin)

Units SI

Material Properties •

E = 1.0 x 107 Pa



n = 0.25

Finite Element Modeling Test 1 — Mindlin •

6 linear quadrilateral thin shell (CQUAD4) elements



14 grid points

Test 2 — Kirchhoff •

6 linear quadrilateral thin shell (CQUAD4) elements



14 grid points

Test 3 — Mindlin •

48 linear quadrilateral thin shell (CQUAD4) elements



75 grid points

The meshes are shown in the following figure:

All tests are executed with mapped meshing

15-38

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

Boundary Conditions •

Clamp AD side



Point B: grid point force Fz = –1N



Point C: grid point force –Fz = 1N

The boundary conditions are shown in the following figure:

Solution Type SOL 101 — Linear Statics

Results at Location C Displacement at Grid point

Bench Value

Test Number

NX Nastran

14.00

3.537E–2

1

3.585E–2

14.00

3.537E–2

2

3.573E–2

75.00

3.537E–2

3

3.603E–2

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SSLS027/89.

NX Nastran 8 Verification Manual

15-39

Chapter

16 Mechanical Structures — Linear Statics Analysis with Solid Elements

16.1 Solid Cylinder in Pure Tension This test is a linear statics analysis of a solid cylinder with tension-compression. It provides the input data and results for benchmark test SSLV01/89 from Guide de validation des progiciels de calcul de structures.

NX Nastran 8 Verification Manual

16-1

Chapter 16

Mechanical Structures — Linear Statics Analysis with Solid Elements

Test Case Data and Information Input Files •

sslv01a.dat (Test 1)



sslv01b.dat (Test 2)



sslv01c.dat (Test 3)



sslv01d.dat (Test 4)



sslv01e.dat (Test 5)



sslv01f.dat (Test 6)

Units SI

Material Properties •

E = 2.0 x 1011 Pa



n = 0.30

16-2

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Solid Elements

Finite Element Modeling Test 1 •

155 parabolic tetrahedron (CTETRA) elements



342 grid points

Test 2 •

144 linear brick (CHEXA) elements & 48 linear solid wedge (CPENTA) elements



307 grid points

Test 3 (Results for this test will be provided in the NX Nastran 7 Verification Manual) •

48 linear quadrilateral axisymmetric solid elements



65 grid points

Test 4 (Results for this test will be provided in the NX Nastran 7 Verification Manual) •

96 linear triangular axisymmetric solid elements



65 grid points

Test 5 (Results for this test will be provided in the NX Nastran 7 Verification Manual) •

18 parabolic quadrilateral axisymmetric solid elements



95 grid points

Test 6 •

864 linear pyramid (CPYRAM) elements created by dividing each brick element in test 2 into 6 pyramid elements. 48 linear wedge (CPENTA) elements remain.

NX Nastran 8 Verification Manual

16-3

Chapter 16

Mechanical Structures — Linear Statics Analysis with Solid Elements

The meshes are shown in the following figure:

16-4

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Solid Elements

Boundary Conditions •

Uniaxial deformation of the cylinder section



Set uniformly distributed force –F/A on the free end in the Z direction



F/A = 100 MPa

The boundary conditions are shown in the following figure:

Solution Type SOL 101 — Linear Statics

Results linear statics * axisymmetric data will be provided in version 7 Test Number

NX Nastran

1

1.500E–3

A & C 279

2

1.500E–3

A&C 1

3

*

A&C 4

4

*

A&C 1

5

*

Point Grid Point

Displacement Bench Value

A&C 6

u (m)

1.500E–3

NX Nastran 8 Verification Manual

16-5

Chapter 16

Point Grid Point

Mechanical Structures — Linear Statics Analysis with Solid Elements

Displacement Bench Value

A & C 279

Test Number

NX Nastran

6

1.500E–3

1

1.500E–3

B

4

B

307

2

1.500E–3

B

53

3

*

B

3

4

*

B

39

5

*

B

307

6

1.500E–3

D

37

1

1.000E–3

D

189

2

1.000E–3

D

5

3

*

D

25

4

*

D

7

5

*

D

189

6

1.000E–3

E

41

1

0.500E–3

E

99

2

0.500E–3

E

9

3

*

E

29

4

*

E

13

5

*

E

99

6

0.500E–3

1

–0.150E–3

A & C 279

2

–0.150E–3

A&C 1

3

*

A&C 4

4

*

A&C 1

5

*

A & C 279

6

–0.1500E–3

1

–0.1500E–3

A&C 6

u (m)

u (m)

u (m)

w (m)

1.500E–3

1.000E-3

0.5000E-3

–0.1500E–3

D

37

D

189

2

–0.1500E–3

D

5

3

*

D

25

4

*

D

7

5

*

D

189

6

–0.1500E–3

E

41

1

–0.1500E–3

E

99

2

–0.1500E–3

E

9

3

*

E

29

4

*

16-6

w (m)

w (m)

NX Nastran 8 Verification Manual

–0.1500E-3

–0.1500E–3

Mechanical Structures — Linear Statics Analysis with Solid Elements

Point Grid Point

Displacement Bench Value

Test Number

NX Nastran

E

13

5

*

E

99

6

–0.1500E–3

Post Processing To view the results for Test 1 and Test 2, use coordinate system 2 (cylindrical). u is the radial displacement and w is the axial displacement.

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SSLV01/89.

16.2 Internal Pressure on a Thick-Walled Spherical Container This test is a linear statics analysis of a thick sphere with internal pressure. It provides the input data and results for benchmark test SSLV03/89 from Guide de validation des progiciels de calcul de structures.

Test Case Data and Information Input Files •

sslv03a.dat (Test 1)



sslv03b.dat (Test 2)



sslv03c.dat (Test 3)



sslv03d.dat (Test 4)



sslv03e.dat (Test 5)



sslv03f.dat (Test 6)

NX Nastran 8 Verification Manual

16-7

Chapter 16

Mechanical Structures — Linear Statics Analysis with Solid Elements

Units SI

Material Properties •

E = 2 x 105 Pa



n = 0.3

Finite Element Modeling Test 1 •

1600 linear brick (CHEXA) elements & linear solid wedge (CPENTA) elements



1898 grid points

Test 2 •

200 parabolic brick (CHEXA) elements & 50 solid wedge (CPENTA) elements



1256 grid points

Test 3 (Results for this test will be provided in the NX Nastran 7 Verification Manual) •

400 linear quadrilateral axisymmetric solid elements



451 grid points

Test 4 (Results for this test will be provided in the NX Nastran 7 Verification Manual) •

400 parabolic quadrilateral axisymmetric solid elements



1301 grid points

Test 5 •

Linear pyramid (CPYRAM) elements created by dividing each brick element in test 1 into 6 pyramid elements. Wedge (CPENTA) elements remain.

Test 6 •

16-8

Parabolic pyramid (CPYRAM) elements created by dividing each brick element in test 2 into 6 pyramid elements. Wedge (CPENTA) elements remain.

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Solid Elements

The meshes from these tests are shown in the following figure:

NX Nastran 8 Verification Manual

16-9

Chapter 16

Mechanical Structures — Linear Statics Analysis with Solid Elements

Boundary Conditions •

The equivalent of the center of the sphere being fixed is modeled via symmetric boundary conditions.



Uniform radial pressure = 100 MPa.

The boundary conditions are shown in the following figure:

Solution Type SOL 101 — Linear Statics

Results * axisymmetric data will be provided in version 7 Point

Grid Displacement Point Stress

Bench Value

Test Number

NX Nastran

r=1 m

1

–100.0

1

–90.15

1

2

–97.29

451

3

*

451

4

*

1

5

–90.84

1

6

-103.8

1

72.09

1

16-10

srr (MPa)

sq (MPa)

NX Nastran 8 Verification Manual

71.43

Mechanical Structures — Linear Statics Analysis with Solid Elements

Point

Test Number

NX Nastran

1

2

77.23

451

3

*

451

4

*

1

5

72.06

1

6

73.30

1

0.4000E–3

1

2

0.4000E–3

451

3

*

451

4

*

1

5

0.3991E–3

1

6

0.4006E–3

Grid Displacement Point Stress

1

u (m)

Bench Value

0.4000E–3

NX Nastran 8 Verification Manual

16-11

Chapter 16

Mechanical Structures — Linear Statics Analysis with Solid Elements

Point

Grid Displacement Point Stress

Bench Value

Test Number

NX Nastran

r=2 m

1826 srr (MPa)

0

1

–0.0280

2221

2

0.2240

411

3

*

411

4

*

1826

5

–0.2530

2221

6

–0.5259

1

21.18

2221

2

21.18

411

3

*

411

4

*

1826

5

21.40

2221

6

21.74

1

1.500E–4

2221

2

1.500E–4

411

3

*

411

4

*

1826

5

1.506E–4

2221

6

1.499E–4

1826 sq (MPa)

1826 u (m)

21.43

1.500E–4

All stress results are averaged. Use the spherical coordinate system for the stress results.

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SSLV03/89.

16.3 Internal Pressure on a Thick-Walled Infinite Cylinder This test is a linear statics analysis of a thick cylinder with internal pressure. It provides the input data and results for benchmark test SSLV04/89 from Guide de validation des progiciels de calcul de structures.

16-12

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Solid Elements

Test Case Data and Information Input Files •

sslv04a.dat (Test 1)



sslv04b.dat (Test 2)



sslv04c.dat (Test 3)



sslv04d.dat (Test 4)



sslv04e.dat (Test 5)



sslv04f.dat (Test 6)

Units SI

Material Properties •

E = 2 x 105 mPa



n = 0.3

Finite Element Modeling Test 1 •

400 linear brick (CHEXA) elements



902 grid points

Test 2 •

240 parabolic brick (CHEXA) elements



1873 grid points

NX Nastran 8 Verification Manual

16-13

Chapter 16

Mechanical Structures — Linear Statics Analysis with Solid Elements

Test 3 •

600 linear quadrilateral axisymmetric solid elements



656 grid points

Test 4 •

600 parabolic quadrilateral axisymmetric solid elements



1911 grid points

Test 5 •

Linear pyramid (CPYRAM) elements created by dividing each brick element in test 1 into 6 pyramid elements.

Test 6 •

Parabolic pyramid (CPYRAM) elements created by dividing each brick element in test 2 into 6 pyramid elements.

The brick meshes are shown in the following figure:

16-14

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Solid Elements

Boundary Conditions •

Unlimited cylinder



Internal pressure p = 60 MPa

The boundary conditions are shown in the following figure:

Solution Type SOL 101 — Linear Statics

Results All results are averaged. Test Case Grid Point

Displacement / Stress sr

Bench Value NX Nastran

sslv04a

411

sslv04b

977

–60.00

sslv04c

616

*

sslv04d

1831

*

sslv04e

411

–57.30

sslv04f

977

–60.74

sslv04a

411

sslv04b

977

102.0

sslv04c

616

*

sslv04d

1831

*

sslv04e

411

99.68

sslv04f

977

100.9

sslv04a

411

sslv04b

977

81.00

sslv04c

616

*

sslv04d

1831

*

sq

tmax

–60.00 (MPa)

100.0 (MPa)

80.00 (MPa)

–57.00

99.70

79.34

NX Nastran 8 Verification Manual

16-15

Mechanical Structures — Linear Statics Analysis with Solid Elements

Chapter 16

Test Case Grid Point

Displacement / Stress

Bench Value NX Nastran

sslv04e

411

80.82

sslv04f

977

80.82

sslv04a

411

sslv04b

977

59.00E–6

sslv04c

616

*

sslv04d

1831

*

sslv04e

411

58.85E–6

sslv04f

977

59.00E–6

sslv04a

451

ur

sr

59.00E–6 (m)

0 (MPa)

59.00E–6

–0.006500

sslv04b

–0.04480

sslv04c

*

sslv04d

*

sslv04e

–0.1563

sslv04f

–0.1900

sslv04a

sq

40.00 (MPa)

39.66

sslv04b

40.39

sslv04c

*

sslv04d

*

sslv04e

39.84

sslv04f

40.16

sslv04a

tmax

20.00 (MPa)

20.08

sslv04b

20.17

sslv04c

20.07

sslv04d

19.99

sslv04e

20.10

sslv04f

20.17

sslv04a

ur

40.00E–6 (m)

40.00E–6

sslv04b

40.00E–6

sslv04c

*

sslv04d

*

sslv04e

39.93E–6

sslv04f

40.00E–6

16-16

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Solid Elements

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SSLV04/89.

16.4 Prismatic Rod in Pure Bending This test is a linear statics analysis of a solid rod with bending. It provides the input data and results for benchmark test SSLV08/89 from Guide de validation des progiciels de calcul de structures.

Test Case Data and Information Input Files •

sslv08a.dat (Test 1)



sslv08b.dat (Test 2)



sslv08c.dat (Test 3)



sslv08d.dat (Test 4)



sslv08e.dat (Test 5)



sslv08f.dat (Test 6)

Units SI

NX Nastran 8 Verification Manual

16-17

Chapter 16

Mechanical Structures — Linear Statics Analysis with Solid Elements

Material Properties •

E = 2 x 105 MPa



n = 0.3

16-18

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Solid Elements

Finite Element Modeling Test 1 •

198 linear solid tetrahedral (CTETRA) elements



76 grid points

Test 2 •

198 parabolic solid tetrahedral (CTETRA) elements



409 grid points

Test 3 •

48 linear brick (CHEXA) elements



117 grid points

Test 4 — Mapped meshing •

48 parabolic brick (CHEXA) elements



381 grid points

Test 5 •

288 linear pyramid (CPYRAM) elements created by dividing each brick element in test 3 into 6 pyramid elements.

Test 6 •

288 parabolic pyramid (CPYRAM) elements created by dividing each brick element in test 4 into 6 pyramid elements.

The meshes from these tests are shown in the following figure:

NX Nastran 8 Verification Manual

16-19

Chapter 16

Mechanical Structures — Linear Statics Analysis with Solid Elements

Boundary Conditions •

Clamp Point B.



Other points of B section: Set Z-displacement to 0. NOTE: In these tests some grid points of section B are also restrained in the x direction about the x-axis at the free end of the rod.



Set moment Mx equal to (4/3)E+7 N.m

The boundary conditions are shown in the following figure:

Solution Type SOL 101 — Linear Statics

Results Test #

Point

Grid Point

1

F or G

5

Displacement Stress szz

Bench Value

NX Nastran

–10.00E6 (Pa)

–4.268E6

2

5

–10.03E6

3

75

–10.00E6

4

245

–9.995E6

5

75

–7.929E6

6

245

–9.992E6

1

A

26

uA

4.000E–4 (m)

2.964E–4

2

90

4.000E–4

3

77

4.000E–4

4

251

4.000E–4

16-20

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Solid Elements

Test #

Point

Grid Point

Displacement Stress

Bench Value

NX Nastran

5

77

3.443E–4

6

251

4.000E–4

1

H

19

wB

2.000E–4 (m)

2.000E–4

2

40

2.000E–4

3

76

2.000E–4

4

249

2.000E–4

5

76

1.721E–4

6

249

2.000E–4

1

F or G

5

vF = -vG

0.1500E-4 (m)

0.07450E–4

2

5

0.1508E–4

3

75

0.1500E–4

4

245

0.1503E–4

5

75

0.1005E–4

6

245

0.1503E–4

1

D or E

8

vD = -vE

-0.1500E-4 (m)

–6.262E–4

2

8

–0.1505E–4

3

73

–0.1500E–4

4

241

–0.1503E–4

5

73

–0.1005E–4

6

241

–0.1503E–4

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SSLV08/89.

16.5 Thick Plate Clamped at Edges This test is a linear statics analysis of a thick plate with pressure and transverse bending. It provides the input data and results for benchmark test SSLV09/89 from Guide de validation des progiciels de calcul de structures.

NX Nastran 8 Verification Manual

16-21

Chapter 16

Mechanical Structures — Linear Statics Analysis with Solid Elements

Test Case Data and Information Input Files •

sslv09a.dat (Test 1)



sslv09b.dat (Test 2)



sslv09c.dat (Test 3)

Units SI

Material Properties •

E = 2.1 x 1011 Pa



n = 0.3

16-22

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Solid Elements

Finite Element Modeling Test 1 •

25 parabolic linear brick (CHEXA) elements



228 grid points



l =10, 20, 50, 75, 100

Test 2 •

25 linear quadrilateral thin shell (CQUAD4) elements



36 grid points



l =10, 20, 50, 75, 100

Test 3 •

150 linear pyramid solid (CPYRAM) elements created by dividing each brick element in test 1 into 6 pyramid elements

Test 2 is done using CQUAD4 elements with the thicknesses specified in the physical property table. The meshes from these tests are shown in the following figure:

NX Nastran 8 Verification Manual

16-23

Chapter 16

Mechanical Structures — Linear Statics Analysis with Solid Elements

Boundary Conditions •

AB and AD sides: clamped



BC and DC sides: symmetry



Load case 1: Pressure p = 1E06 Pascals in –Z direction



Load case 2: Point C Grid Point force F = 1E06 N in –Z direction

The boundary conditions are shown in the following figure:

Solution Type SOL 101 Linear statics

16-24

NX Nastran 8 Verification Manual

Mechanical Structures — Linear Statics Analysis with Solid Elements

Results Test Case 1 (z displacement at location C) Part Name

Load Case

Grid Point

Analytical

Reference FEM

NX Nastran

10

Pressure

242

–0.6552E-4

–0.7620E–4

–0.7379E–4

Force

242

–0.2915E-3

–0.4300E–3

–0.3684E–3

Pressure

1242

–0.5242E-3

–0.5383E–3

–0.5266E–3

Force

1242

–0.2332E–2

–0.2535E–2

–0.2456E–2

Pressure

2242

–0.8190E–2

–0.8029E–2

–0.7935E–2

Force

2242

–0.3643E–1

–0.3574E–1

–0.3602E–1

Pressure

3242

–0.2764E–1

–0.2690E–1

–0.2666E-1

Force

3242

–0.1230

–0.1184

–0.1206

Pressure

4242

–0.6552E–1

–0.6339E–1

–0.6305E–1

Force

4242

–0.2915

–0.2779

–0.2849

20

50

75

100

Test Case 2 (z displacement at location C) Part Name

Load Case

Grid Point

Analytical

Reference FEM

NX Nastran

10

Pressure

1

–0.6552E–4

–0.7866E–4

–0.8131E–4

Force

1

–0.2915E–3

–0.4109E–3

–0.4050E–3

20

Pressure

36

–0.5242E–3

–0.5557E–3

–0.5775E–3

Force

36

–0.2332E–2

–0.2595E–2

–0.2668E–2

50

Pressure

36

–0.8190E–2

–0.8348E–2

–0.8669E–2

Force

36

–0.3643E–1

–0.3745E–1

–0.3878E–1

75

100

Pressure

36

–0.2764E–1

–0.2805E–1

–0.2906E–1

Force

36

–0.1230

–0.1253

–0.1292

Pressure

36

–0.6552E–1

–0.6639E–1

–0.6864E–1

Force

36

–0.2915

-0.2958

–0.3042

Test Case 3 (z displacement at location C) Part Name

Load Case

Grid Point

Analytical

Reference FEM

NX Nastran

10

Pressure

242

–0.6552E-4

–0.7620E–4

–0.7491E–4

Force

242

–0.2915E-3

–0.4300E–3

–0.3736E–3

Pressure

1242

–0.5242E-3

–0.5383E–3

–0.5342E–3

Force

1242

–0.2332E–2

–0.2535E–2

–0.2458E–2

Pressure

2242

–0.8190E–2

–0.8029E–2

–0.7875E–2

Force

2242

–0.3643E–1

–0.3574E–1

–0.3470E–1

Pressure

3242

–0.2764E–1

–0.2690E–1

–0.2605E-1

Force

3242

–0.1230

–0.1184

–0.1135

20

50

75

NX Nastran 8 Verification Manual

16-25

Chapter 16

Part Name 100

Mechanical Structures — Linear Statics Analysis with Solid Elements

Load Case

Grid Point

Analytical

Reference FEM

NX Nastran

Pressure

4242

–0.6552E–1

–0.6339E–1

–0.6068E–1

Force

4242

–0.2915

–0.2779

–0.2627

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SSLV09/89.

16-26

NX Nastran 8 Verification Manual

Chapter

17 Mechanical Structures — Normal Mode Dynamics Analysis

17.1 Lumped Mass-Spring System This test is a normal mode dynamics analysis of an elastic link with lumped mass. It provides the input data and results for benchmark test SDLD02/89 from Guide de validation des progiciels de calcul de structures.

Test Case Data and Information Input File sdld02.dat

Units SI

Material Properties Spring constant

NX Nastran 8 Verification Manual

17-1

Chapter 17

Mechanical Structures — Normal Mode Dynamics Analysis

Finite Element Modeling •

8 lumped mass (CONM2) elements



9 spring (CBUSH) elements



8 grid points

The mesh is shown in the following figure:

Boundary Conditions •

Clamp points A and B



Other points: n=0;q=0

The boundary conditions are shown in the following figure:

Solution Type SOL 103 — Normal Modes

17-2

NX Nastran 8 Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Results Frequency Results (Hz) Normal Mode

Bench Value

NX Nastran

1

5.527

5.527

2

10.89

10.89

3

15.92

15.92

4

20.46

20.46

5

24.38

24.38

6

27.57

27.57

7

29.91

29.91

8

31.35

31.35

Mode Shapes Results The mode shapes results are exact. The multiplication coefficient is 3.162. Normal Mode

Point

Bench Value

NX Nastran

1

P1

0.1612

0.05100

P2

0.3030

0.09580

P3

0.4082

0.1291

P4

0.4642

0.1468

P5

0.4642

0.1468

P6

0.4082

0.1291

P7

0.3030

0.09580

P8

0.1612

0.05100

P1

0.1612

0.05100

P2

–0.3030

–0.09580

P3

0.4082

0.1291

P4

–0.4642

–0.1468

P5

0.4642

0.1468

P6

–0.4082

–0.1291

P7

0.3030

0.09580

P8

–0.1612

–0.05100

8

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SDLD02/89, p. 178.

NX Nastran 8 Verification Manual

17-3

Chapter 17

Mechanical Structures — Normal Mode Dynamics Analysis

17.2 Short Beam on Simple Supports This test is a modal analysis of a straight short beam with simple supports both inline and offset. It provides the input data and results for benchmark test SDLL01/89 from Guide de validation des progiciels de calcul de structures.

Test Case Data and Information Input Files •

sdll01a.dat (Test 1)



sdll01b.dat (Test 2)

Units SI

Material Properties •

E = 2 x 101111 Pa



n = 0.3



r = 7800 kg/m3

17-4

NX Nastran 8 Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Finite Element Modeling •

10 linear beam (CBAR) elements



11 grid points

The meshes are shown in the following figure:

NX Nastran 8 Verification Manual

17-5

Chapter 17

Mechanical Structures — Normal Mode Dynamics Analysis

Boundary Conditions Problem 1 •

Point A (grid point 1): Constrain in all directions, except the Z rotation.



Point B (grid point 2): Constrain in the Y and Z translations and X and Y rotations.



All other grid points (3-11): Constrain in the Z translation and X and Y rotations.



No load case.

Problem 2 •

Point C (grid point 1): Constrain in all directions, except the Z rotation.



Point D (grid point 2): Constrain in the Y and Z translations and X and Y rotations.



All other grid points (3-11): Constrain in the Z translation and X and Y rotations.



No load case.

The boundary conditions are shown in the following figure:

Solution Type SOL 103 — Normal Modes

17-6

NX Nastran 8 Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Results Problem 1: Frequency results (Hz) Normal Mode

Bench Value

NX Nastran

Bending 1

431.6

437.2

Tension 1

1266.

1265.

Bending 2

1498.

1539.

Bending 3

2871.

2925.

Tension 2

3798.

3763.

Bending 4

4378.

4328.

Problem 2: Frequency results (Hz) Mode Number

Bench Value

NX Nastran

1

392.8

398.5

2

902.2

927.3

3

1592.

1666.

4

2629.

2815.

5

3126.

3266.

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SDLL01/89.

17.3 Axial Loading on a Rod This test is a modal analysis of a simply-supported beam with stress stiffening. It provides the input data and results for benchmark test SDLL05/89 from Guide de validation des progiciels de calcul de structures.

Test Case Data and Information Input Files •

sdll05a.dat



sdll05b.dat

NX Nastran 8 Verification Manual

17-7

Chapter 17

Mechanical Structures — Normal Mode Dynamics Analysis

Units SI

Material Properties •

E = 2 x 1011 Pa



r = 7800 kg/m3

Finite Element Modeling •

10 linear beam (CBAR) elements



11 grid points

The mesh is shown in the following figure:

17-8

NX Nastran 8 Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Boundary Conditions •

Points A: u = v = 0



Points B: v = 0



Load case 2 (grid point 2): Fx = 1E05N in –X direction



Stress stiffening on

The boundary conditions are shown in the following figure:

Solution Type SOL 103 — Normal Modes

Results Frequency results (Hz) Load Case

Normal Mode

Bench Value

NX Nastran

1

Bending 1

28.70

28.68

Bending 2

114.8

114.4

Bending 1

22.43

22.40

Bending 2

109.1

108.7

2

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SDLL05/89.

NX Nastran 8 Verification Manual

17-9

Chapter 17

Mechanical Structures — Normal Mode Dynamics Analysis

17.4 Cantilever Beam with a Variable Rectangular Section This test is a modal analysis of a straight cantilever beam with a variable section. It provides the input data and results for benchmark test SDLL09/89 from Guide de validation des progiciels de calcul de structures.

Test Case Data and Information Input Files •

sdll09a.dat



sdll09b.dat

Units SI

Material Properties •

E = 2 x 1011 Pa



r = 7800 kg/m3

17-10

NX Nastran 8 Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Finite Element Modeling •

10 tapered beam (CBEAM) elements



11 grid points

The mesh is shown in the following figure:

Boundary Conditions •

Clamp point A



No load case

The boundary conditions are shown in the following figure:

Solution Type SOL 103 — Normal Modes

Results Frequency results (Hz) b

Normal Mode

Bench Value

NX Nastran

4

1

54.18

54.24

2

171.9

172.4

NX Nastran 8 Verification Manual

17-11

Chapter 17

b

5

Mechanical Structures — Normal Mode Dynamics Analysis

Normal Mode

Bench Value

NX Nastran

3

384.4

384.9

4

697.2

695.4

5

1112.

1104.

1

56.55

56.59

2

175.8

176.3

3

389.0

389.5

4

702.4

700.6

5

1118.

1109.

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SDLL09/89.

17.5 Thin Circular Ring This test is a modal analysis of a thin curved beam. It provides the input data and results for benchmark test SDLL11/89 from Guide de validation des progiciels de calcul de structures.

Test Case Data and Information Input File sdll11.dat

Units SI

17-12

NX Nastran 8 Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Material Properties •

E = 7.2 x 1010 Pa



n = 0.3



r = 2700 kg/m3

Finite Element Modeling •

36 linear beam (CBAR) elements



36 grid points

The mesh is shown in the following figure:

NX Nastran 8 Verification Manual

17-13

Chapter 17

Mechanical Structures — Normal Mode Dynamics Analysis

Boundary Conditions •

Free conditions



Create one constraint set (kinematic DOF) to fully constrain the three grid points shown below (grid points 7, 21, 30).



No load case

The boundary conditions are shown in the following figure:

Solution Type SOL 103 — Normal Modes

Results Frequency results (Hz) Normal Mode

Bench Value

NX Nastran

ADS #

Plane mode 1,2,3

0

0

1.000, 2.000, 3.000

Plane mode 4,5

318.4

319.0

7.000, 8.000

Plane mode 6,7

900.5

900.9

11.00, 12.00

Plane mode 8,9

1727.

1724.

15.00, 16.00

Plane mode 10,11

2792.

2781.

17.00, 18.00

Transverse Mode 1,2,3

0

0

4.000, 5.000, 6.000

Transverse Mode 4,5

511.0

511.0

9.000, 10.00

Transverse Mode 6,7

1590.

1585.

13.00, 14.00

Transverse Mode 8,9

3184.

3159.

19.00, 20.00

17-14

NX Nastran 8 Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SDLL11/89.

17.6 Thin Circular Ring Clamped at Two Points This test is a modal analysis of a thin curved beam. It provides the input data and results for benchmark test SDLL12/89 from Guide de validation des progiciels de calcul de structures.

Test Case Data and Information Input File sdll12.dat

Units SI

Material Properties •

E = 7.2 x 1010 Pa



n = 0.3



r = 2700 kg/m3

NX Nastran 8 Verification Manual

17-15

Chapter 17

Mechanical Structures — Normal Mode Dynamics Analysis

Finite Element Modeling •

29 linear beam (CBAR) elements



29 grid points

The mesh is shown in the following figure:

17-16

NX Nastran 8 Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Boundary Conditions •

Points A and B: Clamped in local coordinate system



No load case

The boundary conditions are shown in the following figure:

Solution Type SOL 103 — Normal Modes

Results Frequency results (Hz) Normal Mode

Bench Value

NX Nastran

1

235.3

235.9

2

575.3

575.2

3

1106.

1103.

4

1406.

1399.

5

1751.

1743.

6

2557.

2536.

7

2802.

2723.

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SDLL12/89.

NX Nastran 8 Verification Manual

17-17

Chapter 17

Mechanical Structures — Normal Mode Dynamics Analysis

17.7 Vibration Modes of a Thin Pipe Elbow This test is a modal analysis of a straight cantilever beam, and a thin curved beam. It provides the input data and results for benchmark test SDLL14/89 from Guide de validation des progiciels de calcul de structures.

Test Case Data and Information Input Files •

sdll14a.dat (test 1, L=0)



sdll14b.dat (test 2, L=0.6)



sdll14c.dat (test 3, L=2.0)

Units SI

Material Properties •

E = 2.1 x 1011 Pa



n = 0.3



r = 7800 kg/m3

17-18

NX Nastran 8 Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Finite Element Modeling •

L = 0 or L = 0.6: 18 linear beam (CBAR) elements 19 grid points



L = 2: 28 linear beam (CBAR) elements 29 grid points

Two of the meshes are shown in the following figure:

NX Nastran 8 Verification Manual

17-19

Chapter 17

Mechanical Structures — Normal Mode Dynamics Analysis

Boundary Conditions •

Clamp points C and D



Point A: v = 0; w = 0



Point B: u = 0; w = 0

The boundary conditions are shown in the following figure:

Solution Type SOL 103 — Normal Modes

Results Frequency results (Hz) L

Normal Mode

Bench Value

NX Nastran

ADS#

0

Transverse 1

44.23

44.07

1.000

Plane 1

119.0

119.2

2.000

Transverse 2

125.0

125.4

3.000

Plane 2

227.0

225.0

4.000

Transverse 1

33.40

33.15

1.000

Plane 1

94.00

94.42

2.000

Transverse 2

100.0

98.50

3.000

Plane 2

180.0

183.7

4.000

Transverse 1

17.90

17.65

1.000

Plane 1

24.80

24.40

3.000

0.6000

2.000

17-20

NX Nastran 8 Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

L

Normal Mode

Bench Value

NX Nastran

ADS#

Transverse 2

25.30

24.94

2.000

Plane 2

27.00

26.67

4.000

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SDLL14/89.

17.8 Cantilever Beam with Eccentric Lumped Mass This test is a modal analysis of a straight cantilever beam and a lumped mass. It provides the input data and results for benchmark test SDLL15/89 from Guide de validation des progiciels de calcul de structures.

Test Case Data and Information Input Files •

sdll15a.dat



sdll15b.dat

Units SI

NX Nastran 8 Verification Manual

17-21

Chapter 17

Mechanical Structures — Normal Mode Dynamics Analysis

Material Properties •

E = 2.1 x 1011 Pa



r = 7800 kg/m3

Finite Element Modeling Test 1: •

10 linear beam (CBEAM) elements



1 rigid (RBAR) element from point B to point C



1 lumped mass (CONM2) element at point C



11 grid points

Test 2: •

10 linear beam (CBAR) elements



1 rigid (RBAR) element from point B to point C



1 lumped mass (CONM2) element at point C



11 grid points

The mesh both tests is is shown in the following figure:

Boundary Conditions •

Clamp point A

The boundary conditions are shown in the following figure:

17-22

NX Nastran 8 Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Solution Type SOL 103 normal mode dynamics — SVI

Results Frequency results (Hz) yc

Normal Mode

Bench Value

NX Nastran

0

Transverse 1,2

1.650

1.650

Transverse 3,4

16.07

15.88

Transverse 5,6

50.02

48.64

Tension 1

76.47

76.42

Torsion 1

80.47

80.68

Transverse 7,8

103.2

97.89

1

1.636

1.633

2

1.642

1.638

3

13.46

13.36

4

13.59

13.59

5

28.90

29.20

6

31.96

31.57

7

61.61

59.85

8

63.93

61.72

1

Mode shapes results yc

Normal Mode

Modal Displacement

Bench Value

NX Nastran

1

1

wc/wb

1.030

1.030

2

uc/vb

0.1480

–0.1480

3

uc/vb

2.882

–2.904

4

wc/wb

–0.9220

–0.9800



wc = z displacement at point C



wb = z displacement at point B



uc = x displacement at point C



vb = y displacement at point B

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SDLL15/89.

NX Nastran 8 Verification Manual

17-23

Chapter 17

Mechanical Structures — Normal Mode Dynamics Analysis

17.9 Thin Square Plate (Clamped or Free) This test is a normal mode dynamics analysis (three-dimensional problem) of a thin plate. It provides the input data and results for benchmark test SDLS01/89 from Guide de validation des progiciels de calcul de structures.

Test Case Data and Information Input Files •

sdls01a.dat



sdls01b.dat

Units SI

Material Properties •

E = 2.1 x 1011 Pa



n = 0.3



r = 7800 kg/m3

17-24

NX Nastran 8 Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Finite Element Modeling •

100 linear quadrilateral thin shell (CQUAD4) elements



121 grid points

The mesh is shown in the following figure:

Boundary Conditions •

Problem 1: AB side clamped



Problem 2: Free plate; 1 kinematic DOF set (grid points 1, 11, 111)

The boundary conditions are shown in the following figure:

Solution Type SOL 103 — Normal Modes

NX Nastran 8 Verification Manual

17-25

Chapter 17

Mechanical Structures — Normal Mode Dynamics Analysis

Results Problem 1: Frequency results (Hz) Normal Mode

Bench Value

NX Nastran

1

8.727

8.638

2

21.30

20.89

3

53.55

52.42

4

68.30

65.77

5

77.74

75.14

6

136.0

127.8

Problem 2: Frequency results (Hz) Normal Mode

Bench Value

NX Nastran

7

33.71

32.91

8

49.46

47.42

9

61.05

59.19

10,11

87.52

83.08

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SDLS01/89..

17.10 Simply-Supported Rectangular Plate This test is a normal mode dynamics analysis (three-dimensional problem) of a thin plate. It provides the input data and results for benchmark test SDLS03/89 from Guide de validation des progiciels de calcul de structures.

17-26

NX Nastran 8 Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Test Case Data and Information Input Files sdls03.dat

Units SI

Material Properties •

E = 2.1 x 1011 Pa



n = 0.3



r = 7800 kg/m3

Finite Element Modeling •

150 linear quadrilateral thin shell (CQUAD4) elements



176 grid points

The mesh is shown in the following figure:

NX Nastran 8 Verification Manual

17-27

Chapter 17

Mechanical Structures — Normal Mode Dynamics Analysis

Boundary Conditions •

Z-displacement = 0 on all sides of the plate



One DOF set



No load case

The boundary conditions are shown in the following figure:

Solution Type SOL 103 — Normal Mode Dynamics

Results Frequency results (Hz) Normal Mode

Bench Value

NX Nastran

1

35.63

35.27

2

68.51

67.29

3

109.6

108.5

4

123.3

120.8

5

142.5

138.2

6

197.3

188.2

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SDLS03/89.

17.11 Thin Ring Plate Clamped on a Hub This test is a normal mode dynamics analysis (three-dimensional problem) of a thin plate. It provides the input data and results for benchmark test SDLS04/89 from Guide de validation des progiciels de calcul de structures.

17-28

NX Nastran 8 Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis



Re = 0.1 m



Ri = 0.2 m



Thickness = .001 m

Test Case Data and Information Input Files sdls04.dat

Units SI

Material Properties •

E = 2 x 1011 Pa



n = 0.3



r = 7800 kg/m3

NX Nastran 8 Verification Manual

17-29

Chapter 17

Mechanical Structures — Normal Mode Dynamics Analysis

Finite Element Modeling •

400 linear quadrilateral thin shell (CQUAD4) elements



440 grid points

The mesh is shown in the following figure:

Boundary Conditions •

If r = Ri: Clamp in local coordinate system.



No load case.

The boundary conditions are shown in the following figure:

17-30

NX Nastran 8 Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Solution Type SOL 103 — Normal Modes

Results Frequency results (Hz) Normal Mode

Bench Value

NX Nastran

1

79.26

79.22

2,3

81.09

80.72

4,5

89.63

88.83

6,7

112.8

111.3

8,9

Not available

152.7

10,11

Not available

212.9

12,13

Not available

290.1

14,15

Not available

382.9

16,17

Not available

490.3

18

518.9

510.9

19,20

528.6

519.7

21,22

559.1

546.2

23

609.7

590.3

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SDLS04/89.

17.12 Vane of a Compressor - Clamped-free Thin Shell This test is a normal mode dynamics analysis (three-dimensional problem) of a cylindrical thin shell. It provides the input data and results for benchmark test SDLS05/89 from Guide de validation des progiciels de calcul de structures.

NX Nastran 8 Verification Manual

17-31

Chapter 17



Mechanical Structures — Normal Mode Dynamics Analysis

a = 0.5 rad



AD = L = 0.3048m



r = 2L = 0.6096m



thickness = 3.048 x 10–3 m

Test Case Data and Information Input Files •

sdls05a.dat (coarse mesh)



sdls05b.dat (fine mesh)

Units SI

Material Properties •

E = 2.0685 x 1011 Pa



n = 0.3



r = 7857.2 kg/m3

17-32

NX Nastran 8 Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Finite Element Modeling — Coarse Mesh •

100 linear quadrilateral thin shell (CQUAD4) elements



121 grid points

The coarse mesh is shown in the following figure:

Finite Element Modeling — Fine Mesh •

225 linear quadrilateral thin shell (CQUAD4) elements



256 grid points

The fine mesh is shown in the following figure:

NX Nastran 8 Verification Manual

17-33

Chapter 17

Mechanical Structures — Normal Mode Dynamics Analysis

Boundary Conditions •

AD side: Clamped in local coordinate system.

The boundary conditions are shown in the following figure:

Solution Type SOL 103 — Normal Modes

Results Frequency results (Hz) Normal Mode

Bench Value

NX Nastran coarse mesh

NX Nastran fine mesh

1

85.60

84.60

85.30

2

134.5

137.1

137.8

3

259.0

240.7

243.9

4

351.0

333.3

338.1

5

395.0

370.0

378.3

6

531.0

503.7

515.4

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SDLS05/89.

17.13 Bending of a Symmetric Truss This test is a normal mode dynamics analysis (plane problem) of a straight cantilever beam structure. It provides the input data and results for benchmark test SDLX01/89 from Guide de validation des progiciels de calcul de structures.

17-34

NX Nastran 8 Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis



h = 0.0048 m



b = 0.029 m



A = 1.392 x 10–4 m2



Iz = 2.673 x 10–10 m4

Test Case Data and Information Input File sdlx01.dat

Units SI

Material Properties •

E = 2.1 x 1011 Pa



n = 0.3



r = 7800 kg/m3

NX Nastran 8 Verification Manual

17-35

Chapter 17

Mechanical Structures — Normal Mode Dynamics Analysis

Finite Element Modeling •

24 linear beam (CBAR) elements



24 grid points

The mesh is shown in the following figure:

Boundary Conditions •

Clamp points A and B

The boundary conditions are shown in the following figure:

Solution Type SOL 103 — Normal Modes

17-36

NX Nastran 8 Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Results Frequency results (Hz) Normal Mode

Bench Value

NX Nastran

1

8.800

8.769

2

29.40

29.34

3

43.80

43.82

4

56.30

56.25

5

96.20

95.43

6

102.6

102.5

7

147.1

146.2

8

174.8

173.1

9

178.8

177.4

10

206.0

202.9

11

266.4

262.4

12

320.0

309.7

13

335.0

321.9

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SDLX01/89.

17.14 Hovgaard’s Problem — Pipes with Flexible Elbows This test is a normal mode dynamics analysis (three-dimensional problem) of a straight cantilever beam structure. It provides the input data and results for benchmark test SDLX02/89 from Guide de validation des progiciels de calcul de structures.

NX Nastran 8 Verification Manual

17-37

Chapter 17

Mechanical Structures — Normal Mode Dynamics Analysis



A = 0.3439 x 10E–2 m2



R = 0.922 m



e = 0.00612 m



Re = 0.0925 m



Ri = 0.08638 m



Iy = Iz = 0.1377x10–4 m4 (straight elements)



Iy = Iz = 0.5887x10–5 m4 (curved elements)

Test Case Data and Information Input Files sdlx02.dat

Units SI

Material Properties •

E = 1.658 x 1011 Pa



n = 0.3



r = 13404.106 kg/m3

17-38

NX Nastran 8 Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Finite Element Modeling •

25 linear beam (CBAR) elements



26 grid points

The mesh is shown in the following figure:

Boundary Conditions •

Clamp points A and B

The boundary conditions are shown in the following figure:

NX Nastran 8 Verification Manual

17-39

Chapter 17

Mechanical Structures — Normal Mode Dynamics Analysis

Solution Type SOL 103 — Normal Modes

Results Frequency results (Hz) Normal Mode

Bench Value

NX Nastran

1

10.18

10.39

2

19.54

19.85

3

25.47

25.32

4

48.09

47.74

5

52.86

51.78

6

75.94

83.00

7

80.11

85.12

8

122.3

125.8

9

123.2

127.7

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SDLX02/89.

17.15 Rectangular Plates This test is a normal mode dynamics analysis (three dimensional problem) of a thin plate with rigid body modes. It provides the input data and results for benchmark test SDLX03/89 from Guide de validation des progiciels de calcul de structures.

17-40

NX Nastran 8 Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Test Case Data and Information Input Files sdlx03.dat

Units SI

Material Properties •

E = 2.1 x 1011 Pa



n = 0.3



r = 7800 kg / m3

Finite Element Modeling •

300 linear quadrilateral thin shell (CQUAD4) elements



320 grid points

The mesh is shown in the following figure:

NX Nastran 8 Verification Manual

17-41

Chapter 17

Mechanical Structures — Normal Mode Dynamics Analysis

Boundary Conditions •

Free plate



One DOF set

The boundary conditions are shown in the following figure:

Solution Type SOL 103 — Normal Mode Dynamics

Results Frequency results (Hz) Normal Mode

Bench Value

NX Nastran

1

584.0

577.0

2

826.0

813.0

3

855.0

844.0

4

911.0

895.0

5

1113.

1062.

6

1136.

1118.

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SDLX03/89.

17-42

NX Nastran 8 Verification Manual

Chapter

18 Mechanical Structures — Normal Mode Dynamics Analysis and Model Response

18.1 Transient Response of a Spring-Mass System with Acceleration Loading This test is an undamped transient response by modal superposition. It provides the input data and results for benchmark test SDLD04/89 from Guide de validation des progiciels de calcul de structures.

Where: •

m = 1 kg



k = 1000 N/m

Test Case Data and Information Input Files sdld04.dat

Units SI

NX Nastran 8 Verification Manual

18-1

Chapter 18

Mechanical Structures — Normal Mode Dynamics Analysis and Model Response

Material Properties Spring constant.

Finite Element Modeling •

3 lumped mass (CONM) elements



3 translational spring (CELAS) elements

The mesh is shown in the following figure:

Boundary Conditions •

Points A: Clamped (u = v = 0 : q - 0)



Points B, C and D: v = 0 ; = 0



Point A: Set acceleration: u(t) ˝ = 2E5 * (t2) ; (0 < t < 0.1 s)



Initial condition: u(0) = 0 ; u(0) = 0 at every point

The mesh and the boundary conditions are shown in the following figure:

Solution Type SOL 112 — Modal Transient Response

Results The mode shapes results are exact. Frequency results (Hz) Normal Mode

Bench Value

NX Nastran

1

2.239

2.239

18-2

NX Nastran 8 Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis and Model Response

Normal Mode

Bench Value

NX Nastran

2

6.275

6.275

3

9.069

9.069

Mode shapes results Normal Mode

Point

Bench Value

NX Nastran

1

B

0.4450

0.4450

C

0.8019

0.8019

D

1.000

1.000

B

1.000

1.000

C

0.4450

0.4450

D

–0.8019

–0.8019

B

–0.8019

–0.8019

C

1.000

1.000

D

–0.4450

–0.4450

2

Transient response (Point D: X-displacement in meters) Time (sec)

Bench Value

NX Nastran

0.02000

–0.002700

–0.002670

0.04000

–0.04260

–0.04270

0.05000

–0.1041

–0.1041

0.06000

–0.2158

–0.2160

0.08000

–0.6813

–0.6818

0.1000

–1.658

–1.659

NX Nastran 8 Verification Manual

18-3

Chapter 18

Mechanical Structures — Normal Mode Dynamics Analysis and Model Response

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SDLD04/89.

18.2 Transient Response of a Clamped-free Post This test is a transient response of a straight cantilever beam with acceleration and force loadings, and modal damping. It provides the input data and results for benchmark test SDLL06/89 from "Guide de validation des progiciels de calcul de structures."

18-4

NX Nastran 8 Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis and Model Response

Test Case Data and Information Input Files sdll06.dat

Units SI

Material Properties •

E = 4 x 1010 Pa



Iz = 3.285 x 10–1 m4



r=0

Finite Element Modeling •

8 linear beam (CBAR) elements



9 grid points

The mesh is shown in the following figure:

NX Nastran 8 Verification Manual

18-5

Chapter 18

Mechanical Structures — Normal Mode Dynamics Analysis and Model Response

Boundary Conditions To apply an acceleration üA(t) at point A, we can do the following: •

Points A: Clamped (u = v = 0 : q - 0)



Point B: Set nodal force Fx(t) equal to mB * üA(t) in the -X direction Fx(t) = –m * üA(t)



Initial conditions: u(0) = 0 ; u (0) = 0 at every point

The mesh and the boundary conditions are shown in the following figure:

18-6

NX Nastran 8 Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis and Model Response

Solution Type SOL 109 — Direct Transient Response

Results uB displacement (mm) Time (s)

Bench Value

NX Nastran

0.01000

–0.06500

–0.06570

0.02000

–0.5130

–0.5152

0.03000

–1.679

–1.682

0.04000

–3.457

–3.464

0.05000

–5.316

–5.333

0.06000

–6.764

–6.804

0.07000

–7.609

–7.682

0.08000

–7.774

–7.891

0.09000

–7.244

–7.413

0.1000

–6.068

–6.289

0.1200

–2.242

–2.542

0.1400

2.367

2.070

0.1600

6.149

5.977

0.1800

7.783

7.847

0.2000

6.698

7.042

The problem with damping is not computed.

NX Nastran 8 Verification Manual

18-7

Chapter 18

Mechanical Structures — Normal Mode Dynamics Analysis and Model Response

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. SDLL06/89.

18-8

NX Nastran 8 Verification Manual

Chapter

19 Stationary Thermal Tests — Heat Transfer Analysis

19.1 Hollow Cylinder - Fixed Temperatures This test is a steady-state heat transfer analysis of a 2D axisymmetric cylinder with fixed temperatures. It provides the input data and results for benchmark test TPLA01/89 from "Guide de validation des progiciels de calcul de structures."



Re = 0.30 m



Ri = 0.35 m

Test Case Data and Information Input Files htpla01.dat

Units SI

NX Nastran 8 Verification Manual

19-1

Chapter 19

Stationary Thermal Tests — Heat Transfer Analysis

Material Properties •

l = 1 W/m °C

Finite Element Modeling •

10 linear axisymmetric solid (CTRIAX6) elements

The mesh is shown in the following figure:

Boundary Conditions •

One temperature set: – Internal temperature Ti = 100 °C – External temperature Te = 20 °C

Solution Type SOL 153 — Steady State Heat Transfer

Results Temperature results Radius (m)

Bench Value (°C)

NX Nastran (°C)

0.3000

100.0

100.0

0.3100

82.98

82.98

0.3200

66.51

66.51

0.3300

50.54

50.54

0.3400

35.04

35.04

0.3500

20.00

20.00

Radius (m)

Bench Value (W/m2)

NX Nastran (W/m2)

0.3000

1730.

1702.

0.3100

1674.

1666.

0.3200

1622.

1614.

Flux results

19-2

NX Nastran 8 Verification Manual

Stationary Thermal Tests — Heat Transfer Analysis

Radius (m)

Bench Value (W/m2)

NX Nastran (W/m2)

0.3300

1573.

1565.

0.3400

1526.

1519.

0.3500

1483.

1505.

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. TPLA01/89.

19.2 Hollow Cylinder - Convection This test is a steady-state heat transfer analysis of a 2D axisymmetric cylinder with convection. It provides the input data and results for benchmark test TPLA03/89 from "Guide de validation des progiciels de calcul de structures."



Re = 0.300 m



Ri = 0.391 m

Test Case Data and Information Input Files htpla03.dat

Units SI

Material Properties •

l = 40.0 W/m °C

NX Nastran 8 Verification Manual

19-3

Chapter 19

Stationary Thermal Tests — Heat Transfer Analysis

Finite Element Modeling •

20 linear axisymmetric solid (CTRIAX6) elements

The mesh is shown in the following figure:

Boundary Conditions •

Convection on internal surface: hi = 150.0 W/m2 / °C Ti = 500 °C



Convection on external surface: he = 142.0 W/m2 / °C Ti = 20 °C

Solution Type SOL 153 — Steady State Heat Transfer

Results Temperature / Flux

Bench Value

NX Nastran

Ti (°C)

272.3

272.5

Te (°C)

205.1

204.6

i (W/m2)

3.416E4

3.378E4

e (W/m2)

2.628E4

2.642E4

f/l=f*2*π*R So: f / l= 34173.82 * 2 * π * 0.300 = 64416.13 W/m

19-4

NX Nastran 8 Verification Manual

Stationary Thermal Tests — Heat Transfer Analysis

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. TPLA03/89.

19.3 Cylindrical Rod - Flux Density This test is a steady-state heat transfer analysis of a 2D axisymmetric rod with fixed temperatures and flux density. It provides the input data and results for benchmark test TPLA05/89 from "Guide de validation des progiciels de calcul de structures."

Test Case Data and Information Input Files htpla05.dat

Units SI

Material Properties •

l = 33.33 W/m °C

Finite Element Modeling •

20 linear axisymmetric solid (CTRIAX6) elements



42 grid points

NX Nastran 8 Verification Manual

19-5

Chapter 19

Stationary Thermal Tests — Heat Transfer Analysis

The meshes are shown in the following figure:

Boundary Conditions •

z=0 Set temperature to 0 °C



z=1 Set temperature to 500 °C



Cylindrical surface Set flux

to –200 W/m2

The boundary conditions are shown in the following figure:

19-6

NX Nastran 8 Verification Manual

Stationary Thermal Tests — Heat Transfer Analysis

Solution Type SOL 153 — Steady State Heat transfer

Results Temperature results (°C) Grid Point #

z (m)

Bench value

NX Nastran

Grid point 3

0

0

0

Grid point 41

0.1000

-4.000

-4.020

Grid point 39

0.2000

4.000

3.980

Grid point 37

0.3000

24.00

23.97

Grid point 35

0.4000

56.00

55.97

Grid point 33

0.5000

100.0

99.97

Grid point 31

0.6000

156.0

156.0

Grid point 29

0.7000

224.0

224.0

Grid point 27

0.8000

304.0

304.0

Grid point 25

0.9000

396.0

396.0

Grid point 4

1.000

500

500.0

Results are post-processed on the internal surface. NX Nastran does not make the approximation, T = cte when r is fixed.

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. TPLA05/89.

19.4 Hollow Cylinder with Two Materials - Convection This test is a steady-state heat transfer analysis of a 2D axisymmetric cylinder with two materials and convection. It provides the input data and results for benchmark test TPLA08/89 from "Guide de validation des progiciels de calcul de structures."

NX Nastran 8 Verification Manual

19-7

Chapter 19



Ri = 0.30 m



Rm = 0.35 m



Re = 0.37 m

Stationary Thermal Tests — Heat Transfer Analysis

Test Case Data and Information Input Files htpla08.dat

Units SI

Material Properties •

Material 1: l1 = 40.0 W/m °C



Material 2: l2 = 20.0 W/m °C

Finite Element Modeling •

14 linear axisymmetric solid (CTRIAX6) elements



16 grid points

19-8

NX Nastran 8 Verification Manual

Stationary Thermal Tests — Heat Transfer Analysis

The mesh is shown in the following figure:

Boundary Conditions •

Convection on internal surface hi = 150.0 W/m2 °C Ti = 70 °C



Convection on external surface he = 200.0 W/m2 °C Te = –15 °C

Solution Type SOL 153 — Steady State Heat Transfer

Results Grid point #

Temperature Flux

Bench Value

NX Nastran

Grid point 9

Ti (°C)

25.42

25.45

Grid point 14

Tm (°C)

17.69

17.68

Grid point 16

Te (°C)

12.11

12.09

Grid point 9

Grid point 9 (W/m2)

6687.

6609.

Grid point 14

Grid point 14 (W/m**2)

5732.

5768.

Grid point 16

Grid point 16 e (W/m2)

5422.

5497.

i

m

f/l = f * 2 * π * R So: f/l= 5733.33 * 2 * π * 0.35 = 12608.25 W/m

NX Nastran 8 Verification Manual

19-9

Chapter 19

Stationary Thermal Tests — Heat Transfer Analysis

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. TPLA08/89.

19.5 Wall-Convection This test is a steady-state heat transfer analysis of a 1D wall with fixed convection. It provides the input data and results for benchmark test TPLL03/89 from "Guide de validation des progiciels de calcul de structures."

Test Case Data and Information Input Files htpl03.dat

Units SI

Material Properties •

l = 1.0 W/m °C

Finite Element Modeling •

1 linear quadrilateral thin shell (CQUAD4) element



4 grid points

The thin shell element thickness is set to 1 m. The mesh is shown in the following figure:

19-10

NX Nastran 8 Verification Manual

Stationary Thermal Tests — Heat Transfer Analysis

Boundary Conditions •

Convection on internal surface hA = 20.0 W/m2 °C TA = –20.0 °C



Convection on external surface hB = 10.0 W/m2 °C TB = 500.0 °C



Convection coefficient is defined as energy / (length * time * temperature) in the current system of units. The boundary conditions are shown in the following figure:

Solution Type SOL 153 — Steady State Heat Transfer

NX Nastran 8 Verification Manual

19-11

Chapter 19

Stationary Thermal Tests — Heat Transfer Analysis

Results Temperature results (°C) NX Nastran

Grid point #

Temperature/Flux Bench Value

Grid point 2

TA (°C)

21.71

21.71

Grid point 4

TB (°C)

416.6

416.6

Grid point 1

(W/m2)

834.2

834.3

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. TPLL03/89.

19.6 Wall-Fixed Temperatures This test is a steady-state heat transfer analysis of a 1D wall with fixed temperatures. It provides the input data and results for benchmark test TPLL01/89 from "Guide de validation des progiciels de calcul de structures."

Test Case Data and Information The mesh is shown in the following figure:

19-12

NX Nastran 8 Verification Manual

Stationary Thermal Tests — Heat Transfer Analysis

Input Files htpl01.dat

Units SI

Material Properties •

l = 0.75 W/m °C

Finite Element Modeling •

5 linear beam (CBAR) elements



6 grid points

Boundary Conditions •

Internal temperature Ti = 100 °C



External temperature Te = 20 °C

Solution Type SOL 153 — Steady State Heat Transfer

Results Temperature results (°C) Grid point #

Length: x (m)

Bench Value

NX Nastran

Grid point 1

0

100.0

100.0

Grid point 3

0.01000

84.00

84.00

Grid point 4

0.02000

68.00

68.00

Grid point 5

0.03000

52.00

52.00

Grid point 6

0.04000

36.00

36.00

Grid point 2

0.05000

20.00

20.00

The flux

calculated with NX Nastran is exact:

= 1200 Ω / µ2

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. TPLL01/89.

NX Nastran 8 Verification Manual

19-13

Chapter 19

Stationary Thermal Tests — Heat Transfer Analysis

19.7 L-Plate This test is a steady-state heat transfer analysis of a 2D L-plate with fixed temperatures. It provides the input data and results for benchmark test TPLP01/89 from "Guide de validation des progiciels de calcul de structures."

Test Case Data and Information Input Files htpp01a.dat - linear quadrilateral thin shell elements htpp01b.dat - parabolic quadrilateral thin shell elements

Units SI

Material Properties •

l = 1.0 W/m °C

Finite Element Modeling •

Test 1 – 12 linear quadrilateral thin shell (CQUAD4) elements



Test 2 – 12 parabolic quadrilateral thin shell (CQUAD8) elements

The mesh is shown in the following figure:

19-14

NX Nastran 8 Verification Manual

Stationary Thermal Tests — Heat Transfer Analysis

Boundary Conditions •

AF side Set temperature to 10 °C



DE side Set temperature to 0 °C

Solution Type SOL153 — Steady State Heat Transfer

Results Temperature Results (°C) Node

Bench Value

NX Nastran CQUAD4

NX Nastran CQUAD8

8

7.869

7.924

7.882

NX Nastran 8 Verification Manual

19-15

Chapter 19

Stationary Thermal Tests — Heat Transfer Analysis

Node

Bench Value

NX Nastran CQUAD4

NX Nastran CQUAD8

9

5.495

5.613

5.519

10

2.816

2.885

2.834

19

8.018

8.043

8.015

18

5.680

5.821

5.665

20

2.881

2.963

2.877

17

8.514

8.425

8.518

6

6.667

6.667

6.667

16

2.972

3.148

2.962

21

9.001

8.992

9.107

15

8.640

8.356

8.668

14

9.316

9.189

9.282

5

9.009

8.773

8.961

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No.TPLP01/89.

19.8 Orthotropic Square This test is a steady-state heat transfer analysis of a square plate with orthotropic conduction and convection. It provides the input data and results for benchmark test TPLP02/89 from "Guide de validation des progiciels de calcul de structures."

Test Case Data and Information Input Files htpp02.dat

Units SI

19-16

NX Nastran 8 Verification Manual

Stationary Thermal Tests — Heat Transfer Analysis

Material Properties •

lx = 1.00 W/m °C



lx =.75 W/m °C

Finite Element Modeling •

100 linear quadrilateral thin shell (CQUAD4) elements



121 grid points

The thin shell element thickness is set to 1 m. The mesh is shown in the following figure:

Boundary Conditions •

Flux density

y

= 60 W/m2 for face y = –0.1. (Entry)



Flux density

y

= –60 W/m2 for face y = 0.1. (Exit)



Convection on the faces X = –0.1 and x = 0.1: – h = 15.0 W/m2 °C



Linear variation of the external temperatures: – Te = 30 – 80y on the face x = –0.1 – Te = 15 – 80y on the face x = 0.1



Convection coefficient is defined as: – Energy / (length * time * temperature)



Flux density is defined as: – Energy / (length * time) in the current system of units

The boundary conditions are shown in the following figure:

NX Nastran 8 Verification Manual

19-17

Chapter 19

Stationary Thermal Tests — Heat Transfer Analysis

Solution Type SOL 153 — Steady State Heat Transfer

Results Temperature Results Point

Bench Value (°C)

NX Nastran (°C)

0

22.50

22.50

A

35.00

34.80

B

26.00

25.80

C

10.00

10.20

D

19.00

19.20

E

30.50

30.50

F

18.00

18.00

G

14.50

14.50

H

27.00

27.00

Grid Point

Bench Value

NX Nastran

61 X

45.00

45.00

61 Y

60.00

59.55

Flux Results (W/m2)

19-18

NX Nastran 8 Verification Manual

Stationary Thermal Tests — Heat Transfer Analysis

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No.TPLP02/89.

19.9 Hollow Sphere - Fixed Temperatures, Convection This test is a steady-state heat transfer analysis of a 3D sphere with fixed temperatures and convection. It provides the input data and results for benchmark test TPLV02/89 from "Guide de validation des progiciels de calcul de structures."



Ri = 0.30 m



Re = 0.35 m

Test Case Data and Information Input Files htpv02.dat (CHEXA and CPENTA) htpv02p.dat (CPYRAM and CPENTA)

Units SI

Material Properties •

l = 1 W/m °C

Finite Element Modeling Test 1: Brick and wedge element test •

500 linear brick (CHEXA) and linear wedge (CPENTA) elements



766 grid points

NX Nastran 8 Verification Manual

19-19

Chapter 19

Stationary Thermal Tests — Heat Transfer Analysis

The test is executed on 1/8 mapped meshed sphere. The mesh is shown in the following figure:

Test 2: Pyramid and wedge element test •

Linear pyramid (CPYRAM) elements created by dividing each brick element in test 1 into 6 pyramid elements. Linear wedge (CPENTA) elements remain.

Boundary Conditions •

Convection on internal surface hi = 30 W/m2 °C Ti = 100 °C



Set external surface temperature Te to 20 °C

The load sets are shown in the following figure:

19-20

NX Nastran 8 Verification Manual

Stationary Thermal Tests — Heat Transfer Analysis

Solution Type SOL 153 — Steady State Heat Transfer

Results Temperature results (°C) Test

Radius r (m)

Bench Value

NX Nastran

Test 1

0.3000

65.00

64.88

Test 2

0.3000

65.00

64.86

Test 1

0.3100

54.84

54.75

Test 2

0.3100

54.84

54.72

Test 1

0.3200

45.31

45.25

Test 2

0.3200

45.31

45.23

Test 1

0.3300

36.36

36.33

Test 2

0.3300

36.36

36.30

Test 1

0.3400

27.94

27.92

Test 2

0.3400

27.94

27.91

Test 1

0.3500

20.00

20.00

Test 2

0.3500

20.00

20.00

Flux results (W/m 2): (X-direction) Test

Radius r (m)

Bench Value

NX Nastran

Test 1

0.3000

1050.

1013.

Test 2

0.3000

1050.

1013.

Test 1

0.3100

983.4

981.4

Test 2

0.3100

983.4

981.6

Test 1

0.3200

922.9

921.2

Test 2

0.3200

922.9

921.3

Test 1

0.3300

867.5

866.3

NX Nastran 8 Verification Manual

19-21

Chapter 19

Stationary Thermal Tests — Heat Transfer Analysis

Test

Radius r (m)

Bench Value

NX Nastran

Test 2

0.3300

867.5

866.3

Test 1

0.3400

817.5

816.3

Test 2

0.3400

817.5

816.1

Test 1

0.3500

771.4

792.4

Test 2

0.3500

771.4

792.1

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No.TPLV02/89.

19.10 Hollow Sphere with Two Materials - Convection This test is a steady-state heat transfer analysis of a 3D sphere with two materials and convection. It provides the input data and results for benchmark test TPLV04/89 from "Guide de validation des progiciels de calcul de structures."



Ri = 0.30 m



Rm = 0.35 m



Re = 0.37 m

Test Case Data and Information Input Files htpv04a.dat (CHEXA & CPENTA) elements htpv04b.dat (CTETRA) elements htpv04c.dat (CTRIAX6) elements htpv04p.dat (CPYRAM & CPENTA) elements

19-22

NX Nastran 8 Verification Manual

Stationary Thermal Tests — Heat Transfer Analysis

Units SI

Material Properties •

Material 1: l1 = 40.0 W/m °C



Material 2: l2 = 20.0 W/m °C

Finite Element Modeling •

Test 1 - 700 solid linear brick (CHEXA) & solid linear wedge (CPENTA) elements



Test 2 - 2192 solid parabolic tetrahedron (CTETRA) elements



Test 3 - 8 axisymmetric parabolic elements (Results for this test will be provided in the NX Nastran 7 Verification Manual)



Test 4- Linear pyramid (CPYRAM) elements created by dividing each brick element in test 1 into 6 pyramid elements. Linear wedge (CPENTA) elements remain.

The test is executed on a 1/8 meshed sphere

NX Nastran 8 Verification Manual

19-23

Chapter 19

Stationary Thermal Tests — Heat Transfer Analysis

The meshes are shown in the following figure:

Boundary Conditions •

Convection on internal surface: hi = 150.0 W/m2 °C Ti = 70 °C



Convection on external surface: he = 200.0 W/m2 °C Te = –9 °C

19-24

NX Nastran 8 Verification Manual

Stationary Thermal Tests — Heat Transfer Analysis

The boundary conditions are shown in the following figure:

Solution Type SOL 153 — Steady State Heat Transfer

Results Temperature Results * axisymmetric data will be provided in version 7 TemperatureBench Flux (°C) Value

CHEXA & CPENTA

CTETRA

Axisymmetric

CPYRAM & CPENTA

Ti

25.06

N1 25.02

N19 25.06

*

N1 23.66

Tm

17.84

N556 17.84

N9 17.84

*

N556 16.26

Te

13.16

N778 13.18

N5 13.15

*

N778 13.85

6741.

N1 6487.

N19 5865.

*

N1 6683.

(W/m2) 4952.

N556 4931.

N9 4765.

*

N556 5080.

4431.

N778 4531.

N5 4551.

*

N778 4669.

i

(W/m2)

m e

(W/m2)

f = f * 4 * π * R2 So: f = 4931.20 * 4 * π * 0.352 = 7590.00 W Flux is in the x direction

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No.TPLV04/89.

NX Nastran 8 Verification Manual

19-25

Chapter

20 Thermo-mechanical Tests — Linear Statics Analysis

20.1 Orthotropic Cube This test is a steady-state heat transfer analysis of a 3D cube with convection and flux density. It provides the input data and results for benchmark test TPLV07/89 from "Guide de validation des progiciels de calcul de structures."

Test Case Data and Information Input Files htpv07.dat (CHEXA) htpv07p.dat (CPYRAM)

Units SI

NX Nastran 8 Verification Manual

20-1

Chapter 20

Thermo-mechanical Tests — Linear Statics Analysis

Material Properties •

lx = 1.00 W/m °C



ly = 0.75 W/m °C



lz = 0.50 W/m °C

Finite Element Modeling Test 1: Brick element test •

512 linear brick (CHEXA) elements



729 grid points

The mesh is shown in the following figure:

Test 2: Pyramid element test •

3072 linear pyramid (CPYRAM) elements created by dividing each brick element in test 1 into 6 pyramid elements.

Boundary Conditions •

Flux density

y = 60 W/m2 for face y = –0.1 (Entry)



Flux density

y = –60 W/m2 for face y = 0.1 (Exit)



Flux density

z = 30 W/m2 for face z = –0.1 (Entry)



Flux density

z = –30 W/m2 for face z = 0.1 (Exit)



Convection on the faces X = –0.1 and x = 0.1: –h = 15.0 W/m2 °C



Linear variation of the external temperatures: –Te = 30 – 80y – 60z on the face x = –0.1 –Te = 15 – 80y – 60z on the face x = 0.1

20-2

NX Nastran 8 Verification Manual

Thermo-mechanical Tests — Linear Statics Analysis

The boundary conditions are shown in the following figure:

Solution Type SOL 153 — Steady State Heat Transfer

Results Temperature results (°C) Test

Point

Bench Value NX Nastran

Test1

A

35.00

34.70

Test2

A

35.00

34.70

Test1

B

26.00

25.70

Test2

B

26.00

25.70

Test1

C

10.00

10.30

Test2

C

10.00

10.30

Test1

D

19.00

19.30

Test2

D

19.00

19.30

Test1

S

30.50

30.40

Test2

S

30.50

30.40

Test1

F

18.00

18.00

Test2

F

18.00

18.00

Test1

M

14.50

14.60

Test2

M

14.50

17.70

Test1

H

27.00

27.00

Test2

H

27.00

27.00

NX Nastran 8 Verification Manual

20-3

Chapter 20

Thermo-mechanical Tests — Linear Statics Analysis

Test

Point

Bench Value NX Nastran

Test1

N

29.00

29.00

Test2

N

29.00

29.00

Test1

P

20.00

20.00

Test2

P

20.00

20.00

Test1

J

4.000

4.600

Test2

J

4.000

4.590

Test1

I

13.00

13.60

Test2

I

13.00

13.60

Test1

E

16.50

16.60

Test2

E

16.50

16.60

Test1

R

41.00

40.40

Test2

R

41.00

40.40

Test1

Q

32.00

31.40

Test2

Q

32.00

31.40

Test1

K

16.00

16.00

Test2

K

16.00

16.00

Test1

L

25.00

25.00

Test2

L

25.00

25.00

Test1

G

28.50

28.40

Test2

G

28.50

28.40

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No.TPLV07/89.

20.2 Thermal Gradient on a Thin Pipe This test is a thermo-mechanical linear statics analysis of a thin pipe with thermal gradient and plane strain. It provides the input data and results for benchmark test HSLA01/89 from "Guide de validation des progiciels de calcul de structures."

20-4

NX Nastran 8 Verification Manual

Thermo-mechanical Tests — Linear Statics Analysis



Ri = 0.020 m



Re = 0.025 m

Test Case Data and Information Input Files hsla01.dat

Units SI

Material Properties • • •

E = 1.0 x 1011 Pa = 0.3 Coefficient of expansion: a = 1.0 x 10–5/C°

Finite Element Modeling •

1000 linear axisymmetric solid (CTRIAX6) elements



561 grid points

NX Nastran 8 Verification Manual

20-5

Chapter 20

Thermo-mechanical Tests — Linear Statics Analysis

The mesh is shown in the following figure:

Boundary Conditions •

Articulate AB side



Radial temperature

with Ti = 100 °C, and Te = 0 °C.

The boundary conditions are shown in the following figure:

20-6

NX Nastran 8 Verification Manual

Thermo-mechanical Tests — Linear Statics Analysis

Solution Type SOL 101 Linear statics

Results Point

Stress

Bench Value

NX Nastran

r=Ri

sr (Pa) –265x

0

–14.03 E6

sq (Pa) –265y

–74.07 E6

–79.84 E6

sr (Pa) –270x

–3.950 E6

–3.908 E6

sq (Pa) –270y

1.306 E6

1.469 E6

sr (Pa) –275x

0

–11.31 E6

sq (Pa) –275y

68.78 E6

73.69 E6

r = (Re + Ri) / 2 r = Re

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No.HSLA01/89.

20.3 Simply-Supported Arch This test is a thermo-mechanical linear statics analysis of a thin curved beam with thermal gradient and articulation. It provides the input data and results for benchmark test HSLL01/89 from "Guide de validation des progiciels de calcul de structures."



R = 10 m



A = 144 x 10–4 m2



I = 1.728 x 10–5 m4

Beam cross section:

NX Nastran 8 Verification Manual

20-7

Chapter 20

Thermo-mechanical Tests — Linear Statics Analysis

Test Case Data and Information Input Files hsll01.dat

Units SI

Material Properties • • •

E = 0.2 x 1011 Pa = 0.3 Coefficient of expansion: a = 11.0 x 10–6/C°

Finite Element Modeling •

50 linear beam (CBAR) elements



51 grid points

The mesh is shown in the following figure:

Boundary Conditions •

20-8

Articulate point A and B

NX Nastran 8 Verification Manual

Thermo-mechanical Tests — Linear Statics Analysis



Top temperature Ts = 160 °C



Middle temperature Tm = 100 °C



Bottom temperature Ti = 40 °C

The boundary conditions are shown in the following figure:

Solution Type SOL 101 — Linear Statics

Results Point

Force Moment

Bench Value

NX Nastran

q = π/2

M

0

4.040 e–5

N

0

15.10

T

–479.2

–527.6

M

3388.

3729.

N

–338.8

–373.2

T

–338.8

–373.2

M

4792.

5277.

N

–479.2

527.5

T

0

15.00

q = π/4

q=0

Post Processing List the beam forces •

M - Z bending moment



N - axial force



T - Y shear force

NX Nastran 8 Verification Manual

20-9

Chapter 20

Thermo-mechanical Tests — Linear Statics Analysis

References Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No.HSLL01/89.

20-10

NX Nastran 8 Verification Manual

Part

VII Material Nonlinear (Plasticity) Verification Using Standard NAFEMS Benchmarks

NX Nastran 8 Verification Manual

Chapter

21 Overview of the Material Nonlinear (Plasticity) Verification Using NAFEMS Test Cases

The purpose of this section is to verify the accuracy and robustness of NX Nastran. The plasticity verification uses test cases published by the National Agency for Finite Element Methods and Standards (NAFEMS) in Fundamental Tests for Two and Three Dimensional, Small Strain, Elastoplastic Finite Element Analysis. (See Reference.) To perform the tests, input data is applied to single elements including plane strain elements, plane stress elements, axisymmetric solid elements, and solid elements. Results are tabulated and compared to results published by NAFEMS. The plasticity verification includes perfect plasticity and isotropic hardening tests. Within these categories, results for uniaxial, biaxial, and triaxial displacement tests are provided.

21.1 Understanding the Verification Format The format for the nonlinear section of the Solver Verification document looks somewhat different from the linear section. Each test case in this section provides a brief description of the test including input data. The results are then displayed in the form of a graph comparing NX Nastran Nonlinear results published by NAFEMS for the same test case.

21.2

Reference

The following reference has been used in the NX Nastran Plasticity verification problems: Hinton, E., and Ezatt, M.H. Fundamental Tests for Two and Three Dimensional, Small Strain, Elastoplastic Finite Element Analysis. East Kilbride, Glasgow, UK: National Agency for Finite Element Methods and Standards, April, 1987.

NX Nastran 8 Verification Manual

21-1

Chapter

22

Test Cases

22.1 Plane Strain Elements - Perfect Plasticity Tests This article provides input data and results for perfect plasticity tests including prescribed uniaxial and prescribed biaxial displacement tests. The tests were run on these plane stress elements: •

Linear triangle (CTRIA3) elements



Linear quadrilateral (CQUAD4) elements

The material description and initial boundary conditions are the same for the uniaxial and biaxial displacement tests.

Test Case Data and Information Input Files nlspls89.dat (uniaxial) nlspls90.dat (biaxial)

Units Inch

Attributes Load Control

NX Nastran 8 Verification Manual

22-1

Chapter 22

Test Cases

Material Properties • •

E = 250000.0 = 0.25



sy = 5.0



H = 0.0



o = 0.000025 (strain at first yield)

Boundary Conditions The following figure shows the plane strain elements and the boundary conditions applied to each. The strain state is completely defined as a function of time since all degrees of freedom are suppressed or prescribed. These boundary conditions represent initial conditions only and do not illustrate the time history of the applied conditions.

22-2

NX Nastran 8 Verification Manual

Test Cases

Results Uniaxial Displacement Test — Applied Strain History The following graph shows results of the uniaxial displacement test for the plane strain elements. Results are exactly the same for both elements. The graph shows the NX Nastran Nonlinear test results compared with NAFEMS test results for plane strain with perfect plasticity.

History

Strain XX

Strain YY

Strain ZZ

1

0.2500D–4

0D+00

0D+00

2

0.5000D–4

0D+00

0D+00

3

0.2500D–4

0D+00

0D+00

4

0D+00

0D+00

0D+00

10 increments per strain history step

NX Nastran 8 Verification Manual

22-3

Chapter 22

Test Cases

Biaxial Displacement Test — Applied Strain History The following graph shows results of the biaxial displacement test for the plane strain elements. Results are exactly the same for both elements. The graph shows the NX Nastran Nonlinear test results (points) compared to NAFEMS test results for plane strain with perfect plasticity.

History Stage

Strain XX

Strain YY

Strain ZZ

1

0.2500D–4

0D+00

0D–00

2

0.5000D–4

0D+00

0D–00

3

0.5000D–4

0.2500D–4

0D–00

4

0.5000D–4

0.5000D–4

0D–00

5

0.2500D–4

0.5000D–4

0D–00

6

0D+00

0.5000D–4

0D+00

7

0D+00

0.2500D–4

0D+00

8

0D+00

0D+00

0D+00

10 increments per strain history step

22-4

NX Nastran 8 Verification Manual

Test Cases

References Hinton, E., and Ezatt, M.H. Fundamental Tests for Two and Three Dimensional, Small Strain, Elastoplastic Finite Element Analysis. East Kilbride, Glasgow, UK: National Agency for Finite Element Methods and Standards, April, 1987 pp. 2.3-2.25.

22.2 Plane Strain Elements - Isotropic Hardening Tests This article provides input data and results for isotropic hardening tests including prescribed uniaxial and prescribed biaxial displacement tests. The tests were run on these plane strain elements: •

Linear triangle (CTRIA3) elements



Linear quadrilateral (CQUAD4) elements

The material description and initial boundary conditions are the same for the uniaxial and biaxial displacement tests.

Test Case Data and Information Input Files nlspls91.dat (uniaxial) nlspls92.dat (biaxial)

Units Inch

Attributes Load Control

Material Properties • • •

E = 250000.0 = 0.25 sy = 5.0

NX Nastran 8 Verification Manual

22-5

Chapter 22

Test Cases



H = 62500.0



o = 0.000025 (strain at first yield)

Boundary Conditions The following figure shows the plane strain elements and the boundary conditions applied to each. The strain state is completely defined as a function of time since all degrees of freedom are suppressed or prescribed. These boundary conditions represent initial conditions only and do not illustrate the time history of the applied conditions.

22-6

NX Nastran 8 Verification Manual

Test Cases

Results Uniaxial Displacement Test — Applied Strain History The following graph shows results of the biaxial displacement test for the plane strain elements. Results are exactly the same for both elements. The graph shows the NX Nastran Nonlinear test results (points) compared to NAFEMS test results for plane strain with isotropic hardening.

History

Strain XX

Strain YY

Strain ZZ

1

0.2500D–4

0D+00

0D+00

2

0.5000D–4

0D+00

0D+00

3

0.2500D–4

0D+00

0D+00

4

0D–00

0D+00

0D+00

10 increments per strain history step

NX Nastran 8 Verification Manual

22-7

Chapter 22

Test Cases

Biaxial Displacement Test — Applied Strain History The following graph shows results of the uniaxial displacement test for the plane strain elements. Results are exactly the same for both elements. The graph shows the NX Nastran Nonlinear test results (points) compared to NAFEMS test result for plane strain with isotropic hardening.

History Stage

Strain XX

Strain YY

Strain ZZ

1

0.2500D–4

0D+00

0D+00

2

0.5000D–4

0D+00

0D+00

3

0.5000D–4

0.2500D–4

0D+00

4

0.5000D–4

0.5000D–4

0D+00

5

0.2500D–4

0.5000D–4

0D+00

6

0D–00

0.5000D–4

0D+00

7

0D–00

0.2500D–4

0D+00

8

0D–00

0D–00

0D+00

10 increments per strain history step

22-8

NX Nastran 8 Verification Manual

Test Cases

References Hinton, E., and Ezatt, M.H. Fundamental Tests for Two and Three Dimensional, Small Strain, Elastoplastic Finite Element Analysis. East Kilbride, Glasgow, UK: National Agency for Finite Element Methods and Standards, April, 1987 pp. 2.26 - 2.35.

22.3 Plane Stress Elements - Perfect Plasticity Tests This article provides input data and results for perfect plasticity tests including prescribed uniaxial and prescribed biaxial displacement tests. The tests were run on these plane strain elements: •

Linear triangle (CTRIA3) elements



Linear quadrilateral (CQUAD4) elements

The material description and initial boundary conditions are the same for the uniaxial and biaxial displacement tests. The following figure shows the geometry:

Test Case Data and Information Input Files nlspls61.dat (uniaxial test), linear quadrilateral (CQUAD4) elements nlspls62.dat (uniaxial test), linear triangle (CTRIA3) elements nlspls65.dat (biaxial test), linear quadrilateral (CQUAD4) elements nlspls66.dat (biaxial test), linear triangle (CTRIA3) elements

Units Inch

Material Properties • • •

E = 250000.0 = 0.25 sy = 5.0

NX Nastran 8 Verification Manual

22-9

Chapter 22



H = 0.0



o

Test Cases

= 0.2080126 x 10–4 (strain at first yield)

Boundary Conditions The following figure shows the plane strain elements and the boundary conditions applied to each. The strain state is completely defined as a function of time since all degrees of freedom are suppressed or prescribed. These boundary conditions represent initial conditions only and do not illustrate the time history of the applied conditions.

22-10

NX Nastran 8 Verification Manual

Test Cases

Results Uniaxial Displacement Test — Applied Strain History The following graph shows results of the uniaxial displacement test for the plane strain elements. Results are exactly the same for both elements. The graph shows the NX Nastran Nonlinear test results (points) compared to NAFEMS test results for plane stress with perfect plasticity.

History

Strain XX

Strain YY

Strain ZZ

1

0.2080D–4

0D+00

-0.6934D–5

2

0.4160D–4

0D+00

-0.2538D–4

3

0.2080D–4

0D+00

-0.1835D–4

4

0.4235D–21

0D+00

-0.1128D–4

10 increments per strain history step Biaxial Displacement Test — Applied Strain History The following graph shows results of the biaxial displacement test for the plane strain elements.

NX Nastran 8 Verification Manual

22-11

Chapter 22

Test Cases

Results are exactly the same for both elements. The graph shows the NX Nastran Nonlinear test results (points) compared to NAFEMS test results.

History Stage

Strain XX

Strain YY

Strain ZZ

1

0.2080D–4

0D+00

-0.6934D–5

2

0.4160D–4

0D+00

-0.2528D–4

3

0.4160D–4

0.2080D–4

-0.4284D–4

4

0.4160D–4

0.4160D–4

-0.6513D–4

5

0D–00

0.4160D–4

-0.5035D–4

6

0D–00

0.1872D–4

-0.3871D–4

7

0D–00

0D–00

-0.1867D–4

10 increments per strain history step

22-12

NX Nastran 8 Verification Manual

Test Cases

References Hinton, E., and Ezatt, M.H. Fundamental Tests for Two and Three Dimensional, Small Strain, Elastoplastic Finite Element Analysis. East Kilbride, Glasgow, UK: National Agency for Finite Element Methods and Standards, April, 1987 pp. 2.36 - 2.47.

22.4 Plane Stress Elements - Isotropic Hardening Tests This article provides input data and results for isotropic hardening tests including prescribed uniaxial and prescribed biaxial displacement tests. The tests were run on the these plane stress elements: •

Linear triangle (CTRIA3) elements



Linear quadrilateral (CQUAD4) elements

The material description and initial boundary conditions are the same for the uniaxial and biaxial displacement tests. The following figure shows the geometry:

Test Case Data and Information Input Files nlspls71.dat (uniaxial test), linear quadrilateral (CQUAD4) elements nlspls72.dat (uniaxial test), linear triangle (CTRIA3) elements nlspls75.dat (biaxial test), linear quadrilateral (CQUAD4) elements nlspls76.dat (biaxial test), linear triangle (CTRIA3) elements

Units Inch

Material Properties • • •

E = 250000.0 = 0.25 sy = 5.0

NX Nastran 8 Verification Manual

22-13

Chapter 22



Test Cases

H = 62500.0



o

= 0.2080126 x 10–4 (strain at first yield)

Boundary Conditions The following figure shows the plane strain elements and the boundary conditions applied to each. The strain state is completely defined as a function of time since all degrees of freedom are suppressed or prescribed. These boundary conditions represent initial conditions only and do not show the time history of the applied conditions.

22-14

NX Nastran 8 Verification Manual

Test Cases

Results Uniaxial Displacement Test — Applied Strain History The following graph shows results of the uniaxial displacement test for the plane strain elements. Results are exactly the same for both elements. The graph shows the NX Nastran Nonlinear test results (points) compared to NAFEMS test results.

History

Strain XX

Strain YY

Strain ZZ

1

0.2080D–4

0D+00

-0.6934D–5

2

0.4160D–4

0D+00

-0.2249D–4

3

0.2080D–4

0D+00

-0.1555D–4

4

0.4235D–21

0D+00

-0.8619D–5

10 increments per strain history step

NX Nastran 8 Verification Manual

22-15

Chapter 22

Test Cases

Biaxial Displacement Test — Applied Strain History The following graph shows results of the biaxial displacement test for the plane strain elements. Results are exactly the same for both elements. The graph shows the NX Nastran Nonlinear test results (points) compared to NAFEMS test results.

History Stage

Strain XX

Strain YY

Strain ZZ

1

0.2080D–4

0D+00

-0.6934D–5

2

0.4160D–4

0D+00

-0.2249D–4

3

0.4160D–4

0.2080D–4

-0.3569D–4

4

0.4160D–4

0.4160D–4

-0.5406D–4

5

0.2080D–4

0.4160D–4

-0.4712D–4

6

0D–00

0.4160D–4

-0.4102D–4

7

0D–00

0.2080D–4

-0.3408D–4

8

0D–00

0D–00

-0.2715D–4

10 increments per strain history step

22-16

NX Nastran 8 Verification Manual

Test Cases

References Hinton, E., and Ezatt, M.H. Fundamental Tests for Two and Three Dimensional, Small Strain, Elastoplastic Finite Element Analysis. East Kilbride, Glasgow, UK: National Agency for Finite Element Methods and Standards, April, 1987 pp. 2.47 - 2.58.

22.5 Solid Element - Perfect Plasticity Tests This article provides input data and results for perfect plasticity tests including prescribed uniaxial, biaxial, and triaxial displacement tests. The tests were run on the solid parabolic brick element.

Test Case Data and Information Input Files nlspls08.dat

Units Inch

Material Properties •

E = 250000.0 = 0.25

• • • •

y

= 5.0

H = 0.0 o

= 0.000025 (strain at first yield)

Boundary Conditions The following figure shows the parabolic brick (CHEXA) element and the boundary conditions applied to it. The strain state is completely defined as a function of time since all degrees of freedom are suppressed or prescribed. These boundary conditions represent initial conditions only and do not show the time history of the applied conditions.

NX Nastran 8 Verification Manual

22-17

Chapter 22

Test Cases

Results Uniaxial Displacement Test — Applied Strain History History

Strain XX

Strain YY

Strain ZZ

1

2.500E–5

0E+00

0E+00

2

5.000E–5

0E+00

0E+00

3

2.500E–5

0E+00

0E+00

4

0E+00

0E+00

0E+00

10 increments per strain history step

22-18

NX Nastran 8 Verification Manual

Test Cases

The following graph shows results of the uniaxial displacement test for the solid brick element. It shows the NX Nastran Nonlinear test results (points) compared to NAFEMS test results.

NX Nastran 8 Verification Manual

22-19

Chapter 22

Test Cases

Biaxial Displacement Test — Applied Strain History The following graph shows results of the biaxial displacement test for the solid brick element. The graph shows the NX Nastran Nonlinear test results (points) compared to NAFEMS test results.

History

Strain XX

Strain YY

Strain ZZ

1

2.500E–5

0E+00

0E+00

2

5.000E–5

0E+00

0E+00

3

5.000E–5

2.500E–5

0E+00

4

5.000E–5

5.000E–5

0E+00

5

2.500E–5

5.000E–5

0E+00

6

0E+00

5.000E–5

0E+00

7

0E+00

2.500E–5

0E+00

8

0E+00

0E+00

0E+00

- 10 increments per strain history step

22-20

NX Nastran 8 Verification Manual

Test Cases

Triaxial Displacement Test — Applied Strain History The following graph shows results of the triaxial displacement test for the solid brick element. The graph shows the NX Nastran Nonlinear test results (points) compared to NAFEMS test results.

History

Strain XX

Strain YY

Strain ZZ

1

2.500E–5

0E+00

0E+00

2

5.000E–5

0E+00

0E+00

3

5.000E–5

2.500E–5

0E+00

4

5.000E–5

5.000E–5

0E+00

5

5.000E–5

5.000E–5

2.500E–5

6

5.000E–5

5.000E–5

5.000E–5

7

2.500E–5

5.000E–5

5.000E–5

8

0E+00

5.000E–5

5.000E–5

9

0E+00

2.500E–5

5.000E–5

10

0E+00

0E+00

5.000E–5

11

0E+00

0E+00

2.500E– 5

NX Nastran 8 Verification Manual

22-21

Test Cases

Chapter 22

History

Strain XX

Strain YY

Strain ZZ

12

0E+00

0E+00

0E+00

- 10 increments per strain history step

References Hinton, E., and Ezatt, M.H. Fundamental Tests for Two and Three Dimensional, Small Strain, Elastoplastic Finite Element Analysis. East Kilbride, Glasgow, UK: National Agency for Finite Element Methods and Standards, April, 1987 pp. 2.59-2.79.

22.6 Solid Element - Isotropic Hardening Tests This article provides input data and results for isotropic hardening tests including prescribed uniaxial, biaxial, and triaxial displacement tests. The tests were run on the solid parabolic brick element (CHEXA), which has 20 grid points.

Test Case Data and Information Input Files nlspls09.dat

Units Inch

Material Properties •

E = 250000.0



= 0.25

• •

y

= 5.0

H = 62500.0



o

= 0.000025 (strain at first yield)

Boundary Conditions The following figure shows the parabolic brick element and the boundary conditions applied to it. The strain state is completely defined as a function of time since all degrees of freedom are suppressed or prescribed. These boundary conditions represent initial conditions only and do not show the time history of the applied conditions.

22-22

NX Nastran 8 Verification Manual

Test Cases

NX Nastran 8 Verification Manual

22-23

Chapter 22

Test Cases

Results Uniaxial Displacement Test — Applied Strain History The following graph shows results of the uniaxial displacement test for the solid brick element. It shows the NX Nastran Nonlinear test results (points) compared to NAFEMS test results.

History

Strain XX

Strain YY

Strain ZZ

1

2.500E–5

0E+00

0E+00

2

5.000E–5

0E+00

0E+00

3

2.500E–5

0E+00

0E+00

4

0E+00

0E+00

0E+00

- 10 increments per strain history step

22-24

NX Nastran 8 Verification Manual

Test Cases

Biaxial Displacement Test — Applied Strain History The following graph shows results of the biaxial displacement test for the solid brick element. The graph shows the NX Nastran Nonlinear test results (points) compared to NAFEMS test results.

History

Strain XX

Strain YY

Strain ZZ

1

2.500E–5

0E+00

0E+00

2

5.000E–5

0E+00

0E+00

3

5.000E–5

2.500E–5

0E+00

4

5.000E–5

5.000E–5

0E+00

5

2.500E–5

5.000E–5

0E+00

6

0E+00

5.000E–5

0E+00

7

0E+00

2.500E–5

0E+00

8

0E+00

0E+00

0E+00

- 10 increments per strain history step

NX Nastran 8 Verification Manual

22-25

Chapter 22

Test Cases

Triaxial Displacement Test — Applied Strain History The following graph shows results of the triaxial displacement test for the solid brick element. The graph shows the NX Nastran Nonlinear test results (points) compared to NAFEMS test results.

History

Strain XX

Strain YY

Strain ZZ

1

2.500E–5

0E+00

0E+00

2

5.000E–5

0E+00

0E+00

3

5.000E–5

2.500E–5

0E+00

4

5.000E–5

5.000E–5

0E+00

5

5.000E–5

5.000E–5

2.500E–5

6

5.000E–5

5.000E–5

5.000E–5

7

2.500E–5

5.000E–5

5.000E–5

8

0E+00

5.000E–5

5.000E–5

9

0E+00

2.500E–5

5.000E–5

10

0E+00

0E+00

5.000E–5

11

0E+00

0E+00

2.500E–5

22-26

NX Nastran 8 Verification Manual

Test Cases

History

Strain XX

Strain YY

Strain ZZ

12

0E+00

0E+00

0E+00

- 10 increments per strain history step

References Hinton, E., and Ezatt, M.H. Fundamental Tests for Two and Three Dimensional, Small Strain, Elastoplastic Finite Element Analysis. East Kilbride, Glasgow, UK: National Agency for Finite Element Methods and Standards, April, 1987 pp. 2.80-2.92.

NX Nastran 8 Verification Manual

22-27

Part

VIII Geometric Nonlinear Verification Using Standard NAFEMS Benchmarks

NX Nastran 8 Verification Manual

Chapter

23 Overview of the Geometric Nonlinear Verification Using NAFEMS Test Cases

This section verifies the accuracy and robustness of the arc-length method of NX Nastran. The geometric nonlinear verification uses test cases published by the National Agency for Finite Element Methods and Standards (NAFEMS) in NAFEMS Non-Linear Benchmarks and A Review of Benchmark Problems for Geometric Non-linear Behaviour of 3-D Beams and Shells. (See References.)

23.1 Understanding the Verification Format Each test case includes the following information. •

Test case data and information: - Units - Material properties - Finite element modeling information - Boundary conditions (loads and restraints) - Solution type



Results — time history versus Load Factor plots are presented. (Note that in NX Nastran, the load factor is displayed as "eigenvalue".)



Reference

23.2 Reference The following references have been used for these verification problems: •

NAFEMS Non-Linear Benchmarks. Glasgow: NAFEMS, Oct., 1989., Rev. 1. Test No. NL6.



NAFEMS, A Review of Benchmark Problems for Geometric Non-Linear Behaviour of 3-D Beams and Shells (Summary) (Glasgow: NAFEMS, Ref. R0024.)

NX Nastran 8 Verification Manual

23-1

Chapter

24

Test Cases

24.1 Straight Cantilever with End Moment This test is a nonlinear analysis of a single row of equal-sized elements. This document provides the input data and results for NAFEMS Non-linear Benchmarks NL5.

Test attributes: •

Bending action only



Initially straight elements



Load control

Test Case Data and Information Input Files nfnl05a.dat (load control) nfnl05b.dat (arc-length control)

Units SI

NX Nastran 8 Verification Manual

24-1

Test Cases

Chapter 24

Material Properties • •

E = 210 x 109 N / m2 = 0.0

SI

Finite Element Modeling 32 linear beam (CBEAM) elements

Boundary Conditions •

U=V=



Concentrated load at Point A applied in equal increments up to a maximum value of M L / 2 π E I = 1.0

= 0 at point B

Solution Type SOL 106 — Geometric Nonlinear •

Loading method — arc-length control.



Adaptive search control:

24-2

NX Nastran 8 Verification Manual

Test Cases

– Initial increment factor = 0.05 – Target number of iterations = 6 – Maximum number of splits = 3 – Max increment factor = 1 – Number of reporting steps = 18 Geometric nonlinear 2 •

Loading method — load control.



6 equal steps.

Results Normalizing Constants E I / L = 3436.12 x 103 Nm



2



L = 3.2 m



2 = 6.28319

NX Nastran 8 Verification Manual

24-3

Chapter 24

Test Cases

Graphs of Results •

24-4

Free end axial displacement vs. Load Factor

NX Nastran 8 Verification Manual

Test Cases



Vertical displacement at grid point 33 vs. Load Factor

NX Nastran 8 Verification Manual

24-5

Chapter 24



Test Cases

Rotational displacement at grid point 33 vs. Load Factor

References National Agency for Finite Element Methods and Standards, NAFEMS Non-Linear Benchmarks (Glasgow: NAFEMS, Oct., 1989., Rev. 1). Test No. NL5.

24.2 Straight Cantilever with Axial End Point Load - Brick Elements This test is a nonlinear analysis of a straight cantilever with an axial end point load, made up of a single row of straight elements. This document provides the input data and results for NAFEMS Non-linear Benchmarks NL6.

24-6

NX Nastran 8 Verification Manual

Test Cases

Attributes of this test are: •

Combined bending and membrane action.



Presence of bifurcation.



Initially straight elements.



Load control.

Test Case Data and Information Input Files nlsarg07.dat

Units SI

Material Properties • •

E = 210 x 109 N/m2 = 0.0

NX Nastran 8 Verification Manual

24-7

Chapter 24

Test Cases

Finite Element Modeling 256 solid parabolic brick (CHEXA) elements.

Boundary Conditions •

U = V = q = 0 at point B.



Concentrated load at Point A applied in increments up to a value of PL2 / EI = 22.493.

Solution Type SOL 106 — Geometric Nonlinear

Results Normalizing Constants: •

EI / L2 = 170898 N



L + 3.2 m



= 3.14159

24-8

NX Nastran 8 Verification Manual

Test Cases

Graphs of results: •

X-displacement at cantilever end point vs. Load Factor.

NX Nastran 8 Verification Manual

24-9

Chapter 24



Test Cases

Y-displacement at cantilever end point vs. Load Factor

Reference National Agency for Finite Element Methods and Standards. NAFEMS Non-Linear Benchmarks. Glasgow: NAFEMS, Oct., 1989., Rev. 1. Test No. NL6.

24-10

NX Nastran 8 Verification Manual

Test Cases

24.3 Straight Cantilever with Axial End Point Load - BEAM Elements This test is a nonlinear analysis of a single row of straight elements. This document provides the input data and results for NAFEMS Non-linear Benchmarks NF6.

Test Case Data and Information Input Files nlsarp01.dat

Units SI

Material Properties • •

E = 210 x 109 N/m2 = 0.0

Finite Element Modeling 32 linear (CBEAM) elements

NX Nastran 8 Verification Manual

24-11

Test Cases

Chapter 24

Boundary Conditions • •

U = V = q = 0 at point B. Concentrated load at Point A applied in increments up to a value of PL2 / EI = 22.493 or P = –3.85 x 106 N

Solution Type SOL 106 — Geometric Nonlinear

Results Normalizing Constants: • •

EI / L

2

= 170898 N

π = 3.14159

24-12

NX Nastran 8 Verification Manual

Test Cases

Graphs of results: •

X-displacement at grid point 33 vs. Load Factor

NX Nastran 8 Verification Manual

24-13

Chapter 24



24-14

Test Cases

Y-displacement at grid point 33 vs. Load Factor

NX Nastran 8 Verification Manual

Test Cases



Rz-displacement at grid point 33 vs. Load Factor

Reference National Agency for Finite Element Methods and Standards, NAFEMS Non-Linear Benchmarks. Glasgow: NAFEMS, Oct., 1989., Rev. 1. Test No. NL6.

24.4 Lee’s Frame Buckling Problem This test is a nonlinear analysis of a single row of straight elements. This document provides the input data and results for NAFEMS Non-linear Benchmarks NF7. Attributes of this test are:

NX Nastran 8 Verification Manual

24-15

Chapter 24

Test Cases

Test Case Data and Information Input Files nlsarg01.dat

Units SI

Material Properties • •

24-16

E = 71.74 x 109 N/m2 = 0.0

NX Nastran 8 Verification Manual

Test Cases

Finite Element Modeling 20 linear beam (CBEAM) elements

Boundary Conditions • •

U = V = 0; q ≠ 0 at points B and C Concentrated load at Point A applied incrementally using arc-length constraint with automatic adjustment of arc length (P = –20000 N)

Solution Type SOL 106 — Geometric Nonlinear

NX Nastran 8 Verification Manual

24-17

Chapter 24

Test Cases

Results Normalizing Constants EI / L2 = 996.389 N, L = 1.2 m Graphs of results: Y-displacement at grid point 13 vs. Load Factor

Reference National Agency for Finite Element Methods and Standards. NAFEMS Non-Linear Benchmarks. Glasgow: NAFEMS, Oct., 1989., Rev. 1. Test No. NL7.

24.5 Large Displacement Elastic Response of a Hinged Spherical Shell Under Uniform Pressure Loading This test is a nonlinear analysis of a hinged spherical shell element under uniform pressure loading. This document provides the input data and results for A Review of Benchmark Problems for Geometric Non-Linear Behaviour of 3-D Beams and Shells (Summary) 3DNLG-7.

24-18

NX Nastran 8 Verification Manual

Test Cases

Test Case Data and Information Input Files nlsarg05.dat

Units SI

Material Properties • •

E = 69 = 0.3

Finite Element Modeling •

The shell midsurface is defined in terms of the global Cartesian coordinate system where Z = 2.0285 x 10 –4 [X (1570 – X) + Y (1570 – Y)].

NX Nastran 8 Verification Manual

24-19

Chapter 24

Test Cases

Boundary Conditions •

Evenly distributed follower pressure load normal to shell surface. Maximum pressure = 0.1. Pressure follows the deformation of the shell surface.

Solution Type SOL 106 — Geometric Nonlinear •

Loading method: o



Arc-length control

Adaptive search control: o

Initial increment factor = 0.3

o

Target number of iterations = 6

o

Maximum number of splits = 3

o

Maximum increment factor = 1

o

Number of reporting steps = 18

24-20

NX Nastran 8 Verification Manual

Test Cases

24.6 Results Magnitude displacement at grid point 145 vs. Load Factor

24.7 Reference •

National Agency for Finite Element Methods and Standards. A Review of Benchmark Problems for Geometric Non-Linear Behaviour of 3-D Beams and Shells (Summary) Glasgow: NAFEMS, Ref. R0024. Test No. 3DNLG-7

NX Nastran 8 Verification Manual

24-21

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF